]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - Documentation/virt/kvm/api.rst
kvm: x86: only provide PV features if enabled in guest's CPUID
[mirror_ubuntu-jammy-kernel.git] / Documentation / virt / kvm / api.rst
CommitLineData
106ee47d
MCC
1.. SPDX-License-Identifier: GPL-2.0
2
3===================================================================
9c1b96e3
AK
4The Definitive KVM (Kernel-based Virtual Machine) API Documentation
5===================================================================
6
71. General description
106ee47d 8======================
9c1b96e3
AK
9
10The kvm API is a set of ioctls that are issued to control various aspects
80b10aa9 11of a virtual machine. The ioctls belong to the following classes:
9c1b96e3
AK
12
13 - System ioctls: These query and set global attributes which affect the
14 whole kvm subsystem. In addition a system ioctl is used to create
5e124900 15 virtual machines.
9c1b96e3
AK
16
17 - VM ioctls: These query and set attributes that affect an entire virtual
18 machine, for example memory layout. In addition a VM ioctl is used to
ddba9180 19 create virtual cpus (vcpus) and devices.
9c1b96e3 20
5e124900
SC
21 VM ioctls must be issued from the same process (address space) that was
22 used to create the VM.
9c1b96e3
AK
23
24 - vcpu ioctls: These query and set attributes that control the operation
25 of a single virtual cpu.
26
5e124900
SC
27 vcpu ioctls should be issued from the same thread that was used to create
28 the vcpu, except for asynchronous vcpu ioctl that are marked as such in
29 the documentation. Otherwise, the first ioctl after switching threads
30 could see a performance impact.
9c1b96e3 31
ddba9180
SC
32 - device ioctls: These query and set attributes that control the operation
33 of a single device.
34
35 device ioctls must be issued from the same process (address space) that
36 was used to create the VM.
414fa985 37
2044892d 382. File descriptors
106ee47d 39===================
9c1b96e3
AK
40
41The kvm API is centered around file descriptors. An initial
42open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
43can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 44handle will create a VM file descriptor which can be used to issue VM
ddba9180
SC
45ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVICE ioctl on a VM fd will
46create a virtual cpu or device and return a file descriptor pointing to
47the new resource. Finally, ioctls on a vcpu or device fd can be used
48to control the vcpu or device. For vcpus, this includes the important
49task of actually running guest code.
9c1b96e3
AK
50
51In general file descriptors can be migrated among processes by means
52of fork() and the SCM_RIGHTS facility of unix domain socket. These
53kinds of tricks are explicitly not supported by kvm. While they will
54not cause harm to the host, their actual behavior is not guaranteed by
5e124900
SC
55the API. See "General description" for details on the ioctl usage
56model that is supported by KVM.
eca6be56 57
919f6cd8
SC
58It is important to note that althought VM ioctls may only be issued from
59the process that created the VM, a VM's lifecycle is associated with its
60file descriptor, not its creator (process). In other words, the VM and
61its resources, *including the associated address space*, are not freed
62until the last reference to the VM's file descriptor has been released.
63For example, if fork() is issued after ioctl(KVM_CREATE_VM), the VM will
64not be freed until both the parent (original) process and its child have
65put their references to the VM's file descriptor.
66
67Because a VM's resources are not freed until the last reference to its
3747c5d3 68file descriptor is released, creating additional references to a VM
919f6cd8
SC
69via fork(), dup(), etc... without careful consideration is strongly
70discouraged and may have unwanted side effects, e.g. memory allocated
71by and on behalf of the VM's process may not be freed/unaccounted when
72the VM is shut down.
73
74
9c1b96e3 753. Extensions
106ee47d 76=============
9c1b96e3
AK
77
78As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
79incompatible change are allowed. However, there is an extension
80facility that allows backward-compatible extensions to the API to be
81queried and used.
82
c9f3f2d8 83The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
84Instead, kvm defines extension identifiers and a facility to query
85whether a particular extension identifier is available. If it is, a
86set of ioctls is available for application use.
87
414fa985 88
9c1b96e3 894. API description
106ee47d 90==================
9c1b96e3
AK
91
92This section describes ioctls that can be used to control kvm guests.
93For each ioctl, the following information is provided along with a
94description:
95
106ee47d
MCC
96 Capability:
97 which KVM extension provides this ioctl. Can be 'basic',
9c1b96e3 98 which means that is will be provided by any kernel that supports
7f05db6a 99 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
9c1b96e3 100 means availability needs to be checked with KVM_CHECK_EXTENSION
7f05db6a
MT
101 (see section 4.4), or 'none' which means that while not all kernels
102 support this ioctl, there's no capability bit to check its
103 availability: for kernels that don't support the ioctl,
104 the ioctl returns -ENOTTY.
9c1b96e3 105
106ee47d
MCC
106 Architectures:
107 which instruction set architectures provide this ioctl.
9c1b96e3
AK
108 x86 includes both i386 and x86_64.
109
106ee47d
MCC
110 Type:
111 system, vm, or vcpu.
9c1b96e3 112
106ee47d
MCC
113 Parameters:
114 what parameters are accepted by the ioctl.
9c1b96e3 115
106ee47d
MCC
116 Returns:
117 the return value. General error numbers (EBADF, ENOMEM, EINVAL)
9c1b96e3
AK
118 are not detailed, but errors with specific meanings are.
119
414fa985 120
9c1b96e3 1214.1 KVM_GET_API_VERSION
106ee47d 122-----------------------
9c1b96e3 123
106ee47d
MCC
124:Capability: basic
125:Architectures: all
126:Type: system ioctl
127:Parameters: none
128:Returns: the constant KVM_API_VERSION (=12)
9c1b96e3
AK
129
130This identifies the API version as the stable kvm API. It is not
131expected that this number will change. However, Linux 2.6.20 and
1322.6.21 report earlier versions; these are not documented and not
133supported. Applications should refuse to run if KVM_GET_API_VERSION
134returns a value other than 12. If this check passes, all ioctls
135described as 'basic' will be available.
136
414fa985 137
9c1b96e3 1384.2 KVM_CREATE_VM
106ee47d 139-----------------
9c1b96e3 140
106ee47d
MCC
141:Capability: basic
142:Architectures: all
143:Type: system ioctl
144:Parameters: machine type identifier (KVM_VM_*)
145:Returns: a VM fd that can be used to control the new virtual machine.
9c1b96e3 146
bcb85c88 147The new VM has no virtual cpus and no memory.
a8a3c426 148You probably want to use 0 as machine type.
e08b9637
CO
149
150In order to create user controlled virtual machines on S390, check
151KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
152privileged user (CAP_SYS_ADMIN).
9c1b96e3 153
a8a3c426
JH
154To use hardware assisted virtualization on MIPS (VZ ASE) rather than
155the default trap & emulate implementation (which changes the virtual
156memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the
157flag KVM_VM_MIPS_VZ.
158
414fa985 159
233a7cb2
SP
160On arm64, the physical address size for a VM (IPA Size limit) is limited
161to 40bits by default. The limit can be configured if the host supports the
162extension KVM_CAP_ARM_VM_IPA_SIZE. When supported, use
163KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the size in the machine type
164identifier, where IPA_Bits is the maximum width of any physical
165address used by the VM. The IPA_Bits is encoded in bits[7-0] of the
166machine type identifier.
167
106ee47d 168e.g, to configure a guest to use 48bit physical address size::
233a7cb2
SP
169
170 vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_VM_TYPE_ARM_IPA_SIZE(48));
171
106ee47d 172The requested size (IPA_Bits) must be:
233a7cb2 173
106ee47d
MCC
174 == =========================================================
175 0 Implies default size, 40bits (for backward compatibility)
176 N Implies N bits, where N is a positive integer such that,
233a7cb2 177 32 <= N <= Host_IPA_Limit
106ee47d 178 == =========================================================
233a7cb2
SP
179
180Host_IPA_Limit is the maximum possible value for IPA_Bits on the host and
181is dependent on the CPU capability and the kernel configuration. The limit can
182be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of the KVM_CHECK_EXTENSION
183ioctl() at run-time.
184
185Please note that configuring the IPA size does not affect the capability
186exposed by the guest CPUs in ID_AA64MMFR0_EL1[PARange]. It only affects
187size of the address translated by the stage2 level (guest physical to
188host physical address translations).
189
190
801e459a 1914.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST
106ee47d
MCC
192----------------------------------------------------------
193
194:Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST
195:Architectures: x86
196:Type: system ioctl
197:Parameters: struct kvm_msr_list (in/out)
198:Returns: 0 on success; -1 on error
9c1b96e3 199
9c1b96e3 200Errors:
106ee47d
MCC
201
202 ====== ============================================================
203 EFAULT the msr index list cannot be read from or written to
204 E2BIG the msr index list is to be to fit in the array specified by
9c1b96e3 205 the user.
106ee47d 206 ====== ============================================================
9c1b96e3 207
106ee47d
MCC
208::
209
210 struct kvm_msr_list {
9c1b96e3
AK
211 __u32 nmsrs; /* number of msrs in entries */
212 __u32 indices[0];
106ee47d 213 };
9c1b96e3 214
801e459a
TL
215The user fills in the size of the indices array in nmsrs, and in return
216kvm adjusts nmsrs to reflect the actual number of msrs and fills in the
217indices array with their numbers.
218
219KVM_GET_MSR_INDEX_LIST returns the guest msrs that are supported. The list
220varies by kvm version and host processor, but does not change otherwise.
9c1b96e3 221
2e2602ca
AK
222Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
223not returned in the MSR list, as different vcpus can have a different number
224of banks, as set via the KVM_X86_SETUP_MCE ioctl.
225
801e459a
TL
226KVM_GET_MSR_FEATURE_INDEX_LIST returns the list of MSRs that can be passed
227to the KVM_GET_MSRS system ioctl. This lets userspace probe host capabilities
228and processor features that are exposed via MSRs (e.g., VMX capabilities).
229This list also varies by kvm version and host processor, but does not change
230otherwise.
231
414fa985 232
9c1b96e3 2334.4 KVM_CHECK_EXTENSION
106ee47d 234-----------------------
9c1b96e3 235
106ee47d
MCC
236:Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
237:Architectures: all
238:Type: system ioctl, vm ioctl
239:Parameters: extension identifier (KVM_CAP_*)
240:Returns: 0 if unsupported; 1 (or some other positive integer) if supported
9c1b96e3
AK
241
242The API allows the application to query about extensions to the core
243kvm API. Userspace passes an extension identifier (an integer) and
244receives an integer that describes the extension availability.
245Generally 0 means no and 1 means yes, but some extensions may report
246additional information in the integer return value.
247
92b591a4
AG
248Based on their initialization different VMs may have different capabilities.
249It is thus encouraged to use the vm ioctl to query for capabilities (available
250with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
414fa985 251
9c1b96e3 2524.5 KVM_GET_VCPU_MMAP_SIZE
106ee47d 253--------------------------
9c1b96e3 254
106ee47d
MCC
255:Capability: basic
256:Architectures: all
257:Type: system ioctl
258:Parameters: none
259:Returns: size of vcpu mmap area, in bytes
9c1b96e3
AK
260
261The KVM_RUN ioctl (cf.) communicates with userspace via a shared
262memory region. This ioctl returns the size of that region. See the
263KVM_RUN documentation for details.
264
414fa985 265
9c1b96e3 2664.6 KVM_SET_MEMORY_REGION
106ee47d 267-------------------------
9c1b96e3 268
106ee47d
MCC
269:Capability: basic
270:Architectures: all
271:Type: vm ioctl
272:Parameters: struct kvm_memory_region (in)
273:Returns: 0 on success, -1 on error
9c1b96e3 274
b74a07be 275This ioctl is obsolete and has been removed.
9c1b96e3 276
414fa985 277
68ba6974 2784.7 KVM_CREATE_VCPU
106ee47d 279-------------------
9c1b96e3 280
106ee47d
MCC
281:Capability: basic
282:Architectures: all
283:Type: vm ioctl
284:Parameters: vcpu id (apic id on x86)
285:Returns: vcpu fd on success, -1 on error
9c1b96e3 286
0b1b1dfd
GK
287This API adds a vcpu to a virtual machine. No more than max_vcpus may be added.
288The vcpu id is an integer in the range [0, max_vcpu_id).
8c3ba334
SL
289
290The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
291the KVM_CHECK_EXTENSION ioctl() at run-time.
292The maximum possible value for max_vcpus can be retrieved using the
293KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
294
76d25402
PE
295If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
296cpus max.
8c3ba334
SL
297If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
298same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 299
0b1b1dfd
GK
300The maximum possible value for max_vcpu_id can be retrieved using the
301KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time.
302
303If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id
304is the same as the value returned from KVM_CAP_MAX_VCPUS.
305
371fefd6
PM
306On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
307threads in one or more virtual CPU cores. (This is because the
308hardware requires all the hardware threads in a CPU core to be in the
309same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
310of vcpus per virtual core (vcore). The vcore id is obtained by
311dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
312given vcore will always be in the same physical core as each other
313(though that might be a different physical core from time to time).
314Userspace can control the threading (SMT) mode of the guest by its
315allocation of vcpu ids. For example, if userspace wants
316single-threaded guest vcpus, it should make all vcpu ids be a multiple
317of the number of vcpus per vcore.
318
5b1c1493
CO
319For virtual cpus that have been created with S390 user controlled virtual
320machines, the resulting vcpu fd can be memory mapped at page offset
321KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
322cpu's hardware control block.
323
414fa985 324
68ba6974 3254.8 KVM_GET_DIRTY_LOG (vm ioctl)
106ee47d 326--------------------------------
9c1b96e3 327
106ee47d
MCC
328:Capability: basic
329:Architectures: all
330:Type: vm ioctl
331:Parameters: struct kvm_dirty_log (in/out)
332:Returns: 0 on success, -1 on error
9c1b96e3 333
106ee47d
MCC
334::
335
336 /* for KVM_GET_DIRTY_LOG */
337 struct kvm_dirty_log {
9c1b96e3
AK
338 __u32 slot;
339 __u32 padding;
340 union {
341 void __user *dirty_bitmap; /* one bit per page */
342 __u64 padding;
343 };
106ee47d 344 };
9c1b96e3
AK
345
346Given a memory slot, return a bitmap containing any pages dirtied
347since the last call to this ioctl. Bit 0 is the first page in the
348memory slot. Ensure the entire structure is cleared to avoid padding
349issues.
350
f481b069
PB
351If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
352the address space for which you want to return the dirty bitmap.
353They must be less than the value that KVM_CHECK_EXTENSION returns for
354the KVM_CAP_MULTI_ADDRESS_SPACE capability.
355
2a31b9db 356The bits in the dirty bitmap are cleared before the ioctl returns, unless
d7547c55 357KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. For more information,
2a31b9db 358see the description of the capability.
414fa985 359
68ba6974 3604.9 KVM_SET_MEMORY_ALIAS
106ee47d 361------------------------
9c1b96e3 362
106ee47d
MCC
363:Capability: basic
364:Architectures: x86
365:Type: vm ioctl
366:Parameters: struct kvm_memory_alias (in)
367:Returns: 0 (success), -1 (error)
9c1b96e3 368
a1f4d395 369This ioctl is obsolete and has been removed.
9c1b96e3 370
414fa985 371
68ba6974 3724.10 KVM_RUN
106ee47d
MCC
373------------
374
375:Capability: basic
376:Architectures: all
377:Type: vcpu ioctl
378:Parameters: none
379:Returns: 0 on success, -1 on error
9c1b96e3 380
9c1b96e3 381Errors:
106ee47d
MCC
382
383 ===== =============================
384 EINTR an unmasked signal is pending
385 ===== =============================
9c1b96e3
AK
386
387This ioctl is used to run a guest virtual cpu. While there are no
388explicit parameters, there is an implicit parameter block that can be
389obtained by mmap()ing the vcpu fd at offset 0, with the size given by
390KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
391kvm_run' (see below).
392
414fa985 393
68ba6974 3944.11 KVM_GET_REGS
106ee47d 395-----------------
9c1b96e3 396
106ee47d
MCC
397:Capability: basic
398:Architectures: all except ARM, arm64
399:Type: vcpu ioctl
400:Parameters: struct kvm_regs (out)
401:Returns: 0 on success, -1 on error
9c1b96e3
AK
402
403Reads the general purpose registers from the vcpu.
404
106ee47d
MCC
405::
406
407 /* x86 */
408 struct kvm_regs {
9c1b96e3
AK
409 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
410 __u64 rax, rbx, rcx, rdx;
411 __u64 rsi, rdi, rsp, rbp;
412 __u64 r8, r9, r10, r11;
413 __u64 r12, r13, r14, r15;
414 __u64 rip, rflags;
106ee47d 415 };
9c1b96e3 416
106ee47d
MCC
417 /* mips */
418 struct kvm_regs {
c2d2c21b
JH
419 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
420 __u64 gpr[32];
421 __u64 hi;
422 __u64 lo;
423 __u64 pc;
106ee47d 424 };
c2d2c21b 425
414fa985 426
68ba6974 4274.12 KVM_SET_REGS
106ee47d 428-----------------
9c1b96e3 429
106ee47d
MCC
430:Capability: basic
431:Architectures: all except ARM, arm64
432:Type: vcpu ioctl
433:Parameters: struct kvm_regs (in)
434:Returns: 0 on success, -1 on error
9c1b96e3
AK
435
436Writes the general purpose registers into the vcpu.
437
438See KVM_GET_REGS for the data structure.
439
414fa985 440
68ba6974 4414.13 KVM_GET_SREGS
106ee47d 442------------------
9c1b96e3 443
106ee47d
MCC
444:Capability: basic
445:Architectures: x86, ppc
446:Type: vcpu ioctl
447:Parameters: struct kvm_sregs (out)
448:Returns: 0 on success, -1 on error
9c1b96e3
AK
449
450Reads special registers from the vcpu.
451
106ee47d
MCC
452::
453
454 /* x86 */
455 struct kvm_sregs {
9c1b96e3
AK
456 struct kvm_segment cs, ds, es, fs, gs, ss;
457 struct kvm_segment tr, ldt;
458 struct kvm_dtable gdt, idt;
459 __u64 cr0, cr2, cr3, cr4, cr8;
460 __u64 efer;
461 __u64 apic_base;
462 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
106ee47d 463 };
9c1b96e3 464
106ee47d 465 /* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 466
9c1b96e3
AK
467interrupt_bitmap is a bitmap of pending external interrupts. At most
468one bit may be set. This interrupt has been acknowledged by the APIC
469but not yet injected into the cpu core.
470
414fa985 471
68ba6974 4724.14 KVM_SET_SREGS
106ee47d 473------------------
9c1b96e3 474
106ee47d
MCC
475:Capability: basic
476:Architectures: x86, ppc
477:Type: vcpu ioctl
478:Parameters: struct kvm_sregs (in)
479:Returns: 0 on success, -1 on error
9c1b96e3
AK
480
481Writes special registers into the vcpu. See KVM_GET_SREGS for the
482data structures.
483
414fa985 484
68ba6974 4854.15 KVM_TRANSLATE
106ee47d 486------------------
9c1b96e3 487
106ee47d
MCC
488:Capability: basic
489:Architectures: x86
490:Type: vcpu ioctl
491:Parameters: struct kvm_translation (in/out)
492:Returns: 0 on success, -1 on error
9c1b96e3
AK
493
494Translates a virtual address according to the vcpu's current address
495translation mode.
496
106ee47d
MCC
497::
498
499 struct kvm_translation {
9c1b96e3
AK
500 /* in */
501 __u64 linear_address;
502
503 /* out */
504 __u64 physical_address;
505 __u8 valid;
506 __u8 writeable;
507 __u8 usermode;
508 __u8 pad[5];
106ee47d 509 };
9c1b96e3 510
414fa985 511
68ba6974 5124.16 KVM_INTERRUPT
106ee47d 513------------------
9c1b96e3 514
106ee47d
MCC
515:Capability: basic
516:Architectures: x86, ppc, mips
517:Type: vcpu ioctl
518:Parameters: struct kvm_interrupt (in)
519:Returns: 0 on success, negative on failure.
9c1b96e3 520
1c1a9ce9 521Queues a hardware interrupt vector to be injected.
9c1b96e3 522
106ee47d
MCC
523::
524
525 /* for KVM_INTERRUPT */
526 struct kvm_interrupt {
9c1b96e3
AK
527 /* in */
528 __u32 irq;
106ee47d 529 };
9c1b96e3 530
6f7a2bd4 531X86:
106ee47d
MCC
532^^^^
533
534:Returns:
6f7a2bd4 535
106ee47d
MCC
536 ========= ===================================
537 0 on success,
538 -EEXIST if an interrupt is already enqueued
3747c5d3 539 -EINVAL the irq number is invalid
106ee47d
MCC
540 -ENXIO if the PIC is in the kernel
541 -EFAULT if the pointer is invalid
542 ========= ===================================
1c1a9ce9
SR
543
544Note 'irq' is an interrupt vector, not an interrupt pin or line. This
545ioctl is useful if the in-kernel PIC is not used.
9c1b96e3 546
6f7a2bd4 547PPC:
106ee47d 548^^^^
6f7a2bd4
AG
549
550Queues an external interrupt to be injected. This ioctl is overleaded
551with 3 different irq values:
552
553a) KVM_INTERRUPT_SET
554
106ee47d
MCC
555 This injects an edge type external interrupt into the guest once it's ready
556 to receive interrupts. When injected, the interrupt is done.
6f7a2bd4
AG
557
558b) KVM_INTERRUPT_UNSET
559
106ee47d 560 This unsets any pending interrupt.
6f7a2bd4 561
106ee47d 562 Only available with KVM_CAP_PPC_UNSET_IRQ.
6f7a2bd4
AG
563
564c) KVM_INTERRUPT_SET_LEVEL
565
106ee47d
MCC
566 This injects a level type external interrupt into the guest context. The
567 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
568 is triggered.
6f7a2bd4 569
106ee47d 570 Only available with KVM_CAP_PPC_IRQ_LEVEL.
6f7a2bd4
AG
571
572Note that any value for 'irq' other than the ones stated above is invalid
573and incurs unexpected behavior.
574
5e124900
SC
575This is an asynchronous vcpu ioctl and can be invoked from any thread.
576
c2d2c21b 577MIPS:
106ee47d 578^^^^^
c2d2c21b
JH
579
580Queues an external interrupt to be injected into the virtual CPU. A negative
581interrupt number dequeues the interrupt.
582
5e124900
SC
583This is an asynchronous vcpu ioctl and can be invoked from any thread.
584
414fa985 585
68ba6974 5864.17 KVM_DEBUG_GUEST
106ee47d 587--------------------
9c1b96e3 588
106ee47d
MCC
589:Capability: basic
590:Architectures: none
591:Type: vcpu ioctl
592:Parameters: none)
593:Returns: -1 on error
9c1b96e3
AK
594
595Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
596
414fa985 597
68ba6974 5984.18 KVM_GET_MSRS
106ee47d 599-----------------
9c1b96e3 600
106ee47d
MCC
601:Capability: basic (vcpu), KVM_CAP_GET_MSR_FEATURES (system)
602:Architectures: x86
603:Type: system ioctl, vcpu ioctl
604:Parameters: struct kvm_msrs (in/out)
605:Returns: number of msrs successfully returned;
606 -1 on error
801e459a
TL
607
608When used as a system ioctl:
609Reads the values of MSR-based features that are available for the VM. This
610is similar to KVM_GET_SUPPORTED_CPUID, but it returns MSR indices and values.
611The list of msr-based features can be obtained using KVM_GET_MSR_FEATURE_INDEX_LIST
612in a system ioctl.
9c1b96e3 613
801e459a 614When used as a vcpu ioctl:
9c1b96e3 615Reads model-specific registers from the vcpu. Supported msr indices can
801e459a 616be obtained using KVM_GET_MSR_INDEX_LIST in a system ioctl.
9c1b96e3 617
106ee47d
MCC
618::
619
620 struct kvm_msrs {
9c1b96e3
AK
621 __u32 nmsrs; /* number of msrs in entries */
622 __u32 pad;
623
624 struct kvm_msr_entry entries[0];
106ee47d 625 };
9c1b96e3 626
106ee47d 627 struct kvm_msr_entry {
9c1b96e3
AK
628 __u32 index;
629 __u32 reserved;
630 __u64 data;
106ee47d 631 };
9c1b96e3
AK
632
633Application code should set the 'nmsrs' member (which indicates the
634size of the entries array) and the 'index' member of each array entry.
635kvm will fill in the 'data' member.
636
414fa985 637
68ba6974 6384.19 KVM_SET_MSRS
106ee47d 639-----------------
9c1b96e3 640
106ee47d
MCC
641:Capability: basic
642:Architectures: x86
643:Type: vcpu ioctl
644:Parameters: struct kvm_msrs (in)
645:Returns: number of msrs successfully set (see below), -1 on error
9c1b96e3
AK
646
647Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
648data structures.
649
650Application code should set the 'nmsrs' member (which indicates the
651size of the entries array), and the 'index' and 'data' members of each
652array entry.
653
b274a290
XL
654It tries to set the MSRs in array entries[] one by one. If setting an MSR
655fails, e.g., due to setting reserved bits, the MSR isn't supported/emulated
656by KVM, etc..., it stops processing the MSR list and returns the number of
657MSRs that have been set successfully.
658
414fa985 659
68ba6974 6604.20 KVM_SET_CPUID
106ee47d 661------------------
9c1b96e3 662
106ee47d
MCC
663:Capability: basic
664:Architectures: x86
665:Type: vcpu ioctl
666:Parameters: struct kvm_cpuid (in)
667:Returns: 0 on success, -1 on error
9c1b96e3
AK
668
669Defines the vcpu responses to the cpuid instruction. Applications
670should use the KVM_SET_CPUID2 ioctl if available.
671
18964092
XL
672Note, when this IOCTL fails, KVM gives no guarantees that previous valid CPUID
673configuration (if there is) is not corrupted. Userspace can get a copy of the
674resulting CPUID configuration through KVM_GET_CPUID2 in case.
675
106ee47d 676::
9c1b96e3 677
106ee47d 678 struct kvm_cpuid_entry {
9c1b96e3
AK
679 __u32 function;
680 __u32 eax;
681 __u32 ebx;
682 __u32 ecx;
683 __u32 edx;
684 __u32 padding;
106ee47d 685 };
9c1b96e3 686
106ee47d
MCC
687 /* for KVM_SET_CPUID */
688 struct kvm_cpuid {
9c1b96e3
AK
689 __u32 nent;
690 __u32 padding;
691 struct kvm_cpuid_entry entries[0];
106ee47d 692 };
9c1b96e3 693
414fa985 694
68ba6974 6954.21 KVM_SET_SIGNAL_MASK
106ee47d 696------------------------
9c1b96e3 697
106ee47d
MCC
698:Capability: basic
699:Architectures: all
700:Type: vcpu ioctl
701:Parameters: struct kvm_signal_mask (in)
702:Returns: 0 on success, -1 on error
9c1b96e3
AK
703
704Defines which signals are blocked during execution of KVM_RUN. This
705signal mask temporarily overrides the threads signal mask. Any
706unblocked signal received (except SIGKILL and SIGSTOP, which retain
707their traditional behaviour) will cause KVM_RUN to return with -EINTR.
708
709Note the signal will only be delivered if not blocked by the original
710signal mask.
711
106ee47d
MCC
712::
713
714 /* for KVM_SET_SIGNAL_MASK */
715 struct kvm_signal_mask {
9c1b96e3
AK
716 __u32 len;
717 __u8 sigset[0];
106ee47d 718 };
9c1b96e3 719
414fa985 720
68ba6974 7214.22 KVM_GET_FPU
106ee47d 722----------------
9c1b96e3 723
106ee47d
MCC
724:Capability: basic
725:Architectures: x86
726:Type: vcpu ioctl
727:Parameters: struct kvm_fpu (out)
728:Returns: 0 on success, -1 on error
9c1b96e3
AK
729
730Reads the floating point state from the vcpu.
731
106ee47d
MCC
732::
733
734 /* for KVM_GET_FPU and KVM_SET_FPU */
735 struct kvm_fpu {
9c1b96e3
AK
736 __u8 fpr[8][16];
737 __u16 fcw;
738 __u16 fsw;
739 __u8 ftwx; /* in fxsave format */
740 __u8 pad1;
741 __u16 last_opcode;
742 __u64 last_ip;
743 __u64 last_dp;
744 __u8 xmm[16][16];
745 __u32 mxcsr;
746 __u32 pad2;
106ee47d 747 };
9c1b96e3 748
414fa985 749
68ba6974 7504.23 KVM_SET_FPU
106ee47d 751----------------
9c1b96e3 752
106ee47d
MCC
753:Capability: basic
754:Architectures: x86
755:Type: vcpu ioctl
756:Parameters: struct kvm_fpu (in)
757:Returns: 0 on success, -1 on error
9c1b96e3
AK
758
759Writes the floating point state to the vcpu.
760
106ee47d
MCC
761::
762
763 /* for KVM_GET_FPU and KVM_SET_FPU */
764 struct kvm_fpu {
9c1b96e3
AK
765 __u8 fpr[8][16];
766 __u16 fcw;
767 __u16 fsw;
768 __u8 ftwx; /* in fxsave format */
769 __u8 pad1;
770 __u16 last_opcode;
771 __u64 last_ip;
772 __u64 last_dp;
773 __u8 xmm[16][16];
774 __u32 mxcsr;
775 __u32 pad2;
106ee47d 776 };
9c1b96e3 777
414fa985 778
68ba6974 7794.24 KVM_CREATE_IRQCHIP
106ee47d 780-----------------------
5dadbfd6 781
106ee47d
MCC
782:Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
783:Architectures: x86, ARM, arm64, s390
784:Type: vm ioctl
785:Parameters: none
786:Returns: 0 on success, -1 on error
5dadbfd6 787
ac3d3735
AP
788Creates an interrupt controller model in the kernel.
789On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
790future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
791PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
792On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
793KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
794KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
795On s390, a dummy irq routing table is created.
84223598
CH
796
797Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
798before KVM_CREATE_IRQCHIP can be used.
5dadbfd6 799
414fa985 800
68ba6974 8014.25 KVM_IRQ_LINE
106ee47d 802-----------------
5dadbfd6 803
106ee47d
MCC
804:Capability: KVM_CAP_IRQCHIP
805:Architectures: x86, arm, arm64
806:Type: vm ioctl
807:Parameters: struct kvm_irq_level
808:Returns: 0 on success, -1 on error
5dadbfd6
AK
809
810Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
811On some architectures it is required that an interrupt controller model has
812been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
813interrupts require the level to be set to 1 and then back to 0.
814
100943c5
GS
815On real hardware, interrupt pins can be active-low or active-high. This
816does not matter for the level field of struct kvm_irq_level: 1 always
817means active (asserted), 0 means inactive (deasserted).
818
819x86 allows the operating system to program the interrupt polarity
820(active-low/active-high) for level-triggered interrupts, and KVM used
821to consider the polarity. However, due to bitrot in the handling of
822active-low interrupts, the above convention is now valid on x86 too.
823This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
824should not present interrupts to the guest as active-low unless this
825capability is present (or unless it is not using the in-kernel irqchip,
826of course).
827
828
379e04c7
MZ
829ARM/arm64 can signal an interrupt either at the CPU level, or at the
830in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
831use PPIs designated for specific cpus. The irq field is interpreted
106ee47d 832like this::
86ce8535 833
92f35b75
MZ
834  bits: | 31 ... 28 | 27 ... 24 | 23 ... 16 | 15 ... 0 |
835 field: | vcpu2_index | irq_type | vcpu_index | irq_id |
86ce8535
CD
836
837The irq_type field has the following values:
106ee47d
MCC
838
839- irq_type[0]:
840 out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
841- irq_type[1]:
842 in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
86ce8535 843 (the vcpu_index field is ignored)
106ee47d
MCC
844- irq_type[2]:
845 in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
86ce8535
CD
846
847(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
848
100943c5 849In both cases, level is used to assert/deassert the line.
5dadbfd6 850
92f35b75
MZ
851When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supported, the target vcpu is
852identified as (256 * vcpu2_index + vcpu_index). Otherwise, vcpu2_index
853must be zero.
854
855Note that on arm/arm64, the KVM_CAP_IRQCHIP capability only conditions
856injection of interrupts for the in-kernel irqchip. KVM_IRQ_LINE can always
857be used for a userspace interrupt controller.
858
106ee47d
MCC
859::
860
861 struct kvm_irq_level {
5dadbfd6
AK
862 union {
863 __u32 irq; /* GSI */
864 __s32 status; /* not used for KVM_IRQ_LEVEL */
865 };
866 __u32 level; /* 0 or 1 */
106ee47d 867 };
5dadbfd6 868
414fa985 869
68ba6974 8704.26 KVM_GET_IRQCHIP
106ee47d 871--------------------
5dadbfd6 872
106ee47d
MCC
873:Capability: KVM_CAP_IRQCHIP
874:Architectures: x86
875:Type: vm ioctl
876:Parameters: struct kvm_irqchip (in/out)
877:Returns: 0 on success, -1 on error
5dadbfd6
AK
878
879Reads the state of a kernel interrupt controller created with
880KVM_CREATE_IRQCHIP into a buffer provided by the caller.
881
106ee47d
MCC
882::
883
884 struct kvm_irqchip {
5dadbfd6
AK
885 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
886 __u32 pad;
887 union {
888 char dummy[512]; /* reserving space */
889 struct kvm_pic_state pic;
890 struct kvm_ioapic_state ioapic;
891 } chip;
106ee47d 892 };
5dadbfd6 893
414fa985 894
68ba6974 8954.27 KVM_SET_IRQCHIP
106ee47d 896--------------------
5dadbfd6 897
106ee47d
MCC
898:Capability: KVM_CAP_IRQCHIP
899:Architectures: x86
900:Type: vm ioctl
901:Parameters: struct kvm_irqchip (in)
902:Returns: 0 on success, -1 on error
5dadbfd6
AK
903
904Sets the state of a kernel interrupt controller created with
905KVM_CREATE_IRQCHIP from a buffer provided by the caller.
906
106ee47d
MCC
907::
908
909 struct kvm_irqchip {
5dadbfd6
AK
910 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
911 __u32 pad;
912 union {
913 char dummy[512]; /* reserving space */
914 struct kvm_pic_state pic;
915 struct kvm_ioapic_state ioapic;
916 } chip;
106ee47d 917 };
5dadbfd6 918
414fa985 919
68ba6974 9204.28 KVM_XEN_HVM_CONFIG
106ee47d 921-----------------------
ffde22ac 922
106ee47d
MCC
923:Capability: KVM_CAP_XEN_HVM
924:Architectures: x86
925:Type: vm ioctl
926:Parameters: struct kvm_xen_hvm_config (in)
927:Returns: 0 on success, -1 on error
ffde22ac
ES
928
929Sets the MSR that the Xen HVM guest uses to initialize its hypercall
930page, and provides the starting address and size of the hypercall
931blobs in userspace. When the guest writes the MSR, kvm copies one
932page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
933memory.
934
106ee47d
MCC
935::
936
937 struct kvm_xen_hvm_config {
ffde22ac
ES
938 __u32 flags;
939 __u32 msr;
940 __u64 blob_addr_32;
941 __u64 blob_addr_64;
942 __u8 blob_size_32;
943 __u8 blob_size_64;
944 __u8 pad2[30];
106ee47d 945 };
ffde22ac 946
414fa985 947
68ba6974 9484.29 KVM_GET_CLOCK
106ee47d 949------------------
afbcf7ab 950
106ee47d
MCC
951:Capability: KVM_CAP_ADJUST_CLOCK
952:Architectures: x86
953:Type: vm ioctl
954:Parameters: struct kvm_clock_data (out)
955:Returns: 0 on success, -1 on error
afbcf7ab
GC
956
957Gets the current timestamp of kvmclock as seen by the current guest. In
958conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
959such as migration.
960
e3fd9a93
PB
961When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the
962set of bits that KVM can return in struct kvm_clock_data's flag member.
963
964The only flag defined now is KVM_CLOCK_TSC_STABLE. If set, the returned
965value is the exact kvmclock value seen by all VCPUs at the instant
966when KVM_GET_CLOCK was called. If clear, the returned value is simply
967CLOCK_MONOTONIC plus a constant offset; the offset can be modified
968with KVM_SET_CLOCK. KVM will try to make all VCPUs follow this clock,
969but the exact value read by each VCPU could differ, because the host
970TSC is not stable.
971
106ee47d
MCC
972::
973
974 struct kvm_clock_data {
afbcf7ab
GC
975 __u64 clock; /* kvmclock current value */
976 __u32 flags;
977 __u32 pad[9];
106ee47d 978 };
afbcf7ab 979
414fa985 980
68ba6974 9814.30 KVM_SET_CLOCK
106ee47d 982------------------
afbcf7ab 983
106ee47d
MCC
984:Capability: KVM_CAP_ADJUST_CLOCK
985:Architectures: x86
986:Type: vm ioctl
987:Parameters: struct kvm_clock_data (in)
988:Returns: 0 on success, -1 on error
afbcf7ab 989
2044892d 990Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
991In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
992such as migration.
993
106ee47d
MCC
994::
995
996 struct kvm_clock_data {
afbcf7ab
GC
997 __u64 clock; /* kvmclock current value */
998 __u32 flags;
999 __u32 pad[9];
106ee47d 1000 };
afbcf7ab 1001
414fa985 1002
68ba6974 10034.31 KVM_GET_VCPU_EVENTS
106ee47d 1004------------------------
3cfc3092 1005
106ee47d
MCC
1006:Capability: KVM_CAP_VCPU_EVENTS
1007:Extended by: KVM_CAP_INTR_SHADOW
1008:Architectures: x86, arm, arm64
1009:Type: vcpu ioctl
1010:Parameters: struct kvm_vcpu_event (out)
1011:Returns: 0 on success, -1 on error
3cfc3092 1012
b7b27fac 1013X86:
106ee47d 1014^^^^
b7b27fac 1015
3cfc3092
JK
1016Gets currently pending exceptions, interrupts, and NMIs as well as related
1017states of the vcpu.
1018
106ee47d
MCC
1019::
1020
1021 struct kvm_vcpu_events {
3cfc3092
JK
1022 struct {
1023 __u8 injected;
1024 __u8 nr;
1025 __u8 has_error_code;
59073aaf 1026 __u8 pending;
3cfc3092
JK
1027 __u32 error_code;
1028 } exception;
1029 struct {
1030 __u8 injected;
1031 __u8 nr;
1032 __u8 soft;
48005f64 1033 __u8 shadow;
3cfc3092
JK
1034 } interrupt;
1035 struct {
1036 __u8 injected;
1037 __u8 pending;
1038 __u8 masked;
1039 __u8 pad;
1040 } nmi;
1041 __u32 sipi_vector;
dab4b911 1042 __u32 flags;
f077825a
PB
1043 struct {
1044 __u8 smm;
1045 __u8 pending;
1046 __u8 smm_inside_nmi;
1047 __u8 latched_init;
1048 } smi;
59073aaf
JM
1049 __u8 reserved[27];
1050 __u8 exception_has_payload;
1051 __u64 exception_payload;
106ee47d 1052 };
3cfc3092 1053
59073aaf 1054The following bits are defined in the flags field:
f077825a 1055
59073aaf 1056- KVM_VCPUEVENT_VALID_SHADOW may be set to signal that
f077825a 1057 interrupt.shadow contains a valid state.
48005f64 1058
59073aaf
JM
1059- KVM_VCPUEVENT_VALID_SMM may be set to signal that smi contains a
1060 valid state.
1061
1062- KVM_VCPUEVENT_VALID_PAYLOAD may be set to signal that the
1063 exception_has_payload, exception_payload, and exception.pending
1064 fields contain a valid state. This bit will be set whenever
1065 KVM_CAP_EXCEPTION_PAYLOAD is enabled.
414fa985 1066
b0960b95 1067ARM/ARM64:
106ee47d 1068^^^^^^^^^^
b7b27fac
DG
1069
1070If the guest accesses a device that is being emulated by the host kernel in
1071such a way that a real device would generate a physical SError, KVM may make
1072a virtual SError pending for that VCPU. This system error interrupt remains
1073pending until the guest takes the exception by unmasking PSTATE.A.
1074
1075Running the VCPU may cause it to take a pending SError, or make an access that
1076causes an SError to become pending. The event's description is only valid while
1077the VPCU is not running.
1078
1079This API provides a way to read and write the pending 'event' state that is not
1080visible to the guest. To save, restore or migrate a VCPU the struct representing
1081the state can be read then written using this GET/SET API, along with the other
1082guest-visible registers. It is not possible to 'cancel' an SError that has been
1083made pending.
1084
1085A device being emulated in user-space may also wish to generate an SError. To do
1086this the events structure can be populated by user-space. The current state
1087should be read first, to ensure no existing SError is pending. If an existing
1088SError is pending, the architecture's 'Multiple SError interrupts' rules should
1089be followed. (2.5.3 of DDI0587.a "ARM Reliability, Availability, and
1090Serviceability (RAS) Specification").
1091
be26b3a7
DG
1092SError exceptions always have an ESR value. Some CPUs have the ability to
1093specify what the virtual SError's ESR value should be. These systems will
688e0581 1094advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In this case exception.has_esr will
be26b3a7
DG
1095always have a non-zero value when read, and the agent making an SError pending
1096should specify the ISS field in the lower 24 bits of exception.serror_esr. If
688e0581 1097the system supports KVM_CAP_ARM_INJECT_SERROR_ESR, but user-space sets the events
be26b3a7
DG
1098with exception.has_esr as zero, KVM will choose an ESR.
1099
1100Specifying exception.has_esr on a system that does not support it will return
1101-EINVAL. Setting anything other than the lower 24bits of exception.serror_esr
1102will return -EINVAL.
1103
da345174
CD
1104It is not possible to read back a pending external abort (injected via
1105KVM_SET_VCPU_EVENTS or otherwise) because such an exception is always delivered
1106directly to the virtual CPU).
1107
106ee47d 1108::
da345174 1109
106ee47d 1110 struct kvm_vcpu_events {
b7b27fac
DG
1111 struct {
1112 __u8 serror_pending;
1113 __u8 serror_has_esr;
da345174 1114 __u8 ext_dabt_pending;
b7b27fac 1115 /* Align it to 8 bytes */
da345174 1116 __u8 pad[5];
b7b27fac
DG
1117 __u64 serror_esr;
1118 } exception;
1119 __u32 reserved[12];
106ee47d 1120 };
b7b27fac 1121
68ba6974 11224.32 KVM_SET_VCPU_EVENTS
106ee47d 1123------------------------
3cfc3092 1124
106ee47d
MCC
1125:Capability: KVM_CAP_VCPU_EVENTS
1126:Extended by: KVM_CAP_INTR_SHADOW
1127:Architectures: x86, arm, arm64
1128:Type: vcpu ioctl
1129:Parameters: struct kvm_vcpu_event (in)
1130:Returns: 0 on success, -1 on error
3cfc3092 1131
b7b27fac 1132X86:
106ee47d 1133^^^^
b7b27fac 1134
3cfc3092
JK
1135Set pending exceptions, interrupts, and NMIs as well as related states of the
1136vcpu.
1137
1138See KVM_GET_VCPU_EVENTS for the data structure.
1139
dab4b911 1140Fields that may be modified asynchronously by running VCPUs can be excluded
f077825a
PB
1141from the update. These fields are nmi.pending, sipi_vector, smi.smm,
1142smi.pending. Keep the corresponding bits in the flags field cleared to
1143suppress overwriting the current in-kernel state. The bits are:
dab4b911 1144
106ee47d
MCC
1145=============================== ==================================
1146KVM_VCPUEVENT_VALID_NMI_PENDING transfer nmi.pending to the kernel
1147KVM_VCPUEVENT_VALID_SIPI_VECTOR transfer sipi_vector
1148KVM_VCPUEVENT_VALID_SMM transfer the smi sub-struct.
1149=============================== ==================================
dab4b911 1150
48005f64
JK
1151If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
1152the flags field to signal that interrupt.shadow contains a valid state and
1153shall be written into the VCPU.
1154
f077825a
PB
1155KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
1156
59073aaf
JM
1157If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_VCPUEVENT_VALID_PAYLOAD
1158can be set in the flags field to signal that the
1159exception_has_payload, exception_payload, and exception.pending fields
1160contain a valid state and shall be written into the VCPU.
1161
b0960b95 1162ARM/ARM64:
106ee47d 1163^^^^^^^^^^
b7b27fac 1164
da345174
CD
1165User space may need to inject several types of events to the guest.
1166
b7b27fac
DG
1167Set the pending SError exception state for this VCPU. It is not possible to
1168'cancel' an Serror that has been made pending.
1169
da345174
CD
1170If the guest performed an access to I/O memory which could not be handled by
1171userspace, for example because of missing instruction syndrome decode
1172information or because there is no device mapped at the accessed IPA, then
1173userspace can ask the kernel to inject an external abort using the address
1174from the exiting fault on the VCPU. It is a programming error to set
1175ext_dabt_pending after an exit which was not either KVM_EXIT_MMIO or
1176KVM_EXIT_ARM_NISV. This feature is only available if the system supports
1177KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper which provides commonality in
1178how userspace reports accesses for the above cases to guests, across different
1179userspace implementations. Nevertheless, userspace can still emulate all Arm
1180exceptions by manipulating individual registers using the KVM_SET_ONE_REG API.
1181
b7b27fac
DG
1182See KVM_GET_VCPU_EVENTS for the data structure.
1183
414fa985 1184
68ba6974 11854.33 KVM_GET_DEBUGREGS
106ee47d 1186----------------------
a1efbe77 1187
106ee47d
MCC
1188:Capability: KVM_CAP_DEBUGREGS
1189:Architectures: x86
1190:Type: vm ioctl
1191:Parameters: struct kvm_debugregs (out)
1192:Returns: 0 on success, -1 on error
a1efbe77
JK
1193
1194Reads debug registers from the vcpu.
1195
106ee47d
MCC
1196::
1197
1198 struct kvm_debugregs {
a1efbe77
JK
1199 __u64 db[4];
1200 __u64 dr6;
1201 __u64 dr7;
1202 __u64 flags;
1203 __u64 reserved[9];
106ee47d 1204 };
a1efbe77 1205
414fa985 1206
68ba6974 12074.34 KVM_SET_DEBUGREGS
106ee47d 1208----------------------
a1efbe77 1209
106ee47d
MCC
1210:Capability: KVM_CAP_DEBUGREGS
1211:Architectures: x86
1212:Type: vm ioctl
1213:Parameters: struct kvm_debugregs (in)
1214:Returns: 0 on success, -1 on error
a1efbe77
JK
1215
1216Writes debug registers into the vcpu.
1217
1218See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
1219yet and must be cleared on entry.
1220
414fa985 1221
68ba6974 12224.35 KVM_SET_USER_MEMORY_REGION
106ee47d
MCC
1223-------------------------------
1224
1225:Capability: KVM_CAP_USER_MEMORY
1226:Architectures: all
1227:Type: vm ioctl
1228:Parameters: struct kvm_userspace_memory_region (in)
1229:Returns: 0 on success, -1 on error
0f2d8f4d 1230
106ee47d 1231::
0f2d8f4d 1232
106ee47d 1233 struct kvm_userspace_memory_region {
0f2d8f4d
AK
1234 __u32 slot;
1235 __u32 flags;
1236 __u64 guest_phys_addr;
1237 __u64 memory_size; /* bytes */
1238 __u64 userspace_addr; /* start of the userspace allocated memory */
106ee47d 1239 };
0f2d8f4d 1240
106ee47d
MCC
1241 /* for kvm_memory_region::flags */
1242 #define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
1243 #define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d 1244
e2788c4a
PB
1245This ioctl allows the user to create, modify or delete a guest physical
1246memory slot. Bits 0-15 of "slot" specify the slot id and this value
1247should be less than the maximum number of user memory slots supported per
c110ae57
PB
1248VM. The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS.
1249Slots may not overlap in guest physical address space.
0f2d8f4d 1250
f481b069
PB
1251If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot"
1252specifies the address space which is being modified. They must be
1253less than the value that KVM_CHECK_EXTENSION returns for the
1254KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces
1255are unrelated; the restriction on overlapping slots only applies within
1256each address space.
1257
e2788c4a
PB
1258Deleting a slot is done by passing zero for memory_size. When changing
1259an existing slot, it may be moved in the guest physical memory space,
1260or its flags may be modified, but it may not be resized.
1261
0f2d8f4d
AK
1262Memory for the region is taken starting at the address denoted by the
1263field userspace_addr, which must point at user addressable memory for
1264the entire memory slot size. Any object may back this memory, including
1265anonymous memory, ordinary files, and hugetlbfs.
1266
1267It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
1268be identical. This allows large pages in the guest to be backed by large
1269pages in the host.
1270
75d61fbc
TY
1271The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
1272KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
1273writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
1274use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
1275to make a new slot read-only. In this case, writes to this memory will be
1276posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
1277
1278When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
1279the memory region are automatically reflected into the guest. For example, an
1280mmap() that affects the region will be made visible immediately. Another
1281example is madvise(MADV_DROP).
0f2d8f4d
AK
1282
1283It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
1284The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
1285allocation and is deprecated.
3cfc3092 1286
414fa985 1287
68ba6974 12884.36 KVM_SET_TSS_ADDR
106ee47d 1289---------------------
8a5416db 1290
106ee47d
MCC
1291:Capability: KVM_CAP_SET_TSS_ADDR
1292:Architectures: x86
1293:Type: vm ioctl
1294:Parameters: unsigned long tss_address (in)
1295:Returns: 0 on success, -1 on error
8a5416db
AK
1296
1297This ioctl defines the physical address of a three-page region in the guest
1298physical address space. The region must be within the first 4GB of the
1299guest physical address space and must not conflict with any memory slot
1300or any mmio address. The guest may malfunction if it accesses this memory
1301region.
1302
1303This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1304because of a quirk in the virtualization implementation (see the internals
1305documentation when it pops into existence).
1306
414fa985 1307
68ba6974 13084.37 KVM_ENABLE_CAP
106ee47d 1309-------------------
71fbfd5f 1310
106ee47d
MCC
1311:Capability: KVM_CAP_ENABLE_CAP
1312:Architectures: mips, ppc, s390
1313:Type: vcpu ioctl
1314:Parameters: struct kvm_enable_cap (in)
1315:Returns: 0 on success; -1 on error
e5d83c74 1316
106ee47d
MCC
1317:Capability: KVM_CAP_ENABLE_CAP_VM
1318:Architectures: all
1319:Type: vcpu ioctl
1320:Parameters: struct kvm_enable_cap (in)
1321:Returns: 0 on success; -1 on error
1322
1323.. note::
71fbfd5f 1324
106ee47d
MCC
1325 Not all extensions are enabled by default. Using this ioctl the application
1326 can enable an extension, making it available to the guest.
71fbfd5f
AG
1327
1328On systems that do not support this ioctl, it always fails. On systems that
1329do support it, it only works for extensions that are supported for enablement.
1330
1331To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
1332be used.
1333
106ee47d
MCC
1334::
1335
1336 struct kvm_enable_cap {
71fbfd5f
AG
1337 /* in */
1338 __u32 cap;
1339
1340The capability that is supposed to get enabled.
1341
106ee47d
MCC
1342::
1343
71fbfd5f
AG
1344 __u32 flags;
1345
1346A bitfield indicating future enhancements. Has to be 0 for now.
1347
106ee47d
MCC
1348::
1349
71fbfd5f
AG
1350 __u64 args[4];
1351
1352Arguments for enabling a feature. If a feature needs initial values to
1353function properly, this is the place to put them.
1354
106ee47d
MCC
1355::
1356
71fbfd5f 1357 __u8 pad[64];
106ee47d 1358 };
71fbfd5f 1359
d938dc55
CH
1360The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1361for vm-wide capabilities.
414fa985 1362
68ba6974 13634.38 KVM_GET_MP_STATE
106ee47d 1364---------------------
b843f065 1365
106ee47d
MCC
1366:Capability: KVM_CAP_MP_STATE
1367:Architectures: x86, s390, arm, arm64
1368:Type: vcpu ioctl
1369:Parameters: struct kvm_mp_state (out)
1370:Returns: 0 on success; -1 on error
1371
1372::
b843f065 1373
106ee47d 1374 struct kvm_mp_state {
b843f065 1375 __u32 mp_state;
106ee47d 1376 };
b843f065
AK
1377
1378Returns the vcpu's current "multiprocessing state" (though also valid on
1379uniprocessor guests).
1380
1381Possible values are:
1382
106ee47d
MCC
1383 ========================== ===============================================
1384 KVM_MP_STATE_RUNNABLE the vcpu is currently running [x86,arm/arm64]
1385 KVM_MP_STATE_UNINITIALIZED the vcpu is an application processor (AP)
c32a4272 1386 which has not yet received an INIT signal [x86]
106ee47d 1387 KVM_MP_STATE_INIT_RECEIVED the vcpu has received an INIT signal, and is
c32a4272 1388 now ready for a SIPI [x86]
106ee47d 1389 KVM_MP_STATE_HALTED the vcpu has executed a HLT instruction and
c32a4272 1390 is waiting for an interrupt [x86]
106ee47d 1391 KVM_MP_STATE_SIPI_RECEIVED the vcpu has just received a SIPI (vector
c32a4272 1392 accessible via KVM_GET_VCPU_EVENTS) [x86]
106ee47d
MCC
1393 KVM_MP_STATE_STOPPED the vcpu is stopped [s390,arm/arm64]
1394 KVM_MP_STATE_CHECK_STOP the vcpu is in a special error state [s390]
1395 KVM_MP_STATE_OPERATING the vcpu is operating (running or halted)
6352e4d2 1396 [s390]
106ee47d 1397 KVM_MP_STATE_LOAD the vcpu is in a special load/startup state
6352e4d2 1398 [s390]
106ee47d 1399 ========================== ===============================================
b843f065 1400
c32a4272 1401On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1402in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1403these architectures.
b843f065 1404
ecccf0cc 1405For arm/arm64:
106ee47d 1406^^^^^^^^^^^^^^
ecccf0cc
AB
1407
1408The only states that are valid are KVM_MP_STATE_STOPPED and
1409KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
414fa985 1410
68ba6974 14114.39 KVM_SET_MP_STATE
106ee47d 1412---------------------
b843f065 1413
106ee47d
MCC
1414:Capability: KVM_CAP_MP_STATE
1415:Architectures: x86, s390, arm, arm64
1416:Type: vcpu ioctl
1417:Parameters: struct kvm_mp_state (in)
1418:Returns: 0 on success; -1 on error
b843f065
AK
1419
1420Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1421arguments.
1422
c32a4272 1423On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1424in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1425these architectures.
b843f065 1426
ecccf0cc 1427For arm/arm64:
106ee47d 1428^^^^^^^^^^^^^^
ecccf0cc
AB
1429
1430The only states that are valid are KVM_MP_STATE_STOPPED and
1431KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
414fa985 1432
68ba6974 14334.40 KVM_SET_IDENTITY_MAP_ADDR
106ee47d 1434------------------------------
47dbb84f 1435
106ee47d
MCC
1436:Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1437:Architectures: x86
1438:Type: vm ioctl
1439:Parameters: unsigned long identity (in)
1440:Returns: 0 on success, -1 on error
47dbb84f
AK
1441
1442This ioctl defines the physical address of a one-page region in the guest
1443physical address space. The region must be within the first 4GB of the
1444guest physical address space and must not conflict with any memory slot
1445or any mmio address. The guest may malfunction if it accesses this memory
1446region.
1447
726b99c4
DH
1448Setting the address to 0 will result in resetting the address to its default
1449(0xfffbc000).
1450
47dbb84f
AK
1451This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1452because of a quirk in the virtualization implementation (see the internals
1453documentation when it pops into existence).
1454
1af1ac91 1455Fails if any VCPU has already been created.
414fa985 1456
68ba6974 14574.41 KVM_SET_BOOT_CPU_ID
106ee47d 1458------------------------
57bc24cf 1459
106ee47d
MCC
1460:Capability: KVM_CAP_SET_BOOT_CPU_ID
1461:Architectures: x86
1462:Type: vm ioctl
1463:Parameters: unsigned long vcpu_id
1464:Returns: 0 on success, -1 on error
57bc24cf
AK
1465
1466Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1467as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1468is vcpu 0.
1469
414fa985 1470
68ba6974 14714.42 KVM_GET_XSAVE
106ee47d 1472------------------
2d5b5a66 1473
106ee47d
MCC
1474:Capability: KVM_CAP_XSAVE
1475:Architectures: x86
1476:Type: vcpu ioctl
1477:Parameters: struct kvm_xsave (out)
1478:Returns: 0 on success, -1 on error
1479
1480
1481::
2d5b5a66 1482
106ee47d 1483 struct kvm_xsave {
2d5b5a66 1484 __u32 region[1024];
106ee47d 1485 };
2d5b5a66
SY
1486
1487This ioctl would copy current vcpu's xsave struct to the userspace.
1488
414fa985 1489
68ba6974 14904.43 KVM_SET_XSAVE
106ee47d 1491------------------
2d5b5a66 1492
106ee47d
MCC
1493:Capability: KVM_CAP_XSAVE
1494:Architectures: x86
1495:Type: vcpu ioctl
1496:Parameters: struct kvm_xsave (in)
1497:Returns: 0 on success, -1 on error
1498
1499::
2d5b5a66 1500
106ee47d
MCC
1501
1502 struct kvm_xsave {
2d5b5a66 1503 __u32 region[1024];
106ee47d 1504 };
2d5b5a66
SY
1505
1506This ioctl would copy userspace's xsave struct to the kernel.
1507
414fa985 1508
68ba6974 15094.44 KVM_GET_XCRS
106ee47d 1510-----------------
2d5b5a66 1511
106ee47d
MCC
1512:Capability: KVM_CAP_XCRS
1513:Architectures: x86
1514:Type: vcpu ioctl
1515:Parameters: struct kvm_xcrs (out)
1516:Returns: 0 on success, -1 on error
1517
1518::
2d5b5a66 1519
106ee47d 1520 struct kvm_xcr {
2d5b5a66
SY
1521 __u32 xcr;
1522 __u32 reserved;
1523 __u64 value;
106ee47d 1524 };
2d5b5a66 1525
106ee47d 1526 struct kvm_xcrs {
2d5b5a66
SY
1527 __u32 nr_xcrs;
1528 __u32 flags;
1529 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1530 __u64 padding[16];
106ee47d 1531 };
2d5b5a66
SY
1532
1533This ioctl would copy current vcpu's xcrs to the userspace.
1534
414fa985 1535
68ba6974 15364.45 KVM_SET_XCRS
106ee47d 1537-----------------
2d5b5a66 1538
106ee47d
MCC
1539:Capability: KVM_CAP_XCRS
1540:Architectures: x86
1541:Type: vcpu ioctl
1542:Parameters: struct kvm_xcrs (in)
1543:Returns: 0 on success, -1 on error
1544
1545::
2d5b5a66 1546
106ee47d 1547 struct kvm_xcr {
2d5b5a66
SY
1548 __u32 xcr;
1549 __u32 reserved;
1550 __u64 value;
106ee47d 1551 };
2d5b5a66 1552
106ee47d 1553 struct kvm_xcrs {
2d5b5a66
SY
1554 __u32 nr_xcrs;
1555 __u32 flags;
1556 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1557 __u64 padding[16];
106ee47d 1558 };
2d5b5a66
SY
1559
1560This ioctl would set vcpu's xcr to the value userspace specified.
1561
414fa985 1562
68ba6974 15634.46 KVM_GET_SUPPORTED_CPUID
106ee47d
MCC
1564----------------------------
1565
1566:Capability: KVM_CAP_EXT_CPUID
1567:Architectures: x86
1568:Type: system ioctl
1569:Parameters: struct kvm_cpuid2 (in/out)
1570:Returns: 0 on success, -1 on error
d153513d 1571
106ee47d 1572::
d153513d 1573
106ee47d 1574 struct kvm_cpuid2 {
d153513d
AK
1575 __u32 nent;
1576 __u32 padding;
1577 struct kvm_cpuid_entry2 entries[0];
106ee47d 1578 };
d153513d 1579
106ee47d 1580 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
7ff6c035
SC
1581 #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) /* deprecated */
1582 #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) /* deprecated */
d153513d 1583
106ee47d 1584 struct kvm_cpuid_entry2 {
d153513d
AK
1585 __u32 function;
1586 __u32 index;
1587 __u32 flags;
1588 __u32 eax;
1589 __u32 ebx;
1590 __u32 ecx;
1591 __u32 edx;
1592 __u32 padding[3];
106ee47d 1593 };
d153513d 1594
df9cb9cc
JM
1595This ioctl returns x86 cpuid features which are supported by both the
1596hardware and kvm in its default configuration. Userspace can use the
1597information returned by this ioctl to construct cpuid information (for
1598KVM_SET_CPUID2) that is consistent with hardware, kernel, and
1599userspace capabilities, and with user requirements (for example, the
1600user may wish to constrain cpuid to emulate older hardware, or for
1601feature consistency across a cluster).
1602
1603Note that certain capabilities, such as KVM_CAP_X86_DISABLE_EXITS, may
1604expose cpuid features (e.g. MONITOR) which are not supported by kvm in
1605its default configuration. If userspace enables such capabilities, it
1606is responsible for modifying the results of this ioctl appropriately.
d153513d
AK
1607
1608Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1609with the 'nent' field indicating the number of entries in the variable-size
1610array 'entries'. If the number of entries is too low to describe the cpu
1611capabilities, an error (E2BIG) is returned. If the number is too high,
1612the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1613number is just right, the 'nent' field is adjusted to the number of valid
1614entries in the 'entries' array, which is then filled.
1615
1616The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1617with unknown or unsupported features masked out. Some features (for example,
1618x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1619emulate them efficiently. The fields in each entry are defined as follows:
d153513d 1620
106ee47d
MCC
1621 function:
1622 the eax value used to obtain the entry
1623
1624 index:
1625 the ecx value used to obtain the entry (for entries that are
d153513d 1626 affected by ecx)
106ee47d
MCC
1627
1628 flags:
1629 an OR of zero or more of the following:
1630
d153513d
AK
1631 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1632 if the index field is valid
106ee47d
MCC
1633
1634 eax, ebx, ecx, edx:
1635 the values returned by the cpuid instruction for
d153513d
AK
1636 this function/index combination
1637
4d25a066
JK
1638The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1639as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
106ee47d 1640support. Instead it is reported via::
4d25a066
JK
1641
1642 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1643
1644if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1645feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1646
414fa985 1647
68ba6974 16484.47 KVM_PPC_GET_PVINFO
106ee47d
MCC
1649-----------------------
1650
1651:Capability: KVM_CAP_PPC_GET_PVINFO
1652:Architectures: ppc
1653:Type: vm ioctl
1654:Parameters: struct kvm_ppc_pvinfo (out)
1655:Returns: 0 on success, !0 on error
15711e9c 1656
106ee47d 1657::
15711e9c 1658
106ee47d 1659 struct kvm_ppc_pvinfo {
15711e9c
AG
1660 __u32 flags;
1661 __u32 hcall[4];
1662 __u8 pad[108];
106ee47d 1663 };
15711e9c
AG
1664
1665This ioctl fetches PV specific information that need to be passed to the guest
1666using the device tree or other means from vm context.
1667
9202e076 1668The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1669
1670If any additional field gets added to this structure later on, a bit for that
1671additional piece of information will be set in the flags bitmap.
1672
106ee47d 1673The flags bitmap is defined as::
9202e076
LYB
1674
1675 /* the host supports the ePAPR idle hcall
1676 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1677
68ba6974 16784.52 KVM_SET_GSI_ROUTING
106ee47d 1679------------------------
49f48172 1680
106ee47d
MCC
1681:Capability: KVM_CAP_IRQ_ROUTING
1682:Architectures: x86 s390 arm arm64
1683:Type: vm ioctl
1684:Parameters: struct kvm_irq_routing (in)
1685:Returns: 0 on success, -1 on error
49f48172
JK
1686
1687Sets the GSI routing table entries, overwriting any previously set entries.
1688
180ae7b1 1689On arm/arm64, GSI routing has the following limitation:
106ee47d 1690
180ae7b1
EA
1691- GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD.
1692
106ee47d
MCC
1693::
1694
1695 struct kvm_irq_routing {
49f48172
JK
1696 __u32 nr;
1697 __u32 flags;
1698 struct kvm_irq_routing_entry entries[0];
106ee47d 1699 };
49f48172
JK
1700
1701No flags are specified so far, the corresponding field must be set to zero.
1702
106ee47d
MCC
1703::
1704
1705 struct kvm_irq_routing_entry {
49f48172
JK
1706 __u32 gsi;
1707 __u32 type;
1708 __u32 flags;
1709 __u32 pad;
1710 union {
1711 struct kvm_irq_routing_irqchip irqchip;
1712 struct kvm_irq_routing_msi msi;
84223598 1713 struct kvm_irq_routing_s390_adapter adapter;
5c919412 1714 struct kvm_irq_routing_hv_sint hv_sint;
49f48172
JK
1715 __u32 pad[8];
1716 } u;
106ee47d 1717 };
49f48172 1718
106ee47d
MCC
1719 /* gsi routing entry types */
1720 #define KVM_IRQ_ROUTING_IRQCHIP 1
1721 #define KVM_IRQ_ROUTING_MSI 2
1722 #define KVM_IRQ_ROUTING_S390_ADAPTER 3
1723 #define KVM_IRQ_ROUTING_HV_SINT 4
49f48172 1724
76a10b86 1725flags:
106ee47d 1726
6f49b2f3
PB
1727- KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry
1728 type, specifies that the devid field contains a valid value. The per-VM
1729 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
1730 the device ID. If this capability is not available, userspace should
1731 never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
76a10b86 1732- zero otherwise
49f48172 1733
106ee47d
MCC
1734::
1735
1736 struct kvm_irq_routing_irqchip {
49f48172
JK
1737 __u32 irqchip;
1738 __u32 pin;
106ee47d 1739 };
49f48172 1740
106ee47d 1741 struct kvm_irq_routing_msi {
49f48172
JK
1742 __u32 address_lo;
1743 __u32 address_hi;
1744 __u32 data;
76a10b86
EA
1745 union {
1746 __u32 pad;
1747 __u32 devid;
1748 };
106ee47d 1749 };
49f48172 1750
6f49b2f3
PB
1751If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
1752for the device that wrote the MSI message. For PCI, this is usually a
1753BFD identifier in the lower 16 bits.
76a10b86 1754
37131313
RK
1755On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
1756feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
1757address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
1758address_hi must be zero.
1759
106ee47d
MCC
1760::
1761
1762 struct kvm_irq_routing_s390_adapter {
84223598
CH
1763 __u64 ind_addr;
1764 __u64 summary_addr;
1765 __u64 ind_offset;
1766 __u32 summary_offset;
1767 __u32 adapter_id;
106ee47d 1768 };
84223598 1769
106ee47d 1770 struct kvm_irq_routing_hv_sint {
5c919412
AS
1771 __u32 vcpu;
1772 __u32 sint;
106ee47d 1773 };
414fa985 1774
414fa985
JK
1775
17764.55 KVM_SET_TSC_KHZ
106ee47d 1777--------------------
92a1f12d 1778
106ee47d
MCC
1779:Capability: KVM_CAP_TSC_CONTROL
1780:Architectures: x86
1781:Type: vcpu ioctl
1782:Parameters: virtual tsc_khz
1783:Returns: 0 on success, -1 on error
92a1f12d
JR
1784
1785Specifies the tsc frequency for the virtual machine. The unit of the
1786frequency is KHz.
1787
414fa985
JK
1788
17894.56 KVM_GET_TSC_KHZ
106ee47d 1790--------------------
92a1f12d 1791
106ee47d
MCC
1792:Capability: KVM_CAP_GET_TSC_KHZ
1793:Architectures: x86
1794:Type: vcpu ioctl
1795:Parameters: none
1796:Returns: virtual tsc-khz on success, negative value on error
92a1f12d
JR
1797
1798Returns the tsc frequency of the guest. The unit of the return value is
1799KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1800error.
1801
414fa985
JK
1802
18034.57 KVM_GET_LAPIC
106ee47d 1804------------------
e7677933 1805
106ee47d
MCC
1806:Capability: KVM_CAP_IRQCHIP
1807:Architectures: x86
1808:Type: vcpu ioctl
1809:Parameters: struct kvm_lapic_state (out)
1810:Returns: 0 on success, -1 on error
e7677933 1811
106ee47d
MCC
1812::
1813
1814 #define KVM_APIC_REG_SIZE 0x400
1815 struct kvm_lapic_state {
e7677933 1816 char regs[KVM_APIC_REG_SIZE];
106ee47d 1817 };
e7677933
AK
1818
1819Reads the Local APIC registers and copies them into the input argument. The
1820data format and layout are the same as documented in the architecture manual.
1821
37131313
RK
1822If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is
1823enabled, then the format of APIC_ID register depends on the APIC mode
1824(reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in
1825the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID
1826which is stored in bits 31-24 of the APIC register, or equivalently in
1827byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then
1828be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR.
1829
1830If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state
1831always uses xAPIC format.
1832
414fa985
JK
1833
18344.58 KVM_SET_LAPIC
106ee47d 1835------------------
e7677933 1836
106ee47d
MCC
1837:Capability: KVM_CAP_IRQCHIP
1838:Architectures: x86
1839:Type: vcpu ioctl
1840:Parameters: struct kvm_lapic_state (in)
1841:Returns: 0 on success, -1 on error
e7677933 1842
106ee47d
MCC
1843::
1844
1845 #define KVM_APIC_REG_SIZE 0x400
1846 struct kvm_lapic_state {
e7677933 1847 char regs[KVM_APIC_REG_SIZE];
106ee47d 1848 };
e7677933 1849
df5cbb27 1850Copies the input argument into the Local APIC registers. The data format
e7677933
AK
1851and layout are the same as documented in the architecture manual.
1852
37131313
RK
1853The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's
1854regs field) depends on the state of the KVM_CAP_X2APIC_API capability.
1855See the note in KVM_GET_LAPIC.
1856
414fa985
JK
1857
18584.59 KVM_IOEVENTFD
106ee47d 1859------------------
55399a02 1860
106ee47d
MCC
1861:Capability: KVM_CAP_IOEVENTFD
1862:Architectures: all
1863:Type: vm ioctl
1864:Parameters: struct kvm_ioeventfd (in)
1865:Returns: 0 on success, !0 on error
55399a02
SL
1866
1867This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1868within the guest. A guest write in the registered address will signal the
1869provided event instead of triggering an exit.
1870
106ee47d
MCC
1871::
1872
1873 struct kvm_ioeventfd {
55399a02
SL
1874 __u64 datamatch;
1875 __u64 addr; /* legal pio/mmio address */
e9ea5069 1876 __u32 len; /* 0, 1, 2, 4, or 8 bytes */
55399a02
SL
1877 __s32 fd;
1878 __u32 flags;
1879 __u8 pad[36];
106ee47d 1880 };
55399a02 1881
2b83451b
CH
1882For the special case of virtio-ccw devices on s390, the ioevent is matched
1883to a subchannel/virtqueue tuple instead.
1884
106ee47d 1885The following flags are defined::
55399a02 1886
106ee47d
MCC
1887 #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1888 #define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1889 #define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
1890 #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
2b83451b 1891 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1892
1893If datamatch flag is set, the event will be signaled only if the written value
1894to the registered address is equal to datamatch in struct kvm_ioeventfd.
1895
2b83451b
CH
1896For virtio-ccw devices, addr contains the subchannel id and datamatch the
1897virtqueue index.
1898
e9ea5069
JW
1899With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and
1900the kernel will ignore the length of guest write and may get a faster vmexit.
1901The speedup may only apply to specific architectures, but the ioeventfd will
1902work anyway.
414fa985
JK
1903
19044.60 KVM_DIRTY_TLB
106ee47d 1905------------------
dc83b8bc 1906
106ee47d
MCC
1907:Capability: KVM_CAP_SW_TLB
1908:Architectures: ppc
1909:Type: vcpu ioctl
1910:Parameters: struct kvm_dirty_tlb (in)
1911:Returns: 0 on success, -1 on error
1912
1913::
dc83b8bc 1914
106ee47d 1915 struct kvm_dirty_tlb {
dc83b8bc
SW
1916 __u64 bitmap;
1917 __u32 num_dirty;
106ee47d 1918 };
dc83b8bc
SW
1919
1920This must be called whenever userspace has changed an entry in the shared
1921TLB, prior to calling KVM_RUN on the associated vcpu.
1922
1923The "bitmap" field is the userspace address of an array. This array
1924consists of a number of bits, equal to the total number of TLB entries as
1925determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1926nearest multiple of 64.
1927
1928Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1929array.
1930
1931The array is little-endian: the bit 0 is the least significant bit of the
1932first byte, bit 8 is the least significant bit of the second byte, etc.
1933This avoids any complications with differing word sizes.
1934
1935The "num_dirty" field is a performance hint for KVM to determine whether it
1936should skip processing the bitmap and just invalidate everything. It must
1937be set to the number of set bits in the bitmap.
1938
414fa985 1939
54738c09 19404.62 KVM_CREATE_SPAPR_TCE
106ee47d 1941-------------------------
54738c09 1942
106ee47d
MCC
1943:Capability: KVM_CAP_SPAPR_TCE
1944:Architectures: powerpc
1945:Type: vm ioctl
1946:Parameters: struct kvm_create_spapr_tce (in)
1947:Returns: file descriptor for manipulating the created TCE table
54738c09
DG
1948
1949This creates a virtual TCE (translation control entry) table, which
1950is an IOMMU for PAPR-style virtual I/O. It is used to translate
1951logical addresses used in virtual I/O into guest physical addresses,
1952and provides a scatter/gather capability for PAPR virtual I/O.
1953
106ee47d
MCC
1954::
1955
1956 /* for KVM_CAP_SPAPR_TCE */
1957 struct kvm_create_spapr_tce {
54738c09
DG
1958 __u64 liobn;
1959 __u32 window_size;
106ee47d 1960 };
54738c09
DG
1961
1962The liobn field gives the logical IO bus number for which to create a
1963TCE table. The window_size field specifies the size of the DMA window
1964which this TCE table will translate - the table will contain one 64
1965bit TCE entry for every 4kiB of the DMA window.
1966
1967When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1968table has been created using this ioctl(), the kernel will handle it
1969in real mode, updating the TCE table. H_PUT_TCE calls for other
1970liobns will cause a vm exit and must be handled by userspace.
1971
1972The return value is a file descriptor which can be passed to mmap(2)
1973to map the created TCE table into userspace. This lets userspace read
1974the entries written by kernel-handled H_PUT_TCE calls, and also lets
1975userspace update the TCE table directly which is useful in some
1976circumstances.
1977
414fa985 1978
aa04b4cc 19794.63 KVM_ALLOCATE_RMA
106ee47d 1980---------------------
aa04b4cc 1981
106ee47d
MCC
1982:Capability: KVM_CAP_PPC_RMA
1983:Architectures: powerpc
1984:Type: vm ioctl
1985:Parameters: struct kvm_allocate_rma (out)
1986:Returns: file descriptor for mapping the allocated RMA
aa04b4cc
PM
1987
1988This allocates a Real Mode Area (RMA) from the pool allocated at boot
1989time by the kernel. An RMA is a physically-contiguous, aligned region
1990of memory used on older POWER processors to provide the memory which
1991will be accessed by real-mode (MMU off) accesses in a KVM guest.
1992POWER processors support a set of sizes for the RMA that usually
1993includes 64MB, 128MB, 256MB and some larger powers of two.
1994
106ee47d
MCC
1995::
1996
1997 /* for KVM_ALLOCATE_RMA */
1998 struct kvm_allocate_rma {
aa04b4cc 1999 __u64 rma_size;
106ee47d 2000 };
aa04b4cc
PM
2001
2002The return value is a file descriptor which can be passed to mmap(2)
2003to map the allocated RMA into userspace. The mapped area can then be
2004passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
2005RMA for a virtual machine. The size of the RMA in bytes (which is
2006fixed at host kernel boot time) is returned in the rma_size field of
2007the argument structure.
2008
2009The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
2010is supported; 2 if the processor requires all virtual machines to have
2011an RMA, or 1 if the processor can use an RMA but doesn't require it,
2012because it supports the Virtual RMA (VRMA) facility.
2013
414fa985 2014
3f745f1e 20154.64 KVM_NMI
106ee47d 2016------------
3f745f1e 2017
106ee47d
MCC
2018:Capability: KVM_CAP_USER_NMI
2019:Architectures: x86
2020:Type: vcpu ioctl
2021:Parameters: none
2022:Returns: 0 on success, -1 on error
3f745f1e
AK
2023
2024Queues an NMI on the thread's vcpu. Note this is well defined only
2025when KVM_CREATE_IRQCHIP has not been called, since this is an interface
2026between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
2027has been called, this interface is completely emulated within the kernel.
2028
2029To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
2030following algorithm:
2031
5d4f6f3d 2032 - pause the vcpu
3f745f1e
AK
2033 - read the local APIC's state (KVM_GET_LAPIC)
2034 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
2035 - if so, issue KVM_NMI
2036 - resume the vcpu
2037
2038Some guests configure the LINT1 NMI input to cause a panic, aiding in
2039debugging.
2040
414fa985 2041
e24ed81f 20424.65 KVM_S390_UCAS_MAP
106ee47d 2043----------------------
27e0393f 2044
106ee47d
MCC
2045:Capability: KVM_CAP_S390_UCONTROL
2046:Architectures: s390
2047:Type: vcpu ioctl
2048:Parameters: struct kvm_s390_ucas_mapping (in)
2049:Returns: 0 in case of success
2050
2051The parameter is defined like this::
27e0393f 2052
27e0393f
CO
2053 struct kvm_s390_ucas_mapping {
2054 __u64 user_addr;
2055 __u64 vcpu_addr;
2056 __u64 length;
2057 };
2058
2059This ioctl maps the memory at "user_addr" with the length "length" to
2060the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 2061be aligned by 1 megabyte.
27e0393f 2062
414fa985 2063
e24ed81f 20644.66 KVM_S390_UCAS_UNMAP
106ee47d 2065------------------------
27e0393f 2066
106ee47d
MCC
2067:Capability: KVM_CAP_S390_UCONTROL
2068:Architectures: s390
2069:Type: vcpu ioctl
2070:Parameters: struct kvm_s390_ucas_mapping (in)
2071:Returns: 0 in case of success
2072
2073The parameter is defined like this::
27e0393f 2074
27e0393f
CO
2075 struct kvm_s390_ucas_mapping {
2076 __u64 user_addr;
2077 __u64 vcpu_addr;
2078 __u64 length;
2079 };
2080
2081This ioctl unmaps the memory in the vcpu's address space starting at
2082"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 2083All parameters need to be aligned by 1 megabyte.
27e0393f 2084
414fa985 2085
e24ed81f 20864.67 KVM_S390_VCPU_FAULT
106ee47d 2087------------------------
ccc7910f 2088
106ee47d
MCC
2089:Capability: KVM_CAP_S390_UCONTROL
2090:Architectures: s390
2091:Type: vcpu ioctl
2092:Parameters: vcpu absolute address (in)
2093:Returns: 0 in case of success
ccc7910f
CO
2094
2095This call creates a page table entry on the virtual cpu's address space
2096(for user controlled virtual machines) or the virtual machine's address
2097space (for regular virtual machines). This only works for minor faults,
2098thus it's recommended to access subject memory page via the user page
2099table upfront. This is useful to handle validity intercepts for user
2100controlled virtual machines to fault in the virtual cpu's lowcore pages
2101prior to calling the KVM_RUN ioctl.
2102
414fa985 2103
e24ed81f 21044.68 KVM_SET_ONE_REG
106ee47d
MCC
2105--------------------
2106
2107:Capability: KVM_CAP_ONE_REG
2108:Architectures: all
2109:Type: vcpu ioctl
2110:Parameters: struct kvm_one_reg (in)
2111:Returns: 0 on success, negative value on failure
e24ed81f 2112
395f562f 2113Errors:
106ee47d
MCC
2114
2115 ====== ============================================================
2116  ENOENT   no such register
68cf7b1f
JF
2117  EINVAL   invalid register ID, or no such register or used with VMs in
2118 protected virtualization mode on s390
106ee47d
MCC
2119  EPERM    (arm64) register access not allowed before vcpu finalization
2120 ====== ============================================================
2121
fe365b4e
DM
2122(These error codes are indicative only: do not rely on a specific error
2123code being returned in a specific situation.)
e24ed81f 2124
106ee47d
MCC
2125::
2126
2127 struct kvm_one_reg {
e24ed81f
AG
2128 __u64 id;
2129 __u64 addr;
106ee47d 2130 };
e24ed81f
AG
2131
2132Using this ioctl, a single vcpu register can be set to a specific value
2133defined by user space with the passed in struct kvm_one_reg, where id
2134refers to the register identifier as described below and addr is a pointer
2135to a variable with the respective size. There can be architecture agnostic
2136and architecture specific registers. Each have their own range of operation
2137and their own constants and width. To keep track of the implemented
2138registers, find a list below:
2139
106ee47d
MCC
2140 ======= =============================== ============
2141 Arch Register Width (bits)
2142 ======= =============================== ============
2143 PPC KVM_REG_PPC_HIOR 64
2144 PPC KVM_REG_PPC_IAC1 64
2145 PPC KVM_REG_PPC_IAC2 64
2146 PPC KVM_REG_PPC_IAC3 64
2147 PPC KVM_REG_PPC_IAC4 64
2148 PPC KVM_REG_PPC_DAC1 64
2149 PPC KVM_REG_PPC_DAC2 64
2150 PPC KVM_REG_PPC_DABR 64
2151 PPC KVM_REG_PPC_DSCR 64
2152 PPC KVM_REG_PPC_PURR 64
2153 PPC KVM_REG_PPC_SPURR 64
2154 PPC KVM_REG_PPC_DAR 64
2155 PPC KVM_REG_PPC_DSISR 32
2156 PPC KVM_REG_PPC_AMR 64
2157 PPC KVM_REG_PPC_UAMOR 64
2158 PPC KVM_REG_PPC_MMCR0 64
2159 PPC KVM_REG_PPC_MMCR1 64
2160 PPC KVM_REG_PPC_MMCRA 64
2161 PPC KVM_REG_PPC_MMCR2 64
2162 PPC KVM_REG_PPC_MMCRS 64
5752fe0b 2163 PPC KVM_REG_PPC_MMCR3 64
106ee47d
MCC
2164 PPC KVM_REG_PPC_SIAR 64
2165 PPC KVM_REG_PPC_SDAR 64
2166 PPC KVM_REG_PPC_SIER 64
5752fe0b
AR
2167 PPC KVM_REG_PPC_SIER2 64
2168 PPC KVM_REG_PPC_SIER3 64
106ee47d
MCC
2169 PPC KVM_REG_PPC_PMC1 32
2170 PPC KVM_REG_PPC_PMC2 32
2171 PPC KVM_REG_PPC_PMC3 32
2172 PPC KVM_REG_PPC_PMC4 32
2173 PPC KVM_REG_PPC_PMC5 32
2174 PPC KVM_REG_PPC_PMC6 32
2175 PPC KVM_REG_PPC_PMC7 32
2176 PPC KVM_REG_PPC_PMC8 32
2177 PPC KVM_REG_PPC_FPR0 64
2178 ...
2179 PPC KVM_REG_PPC_FPR31 64
2180 PPC KVM_REG_PPC_VR0 128
2181 ...
2182 PPC KVM_REG_PPC_VR31 128
2183 PPC KVM_REG_PPC_VSR0 128
2184 ...
2185 PPC KVM_REG_PPC_VSR31 128
2186 PPC KVM_REG_PPC_FPSCR 64
2187 PPC KVM_REG_PPC_VSCR 32
2188 PPC KVM_REG_PPC_VPA_ADDR 64
2189 PPC KVM_REG_PPC_VPA_SLB 128
2190 PPC KVM_REG_PPC_VPA_DTL 128
2191 PPC KVM_REG_PPC_EPCR 32
2192 PPC KVM_REG_PPC_EPR 32
2193 PPC KVM_REG_PPC_TCR 32
2194 PPC KVM_REG_PPC_TSR 32
2195 PPC KVM_REG_PPC_OR_TSR 32
2196 PPC KVM_REG_PPC_CLEAR_TSR 32
2197 PPC KVM_REG_PPC_MAS0 32
2198 PPC KVM_REG_PPC_MAS1 32
2199 PPC KVM_REG_PPC_MAS2 64
2200 PPC KVM_REG_PPC_MAS7_3 64
2201 PPC KVM_REG_PPC_MAS4 32
2202 PPC KVM_REG_PPC_MAS6 32
2203 PPC KVM_REG_PPC_MMUCFG 32
2204 PPC KVM_REG_PPC_TLB0CFG 32
2205 PPC KVM_REG_PPC_TLB1CFG 32
2206 PPC KVM_REG_PPC_TLB2CFG 32
2207 PPC KVM_REG_PPC_TLB3CFG 32
2208 PPC KVM_REG_PPC_TLB0PS 32
2209 PPC KVM_REG_PPC_TLB1PS 32
2210 PPC KVM_REG_PPC_TLB2PS 32
2211 PPC KVM_REG_PPC_TLB3PS 32
2212 PPC KVM_REG_PPC_EPTCFG 32
2213 PPC KVM_REG_PPC_ICP_STATE 64
2214 PPC KVM_REG_PPC_VP_STATE 128
2215 PPC KVM_REG_PPC_TB_OFFSET 64
2216 PPC KVM_REG_PPC_SPMC1 32
2217 PPC KVM_REG_PPC_SPMC2 32
2218 PPC KVM_REG_PPC_IAMR 64
2219 PPC KVM_REG_PPC_TFHAR 64
2220 PPC KVM_REG_PPC_TFIAR 64
2221 PPC KVM_REG_PPC_TEXASR 64
2222 PPC KVM_REG_PPC_FSCR 64
2223 PPC KVM_REG_PPC_PSPB 32
2224 PPC KVM_REG_PPC_EBBHR 64
2225 PPC KVM_REG_PPC_EBBRR 64
2226 PPC KVM_REG_PPC_BESCR 64
2227 PPC KVM_REG_PPC_TAR 64
2228 PPC KVM_REG_PPC_DPDES 64
2229 PPC KVM_REG_PPC_DAWR 64
2230 PPC KVM_REG_PPC_DAWRX 64
2231 PPC KVM_REG_PPC_CIABR 64
2232 PPC KVM_REG_PPC_IC 64
2233 PPC KVM_REG_PPC_VTB 64
2234 PPC KVM_REG_PPC_CSIGR 64
2235 PPC KVM_REG_PPC_TACR 64
2236 PPC KVM_REG_PPC_TCSCR 64
2237 PPC KVM_REG_PPC_PID 64
2238 PPC KVM_REG_PPC_ACOP 64
2239 PPC KVM_REG_PPC_VRSAVE 32
2240 PPC KVM_REG_PPC_LPCR 32
2241 PPC KVM_REG_PPC_LPCR_64 64
2242 PPC KVM_REG_PPC_PPR 64
2243 PPC KVM_REG_PPC_ARCH_COMPAT 32
2244 PPC KVM_REG_PPC_DABRX 32
2245 PPC KVM_REG_PPC_WORT 64
2246 PPC KVM_REG_PPC_SPRG9 64
2247 PPC KVM_REG_PPC_DBSR 32
2248 PPC KVM_REG_PPC_TIDR 64
2249 PPC KVM_REG_PPC_PSSCR 64
2250 PPC KVM_REG_PPC_DEC_EXPIRY 64
2251 PPC KVM_REG_PPC_PTCR 64
2252 PPC KVM_REG_PPC_TM_GPR0 64
2253 ...
2254 PPC KVM_REG_PPC_TM_GPR31 64
2255 PPC KVM_REG_PPC_TM_VSR0 128
2256 ...
2257 PPC KVM_REG_PPC_TM_VSR63 128
2258 PPC KVM_REG_PPC_TM_CR 64
2259 PPC KVM_REG_PPC_TM_LR 64
2260 PPC KVM_REG_PPC_TM_CTR 64
2261 PPC KVM_REG_PPC_TM_FPSCR 64
2262 PPC KVM_REG_PPC_TM_AMR 64
2263 PPC KVM_REG_PPC_TM_PPR 64
2264 PPC KVM_REG_PPC_TM_VRSAVE 64
2265 PPC KVM_REG_PPC_TM_VSCR 32
2266 PPC KVM_REG_PPC_TM_DSCR 64
2267 PPC KVM_REG_PPC_TM_TAR 64
2268 PPC KVM_REG_PPC_TM_XER 64
2269
2270 MIPS KVM_REG_MIPS_R0 64
2271 ...
2272 MIPS KVM_REG_MIPS_R31 64
2273 MIPS KVM_REG_MIPS_HI 64
2274 MIPS KVM_REG_MIPS_LO 64
2275 MIPS KVM_REG_MIPS_PC 64
2276 MIPS KVM_REG_MIPS_CP0_INDEX 32
2277 MIPS KVM_REG_MIPS_CP0_ENTRYLO0 64
2278 MIPS KVM_REG_MIPS_CP0_ENTRYLO1 64
2279 MIPS KVM_REG_MIPS_CP0_CONTEXT 64
2280 MIPS KVM_REG_MIPS_CP0_CONTEXTCONFIG 32
2281 MIPS KVM_REG_MIPS_CP0_USERLOCAL 64
2282 MIPS KVM_REG_MIPS_CP0_XCONTEXTCONFIG 64
2283 MIPS KVM_REG_MIPS_CP0_PAGEMASK 32
2284 MIPS KVM_REG_MIPS_CP0_PAGEGRAIN 32
2285 MIPS KVM_REG_MIPS_CP0_SEGCTL0 64
2286 MIPS KVM_REG_MIPS_CP0_SEGCTL1 64
2287 MIPS KVM_REG_MIPS_CP0_SEGCTL2 64
2288 MIPS KVM_REG_MIPS_CP0_PWBASE 64
2289 MIPS KVM_REG_MIPS_CP0_PWFIELD 64
2290 MIPS KVM_REG_MIPS_CP0_PWSIZE 64
2291 MIPS KVM_REG_MIPS_CP0_WIRED 32
2292 MIPS KVM_REG_MIPS_CP0_PWCTL 32
2293 MIPS KVM_REG_MIPS_CP0_HWRENA 32
2294 MIPS KVM_REG_MIPS_CP0_BADVADDR 64
2295 MIPS KVM_REG_MIPS_CP0_BADINSTR 32
2296 MIPS KVM_REG_MIPS_CP0_BADINSTRP 32
2297 MIPS KVM_REG_MIPS_CP0_COUNT 32
2298 MIPS KVM_REG_MIPS_CP0_ENTRYHI 64
2299 MIPS KVM_REG_MIPS_CP0_COMPARE 32
2300 MIPS KVM_REG_MIPS_CP0_STATUS 32
2301 MIPS KVM_REG_MIPS_CP0_INTCTL 32
2302 MIPS KVM_REG_MIPS_CP0_CAUSE 32
2303 MIPS KVM_REG_MIPS_CP0_EPC 64
2304 MIPS KVM_REG_MIPS_CP0_PRID 32
2305 MIPS KVM_REG_MIPS_CP0_EBASE 64
2306 MIPS KVM_REG_MIPS_CP0_CONFIG 32
2307 MIPS KVM_REG_MIPS_CP0_CONFIG1 32
2308 MIPS KVM_REG_MIPS_CP0_CONFIG2 32
2309 MIPS KVM_REG_MIPS_CP0_CONFIG3 32
2310 MIPS KVM_REG_MIPS_CP0_CONFIG4 32
2311 MIPS KVM_REG_MIPS_CP0_CONFIG5 32
2312 MIPS KVM_REG_MIPS_CP0_CONFIG7 32
2313 MIPS KVM_REG_MIPS_CP0_XCONTEXT 64
2314 MIPS KVM_REG_MIPS_CP0_ERROREPC 64
2315 MIPS KVM_REG_MIPS_CP0_KSCRATCH1 64
2316 MIPS KVM_REG_MIPS_CP0_KSCRATCH2 64
2317 MIPS KVM_REG_MIPS_CP0_KSCRATCH3 64
2318 MIPS KVM_REG_MIPS_CP0_KSCRATCH4 64
2319 MIPS KVM_REG_MIPS_CP0_KSCRATCH5 64
2320 MIPS KVM_REG_MIPS_CP0_KSCRATCH6 64
2321 MIPS KVM_REG_MIPS_CP0_MAAR(0..63) 64
2322 MIPS KVM_REG_MIPS_COUNT_CTL 64
2323 MIPS KVM_REG_MIPS_COUNT_RESUME 64
2324 MIPS KVM_REG_MIPS_COUNT_HZ 64
2325 MIPS KVM_REG_MIPS_FPR_32(0..31) 32
2326 MIPS KVM_REG_MIPS_FPR_64(0..31) 64
2327 MIPS KVM_REG_MIPS_VEC_128(0..31) 128
2328 MIPS KVM_REG_MIPS_FCR_IR 32
2329 MIPS KVM_REG_MIPS_FCR_CSR 32
2330 MIPS KVM_REG_MIPS_MSA_IR 32
2331 MIPS KVM_REG_MIPS_MSA_CSR 32
2332 ======= =============================== ============
414fa985 2333
749cf76c
CD
2334ARM registers are mapped using the lower 32 bits. The upper 16 of that
2335is the register group type, or coprocessor number:
2336
106ee47d
MCC
2337ARM core registers have the following id bit patterns::
2338
aa404ddf 2339 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 2340
106ee47d
MCC
2341ARM 32-bit CP15 registers have the following id bit patterns::
2342
aa404ddf 2343 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c 2344
106ee47d
MCC
2345ARM 64-bit CP15 registers have the following id bit patterns::
2346
aa404ddf 2347 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 2348
106ee47d
MCC
2349ARM CCSIDR registers are demultiplexed by CSSELR value::
2350
aa404ddf 2351 0x4020 0000 0011 00 <csselr:8>
749cf76c 2352
106ee47d
MCC
2353ARM 32-bit VFP control registers have the following id bit patterns::
2354
aa404ddf 2355 0x4020 0000 0012 1 <regno:12>
4fe21e4c 2356
106ee47d
MCC
2357ARM 64-bit FP registers have the following id bit patterns::
2358
aa404ddf 2359 0x4030 0000 0012 0 <regno:12>
4fe21e4c 2360
106ee47d
MCC
2361ARM firmware pseudo-registers have the following bit pattern::
2362
85bd0ba1
MZ
2363 0x4030 0000 0014 <regno:16>
2364
379e04c7
MZ
2365
2366arm64 registers are mapped using the lower 32 bits. The upper 16 of
2367that is the register group type, or coprocessor number:
2368
2369arm64 core/FP-SIMD registers have the following id bit patterns. Note
2370that the size of the access is variable, as the kvm_regs structure
2371contains elements ranging from 32 to 128 bits. The index is a 32bit
106ee47d
MCC
2372value in the kvm_regs structure seen as a 32bit array::
2373
379e04c7
MZ
2374 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2375
fd3bc912 2376Specifically:
106ee47d
MCC
2377
2378======================= ========= ===== =======================================
fd3bc912 2379 Encoding Register Bits kvm_regs member
106ee47d 2380======================= ========= ===== =======================================
fd3bc912
DM
2381 0x6030 0000 0010 0000 X0 64 regs.regs[0]
2382 0x6030 0000 0010 0002 X1 64 regs.regs[1]
106ee47d 2383 ...
fd3bc912
DM
2384 0x6030 0000 0010 003c X30 64 regs.regs[30]
2385 0x6030 0000 0010 003e SP 64 regs.sp
2386 0x6030 0000 0010 0040 PC 64 regs.pc
2387 0x6030 0000 0010 0042 PSTATE 64 regs.pstate
2388 0x6030 0000 0010 0044 SP_EL1 64 sp_el1
2389 0x6030 0000 0010 0046 ELR_EL1 64 elr_el1
2390 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[KVM_SPSR_EL1] (alias SPSR_SVC)
2391 0x6030 0000 0010 004a SPSR_ABT 64 spsr[KVM_SPSR_ABT]
2392 0x6030 0000 0010 004c SPSR_UND 64 spsr[KVM_SPSR_UND]
2393 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[KVM_SPSR_IRQ]
2394 0x6060 0000 0010 0050 SPSR_FIQ 64 spsr[KVM_SPSR_FIQ]
106ee47d
MCC
2395 0x6040 0000 0010 0054 V0 128 fp_regs.vregs[0] [1]_
2396 0x6040 0000 0010 0058 V1 128 fp_regs.vregs[1] [1]_
2397 ...
2398 0x6040 0000 0010 00d0 V31 128 fp_regs.vregs[31] [1]_
fd3bc912
DM
2399 0x6020 0000 0010 00d4 FPSR 32 fp_regs.fpsr
2400 0x6020 0000 0010 00d5 FPCR 32 fp_regs.fpcr
106ee47d 2401======================= ========= ===== =======================================
fd3bc912 2402
106ee47d
MCC
2403.. [1] These encodings are not accepted for SVE-enabled vcpus. See
2404 KVM_ARM_VCPU_INIT.
50036ad0 2405
106ee47d
MCC
2406 The equivalent register content can be accessed via bits [127:0] of
2407 the corresponding SVE Zn registers instead for vcpus that have SVE
2408 enabled (see below).
2409
2410arm64 CCSIDR registers are demultiplexed by CSSELR value::
50036ad0 2411
379e04c7
MZ
2412 0x6020 0000 0011 00 <csselr:8>
2413
106ee47d
MCC
2414arm64 system registers have the following id bit patterns::
2415
379e04c7
MZ
2416 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2417
106ee47d
MCC
2418.. warning::
2419
290a6bb0
AJ
2420 Two system register IDs do not follow the specified pattern. These
2421 are KVM_REG_ARM_TIMER_CVAL and KVM_REG_ARM_TIMER_CNT, which map to
2422 system registers CNTV_CVAL_EL0 and CNTVCT_EL0 respectively. These
2423 two had their values accidentally swapped, which means TIMER_CVAL is
2424 derived from the register encoding for CNTVCT_EL0 and TIMER_CNT is
2425 derived from the register encoding for CNTV_CVAL_EL0. As this is
2426 API, it must remain this way.
2427
106ee47d
MCC
2428arm64 firmware pseudo-registers have the following bit pattern::
2429
85bd0ba1
MZ
2430 0x6030 0000 0014 <regno:16>
2431
106ee47d
MCC
2432arm64 SVE registers have the following bit patterns::
2433
50036ad0
DM
2434 0x6080 0000 0015 00 <n:5> <slice:5> Zn bits[2048*slice + 2047 : 2048*slice]
2435 0x6050 0000 0015 04 <n:4> <slice:5> Pn bits[256*slice + 255 : 256*slice]
2436 0x6050 0000 0015 060 <slice:5> FFR bits[256*slice + 255 : 256*slice]
2437 0x6060 0000 0015 ffff KVM_REG_ARM64_SVE_VLS pseudo-register
2438
43b8e1f0
DM
2439Access to register IDs where 2048 * slice >= 128 * max_vq will fail with
2440ENOENT. max_vq is the vcpu's maximum supported vector length in 128-bit
106ee47d 2441quadwords: see [2]_ below.
50036ad0
DM
2442
2443These registers are only accessible on vcpus for which SVE is enabled.
2444See KVM_ARM_VCPU_INIT for details.
2445
2446In addition, except for KVM_REG_ARM64_SVE_VLS, these registers are not
2447accessible until the vcpu's SVE configuration has been finalized
2448using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). See KVM_ARM_VCPU_INIT
2449and KVM_ARM_VCPU_FINALIZE for more information about this procedure.
2450
2451KVM_REG_ARM64_SVE_VLS is a pseudo-register that allows the set of vector
2452lengths supported by the vcpu to be discovered and configured by
2453userspace. When transferred to or from user memory via KVM_GET_ONE_REG
4bd774e5
DM
2454or KVM_SET_ONE_REG, the value of this register is of type
2455__u64[KVM_ARM64_SVE_VLS_WORDS], and encodes the set of vector lengths as
106ee47d 2456follows::
50036ad0 2457
106ee47d 2458 __u64 vector_lengths[KVM_ARM64_SVE_VLS_WORDS];
50036ad0 2459
106ee47d
MCC
2460 if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX &&
2461 ((vector_lengths[(vq - KVM_ARM64_SVE_VQ_MIN) / 64] >>
4bd774e5 2462 ((vq - KVM_ARM64_SVE_VQ_MIN) % 64)) & 1))
50036ad0 2463 /* Vector length vq * 16 bytes supported */
106ee47d 2464 else
50036ad0
DM
2465 /* Vector length vq * 16 bytes not supported */
2466
106ee47d
MCC
2467.. [2] The maximum value vq for which the above condition is true is
2468 max_vq. This is the maximum vector length available to the guest on
2469 this vcpu, and determines which register slices are visible through
2470 this ioctl interface.
50036ad0 2471
b693d0b3 2472(See Documentation/arm64/sve.rst for an explanation of the "vq"
50036ad0
DM
2473nomenclature.)
2474
2475KVM_REG_ARM64_SVE_VLS is only accessible after KVM_ARM_VCPU_INIT.
2476KVM_ARM_VCPU_INIT initialises it to the best set of vector lengths that
2477the host supports.
2478
2479Userspace may subsequently modify it if desired until the vcpu's SVE
2480configuration is finalized using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE).
2481
2482Apart from simply removing all vector lengths from the host set that
2483exceed some value, support for arbitrarily chosen sets of vector lengths
2484is hardware-dependent and may not be available. Attempting to configure
2485an invalid set of vector lengths via KVM_SET_ONE_REG will fail with
2486EINVAL.
2487
2488After the vcpu's SVE configuration is finalized, further attempts to
2489write this register will fail with EPERM.
2490
c2d2c21b
JH
2491
2492MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2493the register group type:
2494
106ee47d
MCC
2495MIPS core registers (see above) have the following id bit patterns::
2496
c2d2c21b
JH
2497 0x7030 0000 0000 <reg:16>
2498
2499MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
106ee47d
MCC
2500patterns depending on whether they're 32-bit or 64-bit registers::
2501
c2d2c21b
JH
2502 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2503 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2504
013044cc
JH
2505Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64
2506versions of the EntryLo registers regardless of the word size of the host
2507hardware, host kernel, guest, and whether XPA is present in the guest, i.e.
2508with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and
2509the PFNX field starting at bit 30.
2510
d42a008f 2511MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit
106ee47d
MCC
2512patterns::
2513
d42a008f
JH
2514 0x7030 0000 0001 01 <reg:8>
2515
106ee47d
MCC
2516MIPS KVM control registers (see above) have the following id bit patterns::
2517
c2d2c21b
JH
2518 0x7030 0000 0002 <reg:16>
2519
379245cd
JH
2520MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
2521id bit patterns depending on the size of the register being accessed. They are
2522always accessed according to the current guest FPU mode (Status.FR and
2523Config5.FRE), i.e. as the guest would see them, and they become unpredictable
ab86bd60
JH
2524if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
2525registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
106ee47d
MCC
2526overlap the FPU registers::
2527
379245cd
JH
2528 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
2529 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
ab86bd60 2530 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
379245cd
JH
2531
2532MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
106ee47d
MCC
2533following id bit patterns::
2534
379245cd
JH
2535 0x7020 0000 0003 01 <0:3> <reg:5>
2536
ab86bd60 2537MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
106ee47d
MCC
2538following id bit patterns::
2539
ab86bd60
JH
2540 0x7020 0000 0003 02 <0:3> <reg:5>
2541
c2d2c21b 2542
e24ed81f 25434.69 KVM_GET_ONE_REG
106ee47d
MCC
2544--------------------
2545
2546:Capability: KVM_CAP_ONE_REG
2547:Architectures: all
2548:Type: vcpu ioctl
2549:Parameters: struct kvm_one_reg (in and out)
2550:Returns: 0 on success, negative value on failure
e24ed81f 2551
fe365b4e 2552Errors include:
106ee47d
MCC
2553
2554 ======== ============================================================
2555  ENOENT   no such register
68cf7b1f
JF
2556  EINVAL   invalid register ID, or no such register or used with VMs in
2557 protected virtualization mode on s390
106ee47d
MCC
2558  EPERM    (arm64) register access not allowed before vcpu finalization
2559 ======== ============================================================
2560
fe365b4e
DM
2561(These error codes are indicative only: do not rely on a specific error
2562code being returned in a specific situation.)
e24ed81f
AG
2563
2564This ioctl allows to receive the value of a single register implemented
2565in a vcpu. The register to read is indicated by the "id" field of the
2566kvm_one_reg struct passed in. On success, the register value can be found
2567at the memory location pointed to by "addr".
2568
2569The list of registers accessible using this interface is identical to the
2e232702 2570list in 4.68.
e24ed81f 2571
414fa985 2572
1c0b28c2 25734.70 KVM_KVMCLOCK_CTRL
106ee47d 2574----------------------
1c0b28c2 2575
106ee47d
MCC
2576:Capability: KVM_CAP_KVMCLOCK_CTRL
2577:Architectures: Any that implement pvclocks (currently x86 only)
2578:Type: vcpu ioctl
2579:Parameters: None
2580:Returns: 0 on success, -1 on error
1c0b28c2 2581
35c59990
JA
2582This ioctl sets a flag accessible to the guest indicating that the specified
2583vCPU has been paused by the host userspace.
2584
2585The host will set a flag in the pvclock structure that is checked from the
2586soft lockup watchdog. The flag is part of the pvclock structure that is
2587shared between guest and host, specifically the second bit of the flags
1c0b28c2
EM
2588field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2589the host and read/cleared exclusively by the guest. The guest operation of
35c59990 2590checking and clearing the flag must be an atomic operation so
1c0b28c2
EM
2591load-link/store-conditional, or equivalent must be used. There are two cases
2592where the guest will clear the flag: when the soft lockup watchdog timer resets
2593itself or when a soft lockup is detected. This ioctl can be called any time
2594after pausing the vcpu, but before it is resumed.
2595
414fa985 2596
07975ad3 25974.71 KVM_SIGNAL_MSI
106ee47d 2598-------------------
07975ad3 2599
106ee47d
MCC
2600:Capability: KVM_CAP_SIGNAL_MSI
2601:Architectures: x86 arm arm64
2602:Type: vm ioctl
2603:Parameters: struct kvm_msi (in)
2604:Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
07975ad3
JK
2605
2606Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2607MSI messages.
2608
106ee47d
MCC
2609::
2610
2611 struct kvm_msi {
07975ad3
JK
2612 __u32 address_lo;
2613 __u32 address_hi;
2614 __u32 data;
2615 __u32 flags;
2b8ddd93
AP
2616 __u32 devid;
2617 __u8 pad[12];
106ee47d 2618 };
07975ad3 2619
106ee47d
MCC
2620flags:
2621 KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM
6f49b2f3
PB
2622 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
2623 the device ID. If this capability is not available, userspace
2624 should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
2b8ddd93 2625
6f49b2f3
PB
2626If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
2627for the device that wrote the MSI message. For PCI, this is usually a
2628BFD identifier in the lower 16 bits.
07975ad3 2629
055b6ae9
PB
2630On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
2631feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
2632address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
2633address_hi must be zero.
37131313 2634
414fa985 2635
0589ff6c 26364.71 KVM_CREATE_PIT2
106ee47d 2637--------------------
0589ff6c 2638
106ee47d
MCC
2639:Capability: KVM_CAP_PIT2
2640:Architectures: x86
2641:Type: vm ioctl
2642:Parameters: struct kvm_pit_config (in)
2643:Returns: 0 on success, -1 on error
0589ff6c
JK
2644
2645Creates an in-kernel device model for the i8254 PIT. This call is only valid
2646after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
106ee47d 2647parameters have to be passed::
0589ff6c 2648
106ee47d 2649 struct kvm_pit_config {
0589ff6c
JK
2650 __u32 flags;
2651 __u32 pad[15];
106ee47d 2652 };
0589ff6c 2653
106ee47d 2654Valid flags are::
0589ff6c 2655
106ee47d 2656 #define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
0589ff6c 2657
b6ddf05f 2658PIT timer interrupts may use a per-VM kernel thread for injection. If it
106ee47d 2659exists, this thread will have a name of the following pattern::
b6ddf05f 2660
106ee47d 2661 kvm-pit/<owner-process-pid>
b6ddf05f
JK
2662
2663When running a guest with elevated priorities, the scheduling parameters of
2664this thread may have to be adjusted accordingly.
2665
0589ff6c
JK
2666This IOCTL replaces the obsolete KVM_CREATE_PIT.
2667
2668
26694.72 KVM_GET_PIT2
106ee47d 2670-----------------
0589ff6c 2671
106ee47d
MCC
2672:Capability: KVM_CAP_PIT_STATE2
2673:Architectures: x86
2674:Type: vm ioctl
2675:Parameters: struct kvm_pit_state2 (out)
2676:Returns: 0 on success, -1 on error
0589ff6c
JK
2677
2678Retrieves the state of the in-kernel PIT model. Only valid after
106ee47d 2679KVM_CREATE_PIT2. The state is returned in the following structure::
0589ff6c 2680
106ee47d 2681 struct kvm_pit_state2 {
0589ff6c
JK
2682 struct kvm_pit_channel_state channels[3];
2683 __u32 flags;
2684 __u32 reserved[9];
106ee47d 2685 };
0589ff6c 2686
106ee47d 2687Valid flags are::
0589ff6c 2688
106ee47d
MCC
2689 /* disable PIT in HPET legacy mode */
2690 #define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
0589ff6c
JK
2691
2692This IOCTL replaces the obsolete KVM_GET_PIT.
2693
2694
26954.73 KVM_SET_PIT2
106ee47d 2696-----------------
0589ff6c 2697
106ee47d
MCC
2698:Capability: KVM_CAP_PIT_STATE2
2699:Architectures: x86
2700:Type: vm ioctl
2701:Parameters: struct kvm_pit_state2 (in)
2702:Returns: 0 on success, -1 on error
0589ff6c
JK
2703
2704Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2705See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2706
2707This IOCTL replaces the obsolete KVM_SET_PIT.
2708
2709
5b74716e 27104.74 KVM_PPC_GET_SMMU_INFO
106ee47d 2711--------------------------
5b74716e 2712
106ee47d
MCC
2713:Capability: KVM_CAP_PPC_GET_SMMU_INFO
2714:Architectures: powerpc
2715:Type: vm ioctl
2716:Parameters: None
2717:Returns: 0 on success, -1 on error
5b74716e
BH
2718
2719This populates and returns a structure describing the features of
2720the "Server" class MMU emulation supported by KVM.
cc22c354 2721This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2722device-tree properties for the guest operating system.
2723
c98be0c9 2724The structure contains some global information, followed by an
106ee47d 2725array of supported segment page sizes::
5b74716e
BH
2726
2727 struct kvm_ppc_smmu_info {
2728 __u64 flags;
2729 __u32 slb_size;
2730 __u32 pad;
2731 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2732 };
2733
2734The supported flags are:
2735
2736 - KVM_PPC_PAGE_SIZES_REAL:
2737 When that flag is set, guest page sizes must "fit" the backing
2738 store page sizes. When not set, any page size in the list can
2739 be used regardless of how they are backed by userspace.
2740
2741 - KVM_PPC_1T_SEGMENTS
2742 The emulated MMU supports 1T segments in addition to the
2743 standard 256M ones.
2744
901f8c3f
PM
2745 - KVM_PPC_NO_HASH
2746 This flag indicates that HPT guests are not supported by KVM,
2747 thus all guests must use radix MMU mode.
2748
5b74716e
BH
2749The "slb_size" field indicates how many SLB entries are supported
2750
2751The "sps" array contains 8 entries indicating the supported base
2752page sizes for a segment in increasing order. Each entry is defined
106ee47d 2753as follow::
5b74716e
BH
2754
2755 struct kvm_ppc_one_seg_page_size {
2756 __u32 page_shift; /* Base page shift of segment (or 0) */
2757 __u32 slb_enc; /* SLB encoding for BookS */
2758 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2759 };
2760
2761An entry with a "page_shift" of 0 is unused. Because the array is
2762organized in increasing order, a lookup can stop when encoutering
2763such an entry.
2764
2765The "slb_enc" field provides the encoding to use in the SLB for the
2766page size. The bits are in positions such as the value can directly
2767be OR'ed into the "vsid" argument of the slbmte instruction.
2768
2769The "enc" array is a list which for each of those segment base page
2770size provides the list of supported actual page sizes (which can be
2771only larger or equal to the base page size), along with the
f884ab15 2772corresponding encoding in the hash PTE. Similarly, the array is
5b74716e 27738 entries sorted by increasing sizes and an entry with a "0" shift
106ee47d 2774is an empty entry and a terminator::
5b74716e
BH
2775
2776 struct kvm_ppc_one_page_size {
2777 __u32 page_shift; /* Page shift (or 0) */
2778 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2779 };
2780
2781The "pte_enc" field provides a value that can OR'ed into the hash
2782PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2783into the hash PTE second double word).
2784
f36992e3 27854.75 KVM_IRQFD
106ee47d 2786--------------
f36992e3 2787
106ee47d
MCC
2788:Capability: KVM_CAP_IRQFD
2789:Architectures: x86 s390 arm arm64
2790:Type: vm ioctl
2791:Parameters: struct kvm_irqfd (in)
2792:Returns: 0 on success, -1 on error
f36992e3
AW
2793
2794Allows setting an eventfd to directly trigger a guest interrupt.
2795kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2796kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
17180032 2797an event is triggered on the eventfd, an interrupt is injected into
f36992e3
AW
2798the guest using the specified gsi pin. The irqfd is removed using
2799the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2800and kvm_irqfd.gsi.
2801
7a84428a
AW
2802With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2803mechanism allowing emulation of level-triggered, irqfd-based
2804interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2805additional eventfd in the kvm_irqfd.resamplefd field. When operating
2806in resample mode, posting of an interrupt through kvm_irq.fd asserts
2807the specified gsi in the irqchip. When the irqchip is resampled, such
17180032 2808as from an EOI, the gsi is de-asserted and the user is notified via
7a84428a
AW
2809kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2810the interrupt if the device making use of it still requires service.
2811Note that closing the resamplefd is not sufficient to disable the
2812irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2813and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2814
180ae7b1 2815On arm/arm64, gsi routing being supported, the following can happen:
106ee47d 2816
180ae7b1
EA
2817- in case no routing entry is associated to this gsi, injection fails
2818- in case the gsi is associated to an irqchip routing entry,
2819 irqchip.pin + 32 corresponds to the injected SPI ID.
995a0ee9
EA
2820- in case the gsi is associated to an MSI routing entry, the MSI
2821 message and device ID are translated into an LPI (support restricted
2822 to GICv3 ITS in-kernel emulation).
174178fe 2823
5fecc9d8 28244.76 KVM_PPC_ALLOCATE_HTAB
106ee47d 2825--------------------------
32fad281 2826
106ee47d
MCC
2827:Capability: KVM_CAP_PPC_ALLOC_HTAB
2828:Architectures: powerpc
2829:Type: vm ioctl
2830:Parameters: Pointer to u32 containing hash table order (in/out)
2831:Returns: 0 on success, -1 on error
32fad281
PM
2832
2833This requests the host kernel to allocate an MMU hash table for a
2834guest using the PAPR paravirtualization interface. This only does
2835anything if the kernel is configured to use the Book 3S HV style of
2836virtualization. Otherwise the capability doesn't exist and the ioctl
2837returns an ENOTTY error. The rest of this description assumes Book 3S
2838HV.
2839
2840There must be no vcpus running when this ioctl is called; if there
2841are, it will do nothing and return an EBUSY error.
2842
2843The parameter is a pointer to a 32-bit unsigned integer variable
2844containing the order (log base 2) of the desired size of the hash
2845table, which must be between 18 and 46. On successful return from the
f98a8bf9 2846ioctl, the value will not be changed by the kernel.
32fad281
PM
2847
2848If no hash table has been allocated when any vcpu is asked to run
2849(with the KVM_RUN ioctl), the host kernel will allocate a
2850default-sized hash table (16 MB).
2851
2852If this ioctl is called when a hash table has already been allocated,
f98a8bf9
DG
2853with a different order from the existing hash table, the existing hash
2854table will be freed and a new one allocated. If this is ioctl is
2855called when a hash table has already been allocated of the same order
2856as specified, the kernel will clear out the existing hash table (zero
2857all HPTEs). In either case, if the guest is using the virtualized
2858real-mode area (VRMA) facility, the kernel will re-create the VMRA
2859HPTEs on the next KVM_RUN of any vcpu.
32fad281 2860
416ad65f 28614.77 KVM_S390_INTERRUPT
106ee47d 2862-----------------------
416ad65f 2863
106ee47d
MCC
2864:Capability: basic
2865:Architectures: s390
2866:Type: vm ioctl, vcpu ioctl
2867:Parameters: struct kvm_s390_interrupt (in)
2868:Returns: 0 on success, -1 on error
416ad65f
CH
2869
2870Allows to inject an interrupt to the guest. Interrupts can be floating
2871(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2872
106ee47d 2873Interrupt parameters are passed via kvm_s390_interrupt::
416ad65f 2874
106ee47d 2875 struct kvm_s390_interrupt {
416ad65f
CH
2876 __u32 type;
2877 __u32 parm;
2878 __u64 parm64;
106ee47d 2879 };
416ad65f
CH
2880
2881type can be one of the following:
2882
106ee47d
MCC
2883KVM_S390_SIGP_STOP (vcpu)
2884 - sigp stop; optional flags in parm
2885KVM_S390_PROGRAM_INT (vcpu)
2886 - program check; code in parm
2887KVM_S390_SIGP_SET_PREFIX (vcpu)
2888 - sigp set prefix; prefix address in parm
2889KVM_S390_RESTART (vcpu)
2890 - restart
2891KVM_S390_INT_CLOCK_COMP (vcpu)
2892 - clock comparator interrupt
2893KVM_S390_INT_CPU_TIMER (vcpu)
2894 - CPU timer interrupt
2895KVM_S390_INT_VIRTIO (vm)
2896 - virtio external interrupt; external interrupt
2897 parameters in parm and parm64
2898KVM_S390_INT_SERVICE (vm)
2899 - sclp external interrupt; sclp parameter in parm
2900KVM_S390_INT_EMERGENCY (vcpu)
2901 - sigp emergency; source cpu in parm
2902KVM_S390_INT_EXTERNAL_CALL (vcpu)
2903 - sigp external call; source cpu in parm
2904KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm)
2905 - compound value to indicate an
2906 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2907 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2908 interruption subclass)
2909KVM_S390_MCHK (vm, vcpu)
2910 - machine check interrupt; cr 14 bits in parm, machine check interrupt
2911 code in parm64 (note that machine checks needing further payload are not
2912 supported by this ioctl)
416ad65f 2913
5e124900 2914This is an asynchronous vcpu ioctl and can be invoked from any thread.
416ad65f 2915
a2932923 29164.78 KVM_PPC_GET_HTAB_FD
106ee47d 2917------------------------
a2932923 2918
106ee47d
MCC
2919:Capability: KVM_CAP_PPC_HTAB_FD
2920:Architectures: powerpc
2921:Type: vm ioctl
2922:Parameters: Pointer to struct kvm_get_htab_fd (in)
2923:Returns: file descriptor number (>= 0) on success, -1 on error
a2932923
PM
2924
2925This returns a file descriptor that can be used either to read out the
2926entries in the guest's hashed page table (HPT), or to write entries to
2927initialize the HPT. The returned fd can only be written to if the
2928KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2929can only be read if that bit is clear. The argument struct looks like
106ee47d 2930this::
a2932923 2931
106ee47d
MCC
2932 /* For KVM_PPC_GET_HTAB_FD */
2933 struct kvm_get_htab_fd {
a2932923
PM
2934 __u64 flags;
2935 __u64 start_index;
2936 __u64 reserved[2];
106ee47d 2937 };
a2932923 2938
106ee47d
MCC
2939 /* Values for kvm_get_htab_fd.flags */
2940 #define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2941 #define KVM_GET_HTAB_WRITE ((__u64)0x2)
a2932923 2942
106ee47d 2943The 'start_index' field gives the index in the HPT of the entry at
a2932923
PM
2944which to start reading. It is ignored when writing.
2945
2946Reads on the fd will initially supply information about all
2947"interesting" HPT entries. Interesting entries are those with the
2948bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2949all entries. When the end of the HPT is reached, the read() will
2950return. If read() is called again on the fd, it will start again from
2951the beginning of the HPT, but will only return HPT entries that have
2952changed since they were last read.
2953
2954Data read or written is structured as a header (8 bytes) followed by a
2955series of valid HPT entries (16 bytes) each. The header indicates how
2956many valid HPT entries there are and how many invalid entries follow
2957the valid entries. The invalid entries are not represented explicitly
106ee47d 2958in the stream. The header format is::
a2932923 2959
106ee47d 2960 struct kvm_get_htab_header {
a2932923
PM
2961 __u32 index;
2962 __u16 n_valid;
2963 __u16 n_invalid;
106ee47d 2964 };
a2932923
PM
2965
2966Writes to the fd create HPT entries starting at the index given in the
106ee47d
MCC
2967header; first 'n_valid' valid entries with contents from the data
2968written, then 'n_invalid' invalid entries, invalidating any previously
a2932923
PM
2969valid entries found.
2970
852b6d57 29714.79 KVM_CREATE_DEVICE
106ee47d
MCC
2972----------------------
2973
2974:Capability: KVM_CAP_DEVICE_CTRL
2975:Type: vm ioctl
2976:Parameters: struct kvm_create_device (in/out)
2977:Returns: 0 on success, -1 on error
852b6d57 2978
852b6d57 2979Errors:
106ee47d
MCC
2980
2981 ====== =======================================================
2982 ENODEV The device type is unknown or unsupported
2983 EEXIST Device already created, and this type of device may not
852b6d57 2984 be instantiated multiple times
106ee47d 2985 ====== =======================================================
852b6d57
SW
2986
2987 Other error conditions may be defined by individual device types or
2988 have their standard meanings.
2989
2990Creates an emulated device in the kernel. The file descriptor returned
2991in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2992
2993If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2994device type is supported (not necessarily whether it can be created
2995in the current vm).
2996
2997Individual devices should not define flags. Attributes should be used
2998for specifying any behavior that is not implied by the device type
2999number.
3000
106ee47d
MCC
3001::
3002
3003 struct kvm_create_device {
852b6d57
SW
3004 __u32 type; /* in: KVM_DEV_TYPE_xxx */
3005 __u32 fd; /* out: device handle */
3006 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
106ee47d 3007 };
852b6d57
SW
3008
30094.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
106ee47d
MCC
3010--------------------------------------------
3011
3012:Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
3013 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
3014:Type: device ioctl, vm ioctl, vcpu ioctl
3015:Parameters: struct kvm_device_attr
3016:Returns: 0 on success, -1 on error
852b6d57 3017
852b6d57 3018Errors:
106ee47d
MCC
3019
3020 ===== =============================================================
3021 ENXIO The group or attribute is unknown/unsupported for this device
f9cbd9b0 3022 or hardware support is missing.
106ee47d 3023 EPERM The attribute cannot (currently) be accessed this way
852b6d57
SW
3024 (e.g. read-only attribute, or attribute that only makes
3025 sense when the device is in a different state)
106ee47d 3026 ===== =============================================================
852b6d57
SW
3027
3028 Other error conditions may be defined by individual device types.
3029
3030Gets/sets a specified piece of device configuration and/or state. The
3031semantics are device-specific. See individual device documentation in
3032the "devices" directory. As with ONE_REG, the size of the data
3033transferred is defined by the particular attribute.
3034
106ee47d
MCC
3035::
3036
3037 struct kvm_device_attr {
852b6d57
SW
3038 __u32 flags; /* no flags currently defined */
3039 __u32 group; /* device-defined */
3040 __u64 attr; /* group-defined */
3041 __u64 addr; /* userspace address of attr data */
106ee47d 3042 };
852b6d57
SW
3043
30444.81 KVM_HAS_DEVICE_ATTR
106ee47d
MCC
3045------------------------
3046
3047:Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
3048 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
3049:Type: device ioctl, vm ioctl, vcpu ioctl
3050:Parameters: struct kvm_device_attr
3051:Returns: 0 on success, -1 on error
852b6d57 3052
852b6d57 3053Errors:
106ee47d
MCC
3054
3055 ===== =============================================================
3056 ENXIO The group or attribute is unknown/unsupported for this device
f9cbd9b0 3057 or hardware support is missing.
106ee47d 3058 ===== =============================================================
852b6d57
SW
3059
3060Tests whether a device supports a particular attribute. A successful
3061return indicates the attribute is implemented. It does not necessarily
3062indicate that the attribute can be read or written in the device's
3063current state. "addr" is ignored.
f36992e3 3064
d8968f1f 30654.82 KVM_ARM_VCPU_INIT
106ee47d
MCC
3066----------------------
3067
3068:Capability: basic
3069:Architectures: arm, arm64
3070:Type: vcpu ioctl
3071:Parameters: struct kvm_vcpu_init (in)
3072:Returns: 0 on success; -1 on error
749cf76c 3073
749cf76c 3074Errors:
106ee47d
MCC
3075
3076 ====== =================================================================
3077  EINVAL    the target is unknown, or the combination of features is invalid.
3078  ENOENT    a features bit specified is unknown.
3079 ====== =================================================================
749cf76c
CD
3080
3081This tells KVM what type of CPU to present to the guest, and what
3082optional features it should have.  This will cause a reset of the cpu
3083registers to their initial values.  If this is not called, KVM_RUN will
3084return ENOEXEC for that vcpu.
3085
3086Note that because some registers reflect machine topology, all vcpus
3087should be created before this ioctl is invoked.
3088
f7fa034d
CD
3089Userspace can call this function multiple times for a given vcpu, including
3090after the vcpu has been run. This will reset the vcpu to its initial
3091state. All calls to this function after the initial call must use the same
3092target and same set of feature flags, otherwise EINVAL will be returned.
3093
aa024c2f 3094Possible features:
106ee47d 3095
aa024c2f 3096 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
3ad8b3de
CD
3097 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
3098 and execute guest code when KVM_RUN is called.
379e04c7
MZ
3099 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
3100 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
85bd0ba1
MZ
3101 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 (or a future revision
3102 backward compatible with v0.2) for the CPU.
50bb0c94 3103 Depends on KVM_CAP_ARM_PSCI_0_2.
808e7381
SZ
3104 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU.
3105 Depends on KVM_CAP_ARM_PMU_V3.
aa024c2f 3106
a22fa321
ADK
3107 - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enables Address Pointer authentication
3108 for arm64 only.
a243c16d
ADK
3109 Depends on KVM_CAP_ARM_PTRAUTH_ADDRESS.
3110 If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are
3111 both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and
3112 KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be
3113 requested.
a22fa321
ADK
3114
3115 - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enables Generic Pointer authentication
3116 for arm64 only.
a243c16d
ADK
3117 Depends on KVM_CAP_ARM_PTRAUTH_GENERIC.
3118 If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are
3119 both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and
3120 KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be
3121 requested.
a22fa321 3122
50036ad0
DM
3123 - KVM_ARM_VCPU_SVE: Enables SVE for the CPU (arm64 only).
3124 Depends on KVM_CAP_ARM_SVE.
3125 Requires KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE):
3126
3127 * After KVM_ARM_VCPU_INIT:
3128
3129 - KVM_REG_ARM64_SVE_VLS may be read using KVM_GET_ONE_REG: the
3130 initial value of this pseudo-register indicates the best set of
3131 vector lengths possible for a vcpu on this host.
3132
3133 * Before KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE):
3134
3135 - KVM_RUN and KVM_GET_REG_LIST are not available;
3136
3137 - KVM_GET_ONE_REG and KVM_SET_ONE_REG cannot be used to access
3138 the scalable archietctural SVE registers
3139 KVM_REG_ARM64_SVE_ZREG(), KVM_REG_ARM64_SVE_PREG() or
3140 KVM_REG_ARM64_SVE_FFR;
3141
3142 - KVM_REG_ARM64_SVE_VLS may optionally be written using
3143 KVM_SET_ONE_REG, to modify the set of vector lengths available
3144 for the vcpu.
3145
3146 * After KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE):
3147
3148 - the KVM_REG_ARM64_SVE_VLS pseudo-register is immutable, and can
3149 no longer be written using KVM_SET_ONE_REG.
749cf76c 3150
740edfc0 31514.83 KVM_ARM_PREFERRED_TARGET
106ee47d
MCC
3152-----------------------------
3153
3154:Capability: basic
3155:Architectures: arm, arm64
3156:Type: vm ioctl
a84b757e 3157:Parameters: struct kvm_vcpu_init (out)
106ee47d 3158:Returns: 0 on success; -1 on error
740edfc0 3159
740edfc0 3160Errors:
106ee47d
MCC
3161
3162 ====== ==========================================
3163 ENODEV no preferred target available for the host
3164 ====== ==========================================
740edfc0
AP
3165
3166This queries KVM for preferred CPU target type which can be emulated
3167by KVM on underlying host.
3168
3169The ioctl returns struct kvm_vcpu_init instance containing information
3170about preferred CPU target type and recommended features for it. The
3171kvm_vcpu_init->features bitmap returned will have feature bits set if
3172the preferred target recommends setting these features, but this is
3173not mandatory.
3174
3175The information returned by this ioctl can be used to prepare an instance
3176of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
3747c5d3 3177VCPU matching underlying host.
740edfc0
AP
3178
3179
31804.84 KVM_GET_REG_LIST
106ee47d
MCC
3181---------------------
3182
3183:Capability: basic
3184:Architectures: arm, arm64, mips
3185:Type: vcpu ioctl
3186:Parameters: struct kvm_reg_list (in/out)
3187:Returns: 0 on success; -1 on error
749cf76c 3188
749cf76c 3189Errors:
106ee47d
MCC
3190
3191 ===== ==============================================================
3192  E2BIG     the reg index list is too big to fit in the array specified by
749cf76c 3193             the user (the number required will be written into n).
106ee47d
MCC
3194 ===== ==============================================================
3195
3196::
749cf76c 3197
106ee47d 3198 struct kvm_reg_list {
749cf76c
CD
3199 __u64 n; /* number of registers in reg[] */
3200 __u64 reg[0];
106ee47d 3201 };
749cf76c
CD
3202
3203This ioctl returns the guest registers that are supported for the
3204KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
3205
ce01e4e8
CD
3206
32074.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
106ee47d
MCC
3208-----------------------------------------
3209
3210:Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
3211:Architectures: arm, arm64
3212:Type: vm ioctl
3213:Parameters: struct kvm_arm_device_address (in)
3214:Returns: 0 on success, -1 on error
3401d546 3215
3401d546 3216Errors:
3401d546 3217
106ee47d
MCC
3218 ====== ============================================
3219 ENODEV The device id is unknown
3220 ENXIO Device not supported on current system
3221 EEXIST Address already set
3222 E2BIG Address outside guest physical address space
3223 EBUSY Address overlaps with other device range
3224 ====== ============================================
3225
3226::
3227
3228 struct kvm_arm_device_addr {
3401d546
CD
3229 __u64 id;
3230 __u64 addr;
106ee47d 3231 };
3401d546
CD
3232
3233Specify a device address in the guest's physical address space where guests
3234can access emulated or directly exposed devices, which the host kernel needs
3235to know about. The id field is an architecture specific identifier for a
3236specific device.
3237
379e04c7 3238ARM/arm64 divides the id field into two parts, a device id and an
106ee47d 3239address type id specific to the individual device::
3401d546
CD
3240
3241  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
3242 field: | 0x00000000 | device id | addr type id |
3243
379e04c7
MZ
3244ARM/arm64 currently only require this when using the in-kernel GIC
3245support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
3246as the device id. When setting the base address for the guest's
3247mapping of the VGIC virtual CPU and distributor interface, the ioctl
3248must be called after calling KVM_CREATE_IRQCHIP, but before calling
3249KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
3250base addresses will return -EEXIST.
3401d546 3251
ce01e4e8
CD
3252Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
3253should be used instead.
3254
3255
740edfc0 32564.86 KVM_PPC_RTAS_DEFINE_TOKEN
106ee47d 3257------------------------------
8e591cb7 3258
106ee47d
MCC
3259:Capability: KVM_CAP_PPC_RTAS
3260:Architectures: ppc
3261:Type: vm ioctl
3262:Parameters: struct kvm_rtas_token_args
3263:Returns: 0 on success, -1 on error
8e591cb7
ME
3264
3265Defines a token value for a RTAS (Run Time Abstraction Services)
3266service in order to allow it to be handled in the kernel. The
3267argument struct gives the name of the service, which must be the name
3268of a service that has a kernel-side implementation. If the token
3269value is non-zero, it will be associated with that service, and
3270subsequent RTAS calls by the guest specifying that token will be
3271handled by the kernel. If the token value is 0, then any token
3272associated with the service will be forgotten, and subsequent RTAS
3273calls by the guest for that service will be passed to userspace to be
3274handled.
3275
4bd9d344 32764.87 KVM_SET_GUEST_DEBUG
106ee47d 3277------------------------
4bd9d344 3278
106ee47d
MCC
3279:Capability: KVM_CAP_SET_GUEST_DEBUG
3280:Architectures: x86, s390, ppc, arm64
3281:Type: vcpu ioctl
3282:Parameters: struct kvm_guest_debug (in)
3283:Returns: 0 on success; -1 on error
3284
3285::
4bd9d344 3286
106ee47d 3287 struct kvm_guest_debug {
4bd9d344
AB
3288 __u32 control;
3289 __u32 pad;
3290 struct kvm_guest_debug_arch arch;
106ee47d 3291 };
4bd9d344
AB
3292
3293Set up the processor specific debug registers and configure vcpu for
3294handling guest debug events. There are two parts to the structure, the
3295first a control bitfield indicates the type of debug events to handle
3296when running. Common control bits are:
3297
3298 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
3299 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
3300
3301The top 16 bits of the control field are architecture specific control
3302flags which can include the following:
3303
4bd611ca 3304 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64]
834bf887 3305 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64]
4bd9d344
AB
3306 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
3307 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
3308 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
3309
3310For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
3311are enabled in memory so we need to ensure breakpoint exceptions are
3312correctly trapped and the KVM run loop exits at the breakpoint and not
3313running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
3314we need to ensure the guest vCPUs architecture specific registers are
3315updated to the correct (supplied) values.
3316
3317The second part of the structure is architecture specific and
3318typically contains a set of debug registers.
3319
834bf887
AB
3320For arm64 the number of debug registers is implementation defined and
3321can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and
3322KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number
3323indicating the number of supported registers.
3324
1a9167a2
FR
3325For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP capability indicates whether
3326the single-step debug event (KVM_GUESTDBG_SINGLESTEP) is supported.
3327
4bd9d344
AB
3328When debug events exit the main run loop with the reason
3329KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
3330structure containing architecture specific debug information.
3401d546 3331
209cf19f 33324.88 KVM_GET_EMULATED_CPUID
106ee47d
MCC
3333---------------------------
3334
3335:Capability: KVM_CAP_EXT_EMUL_CPUID
3336:Architectures: x86
3337:Type: system ioctl
3338:Parameters: struct kvm_cpuid2 (in/out)
3339:Returns: 0 on success, -1 on error
209cf19f 3340
106ee47d 3341::
209cf19f 3342
106ee47d 3343 struct kvm_cpuid2 {
209cf19f
AB
3344 __u32 nent;
3345 __u32 flags;
3346 struct kvm_cpuid_entry2 entries[0];
106ee47d 3347 };
209cf19f
AB
3348
3349The member 'flags' is used for passing flags from userspace.
3350
106ee47d 3351::
209cf19f 3352
106ee47d 3353 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
7ff6c035
SC
3354 #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) /* deprecated */
3355 #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) /* deprecated */
106ee47d
MCC
3356
3357 struct kvm_cpuid_entry2 {
209cf19f
AB
3358 __u32 function;
3359 __u32 index;
3360 __u32 flags;
3361 __u32 eax;
3362 __u32 ebx;
3363 __u32 ecx;
3364 __u32 edx;
3365 __u32 padding[3];
106ee47d 3366 };
209cf19f
AB
3367
3368This ioctl returns x86 cpuid features which are emulated by
3369kvm.Userspace can use the information returned by this ioctl to query
3370which features are emulated by kvm instead of being present natively.
3371
3372Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
3373structure with the 'nent' field indicating the number of entries in
3374the variable-size array 'entries'. If the number of entries is too low
3375to describe the cpu capabilities, an error (E2BIG) is returned. If the
3376number is too high, the 'nent' field is adjusted and an error (ENOMEM)
3377is returned. If the number is just right, the 'nent' field is adjusted
3378to the number of valid entries in the 'entries' array, which is then
3379filled.
3380
3381The entries returned are the set CPUID bits of the respective features
3382which kvm emulates, as returned by the CPUID instruction, with unknown
3383or unsupported feature bits cleared.
3384
3385Features like x2apic, for example, may not be present in the host cpu
3386but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
3387emulated efficiently and thus not included here.
3388
3389The fields in each entry are defined as follows:
3390
106ee47d
MCC
3391 function:
3392 the eax value used to obtain the entry
3393 index:
3394 the ecx value used to obtain the entry (for entries that are
209cf19f 3395 affected by ecx)
106ee47d
MCC
3396 flags:
3397 an OR of zero or more of the following:
3398
209cf19f
AB
3399 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
3400 if the index field is valid
106ee47d
MCC
3401
3402 eax, ebx, ecx, edx:
3403
3404 the values returned by the cpuid instruction for
209cf19f
AB
3405 this function/index combination
3406
41408c28 34074.89 KVM_S390_MEM_OP
106ee47d 3408--------------------
41408c28 3409
106ee47d
MCC
3410:Capability: KVM_CAP_S390_MEM_OP
3411:Architectures: s390
3412:Type: vcpu ioctl
3413:Parameters: struct kvm_s390_mem_op (in)
3414:Returns: = 0 on success,
3415 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
3416 > 0 if an exception occurred while walking the page tables
41408c28 3417
5d4f6f3d 3418Read or write data from/to the logical (virtual) memory of a VCPU.
41408c28 3419
106ee47d 3420Parameters are specified via the following structure::
41408c28 3421
106ee47d 3422 struct kvm_s390_mem_op {
41408c28
TH
3423 __u64 gaddr; /* the guest address */
3424 __u64 flags; /* flags */
3425 __u32 size; /* amount of bytes */
3426 __u32 op; /* type of operation */
3427 __u64 buf; /* buffer in userspace */
3428 __u8 ar; /* the access register number */
3429 __u8 reserved[31]; /* should be set to 0 */
106ee47d 3430 };
41408c28
TH
3431
3432The type of operation is specified in the "op" field. It is either
3433KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
3434KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
3435KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
3436whether the corresponding memory access would create an access exception
3437(without touching the data in the memory at the destination). In case an
3438access exception occurred while walking the MMU tables of the guest, the
3439ioctl returns a positive error number to indicate the type of exception.
3440This exception is also raised directly at the corresponding VCPU if the
3441flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
3442
3443The start address of the memory region has to be specified in the "gaddr"
b4d863c3
CH
3444field, and the length of the region in the "size" field (which must not
3445be 0). The maximum value for "size" can be obtained by checking the
3446KVM_CAP_S390_MEM_OP capability. "buf" is the buffer supplied by the
3447userspace application where the read data should be written to for
3448KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written is
3449stored for a KVM_S390_MEMOP_LOGICAL_WRITE. When KVM_S390_MEMOP_F_CHECK_ONLY
3450is specified, "buf" is unused and can be NULL. "ar" designates the access
3451register number to be used; the valid range is 0..15.
41408c28
TH
3452
3453The "reserved" field is meant for future extensions. It is not used by
3454KVM with the currently defined set of flags.
3455
30ee2a98 34564.90 KVM_S390_GET_SKEYS
106ee47d 3457-----------------------
30ee2a98 3458
106ee47d
MCC
3459:Capability: KVM_CAP_S390_SKEYS
3460:Architectures: s390
3461:Type: vm ioctl
3462:Parameters: struct kvm_s390_skeys
3463:Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
3464 keys, negative value on error
30ee2a98
JH
3465
3466This ioctl is used to get guest storage key values on the s390
106ee47d 3467architecture. The ioctl takes parameters via the kvm_s390_skeys struct::
30ee2a98 3468
106ee47d 3469 struct kvm_s390_skeys {
30ee2a98
JH
3470 __u64 start_gfn;
3471 __u64 count;
3472 __u64 skeydata_addr;
3473 __u32 flags;
3474 __u32 reserved[9];
106ee47d 3475 };
30ee2a98
JH
3476
3477The start_gfn field is the number of the first guest frame whose storage keys
3478you want to get.
3479
3480The count field is the number of consecutive frames (starting from start_gfn)
3481whose storage keys to get. The count field must be at least 1 and the maximum
3482allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
3483will cause the ioctl to return -EINVAL.
3484
3485The skeydata_addr field is the address to a buffer large enough to hold count
3486bytes. This buffer will be filled with storage key data by the ioctl.
3487
34884.91 KVM_S390_SET_SKEYS
106ee47d 3489-----------------------
30ee2a98 3490
106ee47d
MCC
3491:Capability: KVM_CAP_S390_SKEYS
3492:Architectures: s390
3493:Type: vm ioctl
3494:Parameters: struct kvm_s390_skeys
3495:Returns: 0 on success, negative value on error
30ee2a98
JH
3496
3497This ioctl is used to set guest storage key values on the s390
3498architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
3499See section on KVM_S390_GET_SKEYS for struct definition.
3500
3501The start_gfn field is the number of the first guest frame whose storage keys
3502you want to set.
3503
3504The count field is the number of consecutive frames (starting from start_gfn)
3505whose storage keys to get. The count field must be at least 1 and the maximum
3506allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
3507will cause the ioctl to return -EINVAL.
3508
3509The skeydata_addr field is the address to a buffer containing count bytes of
3510storage keys. Each byte in the buffer will be set as the storage key for a
3511single frame starting at start_gfn for count frames.
3512
3513Note: If any architecturally invalid key value is found in the given data then
3514the ioctl will return -EINVAL.
3515
47b43c52 35164.92 KVM_S390_IRQ
106ee47d
MCC
3517-----------------
3518
3519:Capability: KVM_CAP_S390_INJECT_IRQ
3520:Architectures: s390
3521:Type: vcpu ioctl
3522:Parameters: struct kvm_s390_irq (in)
3523:Returns: 0 on success, -1 on error
47b43c52 3524
47b43c52 3525Errors:
106ee47d
MCC
3526
3527
3528 ====== =================================================================
3529 EINVAL interrupt type is invalid
3530 type is KVM_S390_SIGP_STOP and flag parameter is invalid value,
47b43c52 3531 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
106ee47d
MCC
3532 than the maximum of VCPUs
3533 EBUSY type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped,
3534 type is KVM_S390_SIGP_STOP and a stop irq is already pending,
47b43c52 3535 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
106ee47d
MCC
3536 is already pending
3537 ====== =================================================================
47b43c52
JF
3538
3539Allows to inject an interrupt to the guest.
3540
3541Using struct kvm_s390_irq as a parameter allows
3542to inject additional payload which is not
3543possible via KVM_S390_INTERRUPT.
3544
106ee47d 3545Interrupt parameters are passed via kvm_s390_irq::
47b43c52 3546
106ee47d 3547 struct kvm_s390_irq {
47b43c52
JF
3548 __u64 type;
3549 union {
3550 struct kvm_s390_io_info io;
3551 struct kvm_s390_ext_info ext;
3552 struct kvm_s390_pgm_info pgm;
3553 struct kvm_s390_emerg_info emerg;
3554 struct kvm_s390_extcall_info extcall;
3555 struct kvm_s390_prefix_info prefix;
3556 struct kvm_s390_stop_info stop;
3557 struct kvm_s390_mchk_info mchk;
3558 char reserved[64];
3559 } u;
106ee47d 3560 };
47b43c52
JF
3561
3562type can be one of the following:
3563
106ee47d
MCC
3564- KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
3565- KVM_S390_PROGRAM_INT - program check; parameters in .pgm
3566- KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
3567- KVM_S390_RESTART - restart; no parameters
3568- KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
3569- KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
3570- KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
3571- KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
3572- KVM_S390_MCHK - machine check interrupt; parameters in .mchk
47b43c52 3573
5e124900 3574This is an asynchronous vcpu ioctl and can be invoked from any thread.
47b43c52 3575
816c7667 35764.94 KVM_S390_GET_IRQ_STATE
106ee47d 3577---------------------------
816c7667 3578
106ee47d
MCC
3579:Capability: KVM_CAP_S390_IRQ_STATE
3580:Architectures: s390
3581:Type: vcpu ioctl
3582:Parameters: struct kvm_s390_irq_state (out)
3583:Returns: >= number of bytes copied into buffer,
3584 -EINVAL if buffer size is 0,
3585 -ENOBUFS if buffer size is too small to fit all pending interrupts,
3586 -EFAULT if the buffer address was invalid
816c7667
JF
3587
3588This ioctl allows userspace to retrieve the complete state of all currently
3589pending interrupts in a single buffer. Use cases include migration
3590and introspection. The parameter structure contains the address of a
106ee47d 3591userspace buffer and its length::
816c7667 3592
106ee47d 3593 struct kvm_s390_irq_state {
816c7667 3594 __u64 buf;
bb64da9a 3595 __u32 flags; /* will stay unused for compatibility reasons */
816c7667 3596 __u32 len;
bb64da9a 3597 __u32 reserved[4]; /* will stay unused for compatibility reasons */
106ee47d 3598 };
816c7667
JF
3599
3600Userspace passes in the above struct and for each pending interrupt a
3601struct kvm_s390_irq is copied to the provided buffer.
3602
bb64da9a
CB
3603The structure contains a flags and a reserved field for future extensions. As
3604the kernel never checked for flags == 0 and QEMU never pre-zeroed flags and
3605reserved, these fields can not be used in the future without breaking
3606compatibility.
3607
816c7667
JF
3608If -ENOBUFS is returned the buffer provided was too small and userspace
3609may retry with a bigger buffer.
3610
36114.95 KVM_S390_SET_IRQ_STATE
106ee47d
MCC
3612---------------------------
3613
3614:Capability: KVM_CAP_S390_IRQ_STATE
3615:Architectures: s390
3616:Type: vcpu ioctl
3617:Parameters: struct kvm_s390_irq_state (in)
3618:Returns: 0 on success,
3619 -EFAULT if the buffer address was invalid,
3620 -EINVAL for an invalid buffer length (see below),
3621 -EBUSY if there were already interrupts pending,
3622 errors occurring when actually injecting the
816c7667
JF
3623 interrupt. See KVM_S390_IRQ.
3624
3625This ioctl allows userspace to set the complete state of all cpu-local
3626interrupts currently pending for the vcpu. It is intended for restoring
3627interrupt state after a migration. The input parameter is a userspace buffer
106ee47d 3628containing a struct kvm_s390_irq_state::
816c7667 3629
106ee47d 3630 struct kvm_s390_irq_state {
816c7667 3631 __u64 buf;
bb64da9a 3632 __u32 flags; /* will stay unused for compatibility reasons */
816c7667 3633 __u32 len;
bb64da9a 3634 __u32 reserved[4]; /* will stay unused for compatibility reasons */
106ee47d 3635 };
816c7667 3636
bb64da9a
CB
3637The restrictions for flags and reserved apply as well.
3638(see KVM_S390_GET_IRQ_STATE)
3639
816c7667
JF
3640The userspace memory referenced by buf contains a struct kvm_s390_irq
3641for each interrupt to be injected into the guest.
3642If one of the interrupts could not be injected for some reason the
3643ioctl aborts.
3644
3645len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
3646and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
3647which is the maximum number of possibly pending cpu-local interrupts.
47b43c52 3648
ed8e5a24 36494.96 KVM_SMI
106ee47d 3650------------
f077825a 3651
106ee47d
MCC
3652:Capability: KVM_CAP_X86_SMM
3653:Architectures: x86
3654:Type: vcpu ioctl
3655:Parameters: none
3656:Returns: 0 on success, -1 on error
f077825a
PB
3657
3658Queues an SMI on the thread's vcpu.
3659
d3695aa4 36604.97 KVM_CAP_PPC_MULTITCE
106ee47d 3661-------------------------
d3695aa4 3662
106ee47d
MCC
3663:Capability: KVM_CAP_PPC_MULTITCE
3664:Architectures: ppc
3665:Type: vm
d3695aa4
AK
3666
3667This capability means the kernel is capable of handling hypercalls
3668H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user
3669space. This significantly accelerates DMA operations for PPC KVM guests.
3670User space should expect that its handlers for these hypercalls
3671are not going to be called if user space previously registered LIOBN
3672in KVM (via KVM_CREATE_SPAPR_TCE or similar calls).
3673
3674In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest,
3675user space might have to advertise it for the guest. For example,
3676IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is
3677present in the "ibm,hypertas-functions" device-tree property.
3678
3679The hypercalls mentioned above may or may not be processed successfully
3680in the kernel based fast path. If they can not be handled by the kernel,
3681they will get passed on to user space. So user space still has to have
3682an implementation for these despite the in kernel acceleration.
3683
3684This capability is always enabled.
3685
58ded420 36864.98 KVM_CREATE_SPAPR_TCE_64
106ee47d 3687----------------------------
58ded420 3688
106ee47d
MCC
3689:Capability: KVM_CAP_SPAPR_TCE_64
3690:Architectures: powerpc
3691:Type: vm ioctl
3692:Parameters: struct kvm_create_spapr_tce_64 (in)
3693:Returns: file descriptor for manipulating the created TCE table
58ded420
AK
3694
3695This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit
3696windows, described in 4.62 KVM_CREATE_SPAPR_TCE
3697
106ee47d 3698This capability uses extended struct in ioctl interface::
58ded420 3699
106ee47d
MCC
3700 /* for KVM_CAP_SPAPR_TCE_64 */
3701 struct kvm_create_spapr_tce_64 {
58ded420
AK
3702 __u64 liobn;
3703 __u32 page_shift;
3704 __u32 flags;
3705 __u64 offset; /* in pages */
3706 __u64 size; /* in pages */
106ee47d 3707 };
58ded420
AK
3708
3709The aim of extension is to support an additional bigger DMA window with
3710a variable page size.
3711KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and
3712a bus offset of the corresponding DMA window, @size and @offset are numbers
3713of IOMMU pages.
3714
3715@flags are not used at the moment.
3716
3717The rest of functionality is identical to KVM_CREATE_SPAPR_TCE.
3718
ccc4df4e 37194.99 KVM_REINJECT_CONTROL
106ee47d 3720-------------------------
107d44a2 3721
106ee47d
MCC
3722:Capability: KVM_CAP_REINJECT_CONTROL
3723:Architectures: x86
3724:Type: vm ioctl
3725:Parameters: struct kvm_reinject_control (in)
3726:Returns: 0 on success,
107d44a2
RK
3727 -EFAULT if struct kvm_reinject_control cannot be read,
3728 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier.
3729
3730i8254 (PIT) has two modes, reinject and !reinject. The default is reinject,
3731where KVM queues elapsed i8254 ticks and monitors completion of interrupt from
3732vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its
3733interrupt whenever there isn't a pending interrupt from i8254.
3734!reinject mode injects an interrupt as soon as a tick arrives.
3735
106ee47d
MCC
3736::
3737
3738 struct kvm_reinject_control {
107d44a2
RK
3739 __u8 pit_reinject;
3740 __u8 reserved[31];
106ee47d 3741 };
107d44a2
RK
3742
3743pit_reinject = 0 (!reinject mode) is recommended, unless running an old
3744operating system that uses the PIT for timing (e.g. Linux 2.4.x).
3745
ccc4df4e 37464.100 KVM_PPC_CONFIGURE_V3_MMU
106ee47d 3747------------------------------
c9270132 3748
106ee47d
MCC
3749:Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3
3750:Architectures: ppc
3751:Type: vm ioctl
3752:Parameters: struct kvm_ppc_mmuv3_cfg (in)
3753:Returns: 0 on success,
c9270132
PM
3754 -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read,
3755 -EINVAL if the configuration is invalid
3756
3757This ioctl controls whether the guest will use radix or HPT (hashed
3758page table) translation, and sets the pointer to the process table for
3759the guest.
3760
106ee47d
MCC
3761::
3762
3763 struct kvm_ppc_mmuv3_cfg {
c9270132
PM
3764 __u64 flags;
3765 __u64 process_table;
106ee47d 3766 };
c9270132
PM
3767
3768There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and
3769KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest
3770to use radix tree translation, and if clear, to use HPT translation.
3771KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest
3772to be able to use the global TLB and SLB invalidation instructions;
3773if clear, the guest may not use these instructions.
3774
3775The process_table field specifies the address and size of the guest
3776process table, which is in the guest's space. This field is formatted
3777as the second doubleword of the partition table entry, as defined in
3778the Power ISA V3.00, Book III section 5.7.6.1.
3779
ccc4df4e 37804.101 KVM_PPC_GET_RMMU_INFO
106ee47d 3781---------------------------
c9270132 3782
106ee47d
MCC
3783:Capability: KVM_CAP_PPC_RADIX_MMU
3784:Architectures: ppc
3785:Type: vm ioctl
3786:Parameters: struct kvm_ppc_rmmu_info (out)
3787:Returns: 0 on success,
c9270132
PM
3788 -EFAULT if struct kvm_ppc_rmmu_info cannot be written,
3789 -EINVAL if no useful information can be returned
3790
3791This ioctl returns a structure containing two things: (a) a list
3792containing supported radix tree geometries, and (b) a list that maps
3793page sizes to put in the "AP" (actual page size) field for the tlbie
3794(TLB invalidate entry) instruction.
3795
106ee47d
MCC
3796::
3797
3798 struct kvm_ppc_rmmu_info {
c9270132
PM
3799 struct kvm_ppc_radix_geom {
3800 __u8 page_shift;
3801 __u8 level_bits[4];
3802 __u8 pad[3];
3803 } geometries[8];
3804 __u32 ap_encodings[8];
106ee47d 3805 };
c9270132
PM
3806
3807The geometries[] field gives up to 8 supported geometries for the
3808radix page table, in terms of the log base 2 of the smallest page
3809size, and the number of bits indexed at each level of the tree, from
3810the PTE level up to the PGD level in that order. Any unused entries
3811will have 0 in the page_shift field.
3812
3813The ap_encodings gives the supported page sizes and their AP field
3814encodings, encoded with the AP value in the top 3 bits and the log
3815base 2 of the page size in the bottom 6 bits.
3816
ef1ead0c 38174.102 KVM_PPC_RESIZE_HPT_PREPARE
106ee47d 3818--------------------------------
ef1ead0c 3819
106ee47d
MCC
3820:Capability: KVM_CAP_SPAPR_RESIZE_HPT
3821:Architectures: powerpc
3822:Type: vm ioctl
3823:Parameters: struct kvm_ppc_resize_hpt (in)
3824:Returns: 0 on successful completion,
ef1ead0c 3825 >0 if a new HPT is being prepared, the value is an estimated
106ee47d 3826 number of milliseconds until preparation is complete,
ef1ead0c 3827 -EFAULT if struct kvm_reinject_control cannot be read,
106ee47d
MCC
3828 -EINVAL if the supplied shift or flags are invalid,
3829 -ENOMEM if unable to allocate the new HPT,
3830 -ENOSPC if there was a hash collision
3831
3832::
3833
3834 struct kvm_ppc_rmmu_info {
3835 struct kvm_ppc_radix_geom {
3836 __u8 page_shift;
3837 __u8 level_bits[4];
3838 __u8 pad[3];
3839 } geometries[8];
3840 __u32 ap_encodings[8];
3841 };
3842
3843The geometries[] field gives up to 8 supported geometries for the
3844radix page table, in terms of the log base 2 of the smallest page
3845size, and the number of bits indexed at each level of the tree, from
3846the PTE level up to the PGD level in that order. Any unused entries
3847will have 0 in the page_shift field.
3848
3849The ap_encodings gives the supported page sizes and their AP field
3850encodings, encoded with the AP value in the top 3 bits and the log
3851base 2 of the page size in the bottom 6 bits.
3852
38534.102 KVM_PPC_RESIZE_HPT_PREPARE
3854--------------------------------
3855
3856:Capability: KVM_CAP_SPAPR_RESIZE_HPT
3857:Architectures: powerpc
3858:Type: vm ioctl
3859:Parameters: struct kvm_ppc_resize_hpt (in)
3860:Returns: 0 on successful completion,
3861 >0 if a new HPT is being prepared, the value is an estimated
3862 number of milliseconds until preparation is complete,
3863 -EFAULT if struct kvm_reinject_control cannot be read,
3864 -EINVAL if the supplied shift or flags are invalid,when moving existing
3865 HPT entries to the new HPT,
ef1ead0c
DG
3866 -EIO on other error conditions
3867
3868Used to implement the PAPR extension for runtime resizing of a guest's
3869Hashed Page Table (HPT). Specifically this starts, stops or monitors
3870the preparation of a new potential HPT for the guest, essentially
3871implementing the H_RESIZE_HPT_PREPARE hypercall.
3872
3873If called with shift > 0 when there is no pending HPT for the guest,
3874this begins preparation of a new pending HPT of size 2^(shift) bytes.
3875It then returns a positive integer with the estimated number of
3876milliseconds until preparation is complete.
3877
3878If called when there is a pending HPT whose size does not match that
3879requested in the parameters, discards the existing pending HPT and
3880creates a new one as above.
3881
3882If called when there is a pending HPT of the size requested, will:
106ee47d 3883
ef1ead0c
DG
3884 * If preparation of the pending HPT is already complete, return 0
3885 * If preparation of the pending HPT has failed, return an error
3886 code, then discard the pending HPT.
3887 * If preparation of the pending HPT is still in progress, return an
3888 estimated number of milliseconds until preparation is complete.
3889
3890If called with shift == 0, discards any currently pending HPT and
3891returns 0 (i.e. cancels any in-progress preparation).
3892
3893flags is reserved for future expansion, currently setting any bits in
3894flags will result in an -EINVAL.
3895
3896Normally this will be called repeatedly with the same parameters until
3897it returns <= 0. The first call will initiate preparation, subsequent
3898ones will monitor preparation until it completes or fails.
3899
106ee47d
MCC
3900::
3901
3902 struct kvm_ppc_resize_hpt {
ef1ead0c
DG
3903 __u64 flags;
3904 __u32 shift;
3905 __u32 pad;
106ee47d 3906 };
ef1ead0c
DG
3907
39084.103 KVM_PPC_RESIZE_HPT_COMMIT
106ee47d 3909-------------------------------
ef1ead0c 3910
106ee47d
MCC
3911:Capability: KVM_CAP_SPAPR_RESIZE_HPT
3912:Architectures: powerpc
3913:Type: vm ioctl
3914:Parameters: struct kvm_ppc_resize_hpt (in)
3915:Returns: 0 on successful completion,
ef1ead0c 3916 -EFAULT if struct kvm_reinject_control cannot be read,
106ee47d 3917 -EINVAL if the supplied shift or flags are invalid,
ef1ead0c 3918 -ENXIO is there is no pending HPT, or the pending HPT doesn't
106ee47d
MCC
3919 have the requested size,
3920 -EBUSY if the pending HPT is not fully prepared,
ef1ead0c 3921 -ENOSPC if there was a hash collision when moving existing
106ee47d 3922 HPT entries to the new HPT,
ef1ead0c
DG
3923 -EIO on other error conditions
3924
3925Used to implement the PAPR extension for runtime resizing of a guest's
3926Hashed Page Table (HPT). Specifically this requests that the guest be
3927transferred to working with the new HPT, essentially implementing the
3928H_RESIZE_HPT_COMMIT hypercall.
3929
3930This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has
3931returned 0 with the same parameters. In other cases
3932KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or
3933-EBUSY, though others may be possible if the preparation was started,
3934but failed).
3935
3936This will have undefined effects on the guest if it has not already
3937placed itself in a quiescent state where no vcpu will make MMU enabled
3938memory accesses.
3939
3940On succsful completion, the pending HPT will become the guest's active
3941HPT and the previous HPT will be discarded.
3942
3943On failure, the guest will still be operating on its previous HPT.
3944
106ee47d
MCC
3945::
3946
3947 struct kvm_ppc_resize_hpt {
ef1ead0c
DG
3948 __u64 flags;
3949 __u32 shift;
3950 __u32 pad;
106ee47d 3951 };
ef1ead0c 3952
3aa53859 39534.104 KVM_X86_GET_MCE_CAP_SUPPORTED
106ee47d 3954-----------------------------------
3aa53859 3955
106ee47d
MCC
3956:Capability: KVM_CAP_MCE
3957:Architectures: x86
3958:Type: system ioctl
3959:Parameters: u64 mce_cap (out)
3960:Returns: 0 on success, -1 on error
3aa53859
LC
3961
3962Returns supported MCE capabilities. The u64 mce_cap parameter
3963has the same format as the MSR_IA32_MCG_CAP register. Supported
3964capabilities will have the corresponding bits set.
3965
39664.105 KVM_X86_SETUP_MCE
106ee47d 3967-----------------------
3aa53859 3968
106ee47d
MCC
3969:Capability: KVM_CAP_MCE
3970:Architectures: x86
3971:Type: vcpu ioctl
3972:Parameters: u64 mcg_cap (in)
3973:Returns: 0 on success,
3aa53859
LC
3974 -EFAULT if u64 mcg_cap cannot be read,
3975 -EINVAL if the requested number of banks is invalid,
3976 -EINVAL if requested MCE capability is not supported.
3977
3978Initializes MCE support for use. The u64 mcg_cap parameter
3979has the same format as the MSR_IA32_MCG_CAP register and
3980specifies which capabilities should be enabled. The maximum
3981supported number of error-reporting banks can be retrieved when
3982checking for KVM_CAP_MCE. The supported capabilities can be
3983retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED.
3984
39854.106 KVM_X86_SET_MCE
106ee47d 3986---------------------
3aa53859 3987
106ee47d
MCC
3988:Capability: KVM_CAP_MCE
3989:Architectures: x86
3990:Type: vcpu ioctl
3991:Parameters: struct kvm_x86_mce (in)
3992:Returns: 0 on success,
3aa53859
LC
3993 -EFAULT if struct kvm_x86_mce cannot be read,
3994 -EINVAL if the bank number is invalid,
3995 -EINVAL if VAL bit is not set in status field.
3996
3997Inject a machine check error (MCE) into the guest. The input
106ee47d 3998parameter is::
3aa53859 3999
106ee47d 4000 struct kvm_x86_mce {
3aa53859
LC
4001 __u64 status;
4002 __u64 addr;
4003 __u64 misc;
4004 __u64 mcg_status;
4005 __u8 bank;
4006 __u8 pad1[7];
4007 __u64 pad2[3];
106ee47d 4008 };
3aa53859
LC
4009
4010If the MCE being reported is an uncorrected error, KVM will
4011inject it as an MCE exception into the guest. If the guest
4012MCG_STATUS register reports that an MCE is in progress, KVM
4013causes an KVM_EXIT_SHUTDOWN vmexit.
4014
4015Otherwise, if the MCE is a corrected error, KVM will just
4016store it in the corresponding bank (provided this bank is
4017not holding a previously reported uncorrected error).
4018
4036e387 40194.107 KVM_S390_GET_CMMA_BITS
106ee47d 4020----------------------------
4036e387 4021
106ee47d
MCC
4022:Capability: KVM_CAP_S390_CMMA_MIGRATION
4023:Architectures: s390
4024:Type: vm ioctl
4025:Parameters: struct kvm_s390_cmma_log (in, out)
4026:Returns: 0 on success, a negative value on error
4036e387
CI
4027
4028This ioctl is used to get the values of the CMMA bits on the s390
4029architecture. It is meant to be used in two scenarios:
106ee47d 4030
4036e387
CI
4031- During live migration to save the CMMA values. Live migration needs
4032 to be enabled via the KVM_REQ_START_MIGRATION VM property.
4033- To non-destructively peek at the CMMA values, with the flag
4034 KVM_S390_CMMA_PEEK set.
4035
4036The ioctl takes parameters via the kvm_s390_cmma_log struct. The desired
4037values are written to a buffer whose location is indicated via the "values"
4038member in the kvm_s390_cmma_log struct. The values in the input struct are
4039also updated as needed.
106ee47d 4040
4036e387
CI
4041Each CMMA value takes up one byte.
4042
106ee47d
MCC
4043::
4044
4045 struct kvm_s390_cmma_log {
4036e387
CI
4046 __u64 start_gfn;
4047 __u32 count;
4048 __u32 flags;
4049 union {
4050 __u64 remaining;
4051 __u64 mask;
4052 };
4053 __u64 values;
106ee47d 4054 };
4036e387
CI
4055
4056start_gfn is the number of the first guest frame whose CMMA values are
4057to be retrieved,
4058
4059count is the length of the buffer in bytes,
4060
4061values points to the buffer where the result will be written to.
4062
4063If count is greater than KVM_S390_SKEYS_MAX, then it is considered to be
4064KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re-used for consistency with
4065other ioctls.
4066
4067The result is written in the buffer pointed to by the field values, and
4068the values of the input parameter are updated as follows.
4069
4070Depending on the flags, different actions are performed. The only
4071supported flag so far is KVM_S390_CMMA_PEEK.
4072
4073The default behaviour if KVM_S390_CMMA_PEEK is not set is:
4074start_gfn will indicate the first page frame whose CMMA bits were dirty.
4075It is not necessarily the same as the one passed as input, as clean pages
4076are skipped.
4077
4078count will indicate the number of bytes actually written in the buffer.
4079It can (and very often will) be smaller than the input value, since the
4080buffer is only filled until 16 bytes of clean values are found (which
4081are then not copied in the buffer). Since a CMMA migration block needs
4082the base address and the length, for a total of 16 bytes, we will send
4083back some clean data if there is some dirty data afterwards, as long as
4084the size of the clean data does not exceed the size of the header. This
4085allows to minimize the amount of data to be saved or transferred over
4086the network at the expense of more roundtrips to userspace. The next
4087invocation of the ioctl will skip over all the clean values, saving
4088potentially more than just the 16 bytes we found.
4089
4090If KVM_S390_CMMA_PEEK is set:
4091the existing storage attributes are read even when not in migration
4092mode, and no other action is performed;
4093
4094the output start_gfn will be equal to the input start_gfn,
4095
4096the output count will be equal to the input count, except if the end of
4097memory has been reached.
4098
4099In both cases:
4100the field "remaining" will indicate the total number of dirty CMMA values
4101still remaining, or 0 if KVM_S390_CMMA_PEEK is set and migration mode is
4102not enabled.
4103
4104mask is unused.
4105
4106values points to the userspace buffer where the result will be stored.
4107
4108This ioctl can fail with -ENOMEM if not enough memory can be allocated to
4109complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if
4110KVM_S390_CMMA_PEEK is not set but migration mode was not enabled, with
4111-EFAULT if the userspace address is invalid or if no page table is
4112present for the addresses (e.g. when using hugepages).
4113
41144.108 KVM_S390_SET_CMMA_BITS
106ee47d 4115----------------------------
4036e387 4116
106ee47d
MCC
4117:Capability: KVM_CAP_S390_CMMA_MIGRATION
4118:Architectures: s390
4119:Type: vm ioctl
4120:Parameters: struct kvm_s390_cmma_log (in)
4121:Returns: 0 on success, a negative value on error
4036e387
CI
4122
4123This ioctl is used to set the values of the CMMA bits on the s390
4124architecture. It is meant to be used during live migration to restore
4125the CMMA values, but there are no restrictions on its use.
4126The ioctl takes parameters via the kvm_s390_cmma_values struct.
4127Each CMMA value takes up one byte.
4128
106ee47d
MCC
4129::
4130
4131 struct kvm_s390_cmma_log {
4036e387
CI
4132 __u64 start_gfn;
4133 __u32 count;
4134 __u32 flags;
4135 union {
4136 __u64 remaining;
4137 __u64 mask;
106ee47d 4138 };
4036e387 4139 __u64 values;
106ee47d 4140 };
4036e387
CI
4141
4142start_gfn indicates the starting guest frame number,
4143
4144count indicates how many values are to be considered in the buffer,
4145
4146flags is not used and must be 0.
4147
4148mask indicates which PGSTE bits are to be considered.
4149
4150remaining is not used.
4151
4152values points to the buffer in userspace where to store the values.
4153
4154This ioctl can fail with -ENOMEM if not enough memory can be allocated to
4155complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if
4156the count field is too large (e.g. more than KVM_S390_CMMA_SIZE_MAX) or
4157if the flags field was not 0, with -EFAULT if the userspace address is
4158invalid, if invalid pages are written to (e.g. after the end of memory)
4159or if no page table is present for the addresses (e.g. when using
4160hugepages).
4161
7bf14c28 41624.109 KVM_PPC_GET_CPU_CHAR
106ee47d 4163--------------------------
3214d01f 4164
106ee47d
MCC
4165:Capability: KVM_CAP_PPC_GET_CPU_CHAR
4166:Architectures: powerpc
4167:Type: vm ioctl
4168:Parameters: struct kvm_ppc_cpu_char (out)
4169:Returns: 0 on successful completion,
3214d01f
PM
4170 -EFAULT if struct kvm_ppc_cpu_char cannot be written
4171
4172This ioctl gives userspace information about certain characteristics
4173of the CPU relating to speculative execution of instructions and
4174possible information leakage resulting from speculative execution (see
4175CVE-2017-5715, CVE-2017-5753 and CVE-2017-5754). The information is
106ee47d 4176returned in struct kvm_ppc_cpu_char, which looks like this::
3214d01f 4177
106ee47d 4178 struct kvm_ppc_cpu_char {
3214d01f
PM
4179 __u64 character; /* characteristics of the CPU */
4180 __u64 behaviour; /* recommended software behaviour */
4181 __u64 character_mask; /* valid bits in character */
4182 __u64 behaviour_mask; /* valid bits in behaviour */
106ee47d 4183 };
3214d01f
PM
4184
4185For extensibility, the character_mask and behaviour_mask fields
4186indicate which bits of character and behaviour have been filled in by
4187the kernel. If the set of defined bits is extended in future then
4188userspace will be able to tell whether it is running on a kernel that
4189knows about the new bits.
4190
4191The character field describes attributes of the CPU which can help
4192with preventing inadvertent information disclosure - specifically,
4193whether there is an instruction to flash-invalidate the L1 data cache
4194(ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether the L1 data cache is set
4195to a mode where entries can only be used by the thread that created
4196them, whether the bcctr[l] instruction prevents speculation, and
4197whether a speculation barrier instruction (ori 31,31,0) is provided.
4198
4199The behaviour field describes actions that software should take to
4200prevent inadvertent information disclosure, and thus describes which
4201vulnerabilities the hardware is subject to; specifically whether the
4202L1 data cache should be flushed when returning to user mode from the
4203kernel, and whether a speculation barrier should be placed between an
4204array bounds check and the array access.
4205
4206These fields use the same bit definitions as the new
4207H_GET_CPU_CHARACTERISTICS hypercall.
4208
7bf14c28 42094.110 KVM_MEMORY_ENCRYPT_OP
106ee47d 4210---------------------------
5acc5c06 4211
106ee47d
MCC
4212:Capability: basic
4213:Architectures: x86
4214:Type: system
4215:Parameters: an opaque platform specific structure (in/out)
4216:Returns: 0 on success; -1 on error
5acc5c06
BS
4217
4218If the platform supports creating encrypted VMs then this ioctl can be used
4219for issuing platform-specific memory encryption commands to manage those
4220encrypted VMs.
4221
4222Currently, this ioctl is used for issuing Secure Encrypted Virtualization
4223(SEV) commands on AMD Processors. The SEV commands are defined in
2f5947df 4224Documentation/virt/kvm/amd-memory-encryption.rst.
5acc5c06 4225
7bf14c28 42264.111 KVM_MEMORY_ENCRYPT_REG_REGION
106ee47d 4227-----------------------------------
69eaedee 4228
106ee47d
MCC
4229:Capability: basic
4230:Architectures: x86
4231:Type: system
4232:Parameters: struct kvm_enc_region (in)
4233:Returns: 0 on success; -1 on error
69eaedee
BS
4234
4235This ioctl can be used to register a guest memory region which may
4236contain encrypted data (e.g. guest RAM, SMRAM etc).
4237
4238It is used in the SEV-enabled guest. When encryption is enabled, a guest
4239memory region may contain encrypted data. The SEV memory encryption
4240engine uses a tweak such that two identical plaintext pages, each at
4241different locations will have differing ciphertexts. So swapping or
4242moving ciphertext of those pages will not result in plaintext being
4243swapped. So relocating (or migrating) physical backing pages for the SEV
4244guest will require some additional steps.
4245
4246Note: The current SEV key management spec does not provide commands to
4247swap or migrate (move) ciphertext pages. Hence, for now we pin the guest
4248memory region registered with the ioctl.
4249
7bf14c28 42504.112 KVM_MEMORY_ENCRYPT_UNREG_REGION
106ee47d 4251-------------------------------------
69eaedee 4252
106ee47d
MCC
4253:Capability: basic
4254:Architectures: x86
4255:Type: system
4256:Parameters: struct kvm_enc_region (in)
4257:Returns: 0 on success; -1 on error
69eaedee
BS
4258
4259This ioctl can be used to unregister the guest memory region registered
4260with KVM_MEMORY_ENCRYPT_REG_REGION ioctl above.
4261
faeb7833 42624.113 KVM_HYPERV_EVENTFD
106ee47d 4263------------------------
faeb7833 4264
106ee47d
MCC
4265:Capability: KVM_CAP_HYPERV_EVENTFD
4266:Architectures: x86
4267:Type: vm ioctl
4268:Parameters: struct kvm_hyperv_eventfd (in)
faeb7833
RK
4269
4270This ioctl (un)registers an eventfd to receive notifications from the guest on
4271the specified Hyper-V connection id through the SIGNAL_EVENT hypercall, without
4272causing a user exit. SIGNAL_EVENT hypercall with non-zero event flag number
4273(bits 24-31) still triggers a KVM_EXIT_HYPERV_HCALL user exit.
4274
106ee47d
MCC
4275::
4276
4277 struct kvm_hyperv_eventfd {
faeb7833
RK
4278 __u32 conn_id;
4279 __s32 fd;
4280 __u32 flags;
4281 __u32 padding[3];
106ee47d 4282 };
faeb7833 4283
106ee47d 4284The conn_id field should fit within 24 bits::
faeb7833 4285
106ee47d 4286 #define KVM_HYPERV_CONN_ID_MASK 0x00ffffff
faeb7833 4287
106ee47d 4288The acceptable values for the flags field are::
faeb7833 4289
106ee47d 4290 #define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 0)
faeb7833 4291
106ee47d
MCC
4292:Returns: 0 on success,
4293 -EINVAL if conn_id or flags is outside the allowed range,
4294 -ENOENT on deassign if the conn_id isn't registered,
4295 -EEXIST on assign if the conn_id is already registered
faeb7833 4296
8fcc4b59 42974.114 KVM_GET_NESTED_STATE
106ee47d
MCC
4298--------------------------
4299
4300:Capability: KVM_CAP_NESTED_STATE
4301:Architectures: x86
4302:Type: vcpu ioctl
4303:Parameters: struct kvm_nested_state (in/out)
4304:Returns: 0 on success, -1 on error
8fcc4b59 4305
8fcc4b59 4306Errors:
106ee47d
MCC
4307
4308 ===== =============================================================
4309 E2BIG the total state size exceeds the value of 'size' specified by
8fcc4b59 4310 the user; the size required will be written into size.
106ee47d 4311 ===== =============================================================
8fcc4b59 4312
106ee47d
MCC
4313::
4314
4315 struct kvm_nested_state {
8fcc4b59
JM
4316 __u16 flags;
4317 __u16 format;
4318 __u32 size;
6ca00dfa 4319
8fcc4b59 4320 union {
6ca00dfa
LA
4321 struct kvm_vmx_nested_state_hdr vmx;
4322 struct kvm_svm_nested_state_hdr svm;
4323
4324 /* Pad the header to 128 bytes. */
8fcc4b59 4325 __u8 pad[120];
6ca00dfa
LA
4326 } hdr;
4327
4328 union {
4329 struct kvm_vmx_nested_state_data vmx[0];
4330 struct kvm_svm_nested_state_data svm[0];
4331 } data;
106ee47d 4332 };
8fcc4b59 4333
106ee47d
MCC
4334 #define KVM_STATE_NESTED_GUEST_MODE 0x00000001
4335 #define KVM_STATE_NESTED_RUN_PENDING 0x00000002
4336 #define KVM_STATE_NESTED_EVMCS 0x00000004
8fcc4b59 4337
106ee47d
MCC
4338 #define KVM_STATE_NESTED_FORMAT_VMX 0
4339 #define KVM_STATE_NESTED_FORMAT_SVM 1
8fcc4b59 4340
106ee47d 4341 #define KVM_STATE_NESTED_VMX_VMCS_SIZE 0x1000
6ca00dfa 4342
106ee47d
MCC
4343 #define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 0x00000001
4344 #define KVM_STATE_NESTED_VMX_SMM_VMXON 0x00000002
6ca00dfa 4345
850448f3
PS
4346#define KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE 0x00000001
4347
106ee47d 4348 struct kvm_vmx_nested_state_hdr {
8fcc4b59 4349 __u64 vmxon_pa;
6ca00dfa 4350 __u64 vmcs12_pa;
8fcc4b59
JM
4351
4352 struct {
4353 __u16 flags;
4354 } smm;
83d31e52
PB
4355
4356 __u32 flags;
4357 __u64 preemption_timer_deadline;
106ee47d 4358 };
8fcc4b59 4359
106ee47d 4360 struct kvm_vmx_nested_state_data {
6ca00dfa
LA
4361 __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE];
4362 __u8 shadow_vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE];
106ee47d 4363 };
6ca00dfa 4364
8fcc4b59
JM
4365This ioctl copies the vcpu's nested virtualization state from the kernel to
4366userspace.
4367
6ca00dfa
LA
4368The maximum size of the state can be retrieved by passing KVM_CAP_NESTED_STATE
4369to the KVM_CHECK_EXTENSION ioctl().
8fcc4b59
JM
4370
43714.115 KVM_SET_NESTED_STATE
106ee47d 4372--------------------------
8fcc4b59 4373
106ee47d
MCC
4374:Capability: KVM_CAP_NESTED_STATE
4375:Architectures: x86
4376:Type: vcpu ioctl
4377:Parameters: struct kvm_nested_state (in)
4378:Returns: 0 on success, -1 on error
8fcc4b59 4379
6ca00dfa
LA
4380This copies the vcpu's kvm_nested_state struct from userspace to the kernel.
4381For the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE.
7bf14c28 4382
9943450b 43834.116 KVM_(UN)REGISTER_COALESCED_MMIO
106ee47d 4384-------------------------------------
9943450b 4385
106ee47d
MCC
4386:Capability: KVM_CAP_COALESCED_MMIO (for coalesced mmio)
4387 KVM_CAP_COALESCED_PIO (for coalesced pio)
4388:Architectures: all
4389:Type: vm ioctl
4390:Parameters: struct kvm_coalesced_mmio_zone
4391:Returns: 0 on success, < 0 on error
9943450b 4392
0804c849 4393Coalesced I/O is a performance optimization that defers hardware
9943450b
PH
4394register write emulation so that userspace exits are avoided. It is
4395typically used to reduce the overhead of emulating frequently accessed
4396hardware registers.
4397
0804c849 4398When a hardware register is configured for coalesced I/O, write accesses
9943450b
PH
4399do not exit to userspace and their value is recorded in a ring buffer
4400that is shared between kernel and userspace.
4401
0804c849 4402Coalesced I/O is used if one or more write accesses to a hardware
9943450b
PH
4403register can be deferred until a read or a write to another hardware
4404register on the same device. This last access will cause a vmexit and
4405userspace will process accesses from the ring buffer before emulating
0804c849
PH
4406it. That will avoid exiting to userspace on repeated writes.
4407
4408Coalesced pio is based on coalesced mmio. There is little difference
4409between coalesced mmio and pio except that coalesced pio records accesses
4410to I/O ports.
9943450b 4411
2a31b9db 44124.117 KVM_CLEAR_DIRTY_LOG (vm ioctl)
106ee47d
MCC
4413------------------------------------
4414
4415:Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
4416:Architectures: x86, arm, arm64, mips
4417:Type: vm ioctl
4418:Parameters: struct kvm_dirty_log (in)
4419:Returns: 0 on success, -1 on error
2a31b9db 4420
106ee47d 4421::
2a31b9db 4422
106ee47d
MCC
4423 /* for KVM_CLEAR_DIRTY_LOG */
4424 struct kvm_clear_dirty_log {
2a31b9db
PB
4425 __u32 slot;
4426 __u32 num_pages;
4427 __u64 first_page;
4428 union {
4429 void __user *dirty_bitmap; /* one bit per page */
4430 __u64 padding;
4431 };
106ee47d 4432 };
2a31b9db
PB
4433
4434The ioctl clears the dirty status of pages in a memory slot, according to
4435the bitmap that is passed in struct kvm_clear_dirty_log's dirty_bitmap
4436field. Bit 0 of the bitmap corresponds to page "first_page" in the
4437memory slot, and num_pages is the size in bits of the input bitmap.
76d58e0f
PB
4438first_page must be a multiple of 64; num_pages must also be a multiple of
443964 unless first_page + num_pages is the size of the memory slot. For each
4440bit that is set in the input bitmap, the corresponding page is marked "clean"
2a31b9db
PB
4441in KVM's dirty bitmap, and dirty tracking is re-enabled for that page
4442(for example via write-protection, or by clearing the dirty bit in
4443a page table entry).
4444
4445If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
4446the address space for which you want to return the dirty bitmap.
4447They must be less than the value that KVM_CHECK_EXTENSION returns for
4448the KVM_CAP_MULTI_ADDRESS_SPACE capability.
4449
d7547c55 4450This ioctl is mostly useful when KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
2a31b9db
PB
4451is enabled; for more information, see the description of the capability.
4452However, it can always be used as long as KVM_CHECK_EXTENSION confirms
d7547c55 4453that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is present.
2a31b9db 4454
2bc39970 44554.118 KVM_GET_SUPPORTED_HV_CPUID
106ee47d 4456--------------------------------
2bc39970 4457
106ee47d
MCC
4458:Capability: KVM_CAP_HYPERV_CPUID
4459:Architectures: x86
4460:Type: vcpu ioctl
4461:Parameters: struct kvm_cpuid2 (in/out)
4462:Returns: 0 on success, -1 on error
4463
4464::
2bc39970 4465
106ee47d 4466 struct kvm_cpuid2 {
2bc39970
VK
4467 __u32 nent;
4468 __u32 padding;
4469 struct kvm_cpuid_entry2 entries[0];
106ee47d 4470 };
2bc39970 4471
106ee47d 4472 struct kvm_cpuid_entry2 {
2bc39970
VK
4473 __u32 function;
4474 __u32 index;
4475 __u32 flags;
4476 __u32 eax;
4477 __u32 ebx;
4478 __u32 ecx;
4479 __u32 edx;
4480 __u32 padding[3];
106ee47d 4481 };
2bc39970
VK
4482
4483This ioctl returns x86 cpuid features leaves related to Hyper-V emulation in
4484KVM. Userspace can use the information returned by this ioctl to construct
4485cpuid information presented to guests consuming Hyper-V enlightenments (e.g.
4486Windows or Hyper-V guests).
4487
4488CPUID feature leaves returned by this ioctl are defined by Hyper-V Top Level
4489Functional Specification (TLFS). These leaves can't be obtained with
4490KVM_GET_SUPPORTED_CPUID ioctl because some of them intersect with KVM feature
4491leaves (0x40000000, 0x40000001).
4492
4493Currently, the following list of CPUID leaves are returned:
106ee47d
MCC
4494 - HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
4495 - HYPERV_CPUID_INTERFACE
4496 - HYPERV_CPUID_VERSION
4497 - HYPERV_CPUID_FEATURES
4498 - HYPERV_CPUID_ENLIGHTMENT_INFO
4499 - HYPERV_CPUID_IMPLEMENT_LIMITS
4500 - HYPERV_CPUID_NESTED_FEATURES
b44f50d8
VK
4501 - HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS
4502 - HYPERV_CPUID_SYNDBG_INTERFACE
4503 - HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES
2bc39970
VK
4504
4505HYPERV_CPUID_NESTED_FEATURES leaf is only exposed when Enlightened VMCS was
4506enabled on the corresponding vCPU (KVM_CAP_HYPERV_ENLIGHTENED_VMCS).
4507
b44f50d8 4508Userspace invokes KVM_GET_SUPPORTED_HV_CPUID by passing a kvm_cpuid2 structure
2bc39970
VK
4509with the 'nent' field indicating the number of entries in the variable-size
4510array 'entries'. If the number of entries is too low to describe all Hyper-V
4511feature leaves, an error (E2BIG) is returned. If the number is more or equal
4512to the number of Hyper-V feature leaves, the 'nent' field is adjusted to the
4513number of valid entries in the 'entries' array, which is then filled.
4514
4515'index' and 'flags' fields in 'struct kvm_cpuid_entry2' are currently reserved,
4516userspace should not expect to get any particular value there.
2a31b9db 4517
50036ad0 45184.119 KVM_ARM_VCPU_FINALIZE
106ee47d
MCC
4519---------------------------
4520
4521:Architectures: arm, arm64
4522:Type: vcpu ioctl
4523:Parameters: int feature (in)
4524:Returns: 0 on success, -1 on error
50036ad0 4525
50036ad0 4526Errors:
106ee47d
MCC
4527
4528 ====== ==============================================================
4529 EPERM feature not enabled, needs configuration, or already finalized
4530 EINVAL feature unknown or not present
4531 ====== ==============================================================
50036ad0
DM
4532
4533Recognised values for feature:
106ee47d
MCC
4534
4535 ===== ===========================================
9df2d660 4536 arm64 KVM_ARM_VCPU_SVE (requires KVM_CAP_ARM_SVE)
106ee47d 4537 ===== ===========================================
50036ad0
DM
4538
4539Finalizes the configuration of the specified vcpu feature.
4540
4541The vcpu must already have been initialised, enabling the affected feature, by
4542means of a successful KVM_ARM_VCPU_INIT call with the appropriate flag set in
4543features[].
4544
4545For affected vcpu features, this is a mandatory step that must be performed
4546before the vcpu is fully usable.
4547
4548Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FINALIZE, the feature may be
4549configured by use of ioctls such as KVM_SET_ONE_REG. The exact configuration
4550that should be performaned and how to do it are feature-dependent.
4551
4552Other calls that depend on a particular feature being finalized, such as
4553KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG and KVM_SET_ONE_REG, will fail with
4554-EPERM unless the feature has already been finalized by means of a
4555KVM_ARM_VCPU_FINALIZE call.
4556
4557See KVM_ARM_VCPU_INIT for details of vcpu features that require finalization
4558using this ioctl.
4559
66bb8a06 45604.120 KVM_SET_PMU_EVENT_FILTER
106ee47d 4561------------------------------
66bb8a06 4562
106ee47d
MCC
4563:Capability: KVM_CAP_PMU_EVENT_FILTER
4564:Architectures: x86
4565:Type: vm ioctl
4566:Parameters: struct kvm_pmu_event_filter (in)
4567:Returns: 0 on success, -1 on error
66bb8a06 4568
106ee47d
MCC
4569::
4570
4571 struct kvm_pmu_event_filter {
30cd8604
EH
4572 __u32 action;
4573 __u32 nevents;
4574 __u32 fixed_counter_bitmap;
4575 __u32 flags;
4576 __u32 pad[4];
4577 __u64 events[0];
106ee47d 4578 };
66bb8a06
EH
4579
4580This ioctl restricts the set of PMU events that the guest can program.
4581The argument holds a list of events which will be allowed or denied.
4582The eventsel+umask of each event the guest attempts to program is compared
4583against the events field to determine whether the guest should have access.
30cd8604
EH
4584The events field only controls general purpose counters; fixed purpose
4585counters are controlled by the fixed_counter_bitmap.
4586
4587No flags are defined yet, the field must be zero.
66bb8a06 4588
106ee47d
MCC
4589Valid values for 'action'::
4590
4591 #define KVM_PMU_EVENT_ALLOW 0
4592 #define KVM_PMU_EVENT_DENY 1
66bb8a06 4593
22945688 45944.121 KVM_PPC_SVM_OFF
106ee47d
MCC
4595---------------------
4596
4597:Capability: basic
4598:Architectures: powerpc
4599:Type: vm ioctl
4600:Parameters: none
4601:Returns: 0 on successful completion,
22945688 4602
22945688 4603Errors:
106ee47d
MCC
4604
4605 ====== ================================================================
4606 EINVAL if ultravisor failed to terminate the secure guest
4607 ENOMEM if hypervisor failed to allocate new radix page tables for guest
4608 ====== ================================================================
22945688
BR
4609
4610This ioctl is used to turn off the secure mode of the guest or transition
4611the guest from secure mode to normal mode. This is invoked when the guest
4612is reset. This has no effect if called for a normal guest.
4613
4614This ioctl issues an ultravisor call to terminate the secure guest,
4615unpins the VPA pages and releases all the device pages that are used to
4616track the secure pages by hypervisor.
66bb8a06 4617
7de3f142 46184.122 KVM_S390_NORMAL_RESET
a93236fc 4619---------------------------
7de3f142 4620
a93236fc
CB
4621:Capability: KVM_CAP_S390_VCPU_RESETS
4622:Architectures: s390
4623:Type: vcpu ioctl
4624:Parameters: none
4625:Returns: 0
7de3f142
JF
4626
4627This ioctl resets VCPU registers and control structures according to
4628the cpu reset definition in the POP (Principles Of Operation).
4629
46304.123 KVM_S390_INITIAL_RESET
a93236fc 4631----------------------------
7de3f142 4632
a93236fc
CB
4633:Capability: none
4634:Architectures: s390
4635:Type: vcpu ioctl
4636:Parameters: none
4637:Returns: 0
7de3f142
JF
4638
4639This ioctl resets VCPU registers and control structures according to
4640the initial cpu reset definition in the POP. However, the cpu is not
4641put into ESA mode. This reset is a superset of the normal reset.
4642
46434.124 KVM_S390_CLEAR_RESET
a93236fc 4644--------------------------
7de3f142 4645
a93236fc
CB
4646:Capability: KVM_CAP_S390_VCPU_RESETS
4647:Architectures: s390
4648:Type: vcpu ioctl
4649:Parameters: none
4650:Returns: 0
7de3f142
JF
4651
4652This ioctl resets VCPU registers and control structures according to
4653the clear cpu reset definition in the POP. However, the cpu is not put
4654into ESA mode. This reset is a superset of the initial reset.
4655
4656
04ed89dc
JF
46574.125 KVM_S390_PV_COMMAND
4658-------------------------
4659
4660:Capability: KVM_CAP_S390_PROTECTED
4661:Architectures: s390
4662:Type: vm ioctl
4663:Parameters: struct kvm_pv_cmd
4664:Returns: 0 on success, < 0 on error
4665
4666::
4667
4668 struct kvm_pv_cmd {
4669 __u32 cmd; /* Command to be executed */
4670 __u16 rc; /* Ultravisor return code */
4671 __u16 rrc; /* Ultravisor return reason code */
4672 __u64 data; /* Data or address */
4673 __u32 flags; /* flags for future extensions. Must be 0 for now */
4674 __u32 reserved[3];
4675 };
4676
4677cmd values:
4678
4679KVM_PV_ENABLE
4680 Allocate memory and register the VM with the Ultravisor, thereby
4681 donating memory to the Ultravisor that will become inaccessible to
4682 KVM. All existing CPUs are converted to protected ones. After this
4683 command has succeeded, any CPU added via hotplug will become
4684 protected during its creation as well.
4685
7a265361
CB
4686 Errors:
4687
4688 ===== =============================
4689 EINTR an unmasked signal is pending
4690 ===== =============================
4691
04ed89dc
JF
4692KVM_PV_DISABLE
4693
4694 Deregister the VM from the Ultravisor and reclaim the memory that
4695 had been donated to the Ultravisor, making it usable by the kernel
4696 again. All registered VCPUs are converted back to non-protected
4697 ones.
4698
4699KVM_PV_VM_SET_SEC_PARMS
4700 Pass the image header from VM memory to the Ultravisor in
4701 preparation of image unpacking and verification.
4702
4703KVM_PV_VM_UNPACK
4704 Unpack (protect and decrypt) a page of the encrypted boot image.
4705
4706KVM_PV_VM_VERIFY
4707 Verify the integrity of the unpacked image. Only if this succeeds,
4708 KVM is allowed to start protected VCPUs.
4709
1a155254
AG
47104.126 KVM_X86_SET_MSR_FILTER
4711----------------------------
4712
4713:Capability: KVM_X86_SET_MSR_FILTER
4714:Architectures: x86
4715:Type: vm ioctl
4716:Parameters: struct kvm_msr_filter
4717:Returns: 0 on success, < 0 on error
4718
4719::
4720
4721 struct kvm_msr_filter_range {
4722 #define KVM_MSR_FILTER_READ (1 << 0)
4723 #define KVM_MSR_FILTER_WRITE (1 << 1)
4724 __u32 flags;
4725 __u32 nmsrs; /* number of msrs in bitmap */
4726 __u32 base; /* MSR index the bitmap starts at */
4727 __u8 *bitmap; /* a 1 bit allows the operations in flags, 0 denies */
4728 };
4729
4730 #define KVM_MSR_FILTER_MAX_RANGES 16
4731 struct kvm_msr_filter {
4732 #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 0)
4733 #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 0)
4734 __u32 flags;
4735 struct kvm_msr_filter_range ranges[KVM_MSR_FILTER_MAX_RANGES];
4736 };
4737
9389b9d5 4738flags values for ``struct kvm_msr_filter_range``:
1a155254 4739
9389b9d5 4740``KVM_MSR_FILTER_READ``
1a155254
AG
4741
4742 Filter read accesses to MSRs using the given bitmap. A 0 in the bitmap
4743 indicates that a read should immediately fail, while a 1 indicates that
4744 a read for a particular MSR should be handled regardless of the default
4745 filter action.
4746
9389b9d5 4747``KVM_MSR_FILTER_WRITE``
1a155254
AG
4748
4749 Filter write accesses to MSRs using the given bitmap. A 0 in the bitmap
4750 indicates that a write should immediately fail, while a 1 indicates that
4751 a write for a particular MSR should be handled regardless of the default
4752 filter action.
4753
9389b9d5 4754``KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE``
1a155254
AG
4755
4756 Filter both read and write accesses to MSRs using the given bitmap. A 0
4757 in the bitmap indicates that both reads and writes should immediately fail,
4758 while a 1 indicates that reads and writes for a particular MSR are not
4759 filtered by this range.
4760
9389b9d5 4761flags values for ``struct kvm_msr_filter``:
1a155254 4762
9389b9d5 4763``KVM_MSR_FILTER_DEFAULT_ALLOW``
1a155254
AG
4764
4765 If no filter range matches an MSR index that is getting accessed, KVM will
4766 fall back to allowing access to the MSR.
4767
9389b9d5 4768``KVM_MSR_FILTER_DEFAULT_DENY``
1a155254
AG
4769
4770 If no filter range matches an MSR index that is getting accessed, KVM will
4771 fall back to rejecting access to the MSR. In this mode, all MSRs that should
4772 be processed by KVM need to explicitly be marked as allowed in the bitmaps.
4773
4774This ioctl allows user space to define up to 16 bitmaps of MSR ranges to
4775specify whether a certain MSR access should be explicitly filtered for or not.
4776
4777If this ioctl has never been invoked, MSR accesses are not guarded and the
9389b9d5 4778default KVM in-kernel emulation behavior is fully preserved.
1a155254 4779
043248b3
PB
4780Calling this ioctl with an empty set of ranges (all nmsrs == 0) disables MSR
4781filtering. In that mode, ``KVM_MSR_FILTER_DEFAULT_DENY`` is invalid and causes
4782an error.
4783
1a155254 4784As soon as the filtering is in place, every MSR access is processed through
9389b9d5
SC
4785the filtering except for accesses to the x2APIC MSRs (from 0x800 to 0x8ff);
4786x2APIC MSRs are always allowed, independent of the ``default_allow`` setting,
4787and their behavior depends on the ``X2APIC_ENABLE`` bit of the APIC base
4788register.
4789
043248b3
PB
4790If a bit is within one of the defined ranges, read and write accesses are
4791guarded by the bitmap's value for the MSR index if the kind of access
4792is included in the ``struct kvm_msr_filter_range`` flags. If no range
4793cover this particular access, the behavior is determined by the flags
4794field in the kvm_msr_filter struct: ``KVM_MSR_FILTER_DEFAULT_ALLOW``
4795and ``KVM_MSR_FILTER_DEFAULT_DENY``.
1a155254
AG
4796
4797Each bitmap range specifies a range of MSRs to potentially allow access on.
4798The range goes from MSR index [base .. base+nmsrs]. The flags field
4799indicates whether reads, writes or both reads and writes are filtered
4800by setting a 1 bit in the bitmap for the corresponding MSR index.
4801
4802If an MSR access is not permitted through the filtering, it generates a
4803#GP inside the guest. When combined with KVM_CAP_X86_USER_SPACE_MSR, that
4804allows user space to deflect and potentially handle various MSR accesses
4805into user space.
4806
4807If a vCPU is in running state while this ioctl is invoked, the vCPU may
4808experience inconsistent filtering behavior on MSR accesses.
4809
04ed89dc 4810
9c1b96e3 48115. The kvm_run structure
106ee47d 4812========================
9c1b96e3
AK
4813
4814Application code obtains a pointer to the kvm_run structure by
4815mmap()ing a vcpu fd. From that point, application code can control
4816execution by changing fields in kvm_run prior to calling the KVM_RUN
4817ioctl, and obtain information about the reason KVM_RUN returned by
4818looking up structure members.
4819
106ee47d
MCC
4820::
4821
4822 struct kvm_run {
9c1b96e3
AK
4823 /* in */
4824 __u8 request_interrupt_window;
4825
4826Request that KVM_RUN return when it becomes possible to inject external
4827interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
4828
106ee47d
MCC
4829::
4830
460df4c1
PB
4831 __u8 immediate_exit;
4832
4833This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN
4834exits immediately, returning -EINTR. In the common scenario where a
4835signal is used to "kick" a VCPU out of KVM_RUN, this field can be used
4836to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability.
4837Rather than blocking the signal outside KVM_RUN, userspace can set up
4838a signal handler that sets run->immediate_exit to a non-zero value.
4839
4840This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available.
4841
106ee47d
MCC
4842::
4843
460df4c1 4844 __u8 padding1[6];
9c1b96e3
AK
4845
4846 /* out */
4847 __u32 exit_reason;
4848
4849When KVM_RUN has returned successfully (return value 0), this informs
4850application code why KVM_RUN has returned. Allowable values for this
4851field are detailed below.
4852
106ee47d
MCC
4853::
4854
9c1b96e3
AK
4855 __u8 ready_for_interrupt_injection;
4856
4857If request_interrupt_window has been specified, this field indicates
4858an interrupt can be injected now with KVM_INTERRUPT.
4859
106ee47d
MCC
4860::
4861
9c1b96e3
AK
4862 __u8 if_flag;
4863
4864The value of the current interrupt flag. Only valid if in-kernel
4865local APIC is not used.
4866
106ee47d
MCC
4867::
4868
f077825a
PB
4869 __u16 flags;
4870
4871More architecture-specific flags detailing state of the VCPU that may
4872affect the device's behavior. The only currently defined flag is
4873KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
4874VCPU is in system management mode.
9c1b96e3 4875
106ee47d
MCC
4876::
4877
9c1b96e3
AK
4878 /* in (pre_kvm_run), out (post_kvm_run) */
4879 __u64 cr8;
4880
4881The value of the cr8 register. Only valid if in-kernel local APIC is
4882not used. Both input and output.
4883
106ee47d
MCC
4884::
4885
9c1b96e3
AK
4886 __u64 apic_base;
4887
4888The value of the APIC BASE msr. Only valid if in-kernel local
4889APIC is not used. Both input and output.
4890
106ee47d
MCC
4891::
4892
9c1b96e3
AK
4893 union {
4894 /* KVM_EXIT_UNKNOWN */
4895 struct {
4896 __u64 hardware_exit_reason;
4897 } hw;
4898
4899If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
4900reasons. Further architecture-specific information is available in
4901hardware_exit_reason.
4902
106ee47d
MCC
4903::
4904
9c1b96e3
AK
4905 /* KVM_EXIT_FAIL_ENTRY */
4906 struct {
4907 __u64 hardware_entry_failure_reason;
1aa561b1 4908 __u32 cpu; /* if KVM_LAST_CPU */
9c1b96e3
AK
4909 } fail_entry;
4910
4911If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
4912to unknown reasons. Further architecture-specific information is
4913available in hardware_entry_failure_reason.
4914
106ee47d
MCC
4915::
4916
9c1b96e3
AK
4917 /* KVM_EXIT_EXCEPTION */
4918 struct {
4919 __u32 exception;
4920 __u32 error_code;
4921 } ex;
4922
4923Unused.
4924
106ee47d
MCC
4925::
4926
9c1b96e3
AK
4927 /* KVM_EXIT_IO */
4928 struct {
106ee47d
MCC
4929 #define KVM_EXIT_IO_IN 0
4930 #define KVM_EXIT_IO_OUT 1
9c1b96e3
AK
4931 __u8 direction;
4932 __u8 size; /* bytes */
4933 __u16 port;
4934 __u32 count;
4935 __u64 data_offset; /* relative to kvm_run start */
4936 } io;
4937
2044892d 4938If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
4939executed a port I/O instruction which could not be satisfied by kvm.
4940data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
4941where kvm expects application code to place the data for the next
2044892d 4942KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3 4943
106ee47d
MCC
4944::
4945
8ab30c15 4946 /* KVM_EXIT_DEBUG */
9c1b96e3
AK
4947 struct {
4948 struct kvm_debug_exit_arch arch;
4949 } debug;
4950
8ab30c15
AB
4951If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
4952for which architecture specific information is returned.
9c1b96e3 4953
106ee47d
MCC
4954::
4955
9c1b96e3
AK
4956 /* KVM_EXIT_MMIO */
4957 struct {
4958 __u64 phys_addr;
4959 __u8 data[8];
4960 __u32 len;
4961 __u8 is_write;
4962 } mmio;
4963
2044892d 4964If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
4965executed a memory-mapped I/O instruction which could not be satisfied
4966by kvm. The 'data' member contains the written data if 'is_write' is
4967true, and should be filled by application code otherwise.
4968
6acdb160
CD
4969The 'data' member contains, in its first 'len' bytes, the value as it would
4970appear if the VCPU performed a load or store of the appropriate width directly
4971to the byte array.
4972
106ee47d
MCC
4973.. note::
4974
1ae09954
AG
4975 For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR,
4976 KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR the corresponding
4977 operations are complete (and guest state is consistent) only after userspace
4978 has re-entered the kernel with KVM_RUN. The kernel side will first finish
4979 incomplete operations and then check for pending signals. Userspace
4980 can re-enter the guest with an unmasked signal pending to complete
4981 pending operations.
67961344 4982
106ee47d
MCC
4983::
4984
9c1b96e3
AK
4985 /* KVM_EXIT_HYPERCALL */
4986 struct {
4987 __u64 nr;
4988 __u64 args[6];
4989 __u64 ret;
4990 __u32 longmode;
4991 __u32 pad;
4992 } hypercall;
4993
647dc49e
AK
4994Unused. This was once used for 'hypercall to userspace'. To implement
4995such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
106ee47d
MCC
4996
4997.. note:: KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
4998
4999::
9c1b96e3
AK
5000
5001 /* KVM_EXIT_TPR_ACCESS */
5002 struct {
5003 __u64 rip;
5004 __u32 is_write;
5005 __u32 pad;
5006 } tpr_access;
5007
5008To be documented (KVM_TPR_ACCESS_REPORTING).
5009
106ee47d
MCC
5010::
5011
9c1b96e3
AK
5012 /* KVM_EXIT_S390_SIEIC */
5013 struct {
5014 __u8 icptcode;
5015 __u64 mask; /* psw upper half */
5016 __u64 addr; /* psw lower half */
5017 __u16 ipa;
5018 __u32 ipb;
5019 } s390_sieic;
5020
5021s390 specific.
5022
106ee47d
MCC
5023::
5024
9c1b96e3 5025 /* KVM_EXIT_S390_RESET */
106ee47d
MCC
5026 #define KVM_S390_RESET_POR 1
5027 #define KVM_S390_RESET_CLEAR 2
5028 #define KVM_S390_RESET_SUBSYSTEM 4
5029 #define KVM_S390_RESET_CPU_INIT 8
5030 #define KVM_S390_RESET_IPL 16
9c1b96e3
AK
5031 __u64 s390_reset_flags;
5032
5033s390 specific.
5034
106ee47d
MCC
5035::
5036
e168bf8d
CO
5037 /* KVM_EXIT_S390_UCONTROL */
5038 struct {
5039 __u64 trans_exc_code;
5040 __u32 pgm_code;
5041 } s390_ucontrol;
5042
5043s390 specific. A page fault has occurred for a user controlled virtual
5044machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
5045resolved by the kernel.
5046The program code and the translation exception code that were placed
5047in the cpu's lowcore are presented here as defined by the z Architecture
5048Principles of Operation Book in the Chapter for Dynamic Address Translation
5049(DAT)
5050
106ee47d
MCC
5051::
5052
9c1b96e3
AK
5053 /* KVM_EXIT_DCR */
5054 struct {
5055 __u32 dcrn;
5056 __u32 data;
5057 __u8 is_write;
5058 } dcr;
5059
ce91ddc4 5060Deprecated - was used for 440 KVM.
9c1b96e3 5061
106ee47d
MCC
5062::
5063
ad0a048b
AG
5064 /* KVM_EXIT_OSI */
5065 struct {
5066 __u64 gprs[32];
5067 } osi;
5068
5069MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
5070hypercalls and exit with this exit struct that contains all the guest gprs.
5071
5072If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
5073Userspace can now handle the hypercall and when it's done modify the gprs as
5074necessary. Upon guest entry all guest GPRs will then be replaced by the values
5075in this struct.
5076
106ee47d
MCC
5077::
5078
de56a948
PM
5079 /* KVM_EXIT_PAPR_HCALL */
5080 struct {
5081 __u64 nr;
5082 __u64 ret;
5083 __u64 args[9];
5084 } papr_hcall;
5085
5086This is used on 64-bit PowerPC when emulating a pSeries partition,
5087e.g. with the 'pseries' machine type in qemu. It occurs when the
5088guest does a hypercall using the 'sc 1' instruction. The 'nr' field
5089contains the hypercall number (from the guest R3), and 'args' contains
5090the arguments (from the guest R4 - R12). Userspace should put the
5091return code in 'ret' and any extra returned values in args[].
5092The possible hypercalls are defined in the Power Architecture Platform
5093Requirements (PAPR) document available from www.power.org (free
5094developer registration required to access it).
5095
106ee47d
MCC
5096::
5097
fa6b7fe9
CH
5098 /* KVM_EXIT_S390_TSCH */
5099 struct {
5100 __u16 subchannel_id;
5101 __u16 subchannel_nr;
5102 __u32 io_int_parm;
5103 __u32 io_int_word;
5104 __u32 ipb;
5105 __u8 dequeued;
5106 } s390_tsch;
5107
5108s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
5109and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
5110interrupt for the target subchannel has been dequeued and subchannel_id,
5111subchannel_nr, io_int_parm and io_int_word contain the parameters for that
5112interrupt. ipb is needed for instruction parameter decoding.
5113
106ee47d
MCC
5114::
5115
1c810636
AG
5116 /* KVM_EXIT_EPR */
5117 struct {
5118 __u32 epr;
5119 } epr;
5120
5121On FSL BookE PowerPC chips, the interrupt controller has a fast patch
5122interrupt acknowledge path to the core. When the core successfully
5123delivers an interrupt, it automatically populates the EPR register with
5124the interrupt vector number and acknowledges the interrupt inside
5125the interrupt controller.
5126
5127In case the interrupt controller lives in user space, we need to do
5128the interrupt acknowledge cycle through it to fetch the next to be
5129delivered interrupt vector using this exit.
5130
5131It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
5132external interrupt has just been delivered into the guest. User space
5133should put the acknowledged interrupt vector into the 'epr' field.
5134
106ee47d
MCC
5135::
5136
8ad6b634
AP
5137 /* KVM_EXIT_SYSTEM_EVENT */
5138 struct {
106ee47d
MCC
5139 #define KVM_SYSTEM_EVENT_SHUTDOWN 1
5140 #define KVM_SYSTEM_EVENT_RESET 2
5141 #define KVM_SYSTEM_EVENT_CRASH 3
8ad6b634
AP
5142 __u32 type;
5143 __u64 flags;
5144 } system_event;
5145
5146If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
5147a system-level event using some architecture specific mechanism (hypercall
5148or some special instruction). In case of ARM/ARM64, this is triggered using
5149HVC instruction based PSCI call from the vcpu. The 'type' field describes
5150the system-level event type. The 'flags' field describes architecture
5151specific flags for the system-level event.
5152
cf5d3188 5153Valid values for 'type' are:
106ee47d
MCC
5154
5155 - KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
cf5d3188
CD
5156 VM. Userspace is not obliged to honour this, and if it does honour
5157 this does not need to destroy the VM synchronously (ie it may call
5158 KVM_RUN again before shutdown finally occurs).
106ee47d 5159 - KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
cf5d3188
CD
5160 As with SHUTDOWN, userspace can choose to ignore the request, or
5161 to schedule the reset to occur in the future and may call KVM_RUN again.
106ee47d 5162 - KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
2ce79189
AS
5163 has requested a crash condition maintenance. Userspace can choose
5164 to ignore the request, or to gather VM memory core dump and/or
5165 reset/shutdown of the VM.
cf5d3188 5166
106ee47d
MCC
5167::
5168
7543a635
SR
5169 /* KVM_EXIT_IOAPIC_EOI */
5170 struct {
5171 __u8 vector;
5172 } eoi;
5173
5174Indicates that the VCPU's in-kernel local APIC received an EOI for a
5175level-triggered IOAPIC interrupt. This exit only triggers when the
5176IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled);
5177the userspace IOAPIC should process the EOI and retrigger the interrupt if
5178it is still asserted. Vector is the LAPIC interrupt vector for which the
5179EOI was received.
5180
106ee47d
MCC
5181::
5182
db397571 5183 struct kvm_hyperv_exit {
106ee47d
MCC
5184 #define KVM_EXIT_HYPERV_SYNIC 1
5185 #define KVM_EXIT_HYPERV_HCALL 2
f97f5a56 5186 #define KVM_EXIT_HYPERV_SYNDBG 3
db397571 5187 __u32 type;
f7d31e65 5188 __u32 pad1;
db397571
AS
5189 union {
5190 struct {
5191 __u32 msr;
f7d31e65 5192 __u32 pad2;
db397571
AS
5193 __u64 control;
5194 __u64 evt_page;
5195 __u64 msg_page;
5196 } synic;
83326e43
AS
5197 struct {
5198 __u64 input;
5199 __u64 result;
5200 __u64 params[2];
5201 } hcall;
f97f5a56
JD
5202 struct {
5203 __u32 msr;
5204 __u32 pad2;
5205 __u64 control;
5206 __u64 status;
5207 __u64 send_page;
5208 __u64 recv_page;
5209 __u64 pending_page;
5210 } syndbg;
db397571
AS
5211 } u;
5212 };
5213 /* KVM_EXIT_HYPERV */
5214 struct kvm_hyperv_exit hyperv;
106ee47d 5215
db397571
AS
5216Indicates that the VCPU exits into userspace to process some tasks
5217related to Hyper-V emulation.
106ee47d 5218
db397571 5219Valid values for 'type' are:
106ee47d
MCC
5220
5221 - KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about
5222
db397571
AS
5223Hyper-V SynIC state change. Notification is used to remap SynIC
5224event/message pages and to enable/disable SynIC messages/events processing
5225in userspace.
5226
f97f5a56
JD
5227 - KVM_EXIT_HYPERV_SYNDBG -- synchronously notify user-space about
5228
5229Hyper-V Synthetic debugger state change. Notification is used to either update
5230the pending_page location or to send a control command (send the buffer located
5231in send_page or recv a buffer to recv_page).
5232
106ee47d
MCC
5233::
5234
c726200d
CD
5235 /* KVM_EXIT_ARM_NISV */
5236 struct {
5237 __u64 esr_iss;
5238 __u64 fault_ipa;
5239 } arm_nisv;
5240
5241Used on arm and arm64 systems. If a guest accesses memory not in a memslot,
5242KVM will typically return to userspace and ask it to do MMIO emulation on its
5243behalf. However, for certain classes of instructions, no instruction decode
5244(direction, length of memory access) is provided, and fetching and decoding
5245the instruction from the VM is overly complicated to live in the kernel.
5246
5247Historically, when this situation occurred, KVM would print a warning and kill
5248the VM. KVM assumed that if the guest accessed non-memslot memory, it was
5249trying to do I/O, which just couldn't be emulated, and the warning message was
5250phrased accordingly. However, what happened more often was that a guest bug
5251caused access outside the guest memory areas which should lead to a more
5252meaningful warning message and an external abort in the guest, if the access
5253did not fall within an I/O window.
5254
5255Userspace implementations can query for KVM_CAP_ARM_NISV_TO_USER, and enable
5256this capability at VM creation. Once this is done, these types of errors will
5257instead return to userspace with KVM_EXIT_ARM_NISV, with the valid bits from
5258the HSR (arm) and ESR_EL2 (arm64) in the esr_iss field, and the faulting IPA
5259in the fault_ipa field. Userspace can either fix up the access if it's
5260actually an I/O access by decoding the instruction from guest memory (if it's
5261very brave) and continue executing the guest, or it can decide to suspend,
5262dump, or restart the guest.
5263
5264Note that KVM does not skip the faulting instruction as it does for
5265KVM_EXIT_MMIO, but userspace has to emulate any change to the processing state
5266if it decides to decode and emulate the instruction.
5267
1ae09954
AG
5268::
5269
5270 /* KVM_EXIT_X86_RDMSR / KVM_EXIT_X86_WRMSR */
5271 struct {
5272 __u8 error; /* user -> kernel */
5273 __u8 pad[7];
5274 __u32 reason; /* kernel -> user */
5275 __u32 index; /* kernel -> user */
5276 __u64 data; /* kernel <-> user */
5277 } msr;
5278
5279Used on x86 systems. When the VM capability KVM_CAP_X86_USER_SPACE_MSR is
5280enabled, MSR accesses to registers that would invoke a #GP by KVM kernel code
5281will instead trigger a KVM_EXIT_X86_RDMSR exit for reads and KVM_EXIT_X86_WRMSR
5282exit for writes.
5283
5284The "reason" field specifies why the MSR trap occurred. User space will only
5285receive MSR exit traps when a particular reason was requested during through
5286ENABLE_CAP. Currently valid exit reasons are:
5287
5288 KVM_MSR_EXIT_REASON_UNKNOWN - access to MSR that is unknown to KVM
5289 KVM_MSR_EXIT_REASON_INVAL - access to invalid MSRs or reserved bits
1a155254 5290 KVM_MSR_EXIT_REASON_FILTER - access blocked by KVM_X86_SET_MSR_FILTER
1ae09954
AG
5291
5292For KVM_EXIT_X86_RDMSR, the "index" field tells user space which MSR the guest
5293wants to read. To respond to this request with a successful read, user space
5294writes the respective data into the "data" field and must continue guest
5295execution to ensure the read data is transferred into guest register state.
5296
5297If the RDMSR request was unsuccessful, user space indicates that with a "1" in
5298the "error" field. This will inject a #GP into the guest when the VCPU is
5299executed again.
5300
5301For KVM_EXIT_X86_WRMSR, the "index" field tells user space which MSR the guest
5302wants to write. Once finished processing the event, user space must continue
5303vCPU execution. If the MSR write was unsuccessful, user space also sets the
5304"error" field to "1".
5305
106ee47d
MCC
5306::
5307
9c1b96e3
AK
5308 /* Fix the size of the union. */
5309 char padding[256];
5310 };
b9e5dc8d
CB
5311
5312 /*
5313 * shared registers between kvm and userspace.
5314 * kvm_valid_regs specifies the register classes set by the host
5315 * kvm_dirty_regs specified the register classes dirtied by userspace
5316 * struct kvm_sync_regs is architecture specific, as well as the
5317 * bits for kvm_valid_regs and kvm_dirty_regs
5318 */
5319 __u64 kvm_valid_regs;
5320 __u64 kvm_dirty_regs;
5321 union {
5322 struct kvm_sync_regs regs;
7b7e3952 5323 char padding[SYNC_REGS_SIZE_BYTES];
b9e5dc8d
CB
5324 } s;
5325
5326If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
5327certain guest registers without having to call SET/GET_*REGS. Thus we can
5328avoid some system call overhead if userspace has to handle the exit.
5329Userspace can query the validity of the structure by checking
5330kvm_valid_regs for specific bits. These bits are architecture specific
5331and usually define the validity of a groups of registers. (e.g. one bit
106ee47d 5332for general purpose registers)
b9e5dc8d 5333
d8482c0d
DH
5334Please note that the kernel is allowed to use the kvm_run structure as the
5335primary storage for certain register types. Therefore, the kernel may use the
5336values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
5337
106ee47d
MCC
5338::
5339
5340 };
821246a5 5341
414fa985 5342
9c15bb1d 5343
699a0ea0 53446. Capabilities that can be enabled on vCPUs
106ee47d 5345============================================
821246a5 5346
0907c855
CH
5347There are certain capabilities that change the behavior of the virtual CPU or
5348the virtual machine when enabled. To enable them, please see section 4.37.
5349Below you can find a list of capabilities and what their effect on the vCPU or
5350the virtual machine is when enabling them.
821246a5
AG
5351
5352The following information is provided along with the description:
5353
106ee47d
MCC
5354 Architectures:
5355 which instruction set architectures provide this ioctl.
821246a5
AG
5356 x86 includes both i386 and x86_64.
5357
106ee47d
MCC
5358 Target:
5359 whether this is a per-vcpu or per-vm capability.
0907c855 5360
106ee47d
MCC
5361 Parameters:
5362 what parameters are accepted by the capability.
821246a5 5363
106ee47d
MCC
5364 Returns:
5365 the return value. General error numbers (EBADF, ENOMEM, EINVAL)
821246a5
AG
5366 are not detailed, but errors with specific meanings are.
5367
414fa985 5368
821246a5 53696.1 KVM_CAP_PPC_OSI
106ee47d 5370-------------------
821246a5 5371
106ee47d
MCC
5372:Architectures: ppc
5373:Target: vcpu
5374:Parameters: none
5375:Returns: 0 on success; -1 on error
821246a5
AG
5376
5377This capability enables interception of OSI hypercalls that otherwise would
5378be treated as normal system calls to be injected into the guest. OSI hypercalls
5379were invented by Mac-on-Linux to have a standardized communication mechanism
5380between the guest and the host.
5381
5382When this capability is enabled, KVM_EXIT_OSI can occur.
5383
414fa985 5384
821246a5 53856.2 KVM_CAP_PPC_PAPR
106ee47d 5386--------------------
821246a5 5387
106ee47d
MCC
5388:Architectures: ppc
5389:Target: vcpu
5390:Parameters: none
5391:Returns: 0 on success; -1 on error
821246a5
AG
5392
5393This capability enables interception of PAPR hypercalls. PAPR hypercalls are
5394done using the hypercall instruction "sc 1".
5395
5396It also sets the guest privilege level to "supervisor" mode. Usually the guest
5397runs in "hypervisor" privilege mode with a few missing features.
5398
5399In addition to the above, it changes the semantics of SDR1. In this mode, the
5400HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
5401HTAB invisible to the guest.
5402
5403When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 5404
414fa985 5405
dc83b8bc 54066.3 KVM_CAP_SW_TLB
106ee47d
MCC
5407------------------
5408
5409:Architectures: ppc
5410:Target: vcpu
5411:Parameters: args[0] is the address of a struct kvm_config_tlb
5412:Returns: 0 on success; -1 on error
dc83b8bc 5413
106ee47d 5414::
dc83b8bc 5415
106ee47d 5416 struct kvm_config_tlb {
dc83b8bc
SW
5417 __u64 params;
5418 __u64 array;
5419 __u32 mmu_type;
5420 __u32 array_len;
106ee47d 5421 };
dc83b8bc
SW
5422
5423Configures the virtual CPU's TLB array, establishing a shared memory area
5424between userspace and KVM. The "params" and "array" fields are userspace
5425addresses of mmu-type-specific data structures. The "array_len" field is an
5426safety mechanism, and should be set to the size in bytes of the memory that
5427userspace has reserved for the array. It must be at least the size dictated
5428by "mmu_type" and "params".
5429
5430While KVM_RUN is active, the shared region is under control of KVM. Its
5431contents are undefined, and any modification by userspace results in
5432boundedly undefined behavior.
5433
5434On return from KVM_RUN, the shared region will reflect the current state of
5435the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
5436to tell KVM which entries have been changed, prior to calling KVM_RUN again
5437on this vcpu.
5438
5439For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
106ee47d 5440
dc83b8bc
SW
5441 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
5442 - The "array" field points to an array of type "struct
5443 kvm_book3e_206_tlb_entry".
5444 - The array consists of all entries in the first TLB, followed by all
5445 entries in the second TLB.
5446 - Within a TLB, entries are ordered first by increasing set number. Within a
5447 set, entries are ordered by way (increasing ESEL).
5448 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
5449 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
5450 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
5451 hardware ignores this value for TLB0.
fa6b7fe9
CH
5452
54536.4 KVM_CAP_S390_CSS_SUPPORT
106ee47d 5454----------------------------
fa6b7fe9 5455
106ee47d
MCC
5456:Architectures: s390
5457:Target: vcpu
5458:Parameters: none
5459:Returns: 0 on success; -1 on error
fa6b7fe9
CH
5460
5461This capability enables support for handling of channel I/O instructions.
5462
5463TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
5464handled in-kernel, while the other I/O instructions are passed to userspace.
5465
5466When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
5467SUBCHANNEL intercepts.
1c810636 5468
0907c855
CH
5469Note that even though this capability is enabled per-vcpu, the complete
5470virtual machine is affected.
5471
1c810636 54726.5 KVM_CAP_PPC_EPR
106ee47d 5473-------------------
1c810636 5474
106ee47d
MCC
5475:Architectures: ppc
5476:Target: vcpu
5477:Parameters: args[0] defines whether the proxy facility is active
5478:Returns: 0 on success; -1 on error
1c810636
AG
5479
5480This capability enables or disables the delivery of interrupts through the
5481external proxy facility.
5482
5483When enabled (args[0] != 0), every time the guest gets an external interrupt
5484delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
5485to receive the topmost interrupt vector.
5486
5487When disabled (args[0] == 0), behavior is as if this facility is unsupported.
5488
5489When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
5490
54916.6 KVM_CAP_IRQ_MPIC
106ee47d 5492--------------------
eb1e4f43 5493
106ee47d
MCC
5494:Architectures: ppc
5495:Parameters: args[0] is the MPIC device fd;
5496 args[1] is the MPIC CPU number for this vcpu
eb1e4f43
SW
5497
5498This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
5499
55006.7 KVM_CAP_IRQ_XICS
106ee47d 5501--------------------
5975a2e0 5502
106ee47d
MCC
5503:Architectures: ppc
5504:Target: vcpu
5505:Parameters: args[0] is the XICS device fd;
5506 args[1] is the XICS CPU number (server ID) for this vcpu
5975a2e0
PM
5507
5508This capability connects the vcpu to an in-kernel XICS device.
8a366a4b
CH
5509
55106.8 KVM_CAP_S390_IRQCHIP
106ee47d 5511------------------------
8a366a4b 5512
106ee47d
MCC
5513:Architectures: s390
5514:Target: vm
5515:Parameters: none
8a366a4b
CH
5516
5517This capability enables the in-kernel irqchip for s390. Please refer to
5518"4.24 KVM_CREATE_IRQCHIP" for details.
699a0ea0 5519
5fafd874 55206.9 KVM_CAP_MIPS_FPU
106ee47d 5521--------------------
5fafd874 5522
106ee47d
MCC
5523:Architectures: mips
5524:Target: vcpu
5525:Parameters: args[0] is reserved for future use (should be 0).
5fafd874
JH
5526
5527This capability allows the use of the host Floating Point Unit by the guest. It
5528allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
106ee47d
MCC
5529done the ``KVM_REG_MIPS_FPR_*`` and ``KVM_REG_MIPS_FCR_*`` registers can be
5530accessed (depending on the current guest FPU register mode), and the Status.FR,
5fafd874
JH
5531Config5.FRE bits are accessible via the KVM API and also from the guest,
5532depending on them being supported by the FPU.
5533
d952bd07 55346.10 KVM_CAP_MIPS_MSA
106ee47d 5535---------------------
d952bd07 5536
106ee47d
MCC
5537:Architectures: mips
5538:Target: vcpu
5539:Parameters: args[0] is reserved for future use (should be 0).
d952bd07
JH
5540
5541This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
5542It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
106ee47d
MCC
5543Once this is done the ``KVM_REG_MIPS_VEC_*`` and ``KVM_REG_MIPS_MSA_*``
5544registers can be accessed, and the Config5.MSAEn bit is accessible via the
5545KVM API and also from the guest.
d952bd07 5546
01643c51 55476.74 KVM_CAP_SYNC_REGS
106ee47d
MCC
5548----------------------
5549
5550:Architectures: s390, x86
5551:Target: s390: always enabled, x86: vcpu
5552:Parameters: none
5553:Returns: x86: KVM_CHECK_EXTENSION returns a bit-array indicating which register
5554 sets are supported
5555 (bitfields defined in arch/x86/include/uapi/asm/kvm.h).
01643c51
KH
5556
5557As described above in the kvm_sync_regs struct info in section 5 (kvm_run):
5558KVM_CAP_SYNC_REGS "allow[s] userspace to access certain guest registers
5559without having to call SET/GET_*REGS". This reduces overhead by eliminating
5560repeated ioctl calls for setting and/or getting register values. This is
5561particularly important when userspace is making synchronous guest state
5562modifications, e.g. when emulating and/or intercepting instructions in
5563userspace.
5564
5565For s390 specifics, please refer to the source code.
5566
5567For x86:
106ee47d 5568
01643c51
KH
5569- the register sets to be copied out to kvm_run are selectable
5570 by userspace (rather that all sets being copied out for every exit).
5571- vcpu_events are available in addition to regs and sregs.
5572
5573For x86, the 'kvm_valid_regs' field of struct kvm_run is overloaded to
5574function as an input bit-array field set by userspace to indicate the
5575specific register sets to be copied out on the next exit.
5576
5577To indicate when userspace has modified values that should be copied into
5578the vCPU, the all architecture bitarray field, 'kvm_dirty_regs' must be set.
5579This is done using the same bitflags as for the 'kvm_valid_regs' field.
5580If the dirty bit is not set, then the register set values will not be copied
5581into the vCPU even if they've been modified.
5582
5583Unused bitfields in the bitarrays must be set to zero.
5584
106ee47d
MCC
5585::
5586
5587 struct kvm_sync_regs {
01643c51
KH
5588 struct kvm_regs regs;
5589 struct kvm_sregs sregs;
5590 struct kvm_vcpu_events events;
106ee47d 5591 };
01643c51 5592
eacc56bb 55936.75 KVM_CAP_PPC_IRQ_XIVE
106ee47d 5594-------------------------
eacc56bb 5595
106ee47d
MCC
5596:Architectures: ppc
5597:Target: vcpu
5598:Parameters: args[0] is the XIVE device fd;
5599 args[1] is the XIVE CPU number (server ID) for this vcpu
eacc56bb
CLG
5600
5601This capability connects the vcpu to an in-kernel XIVE device.
5602
699a0ea0 56037. Capabilities that can be enabled on VMs
106ee47d 5604==========================================
699a0ea0
PM
5605
5606There are certain capabilities that change the behavior of the virtual
5607machine when enabled. To enable them, please see section 4.37. Below
5608you can find a list of capabilities and what their effect on the VM
5609is when enabling them.
5610
5611The following information is provided along with the description:
5612
106ee47d
MCC
5613 Architectures:
5614 which instruction set architectures provide this ioctl.
699a0ea0
PM
5615 x86 includes both i386 and x86_64.
5616
106ee47d
MCC
5617 Parameters:
5618 what parameters are accepted by the capability.
699a0ea0 5619
106ee47d
MCC
5620 Returns:
5621 the return value. General error numbers (EBADF, ENOMEM, EINVAL)
699a0ea0
PM
5622 are not detailed, but errors with specific meanings are.
5623
5624
56257.1 KVM_CAP_PPC_ENABLE_HCALL
106ee47d 5626----------------------------
699a0ea0 5627
106ee47d
MCC
5628:Architectures: ppc
5629:Parameters: args[0] is the sPAPR hcall number;
5630 args[1] is 0 to disable, 1 to enable in-kernel handling
699a0ea0
PM
5631
5632This capability controls whether individual sPAPR hypercalls (hcalls)
5633get handled by the kernel or not. Enabling or disabling in-kernel
5634handling of an hcall is effective across the VM. On creation, an
5635initial set of hcalls are enabled for in-kernel handling, which
5636consists of those hcalls for which in-kernel handlers were implemented
5637before this capability was implemented. If disabled, the kernel will
5638not to attempt to handle the hcall, but will always exit to userspace
5639to handle it. Note that it may not make sense to enable some and
5640disable others of a group of related hcalls, but KVM does not prevent
5641userspace from doing that.
ae2113a4
PM
5642
5643If the hcall number specified is not one that has an in-kernel
5644implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
5645error.
2444b352
DH
5646
56477.2 KVM_CAP_S390_USER_SIGP
106ee47d 5648--------------------------
2444b352 5649
106ee47d
MCC
5650:Architectures: s390
5651:Parameters: none
2444b352
DH
5652
5653This capability controls which SIGP orders will be handled completely in user
5654space. With this capability enabled, all fast orders will be handled completely
5655in the kernel:
106ee47d 5656
2444b352
DH
5657- SENSE
5658- SENSE RUNNING
5659- EXTERNAL CALL
5660- EMERGENCY SIGNAL
5661- CONDITIONAL EMERGENCY SIGNAL
5662
5663All other orders will be handled completely in user space.
5664
5665Only privileged operation exceptions will be checked for in the kernel (or even
5666in the hardware prior to interception). If this capability is not enabled, the
5667old way of handling SIGP orders is used (partially in kernel and user space).
68c55750
EF
5668
56697.3 KVM_CAP_S390_VECTOR_REGISTERS
106ee47d 5670---------------------------------
68c55750 5671
106ee47d
MCC
5672:Architectures: s390
5673:Parameters: none
5674:Returns: 0 on success, negative value on error
68c55750
EF
5675
5676Allows use of the vector registers introduced with z13 processor, and
5677provides for the synchronization between host and user space. Will
5678return -EINVAL if the machine does not support vectors.
e44fc8c9
ET
5679
56807.4 KVM_CAP_S390_USER_STSI
106ee47d 5681--------------------------
e44fc8c9 5682
106ee47d
MCC
5683:Architectures: s390
5684:Parameters: none
e44fc8c9
ET
5685
5686This capability allows post-handlers for the STSI instruction. After
5687initial handling in the kernel, KVM exits to user space with
5688KVM_EXIT_S390_STSI to allow user space to insert further data.
5689
5690Before exiting to userspace, kvm handlers should fill in s390_stsi field of
106ee47d
MCC
5691vcpu->run::
5692
5693 struct {
e44fc8c9
ET
5694 __u64 addr;
5695 __u8 ar;
5696 __u8 reserved;
5697 __u8 fc;
5698 __u8 sel1;
5699 __u16 sel2;
106ee47d 5700 } s390_stsi;
e44fc8c9 5701
106ee47d
MCC
5702 @addr - guest address of STSI SYSIB
5703 @fc - function code
5704 @sel1 - selector 1
5705 @sel2 - selector 2
5706 @ar - access register number
e44fc8c9
ET
5707
5708KVM handlers should exit to userspace with rc = -EREMOTE.
e928e9cb 5709
49df6397 57107.5 KVM_CAP_SPLIT_IRQCHIP
106ee47d 5711-------------------------
49df6397 5712
106ee47d
MCC
5713:Architectures: x86
5714:Parameters: args[0] - number of routes reserved for userspace IOAPICs
5715:Returns: 0 on success, -1 on error
49df6397
SR
5716
5717Create a local apic for each processor in the kernel. This can be used
5718instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
5719IOAPIC and PIC (and also the PIT, even though this has to be enabled
5720separately).
5721
b053b2ae
SR
5722This capability also enables in kernel routing of interrupt requests;
5723when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
5724used in the IRQ routing table. The first args[0] MSI routes are reserved
5725for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes,
5726a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.
49df6397
SR
5727
5728Fails if VCPU has already been created, or if the irqchip is already in the
5729kernel (i.e. KVM_CREATE_IRQCHIP has already been called).
5730
051c87f7 57317.6 KVM_CAP_S390_RI
106ee47d 5732-------------------
051c87f7 5733
106ee47d
MCC
5734:Architectures: s390
5735:Parameters: none
051c87f7
DH
5736
5737Allows use of runtime-instrumentation introduced with zEC12 processor.
5738Will return -EINVAL if the machine does not support runtime-instrumentation.
5739Will return -EBUSY if a VCPU has already been created.
e928e9cb 5740
37131313 57417.7 KVM_CAP_X2APIC_API
106ee47d 5742----------------------
37131313 5743
106ee47d
MCC
5744:Architectures: x86
5745:Parameters: args[0] - features that should be enabled
5746:Returns: 0 on success, -EINVAL when args[0] contains invalid features
37131313 5747
106ee47d 5748Valid feature flags in args[0] are::
37131313 5749
106ee47d
MCC
5750 #define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0)
5751 #define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1)
37131313
RK
5752
5753Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of
5754KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC,
5755allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their
5756respective sections.
5757
c519265f
RK
5758KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work
5759in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff
5760as a broadcast even in x2APIC mode in order to support physical x2APIC
5761without interrupt remapping. This is undesirable in logical mode,
5762where 0xff represents CPUs 0-7 in cluster 0.
37131313 5763
6502a34c 57647.8 KVM_CAP_S390_USER_INSTR0
106ee47d 5765----------------------------
6502a34c 5766
106ee47d
MCC
5767:Architectures: s390
5768:Parameters: none
6502a34c
DH
5769
5770With this capability enabled, all illegal instructions 0x0000 (2 bytes) will
5771be intercepted and forwarded to user space. User space can use this
5772mechanism e.g. to realize 2-byte software breakpoints. The kernel will
5773not inject an operating exception for these instructions, user space has
5774to take care of that.
5775
5776This capability can be enabled dynamically even if VCPUs were already
5777created and are running.
37131313 5778
4e0b1ab7 57797.9 KVM_CAP_S390_GS
106ee47d 5780-------------------
4e0b1ab7 5781
106ee47d
MCC
5782:Architectures: s390
5783:Parameters: none
5784:Returns: 0 on success; -EINVAL if the machine does not support
5785 guarded storage; -EBUSY if a VCPU has already been created.
4e0b1ab7
FZ
5786
5787Allows use of guarded storage for the KVM guest.
5788
47a4693e 57897.10 KVM_CAP_S390_AIS
106ee47d 5790---------------------
47a4693e 5791
106ee47d
MCC
5792:Architectures: s390
5793:Parameters: none
47a4693e
YMZ
5794
5795Allow use of adapter-interruption suppression.
106ee47d 5796:Returns: 0 on success; -EBUSY if a VCPU has already been created.
47a4693e 5797
3c313524 57987.11 KVM_CAP_PPC_SMT
106ee47d 5799--------------------
3c313524 5800
106ee47d
MCC
5801:Architectures: ppc
5802:Parameters: vsmt_mode, flags
3c313524
PM
5803
5804Enabling this capability on a VM provides userspace with a way to set
5805the desired virtual SMT mode (i.e. the number of virtual CPUs per
5806virtual core). The virtual SMT mode, vsmt_mode, must be a power of 2
5807between 1 and 8. On POWER8, vsmt_mode must also be no greater than
5808the number of threads per subcore for the host. Currently flags must
5809be 0. A successful call to enable this capability will result in
5810vsmt_mode being returned when the KVM_CAP_PPC_SMT capability is
5811subsequently queried for the VM. This capability is only supported by
5812HV KVM, and can only be set before any VCPUs have been created.
2ed4f9dd
PM
5813The KVM_CAP_PPC_SMT_POSSIBLE capability indicates which virtual SMT
5814modes are available.
3c313524 5815
134764ed 58167.12 KVM_CAP_PPC_FWNMI
106ee47d 5817----------------------
134764ed 5818
106ee47d
MCC
5819:Architectures: ppc
5820:Parameters: none
134764ed
AP
5821
5822With this capability a machine check exception in the guest address
5823space will cause KVM to exit the guest with NMI exit reason. This
5824enables QEMU to build error log and branch to guest kernel registered
5825machine check handling routine. Without this capability KVM will
5826branch to guests' 0x200 interrupt vector.
5827
4d5422ce 58287.13 KVM_CAP_X86_DISABLE_EXITS
106ee47d 5829------------------------------
4d5422ce 5830
106ee47d
MCC
5831:Architectures: x86
5832:Parameters: args[0] defines which exits are disabled
5833:Returns: 0 on success, -EINVAL when args[0] contains invalid exits
4d5422ce 5834
106ee47d 5835Valid bits in args[0] are::
4d5422ce 5836
106ee47d
MCC
5837 #define KVM_X86_DISABLE_EXITS_MWAIT (1 << 0)
5838 #define KVM_X86_DISABLE_EXITS_HLT (1 << 1)
5839 #define KVM_X86_DISABLE_EXITS_PAUSE (1 << 2)
5840 #define KVM_X86_DISABLE_EXITS_CSTATE (1 << 3)
4d5422ce
WL
5841
5842Enabling this capability on a VM provides userspace with a way to no
5843longer intercept some instructions for improved latency in some
5844workloads, and is suggested when vCPUs are associated to dedicated
5845physical CPUs. More bits can be added in the future; userspace can
5846just pass the KVM_CHECK_EXTENSION result to KVM_ENABLE_CAP to disable
5847all such vmexits.
5848
caa057a2 5849Do not enable KVM_FEATURE_PV_UNHALT if you disable HLT exits.
4d5422ce 5850
a4499382 58517.14 KVM_CAP_S390_HPAGE_1M
106ee47d 5852--------------------------
a4499382 5853
106ee47d
MCC
5854:Architectures: s390
5855:Parameters: none
5856:Returns: 0 on success, -EINVAL if hpage module parameter was not set
5857 or cmma is enabled, or the VM has the KVM_VM_S390_UCONTROL
5858 flag set
a4499382
JF
5859
5860With this capability the KVM support for memory backing with 1m pages
5861through hugetlbfs can be enabled for a VM. After the capability is
5862enabled, cmma can't be enabled anymore and pfmfi and the storage key
5863interpretation are disabled. If cmma has already been enabled or the
5864hpage module parameter is not set to 1, -EINVAL is returned.
5865
5866While it is generally possible to create a huge page backed VM without
5867this capability, the VM will not be able to run.
5868
c4f55198 58697.15 KVM_CAP_MSR_PLATFORM_INFO
106ee47d 5870------------------------------
6fbbde9a 5871
106ee47d
MCC
5872:Architectures: x86
5873:Parameters: args[0] whether feature should be enabled or not
6fbbde9a
DS
5874
5875With this capability, a guest may read the MSR_PLATFORM_INFO MSR. Otherwise,
5876a #GP would be raised when the guest tries to access. Currently, this
5877capability does not enable write permissions of this MSR for the guest.
5878
aa069a99 58797.16 KVM_CAP_PPC_NESTED_HV
106ee47d 5880--------------------------
aa069a99 5881
106ee47d
MCC
5882:Architectures: ppc
5883:Parameters: none
5884:Returns: 0 on success, -EINVAL when the implementation doesn't support
5885 nested-HV virtualization.
aa069a99
PM
5886
5887HV-KVM on POWER9 and later systems allows for "nested-HV"
5888virtualization, which provides a way for a guest VM to run guests that
5889can run using the CPU's supervisor mode (privileged non-hypervisor
5890state). Enabling this capability on a VM depends on the CPU having
5891the necessary functionality and on the facility being enabled with a
5892kvm-hv module parameter.
5893
c4f55198 58947.17 KVM_CAP_EXCEPTION_PAYLOAD
106ee47d 5895------------------------------
c4f55198 5896
106ee47d
MCC
5897:Architectures: x86
5898:Parameters: args[0] whether feature should be enabled or not
c4f55198
JM
5899
5900With this capability enabled, CR2 will not be modified prior to the
5901emulated VM-exit when L1 intercepts a #PF exception that occurs in
5902L2. Similarly, for kvm-intel only, DR6 will not be modified prior to
5903the emulated VM-exit when L1 intercepts a #DB exception that occurs in
5904L2. As a result, when KVM_GET_VCPU_EVENTS reports a pending #PF (or
5905#DB) exception for L2, exception.has_payload will be set and the
5906faulting address (or the new DR6 bits*) will be reported in the
5907exception_payload field. Similarly, when userspace injects a #PF (or
5908#DB) into L2 using KVM_SET_VCPU_EVENTS, it is expected to set
106ee47d
MCC
5909exception.has_payload and to put the faulting address - or the new DR6
5910bits\ [#]_ - in the exception_payload field.
c4f55198
JM
5911
5912This capability also enables exception.pending in struct
5913kvm_vcpu_events, which allows userspace to distinguish between pending
5914and injected exceptions.
5915
5916
106ee47d
MCC
5917.. [#] For the new DR6 bits, note that bit 16 is set iff the #DB exception
5918 will clear DR6.RTM.
c4f55198 5919
d7547c55 59207.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
2a31b9db 5921
106ee47d
MCC
5922:Architectures: x86, arm, arm64, mips
5923:Parameters: args[0] whether feature should be enabled or not
2a31b9db 5924
3c9bd400
JZ
5925Valid flags are::
5926
5927 #define KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (1 << 0)
5928 #define KVM_DIRTY_LOG_INITIALLY_SET (1 << 1)
5929
5930With KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE is set, KVM_GET_DIRTY_LOG will not
5931automatically clear and write-protect all pages that are returned as dirty.
2a31b9db
PB
5932Rather, userspace will have to do this operation separately using
5933KVM_CLEAR_DIRTY_LOG.
5934
5935At the cost of a slightly more complicated operation, this provides better
5936scalability and responsiveness for two reasons. First,
5937KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64-page granularity rather
5938than requiring to sync a full memslot; this ensures that KVM does not
5939take spinlocks for an extended period of time. Second, in some cases a
5940large amount of time can pass between a call to KVM_GET_DIRTY_LOG and
5941userspace actually using the data in the page. Pages can be modified
3c9bd400 5942during this time, which is inefficient for both the guest and userspace:
2a31b9db
PB
5943the guest will incur a higher penalty due to write protection faults,
5944while userspace can see false reports of dirty pages. Manual reprotection
5945helps reducing this time, improving guest performance and reducing the
5946number of dirty log false positives.
5947
3c9bd400
JZ
5948With KVM_DIRTY_LOG_INITIALLY_SET set, all the bits of the dirty bitmap
5949will be initialized to 1 when created. This also improves performance because
5950dirty logging can be enabled gradually in small chunks on the first call
5951to KVM_CLEAR_DIRTY_LOG. KVM_DIRTY_LOG_INITIALLY_SET depends on
5952KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (it is also only available on
c862626e 5953x86 and arm64 for now).
3c9bd400 5954
d7547c55
PX
5955KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previously available under the name
5956KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the implementation had bugs that make
5957it hard or impossible to use it correctly. The availability of
5958KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 signals that those bugs are fixed.
5959Userspace should not try to use KVM_CAP_MANUAL_DIRTY_LOG_PROTECT.
2a31b9db 5960
9a5788c6
PM
59617.19 KVM_CAP_PPC_SECURE_GUEST
5962------------------------------
5963
5964:Architectures: ppc
5965
5966This capability indicates that KVM is running on a host that has
5967ultravisor firmware and thus can support a secure guest. On such a
5968system, a guest can ask the ultravisor to make it a secure guest,
5969one whose memory is inaccessible to the host except for pages which
5970are explicitly requested to be shared with the host. The ultravisor
5971notifies KVM when a guest requests to become a secure guest, and KVM
5972has the opportunity to veto the transition.
5973
5974If present, this capability can be enabled for a VM, meaning that KVM
5975will allow the transition to secure guest mode. Otherwise KVM will
5976veto the transition.
5977
acd05785
DM
59787.20 KVM_CAP_HALT_POLL
5979----------------------
5980
5981:Architectures: all
5982:Target: VM
5983:Parameters: args[0] is the maximum poll time in nanoseconds
5984:Returns: 0 on success; -1 on error
5985
5986This capability overrides the kvm module parameter halt_poll_ns for the
5987target VM.
5988
5989VCPU polling allows a VCPU to poll for wakeup events instead of immediately
5990scheduling during guest halts. The maximum time a VCPU can spend polling is
5991controlled by the kvm module parameter halt_poll_ns. This capability allows
5992the maximum halt time to specified on a per-VM basis, effectively overriding
5993the module parameter for the target VM.
5994
1ae09954
AG
59957.21 KVM_CAP_X86_USER_SPACE_MSR
5996-------------------------------
5997
5998:Architectures: x86
5999:Target: VM
6000:Parameters: args[0] contains the mask of KVM_MSR_EXIT_REASON_* events to report
6001:Returns: 0 on success; -1 on error
6002
6003This capability enables trapping of #GP invoking RDMSR and WRMSR instructions
6004into user space.
6005
6006When a guest requests to read or write an MSR, KVM may not implement all MSRs
6007that are relevant to a respective system. It also does not differentiate by
6008CPU type.
6009
6010To allow more fine grained control over MSR handling, user space may enable
6011this capability. With it enabled, MSR accesses that match the mask specified in
6012args[0] and trigger a #GP event inside the guest by KVM will instead trigger
6013KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exit notifications which user space
6014can then handle to implement model specific MSR handling and/or user notifications
6015to inform a user that an MSR was not handled.
6016
e928e9cb 60178. Other capabilities.
106ee47d 6018======================
e928e9cb
ME
6019
6020This section lists capabilities that give information about other
6021features of the KVM implementation.
6022
60238.1 KVM_CAP_PPC_HWRNG
106ee47d 6024---------------------
e928e9cb 6025
106ee47d 6026:Architectures: ppc
e928e9cb
ME
6027
6028This capability, if KVM_CHECK_EXTENSION indicates that it is
3747c5d3 6029available, means that the kernel has an implementation of the
e928e9cb
ME
6030H_RANDOM hypercall backed by a hardware random-number generator.
6031If present, the kernel H_RANDOM handler can be enabled for guest use
6032with the KVM_CAP_PPC_ENABLE_HCALL capability.
5c919412
AS
6033
60348.2 KVM_CAP_HYPERV_SYNIC
106ee47d
MCC
6035------------------------
6036
6037:Architectures: x86
5c919412 6038
5c919412 6039This capability, if KVM_CHECK_EXTENSION indicates that it is
3747c5d3 6040available, means that the kernel has an implementation of the
5c919412
AS
6041Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is
6042used to support Windows Hyper-V based guest paravirt drivers(VMBus).
6043
6044In order to use SynIC, it has to be activated by setting this
6045capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this
6046will disable the use of APIC hardware virtualization even if supported
6047by the CPU, as it's incompatible with SynIC auto-EOI behavior.
c9270132
PM
6048
60498.3 KVM_CAP_PPC_RADIX_MMU
106ee47d 6050-------------------------
c9270132 6051
106ee47d 6052:Architectures: ppc
c9270132
PM
6053
6054This capability, if KVM_CHECK_EXTENSION indicates that it is
3747c5d3 6055available, means that the kernel can support guests using the
c9270132
PM
6056radix MMU defined in Power ISA V3.00 (as implemented in the POWER9
6057processor).
6058
60598.4 KVM_CAP_PPC_HASH_MMU_V3
106ee47d 6060---------------------------
c9270132 6061
106ee47d 6062:Architectures: ppc
c9270132
PM
6063
6064This capability, if KVM_CHECK_EXTENSION indicates that it is
3747c5d3 6065available, means that the kernel can support guests using the
c9270132
PM
6066hashed page table MMU defined in Power ISA V3.00 (as implemented in
6067the POWER9 processor), including in-memory segment tables.
a8a3c426
JH
6068
60698.5 KVM_CAP_MIPS_VZ
106ee47d 6070-------------------
a8a3c426 6071
106ee47d 6072:Architectures: mips
a8a3c426
JH
6073
6074This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
6075it is available, means that full hardware assisted virtualization capabilities
6076of the hardware are available for use through KVM. An appropriate
6077KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which
6078utilises it.
6079
6080If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
6081available, it means that the VM is using full hardware assisted virtualization
6082capabilities of the hardware. This is useful to check after creating a VM with
6083KVM_VM_MIPS_DEFAULT.
6084
6085The value returned by KVM_CHECK_EXTENSION should be compared against known
6086values (see below). All other values are reserved. This is to allow for the
6087possibility of other hardware assisted virtualization implementations which
6088may be incompatible with the MIPS VZ ASE.
6089
106ee47d
MCC
6090== ==========================================================================
6091 0 The trap & emulate implementation is in use to run guest code in user
a8a3c426
JH
6092 mode. Guest virtual memory segments are rearranged to fit the guest in the
6093 user mode address space.
6094
106ee47d 6095 1 The MIPS VZ ASE is in use, providing full hardware assisted
a8a3c426 6096 virtualization, including standard guest virtual memory segments.
106ee47d 6097== ==========================================================================
a8a3c426
JH
6098
60998.6 KVM_CAP_MIPS_TE
106ee47d 6100-------------------
a8a3c426 6101
106ee47d 6102:Architectures: mips
a8a3c426
JH
6103
6104This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
6105it is available, means that the trap & emulate implementation is available to
6106run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware
6107assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed
6108to KVM_CREATE_VM to create a VM which utilises it.
6109
6110If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
6111available, it means that the VM is using trap & emulate.
578fd61d
JH
6112
61138.7 KVM_CAP_MIPS_64BIT
106ee47d 6114----------------------
578fd61d 6115
106ee47d 6116:Architectures: mips
578fd61d
JH
6117
6118This capability indicates the supported architecture type of the guest, i.e. the
6119supported register and address width.
6120
6121The values returned when this capability is checked by KVM_CHECK_EXTENSION on a
6122kvm VM handle correspond roughly to the CP0_Config.AT register field, and should
6123be checked specifically against known values (see below). All other values are
6124reserved.
6125
106ee47d
MCC
6126== ========================================================================
6127 0 MIPS32 or microMIPS32.
578fd61d
JH
6128 Both registers and addresses are 32-bits wide.
6129 It will only be possible to run 32-bit guest code.
6130
106ee47d 6131 1 MIPS64 or microMIPS64 with access only to 32-bit compatibility segments.
578fd61d
JH
6132 Registers are 64-bits wide, but addresses are 32-bits wide.
6133 64-bit guest code may run but cannot access MIPS64 memory segments.
6134 It will also be possible to run 32-bit guest code.
6135
106ee47d 6136 2 MIPS64 or microMIPS64 with access to all address segments.
578fd61d
JH
6137 Both registers and addresses are 64-bits wide.
6138 It will be possible to run 64-bit or 32-bit guest code.
106ee47d 6139== ========================================================================
668fffa3 6140
c24a7be2 61418.9 KVM_CAP_ARM_USER_IRQ
106ee47d
MCC
6142------------------------
6143
6144:Architectures: arm, arm64
3fe17e68 6145
3fe17e68
AG
6146This capability, if KVM_CHECK_EXTENSION indicates that it is available, means
6147that if userspace creates a VM without an in-kernel interrupt controller, it
6148will be notified of changes to the output level of in-kernel emulated devices,
6149which can generate virtual interrupts, presented to the VM.
6150For such VMs, on every return to userspace, the kernel
6151updates the vcpu's run->s.regs.device_irq_level field to represent the actual
6152output level of the device.
6153
6154Whenever kvm detects a change in the device output level, kvm guarantees at
6155least one return to userspace before running the VM. This exit could either
6156be a KVM_EXIT_INTR or any other exit event, like KVM_EXIT_MMIO. This way,
6157userspace can always sample the device output level and re-compute the state of
6158the userspace interrupt controller. Userspace should always check the state
6159of run->s.regs.device_irq_level on every kvm exit.
6160The value in run->s.regs.device_irq_level can represent both level and edge
6161triggered interrupt signals, depending on the device. Edge triggered interrupt
6162signals will exit to userspace with the bit in run->s.regs.device_irq_level
6163set exactly once per edge signal.
6164
6165The field run->s.regs.device_irq_level is available independent of
6166run->kvm_valid_regs or run->kvm_dirty_regs bits.
6167
6168If KVM_CAP_ARM_USER_IRQ is supported, the KVM_CHECK_EXTENSION ioctl returns a
6169number larger than 0 indicating the version of this capability is implemented
3747c5d3 6170and thereby which bits in run->s.regs.device_irq_level can signal values.
3fe17e68 6171
106ee47d 6172Currently the following bits are defined for the device_irq_level bitmap::
3fe17e68
AG
6173
6174 KVM_CAP_ARM_USER_IRQ >= 1:
6175
6176 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual timer
6177 KVM_ARM_DEV_EL1_PTIMER - EL1 physical timer
6178 KVM_ARM_DEV_PMU - ARM PMU overflow interrupt signal
6179
6180Future versions of kvm may implement additional events. These will get
6181indicated by returning a higher number from KVM_CHECK_EXTENSION and will be
6182listed above.
2ed4f9dd
PM
6183
61848.10 KVM_CAP_PPC_SMT_POSSIBLE
106ee47d 6185-----------------------------
2ed4f9dd 6186
106ee47d 6187:Architectures: ppc
2ed4f9dd
PM
6188
6189Querying this capability returns a bitmap indicating the possible
6190virtual SMT modes that can be set using KVM_CAP_PPC_SMT. If bit N
6191(counting from the right) is set, then a virtual SMT mode of 2^N is
6192available.
efc479e6
RK
6193
61948.11 KVM_CAP_HYPERV_SYNIC2
106ee47d 6195--------------------------
efc479e6 6196
106ee47d 6197:Architectures: x86
efc479e6
RK
6198
6199This capability enables a newer version of Hyper-V Synthetic interrupt
6200controller (SynIC). The only difference with KVM_CAP_HYPERV_SYNIC is that KVM
6201doesn't clear SynIC message and event flags pages when they are enabled by
6202writing to the respective MSRs.
d3457c87
RK
6203
62048.12 KVM_CAP_HYPERV_VP_INDEX
106ee47d 6205----------------------------
d3457c87 6206
106ee47d 6207:Architectures: x86
d3457c87
RK
6208
6209This capability indicates that userspace can load HV_X64_MSR_VP_INDEX msr. Its
6210value is used to denote the target vcpu for a SynIC interrupt. For
6211compatibilty, KVM initializes this msr to KVM's internal vcpu index. When this
6212capability is absent, userspace can still query this msr's value.
da9a1446
CB
6213
62148.13 KVM_CAP_S390_AIS_MIGRATION
106ee47d 6215-------------------------------
da9a1446 6216
106ee47d
MCC
6217:Architectures: s390
6218:Parameters: none
da9a1446
CB
6219
6220This capability indicates if the flic device will be able to get/set the
6221AIS states for migration via the KVM_DEV_FLIC_AISM_ALL attribute and allows
6222to discover this without having to create a flic device.
5c2b4d5b
CB
6223
62248.14 KVM_CAP_S390_PSW
106ee47d 6225---------------------
5c2b4d5b 6226
106ee47d 6227:Architectures: s390
5c2b4d5b
CB
6228
6229This capability indicates that the PSW is exposed via the kvm_run structure.
6230
62318.15 KVM_CAP_S390_GMAP
106ee47d 6232----------------------
5c2b4d5b 6233
106ee47d 6234:Architectures: s390
5c2b4d5b
CB
6235
6236This capability indicates that the user space memory used as guest mapping can
6237be anywhere in the user memory address space, as long as the memory slots are
6238aligned and sized to a segment (1MB) boundary.
6239
62408.16 KVM_CAP_S390_COW
106ee47d 6241---------------------
5c2b4d5b 6242
106ee47d 6243:Architectures: s390
5c2b4d5b
CB
6244
6245This capability indicates that the user space memory used as guest mapping can
6246use copy-on-write semantics as well as dirty pages tracking via read-only page
6247tables.
6248
62498.17 KVM_CAP_S390_BPB
106ee47d 6250---------------------
5c2b4d5b 6251
106ee47d 6252:Architectures: s390
5c2b4d5b
CB
6253
6254This capability indicates that kvm will implement the interfaces to handle
6255reset, migration and nested KVM for branch prediction blocking. The stfle
6256facility 82 should not be provided to the guest without this capability.
c1aea919 6257
2ddc6498 62588.18 KVM_CAP_HYPERV_TLBFLUSH
106ee47d 6259----------------------------
c1aea919 6260
106ee47d 6261:Architectures: x86
c1aea919
VK
6262
6263This capability indicates that KVM supports paravirtualized Hyper-V TLB Flush
6264hypercalls:
6265HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx,
6266HvFlushVirtualAddressList, HvFlushVirtualAddressListEx.
be26b3a7 6267
688e0581 62688.19 KVM_CAP_ARM_INJECT_SERROR_ESR
106ee47d 6269----------------------------------
be26b3a7 6270
106ee47d 6271:Architectures: arm, arm64
be26b3a7
DG
6272
6273This capability indicates that userspace can specify (via the
6274KVM_SET_VCPU_EVENTS ioctl) the syndrome value reported to the guest when it
6275takes a virtual SError interrupt exception.
6276If KVM advertises this capability, userspace can only specify the ISS field for
6277the ESR syndrome. Other parts of the ESR, such as the EC are generated by the
6278CPU when the exception is taken. If this virtual SError is taken to EL1 using
6279AArch64, this value will be reported in the ISS field of ESR_ELx.
6280
6281See KVM_CAP_VCPU_EVENTS for more details.
106ee47d 6282
214ff83d 62838.20 KVM_CAP_HYPERV_SEND_IPI
106ee47d 6284----------------------------
214ff83d 6285
106ee47d 6286:Architectures: x86
214ff83d
VK
6287
6288This capability indicates that KVM supports paravirtualized Hyper-V IPI send
6289hypercalls:
6290HvCallSendSyntheticClusterIpi, HvCallSendSyntheticClusterIpiEx.
106ee47d 6291
344c6c80 62928.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH
106ee47d 6293-----------------------------------
344c6c80 6294
739c7af7 6295:Architectures: x86
344c6c80
TL
6296
6297This capability indicates that KVM running on top of Hyper-V hypervisor
6298enables Direct TLB flush for its guests meaning that TLB flush
6299hypercalls are handled by Level 0 hypervisor (Hyper-V) bypassing KVM.
6300Due to the different ABI for hypercall parameters between Hyper-V and
6301KVM, enabling this capability effectively disables all hypercall
6302handling by KVM (as some KVM hypercall may be mistakenly treated as TLB
6303flush hypercalls by Hyper-V) so userspace should disable KVM identification
6304in CPUID and only exposes Hyper-V identification. In this case, guest
6305thinks it's running on Hyper-V and only use Hyper-V hypercalls.
7de3f142
JF
6306
63078.22 KVM_CAP_S390_VCPU_RESETS
739c7af7 6308-----------------------------
7de3f142 6309
739c7af7 6310:Architectures: s390
7de3f142
JF
6311
6312This capability indicates that the KVM_S390_NORMAL_RESET and
6313KVM_S390_CLEAR_RESET ioctls are available.
04ed89dc
JF
6314
63158.23 KVM_CAP_S390_PROTECTED
739c7af7 6316---------------------------
04ed89dc 6317
739c7af7 6318:Architectures: s390
04ed89dc
JF
6319
6320This capability indicates that the Ultravisor has been initialized and
6321KVM can therefore start protected VMs.
6322This capability governs the KVM_S390_PV_COMMAND ioctl and the
6323KVM_MP_STATE_LOAD MP_STATE. KVM_SET_MP_STATE can fail for protected
6324guests when the state change is invalid.
004a0124
AJ
6325
63268.24 KVM_CAP_STEAL_TIME
6327-----------------------
6328
6329:Architectures: arm64, x86
6330
6331This capability indicates that KVM supports steal time accounting.
6332When steal time accounting is supported it may be enabled with
6333architecture-specific interfaces. This capability and the architecture-
6334specific interfaces must be consistent, i.e. if one says the feature
6335is supported, than the other should as well and vice versa. For arm64
6336see Documentation/virt/kvm/devices/vcpu.rst "KVM_ARM_VCPU_PVTIME_CTRL".
6337For x86 see Documentation/virt/kvm/msr.rst "MSR_KVM_STEAL_TIME".
f20d4e92
CW
6338
63398.25 KVM_CAP_S390_DIAG318
6340-------------------------
6341
6342:Architectures: s390
6343
6344This capability enables a guest to set information about its control program
6345(i.e. guest kernel type and version). The information is helpful during
6346system/firmware service events, providing additional data about the guest
6347environments running on the machine.
6348
6349The information is associated with the DIAGNOSE 0x318 instruction, which sets
6350an 8-byte value consisting of a one-byte Control Program Name Code (CPNC) and
6351a 7-byte Control Program Version Code (CPVC). The CPNC determines what
6352environment the control program is running in (e.g. Linux, z/VM...), and the
6353CPVC is used for information specific to OS (e.g. Linux version, Linux
6354distribution...)
6355
6356If this capability is available, then the CPNC and CPVC can be synchronized
6357between KVM and userspace via the sync regs mechanism (KVM_SYNC_DIAG318).
1ae09954
AG
6358
63598.26 KVM_CAP_X86_USER_SPACE_MSR
6360-------------------------------
6361
6362:Architectures: x86
6363
6364This capability indicates that KVM supports deflection of MSR reads and
6365writes to user space. It can be enabled on a VM level. If enabled, MSR
6366accesses that would usually trigger a #GP by KVM into the guest will
6367instead get bounced to user space through the KVM_EXIT_X86_RDMSR and
6368KVM_EXIT_X86_WRMSR exit notifications.
1a155254
AG
6369
63708.25 KVM_X86_SET_MSR_FILTER
6371---------------------------
6372
6373:Architectures: x86
6374
6375This capability indicates that KVM supports that accesses to user defined MSRs
6376may be rejected. With this capability exposed, KVM exports new VM ioctl
6377KVM_X86_SET_MSR_FILTER which user space can call to specify bitmaps of MSR
6378ranges that KVM should reject access to.
6379
6380In combination with KVM_CAP_X86_USER_SPACE_MSR, this allows user space to
6381trap and emulate MSRs that are outside of the scope of KVM as well as
6382limit the attack surface on KVM's MSR emulation code.
66570e96
OU
6383
6384
63858.26 KVM_CAP_ENFORCE_PV_CPUID
6386-----------------------------
6387
6388Architectures: x86
6389
6390When enabled, KVM will disable paravirtual features provided to the
6391guest according to the bits in the KVM_CPUID_FEATURES CPUID leaf
6392(0x40000001). Otherwise, a guest may use the paravirtual features
6393regardless of what has actually been exposed through the CPUID leaf.