]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - Documentation/virtual/kvm/api.txt
KVM: Introduce KVM_VIRTIO_CCW_NOTIFY_BUS.
[mirror_ubuntu-zesty-kernel.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
56The extension mechanism is not based on on the Linux version number.
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
71 API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which
72 means availability needs to be checked with KVM_CHECK_EXTENSION
73 (see section 4.4).
74
75 Architectures: which instruction set architectures provide this ioctl.
76 x86 includes both i386 and x86_64.
77
78 Type: system, vm, or vcpu.
79
80 Parameters: what parameters are accepted by the ioctl.
81
82 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
83 are not detailed, but errors with specific meanings are.
84
414fa985 85
9c1b96e3
AK
864.1 KVM_GET_API_VERSION
87
88Capability: basic
89Architectures: all
90Type: system ioctl
91Parameters: none
92Returns: the constant KVM_API_VERSION (=12)
93
94This identifies the API version as the stable kvm API. It is not
95expected that this number will change. However, Linux 2.6.20 and
962.6.21 report earlier versions; these are not documented and not
97supported. Applications should refuse to run if KVM_GET_API_VERSION
98returns a value other than 12. If this check passes, all ioctls
99described as 'basic' will be available.
100
414fa985 101
9c1b96e3
AK
1024.2 KVM_CREATE_VM
103
104Capability: basic
105Architectures: all
106Type: system ioctl
e08b9637 107Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
108Returns: a VM fd that can be used to control the new virtual machine.
109
110The new VM has no virtual cpus and no memory. An mmap() of a VM fd
111will access the virtual machine's physical address space; offset zero
112corresponds to guest physical address zero. Use of mmap() on a VM fd
113is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
114available.
e08b9637
CO
115You most certainly want to use 0 as machine type.
116
117In order to create user controlled virtual machines on S390, check
118KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
119privileged user (CAP_SYS_ADMIN).
9c1b96e3 120
414fa985 121
9c1b96e3
AK
1224.3 KVM_GET_MSR_INDEX_LIST
123
124Capability: basic
125Architectures: x86
126Type: system
127Parameters: struct kvm_msr_list (in/out)
128Returns: 0 on success; -1 on error
129Errors:
130 E2BIG: the msr index list is to be to fit in the array specified by
131 the user.
132
133struct kvm_msr_list {
134 __u32 nmsrs; /* number of msrs in entries */
135 __u32 indices[0];
136};
137
138This ioctl returns the guest msrs that are supported. The list varies
139by kvm version and host processor, but does not change otherwise. The
140user fills in the size of the indices array in nmsrs, and in return
141kvm adjusts nmsrs to reflect the actual number of msrs and fills in
142the indices array with their numbers.
143
2e2602ca
AK
144Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
145not returned in the MSR list, as different vcpus can have a different number
146of banks, as set via the KVM_X86_SETUP_MCE ioctl.
147
414fa985 148
9c1b96e3
AK
1494.4 KVM_CHECK_EXTENSION
150
151Capability: basic
152Architectures: all
153Type: system ioctl
154Parameters: extension identifier (KVM_CAP_*)
155Returns: 0 if unsupported; 1 (or some other positive integer) if supported
156
157The API allows the application to query about extensions to the core
158kvm API. Userspace passes an extension identifier (an integer) and
159receives an integer that describes the extension availability.
160Generally 0 means no and 1 means yes, but some extensions may report
161additional information in the integer return value.
162
414fa985 163
9c1b96e3
AK
1644.5 KVM_GET_VCPU_MMAP_SIZE
165
166Capability: basic
167Architectures: all
168Type: system ioctl
169Parameters: none
170Returns: size of vcpu mmap area, in bytes
171
172The KVM_RUN ioctl (cf.) communicates with userspace via a shared
173memory region. This ioctl returns the size of that region. See the
174KVM_RUN documentation for details.
175
414fa985 176
9c1b96e3
AK
1774.6 KVM_SET_MEMORY_REGION
178
179Capability: basic
180Architectures: all
181Type: vm ioctl
182Parameters: struct kvm_memory_region (in)
183Returns: 0 on success, -1 on error
184
b74a07be 185This ioctl is obsolete and has been removed.
9c1b96e3 186
414fa985 187
68ba6974 1884.7 KVM_CREATE_VCPU
9c1b96e3
AK
189
190Capability: basic
191Architectures: all
192Type: vm ioctl
193Parameters: vcpu id (apic id on x86)
194Returns: vcpu fd on success, -1 on error
195
196This API adds a vcpu to a virtual machine. The vcpu id is a small integer
8c3ba334
SL
197in the range [0, max_vcpus).
198
199The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
200the KVM_CHECK_EXTENSION ioctl() at run-time.
201The maximum possible value for max_vcpus can be retrieved using the
202KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
203
76d25402
PE
204If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
205cpus max.
8c3ba334
SL
206If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
207same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 208
371fefd6
PM
209On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
210threads in one or more virtual CPU cores. (This is because the
211hardware requires all the hardware threads in a CPU core to be in the
212same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
213of vcpus per virtual core (vcore). The vcore id is obtained by
214dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
215given vcore will always be in the same physical core as each other
216(though that might be a different physical core from time to time).
217Userspace can control the threading (SMT) mode of the guest by its
218allocation of vcpu ids. For example, if userspace wants
219single-threaded guest vcpus, it should make all vcpu ids be a multiple
220of the number of vcpus per vcore.
221
5b1c1493
CO
222For virtual cpus that have been created with S390 user controlled virtual
223machines, the resulting vcpu fd can be memory mapped at page offset
224KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
225cpu's hardware control block.
226
414fa985 227
68ba6974 2284.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
229
230Capability: basic
231Architectures: x86
232Type: vm ioctl
233Parameters: struct kvm_dirty_log (in/out)
234Returns: 0 on success, -1 on error
235
236/* for KVM_GET_DIRTY_LOG */
237struct kvm_dirty_log {
238 __u32 slot;
239 __u32 padding;
240 union {
241 void __user *dirty_bitmap; /* one bit per page */
242 __u64 padding;
243 };
244};
245
246Given a memory slot, return a bitmap containing any pages dirtied
247since the last call to this ioctl. Bit 0 is the first page in the
248memory slot. Ensure the entire structure is cleared to avoid padding
249issues.
250
414fa985 251
68ba6974 2524.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
253
254Capability: basic
255Architectures: x86
256Type: vm ioctl
257Parameters: struct kvm_memory_alias (in)
258Returns: 0 (success), -1 (error)
259
a1f4d395 260This ioctl is obsolete and has been removed.
9c1b96e3 261
414fa985 262
68ba6974 2634.10 KVM_RUN
9c1b96e3
AK
264
265Capability: basic
266Architectures: all
267Type: vcpu ioctl
268Parameters: none
269Returns: 0 on success, -1 on error
270Errors:
271 EINTR: an unmasked signal is pending
272
273This ioctl is used to run a guest virtual cpu. While there are no
274explicit parameters, there is an implicit parameter block that can be
275obtained by mmap()ing the vcpu fd at offset 0, with the size given by
276KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
277kvm_run' (see below).
278
414fa985 279
68ba6974 2804.11 KVM_GET_REGS
9c1b96e3
AK
281
282Capability: basic
749cf76c 283Architectures: all except ARM
9c1b96e3
AK
284Type: vcpu ioctl
285Parameters: struct kvm_regs (out)
286Returns: 0 on success, -1 on error
287
288Reads the general purpose registers from the vcpu.
289
290/* x86 */
291struct kvm_regs {
292 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
293 __u64 rax, rbx, rcx, rdx;
294 __u64 rsi, rdi, rsp, rbp;
295 __u64 r8, r9, r10, r11;
296 __u64 r12, r13, r14, r15;
297 __u64 rip, rflags;
298};
299
414fa985 300
68ba6974 3014.12 KVM_SET_REGS
9c1b96e3
AK
302
303Capability: basic
749cf76c 304Architectures: all except ARM
9c1b96e3
AK
305Type: vcpu ioctl
306Parameters: struct kvm_regs (in)
307Returns: 0 on success, -1 on error
308
309Writes the general purpose registers into the vcpu.
310
311See KVM_GET_REGS for the data structure.
312
414fa985 313
68ba6974 3144.13 KVM_GET_SREGS
9c1b96e3
AK
315
316Capability: basic
5ce941ee 317Architectures: x86, ppc
9c1b96e3
AK
318Type: vcpu ioctl
319Parameters: struct kvm_sregs (out)
320Returns: 0 on success, -1 on error
321
322Reads special registers from the vcpu.
323
324/* x86 */
325struct kvm_sregs {
326 struct kvm_segment cs, ds, es, fs, gs, ss;
327 struct kvm_segment tr, ldt;
328 struct kvm_dtable gdt, idt;
329 __u64 cr0, cr2, cr3, cr4, cr8;
330 __u64 efer;
331 __u64 apic_base;
332 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
333};
334
68e2ffed 335/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 336
9c1b96e3
AK
337interrupt_bitmap is a bitmap of pending external interrupts. At most
338one bit may be set. This interrupt has been acknowledged by the APIC
339but not yet injected into the cpu core.
340
414fa985 341
68ba6974 3424.14 KVM_SET_SREGS
9c1b96e3
AK
343
344Capability: basic
5ce941ee 345Architectures: x86, ppc
9c1b96e3
AK
346Type: vcpu ioctl
347Parameters: struct kvm_sregs (in)
348Returns: 0 on success, -1 on error
349
350Writes special registers into the vcpu. See KVM_GET_SREGS for the
351data structures.
352
414fa985 353
68ba6974 3544.15 KVM_TRANSLATE
9c1b96e3
AK
355
356Capability: basic
357Architectures: x86
358Type: vcpu ioctl
359Parameters: struct kvm_translation (in/out)
360Returns: 0 on success, -1 on error
361
362Translates a virtual address according to the vcpu's current address
363translation mode.
364
365struct kvm_translation {
366 /* in */
367 __u64 linear_address;
368
369 /* out */
370 __u64 physical_address;
371 __u8 valid;
372 __u8 writeable;
373 __u8 usermode;
374 __u8 pad[5];
375};
376
414fa985 377
68ba6974 3784.16 KVM_INTERRUPT
9c1b96e3
AK
379
380Capability: basic
6f7a2bd4 381Architectures: x86, ppc
9c1b96e3
AK
382Type: vcpu ioctl
383Parameters: struct kvm_interrupt (in)
384Returns: 0 on success, -1 on error
385
386Queues a hardware interrupt vector to be injected. This is only
6f7a2bd4 387useful if in-kernel local APIC or equivalent is not used.
9c1b96e3
AK
388
389/* for KVM_INTERRUPT */
390struct kvm_interrupt {
391 /* in */
392 __u32 irq;
393};
394
6f7a2bd4
AG
395X86:
396
9c1b96e3
AK
397Note 'irq' is an interrupt vector, not an interrupt pin or line.
398
6f7a2bd4
AG
399PPC:
400
401Queues an external interrupt to be injected. This ioctl is overleaded
402with 3 different irq values:
403
404a) KVM_INTERRUPT_SET
405
406 This injects an edge type external interrupt into the guest once it's ready
407 to receive interrupts. When injected, the interrupt is done.
408
409b) KVM_INTERRUPT_UNSET
410
411 This unsets any pending interrupt.
412
413 Only available with KVM_CAP_PPC_UNSET_IRQ.
414
415c) KVM_INTERRUPT_SET_LEVEL
416
417 This injects a level type external interrupt into the guest context. The
418 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
419 is triggered.
420
421 Only available with KVM_CAP_PPC_IRQ_LEVEL.
422
423Note that any value for 'irq' other than the ones stated above is invalid
424and incurs unexpected behavior.
425
414fa985 426
68ba6974 4274.17 KVM_DEBUG_GUEST
9c1b96e3
AK
428
429Capability: basic
430Architectures: none
431Type: vcpu ioctl
432Parameters: none)
433Returns: -1 on error
434
435Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
436
414fa985 437
68ba6974 4384.18 KVM_GET_MSRS
9c1b96e3
AK
439
440Capability: basic
441Architectures: x86
442Type: vcpu ioctl
443Parameters: struct kvm_msrs (in/out)
444Returns: 0 on success, -1 on error
445
446Reads model-specific registers from the vcpu. Supported msr indices can
447be obtained using KVM_GET_MSR_INDEX_LIST.
448
449struct kvm_msrs {
450 __u32 nmsrs; /* number of msrs in entries */
451 __u32 pad;
452
453 struct kvm_msr_entry entries[0];
454};
455
456struct kvm_msr_entry {
457 __u32 index;
458 __u32 reserved;
459 __u64 data;
460};
461
462Application code should set the 'nmsrs' member (which indicates the
463size of the entries array) and the 'index' member of each array entry.
464kvm will fill in the 'data' member.
465
414fa985 466
68ba6974 4674.19 KVM_SET_MSRS
9c1b96e3
AK
468
469Capability: basic
470Architectures: x86
471Type: vcpu ioctl
472Parameters: struct kvm_msrs (in)
473Returns: 0 on success, -1 on error
474
475Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
476data structures.
477
478Application code should set the 'nmsrs' member (which indicates the
479size of the entries array), and the 'index' and 'data' members of each
480array entry.
481
414fa985 482
68ba6974 4834.20 KVM_SET_CPUID
9c1b96e3
AK
484
485Capability: basic
486Architectures: x86
487Type: vcpu ioctl
488Parameters: struct kvm_cpuid (in)
489Returns: 0 on success, -1 on error
490
491Defines the vcpu responses to the cpuid instruction. Applications
492should use the KVM_SET_CPUID2 ioctl if available.
493
494
495struct kvm_cpuid_entry {
496 __u32 function;
497 __u32 eax;
498 __u32 ebx;
499 __u32 ecx;
500 __u32 edx;
501 __u32 padding;
502};
503
504/* for KVM_SET_CPUID */
505struct kvm_cpuid {
506 __u32 nent;
507 __u32 padding;
508 struct kvm_cpuid_entry entries[0];
509};
510
414fa985 511
68ba6974 5124.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
513
514Capability: basic
515Architectures: x86
516Type: vcpu ioctl
517Parameters: struct kvm_signal_mask (in)
518Returns: 0 on success, -1 on error
519
520Defines which signals are blocked during execution of KVM_RUN. This
521signal mask temporarily overrides the threads signal mask. Any
522unblocked signal received (except SIGKILL and SIGSTOP, which retain
523their traditional behaviour) will cause KVM_RUN to return with -EINTR.
524
525Note the signal will only be delivered if not blocked by the original
526signal mask.
527
528/* for KVM_SET_SIGNAL_MASK */
529struct kvm_signal_mask {
530 __u32 len;
531 __u8 sigset[0];
532};
533
414fa985 534
68ba6974 5354.22 KVM_GET_FPU
9c1b96e3
AK
536
537Capability: basic
538Architectures: x86
539Type: vcpu ioctl
540Parameters: struct kvm_fpu (out)
541Returns: 0 on success, -1 on error
542
543Reads the floating point state from the vcpu.
544
545/* for KVM_GET_FPU and KVM_SET_FPU */
546struct kvm_fpu {
547 __u8 fpr[8][16];
548 __u16 fcw;
549 __u16 fsw;
550 __u8 ftwx; /* in fxsave format */
551 __u8 pad1;
552 __u16 last_opcode;
553 __u64 last_ip;
554 __u64 last_dp;
555 __u8 xmm[16][16];
556 __u32 mxcsr;
557 __u32 pad2;
558};
559
414fa985 560
68ba6974 5614.23 KVM_SET_FPU
9c1b96e3
AK
562
563Capability: basic
564Architectures: x86
565Type: vcpu ioctl
566Parameters: struct kvm_fpu (in)
567Returns: 0 on success, -1 on error
568
569Writes the floating point state to the vcpu.
570
571/* for KVM_GET_FPU and KVM_SET_FPU */
572struct kvm_fpu {
573 __u8 fpr[8][16];
574 __u16 fcw;
575 __u16 fsw;
576 __u8 ftwx; /* in fxsave format */
577 __u8 pad1;
578 __u16 last_opcode;
579 __u64 last_ip;
580 __u64 last_dp;
581 __u8 xmm[16][16];
582 __u32 mxcsr;
583 __u32 pad2;
584};
585
414fa985 586
68ba6974 5874.24 KVM_CREATE_IRQCHIP
5dadbfd6
AK
588
589Capability: KVM_CAP_IRQCHIP
749cf76c 590Architectures: x86, ia64, ARM
5dadbfd6
AK
591Type: vm ioctl
592Parameters: none
593Returns: 0 on success, -1 on error
594
595Creates an interrupt controller model in the kernel. On x86, creates a virtual
596ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
597local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
749cf76c
CD
598only go to the IOAPIC. On ia64, a IOSAPIC is created. On ARM, a GIC is
599created.
5dadbfd6 600
414fa985 601
68ba6974 6024.25 KVM_IRQ_LINE
5dadbfd6
AK
603
604Capability: KVM_CAP_IRQCHIP
86ce8535 605Architectures: x86, ia64, arm
5dadbfd6
AK
606Type: vm ioctl
607Parameters: struct kvm_irq_level
608Returns: 0 on success, -1 on error
609
610Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
611On some architectures it is required that an interrupt controller model has
612been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
613interrupts require the level to be set to 1 and then back to 0.
614
615ARM can signal an interrupt either at the CPU level, or at the in-kernel irqchip
616(GIC), and for in-kernel irqchip can tell the GIC to use PPIs designated for
617specific cpus. The irq field is interpreted like this:
618
619  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
620 field: | irq_type | vcpu_index | irq_id |
621
622The irq_type field has the following values:
623- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
624- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
625 (the vcpu_index field is ignored)
626- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
627
628(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
629
630In both cases, level is used to raise/lower the line.
5dadbfd6
AK
631
632struct kvm_irq_level {
633 union {
634 __u32 irq; /* GSI */
635 __s32 status; /* not used for KVM_IRQ_LEVEL */
636 };
637 __u32 level; /* 0 or 1 */
638};
639
414fa985 640
68ba6974 6414.26 KVM_GET_IRQCHIP
5dadbfd6
AK
642
643Capability: KVM_CAP_IRQCHIP
644Architectures: x86, ia64
645Type: vm ioctl
646Parameters: struct kvm_irqchip (in/out)
647Returns: 0 on success, -1 on error
648
649Reads the state of a kernel interrupt controller created with
650KVM_CREATE_IRQCHIP into a buffer provided by the caller.
651
652struct kvm_irqchip {
653 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
654 __u32 pad;
655 union {
656 char dummy[512]; /* reserving space */
657 struct kvm_pic_state pic;
658 struct kvm_ioapic_state ioapic;
659 } chip;
660};
661
414fa985 662
68ba6974 6634.27 KVM_SET_IRQCHIP
5dadbfd6
AK
664
665Capability: KVM_CAP_IRQCHIP
666Architectures: x86, ia64
667Type: vm ioctl
668Parameters: struct kvm_irqchip (in)
669Returns: 0 on success, -1 on error
670
671Sets the state of a kernel interrupt controller created with
672KVM_CREATE_IRQCHIP from a buffer provided by the caller.
673
674struct kvm_irqchip {
675 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
676 __u32 pad;
677 union {
678 char dummy[512]; /* reserving space */
679 struct kvm_pic_state pic;
680 struct kvm_ioapic_state ioapic;
681 } chip;
682};
683
414fa985 684
68ba6974 6854.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
686
687Capability: KVM_CAP_XEN_HVM
688Architectures: x86
689Type: vm ioctl
690Parameters: struct kvm_xen_hvm_config (in)
691Returns: 0 on success, -1 on error
692
693Sets the MSR that the Xen HVM guest uses to initialize its hypercall
694page, and provides the starting address and size of the hypercall
695blobs in userspace. When the guest writes the MSR, kvm copies one
696page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
697memory.
698
699struct kvm_xen_hvm_config {
700 __u32 flags;
701 __u32 msr;
702 __u64 blob_addr_32;
703 __u64 blob_addr_64;
704 __u8 blob_size_32;
705 __u8 blob_size_64;
706 __u8 pad2[30];
707};
708
414fa985 709
68ba6974 7104.29 KVM_GET_CLOCK
afbcf7ab
GC
711
712Capability: KVM_CAP_ADJUST_CLOCK
713Architectures: x86
714Type: vm ioctl
715Parameters: struct kvm_clock_data (out)
716Returns: 0 on success, -1 on error
717
718Gets the current timestamp of kvmclock as seen by the current guest. In
719conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
720such as migration.
721
722struct kvm_clock_data {
723 __u64 clock; /* kvmclock current value */
724 __u32 flags;
725 __u32 pad[9];
726};
727
414fa985 728
68ba6974 7294.30 KVM_SET_CLOCK
afbcf7ab
GC
730
731Capability: KVM_CAP_ADJUST_CLOCK
732Architectures: x86
733Type: vm ioctl
734Parameters: struct kvm_clock_data (in)
735Returns: 0 on success, -1 on error
736
2044892d 737Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
738In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
739such as migration.
740
741struct kvm_clock_data {
742 __u64 clock; /* kvmclock current value */
743 __u32 flags;
744 __u32 pad[9];
745};
746
414fa985 747
68ba6974 7484.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
749
750Capability: KVM_CAP_VCPU_EVENTS
48005f64 751Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
752Architectures: x86
753Type: vm ioctl
754Parameters: struct kvm_vcpu_event (out)
755Returns: 0 on success, -1 on error
756
757Gets currently pending exceptions, interrupts, and NMIs as well as related
758states of the vcpu.
759
760struct kvm_vcpu_events {
761 struct {
762 __u8 injected;
763 __u8 nr;
764 __u8 has_error_code;
765 __u8 pad;
766 __u32 error_code;
767 } exception;
768 struct {
769 __u8 injected;
770 __u8 nr;
771 __u8 soft;
48005f64 772 __u8 shadow;
3cfc3092
JK
773 } interrupt;
774 struct {
775 __u8 injected;
776 __u8 pending;
777 __u8 masked;
778 __u8 pad;
779 } nmi;
780 __u32 sipi_vector;
dab4b911 781 __u32 flags;
3cfc3092
JK
782};
783
48005f64
JK
784KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
785interrupt.shadow contains a valid state. Otherwise, this field is undefined.
786
414fa985 787
68ba6974 7884.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
789
790Capability: KVM_CAP_VCPU_EVENTS
48005f64 791Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
792Architectures: x86
793Type: vm ioctl
794Parameters: struct kvm_vcpu_event (in)
795Returns: 0 on success, -1 on error
796
797Set pending exceptions, interrupts, and NMIs as well as related states of the
798vcpu.
799
800See KVM_GET_VCPU_EVENTS for the data structure.
801
dab4b911
JK
802Fields that may be modified asynchronously by running VCPUs can be excluded
803from the update. These fields are nmi.pending and sipi_vector. Keep the
804corresponding bits in the flags field cleared to suppress overwriting the
805current in-kernel state. The bits are:
806
807KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
808KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
809
48005f64
JK
810If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
811the flags field to signal that interrupt.shadow contains a valid state and
812shall be written into the VCPU.
813
414fa985 814
68ba6974 8154.33 KVM_GET_DEBUGREGS
a1efbe77
JK
816
817Capability: KVM_CAP_DEBUGREGS
818Architectures: x86
819Type: vm ioctl
820Parameters: struct kvm_debugregs (out)
821Returns: 0 on success, -1 on error
822
823Reads debug registers from the vcpu.
824
825struct kvm_debugregs {
826 __u64 db[4];
827 __u64 dr6;
828 __u64 dr7;
829 __u64 flags;
830 __u64 reserved[9];
831};
832
414fa985 833
68ba6974 8344.34 KVM_SET_DEBUGREGS
a1efbe77
JK
835
836Capability: KVM_CAP_DEBUGREGS
837Architectures: x86
838Type: vm ioctl
839Parameters: struct kvm_debugregs (in)
840Returns: 0 on success, -1 on error
841
842Writes debug registers into the vcpu.
843
844See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
845yet and must be cleared on entry.
846
414fa985 847
68ba6974 8484.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
849
850Capability: KVM_CAP_USER_MEM
851Architectures: all
852Type: vm ioctl
853Parameters: struct kvm_userspace_memory_region (in)
854Returns: 0 on success, -1 on error
855
856struct kvm_userspace_memory_region {
857 __u32 slot;
858 __u32 flags;
859 __u64 guest_phys_addr;
860 __u64 memory_size; /* bytes */
861 __u64 userspace_addr; /* start of the userspace allocated memory */
862};
863
864/* for kvm_memory_region::flags */
4d8b81ab
XG
865#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
866#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
867
868This ioctl allows the user to create or modify a guest physical memory
869slot. When changing an existing slot, it may be moved in the guest
870physical memory space, or its flags may be modified. It may not be
871resized. Slots may not overlap in guest physical address space.
872
873Memory for the region is taken starting at the address denoted by the
874field userspace_addr, which must point at user addressable memory for
875the entire memory slot size. Any object may back this memory, including
876anonymous memory, ordinary files, and hugetlbfs.
877
878It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
879be identical. This allows large pages in the guest to be backed by large
880pages in the host.
881
75d61fbc
TY
882The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
883KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
884writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
885use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
886to make a new slot read-only. In this case, writes to this memory will be
887posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
888
889When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
890the memory region are automatically reflected into the guest. For example, an
891mmap() that affects the region will be made visible immediately. Another
892example is madvise(MADV_DROP).
0f2d8f4d
AK
893
894It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
895The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
896allocation and is deprecated.
3cfc3092 897
414fa985 898
68ba6974 8994.36 KVM_SET_TSS_ADDR
8a5416db
AK
900
901Capability: KVM_CAP_SET_TSS_ADDR
902Architectures: x86
903Type: vm ioctl
904Parameters: unsigned long tss_address (in)
905Returns: 0 on success, -1 on error
906
907This ioctl defines the physical address of a three-page region in the guest
908physical address space. The region must be within the first 4GB of the
909guest physical address space and must not conflict with any memory slot
910or any mmio address. The guest may malfunction if it accesses this memory
911region.
912
913This ioctl is required on Intel-based hosts. This is needed on Intel hardware
914because of a quirk in the virtualization implementation (see the internals
915documentation when it pops into existence).
916
414fa985 917
68ba6974 9184.37 KVM_ENABLE_CAP
71fbfd5f
AG
919
920Capability: KVM_CAP_ENABLE_CAP
d6712df9 921Architectures: ppc, s390
71fbfd5f
AG
922Type: vcpu ioctl
923Parameters: struct kvm_enable_cap (in)
924Returns: 0 on success; -1 on error
925
926+Not all extensions are enabled by default. Using this ioctl the application
927can enable an extension, making it available to the guest.
928
929On systems that do not support this ioctl, it always fails. On systems that
930do support it, it only works for extensions that are supported for enablement.
931
932To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
933be used.
934
935struct kvm_enable_cap {
936 /* in */
937 __u32 cap;
938
939The capability that is supposed to get enabled.
940
941 __u32 flags;
942
943A bitfield indicating future enhancements. Has to be 0 for now.
944
945 __u64 args[4];
946
947Arguments for enabling a feature. If a feature needs initial values to
948function properly, this is the place to put them.
949
950 __u8 pad[64];
951};
952
414fa985 953
68ba6974 9544.38 KVM_GET_MP_STATE
b843f065
AK
955
956Capability: KVM_CAP_MP_STATE
957Architectures: x86, ia64
958Type: vcpu ioctl
959Parameters: struct kvm_mp_state (out)
960Returns: 0 on success; -1 on error
961
962struct kvm_mp_state {
963 __u32 mp_state;
964};
965
966Returns the vcpu's current "multiprocessing state" (though also valid on
967uniprocessor guests).
968
969Possible values are:
970
971 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running
972 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
973 which has not yet received an INIT signal
974 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
975 now ready for a SIPI
976 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
977 is waiting for an interrupt
978 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
b595076a 979 accessible via KVM_GET_VCPU_EVENTS)
b843f065
AK
980
981This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
982irqchip, the multiprocessing state must be maintained by userspace.
983
414fa985 984
68ba6974 9854.39 KVM_SET_MP_STATE
b843f065
AK
986
987Capability: KVM_CAP_MP_STATE
988Architectures: x86, ia64
989Type: vcpu ioctl
990Parameters: struct kvm_mp_state (in)
991Returns: 0 on success; -1 on error
992
993Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
994arguments.
995
996This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
997irqchip, the multiprocessing state must be maintained by userspace.
998
414fa985 999
68ba6974 10004.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1001
1002Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1003Architectures: x86
1004Type: vm ioctl
1005Parameters: unsigned long identity (in)
1006Returns: 0 on success, -1 on error
1007
1008This ioctl defines the physical address of a one-page region in the guest
1009physical address space. The region must be within the first 4GB of the
1010guest physical address space and must not conflict with any memory slot
1011or any mmio address. The guest may malfunction if it accesses this memory
1012region.
1013
1014This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1015because of a quirk in the virtualization implementation (see the internals
1016documentation when it pops into existence).
1017
414fa985 1018
68ba6974 10194.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1020
1021Capability: KVM_CAP_SET_BOOT_CPU_ID
1022Architectures: x86, ia64
1023Type: vm ioctl
1024Parameters: unsigned long vcpu_id
1025Returns: 0 on success, -1 on error
1026
1027Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1028as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1029is vcpu 0.
1030
414fa985 1031
68ba6974 10324.42 KVM_GET_XSAVE
2d5b5a66
SY
1033
1034Capability: KVM_CAP_XSAVE
1035Architectures: x86
1036Type: vcpu ioctl
1037Parameters: struct kvm_xsave (out)
1038Returns: 0 on success, -1 on error
1039
1040struct kvm_xsave {
1041 __u32 region[1024];
1042};
1043
1044This ioctl would copy current vcpu's xsave struct to the userspace.
1045
414fa985 1046
68ba6974 10474.43 KVM_SET_XSAVE
2d5b5a66
SY
1048
1049Capability: KVM_CAP_XSAVE
1050Architectures: x86
1051Type: vcpu ioctl
1052Parameters: struct kvm_xsave (in)
1053Returns: 0 on success, -1 on error
1054
1055struct kvm_xsave {
1056 __u32 region[1024];
1057};
1058
1059This ioctl would copy userspace's xsave struct to the kernel.
1060
414fa985 1061
68ba6974 10624.44 KVM_GET_XCRS
2d5b5a66
SY
1063
1064Capability: KVM_CAP_XCRS
1065Architectures: x86
1066Type: vcpu ioctl
1067Parameters: struct kvm_xcrs (out)
1068Returns: 0 on success, -1 on error
1069
1070struct kvm_xcr {
1071 __u32 xcr;
1072 __u32 reserved;
1073 __u64 value;
1074};
1075
1076struct kvm_xcrs {
1077 __u32 nr_xcrs;
1078 __u32 flags;
1079 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1080 __u64 padding[16];
1081};
1082
1083This ioctl would copy current vcpu's xcrs to the userspace.
1084
414fa985 1085
68ba6974 10864.45 KVM_SET_XCRS
2d5b5a66
SY
1087
1088Capability: KVM_CAP_XCRS
1089Architectures: x86
1090Type: vcpu ioctl
1091Parameters: struct kvm_xcrs (in)
1092Returns: 0 on success, -1 on error
1093
1094struct kvm_xcr {
1095 __u32 xcr;
1096 __u32 reserved;
1097 __u64 value;
1098};
1099
1100struct kvm_xcrs {
1101 __u32 nr_xcrs;
1102 __u32 flags;
1103 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1104 __u64 padding[16];
1105};
1106
1107This ioctl would set vcpu's xcr to the value userspace specified.
1108
414fa985 1109
68ba6974 11104.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1111
1112Capability: KVM_CAP_EXT_CPUID
1113Architectures: x86
1114Type: system ioctl
1115Parameters: struct kvm_cpuid2 (in/out)
1116Returns: 0 on success, -1 on error
1117
1118struct kvm_cpuid2 {
1119 __u32 nent;
1120 __u32 padding;
1121 struct kvm_cpuid_entry2 entries[0];
1122};
1123
1124#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1
1125#define KVM_CPUID_FLAG_STATEFUL_FUNC 2
1126#define KVM_CPUID_FLAG_STATE_READ_NEXT 4
1127
1128struct kvm_cpuid_entry2 {
1129 __u32 function;
1130 __u32 index;
1131 __u32 flags;
1132 __u32 eax;
1133 __u32 ebx;
1134 __u32 ecx;
1135 __u32 edx;
1136 __u32 padding[3];
1137};
1138
1139This ioctl returns x86 cpuid features which are supported by both the hardware
1140and kvm. Userspace can use the information returned by this ioctl to
1141construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1142hardware, kernel, and userspace capabilities, and with user requirements (for
1143example, the user may wish to constrain cpuid to emulate older hardware,
1144or for feature consistency across a cluster).
1145
1146Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1147with the 'nent' field indicating the number of entries in the variable-size
1148array 'entries'. If the number of entries is too low to describe the cpu
1149capabilities, an error (E2BIG) is returned. If the number is too high,
1150the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1151number is just right, the 'nent' field is adjusted to the number of valid
1152entries in the 'entries' array, which is then filled.
1153
1154The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1155with unknown or unsupported features masked out. Some features (for example,
1156x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1157emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1158
1159 function: the eax value used to obtain the entry
1160 index: the ecx value used to obtain the entry (for entries that are
1161 affected by ecx)
1162 flags: an OR of zero or more of the following:
1163 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1164 if the index field is valid
1165 KVM_CPUID_FLAG_STATEFUL_FUNC:
1166 if cpuid for this function returns different values for successive
1167 invocations; there will be several entries with the same function,
1168 all with this flag set
1169 KVM_CPUID_FLAG_STATE_READ_NEXT:
1170 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1171 the first entry to be read by a cpu
1172 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1173 this function/index combination
1174
4d25a066
JK
1175The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1176as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1177support. Instead it is reported via
1178
1179 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1180
1181if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1182feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1183
414fa985 1184
68ba6974 11854.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1186
1187Capability: KVM_CAP_PPC_GET_PVINFO
1188Architectures: ppc
1189Type: vm ioctl
1190Parameters: struct kvm_ppc_pvinfo (out)
1191Returns: 0 on success, !0 on error
1192
1193struct kvm_ppc_pvinfo {
1194 __u32 flags;
1195 __u32 hcall[4];
1196 __u8 pad[108];
1197};
1198
1199This ioctl fetches PV specific information that need to be passed to the guest
1200using the device tree or other means from vm context.
1201
9202e076 1202The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1203
1204If any additional field gets added to this structure later on, a bit for that
1205additional piece of information will be set in the flags bitmap.
1206
9202e076
LYB
1207The flags bitmap is defined as:
1208
1209 /* the host supports the ePAPR idle hcall
1210 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1211
68ba6974 12124.48 KVM_ASSIGN_PCI_DEVICE
49f48172
JK
1213
1214Capability: KVM_CAP_DEVICE_ASSIGNMENT
1215Architectures: x86 ia64
1216Type: vm ioctl
1217Parameters: struct kvm_assigned_pci_dev (in)
1218Returns: 0 on success, -1 on error
1219
1220Assigns a host PCI device to the VM.
1221
1222struct kvm_assigned_pci_dev {
1223 __u32 assigned_dev_id;
1224 __u32 busnr;
1225 __u32 devfn;
1226 __u32 flags;
1227 __u32 segnr;
1228 union {
1229 __u32 reserved[11];
1230 };
1231};
1232
1233The PCI device is specified by the triple segnr, busnr, and devfn.
1234Identification in succeeding service requests is done via assigned_dev_id. The
1235following flags are specified:
1236
1237/* Depends on KVM_CAP_IOMMU */
1238#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1239/* The following two depend on KVM_CAP_PCI_2_3 */
1240#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1241#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1242
1243If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1244via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1245assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1246guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1247
42387373
AW
1248The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1249isolation of the device. Usages not specifying this flag are deprecated.
1250
3d27e23b
AW
1251Only PCI header type 0 devices with PCI BAR resources are supported by
1252device assignment. The user requesting this ioctl must have read/write
1253access to the PCI sysfs resource files associated with the device.
1254
414fa985 1255
68ba6974 12564.49 KVM_DEASSIGN_PCI_DEVICE
49f48172
JK
1257
1258Capability: KVM_CAP_DEVICE_DEASSIGNMENT
1259Architectures: x86 ia64
1260Type: vm ioctl
1261Parameters: struct kvm_assigned_pci_dev (in)
1262Returns: 0 on success, -1 on error
1263
1264Ends PCI device assignment, releasing all associated resources.
1265
1266See KVM_CAP_DEVICE_ASSIGNMENT for the data structure. Only assigned_dev_id is
1267used in kvm_assigned_pci_dev to identify the device.
1268
414fa985 1269
68ba6974 12704.50 KVM_ASSIGN_DEV_IRQ
49f48172
JK
1271
1272Capability: KVM_CAP_ASSIGN_DEV_IRQ
1273Architectures: x86 ia64
1274Type: vm ioctl
1275Parameters: struct kvm_assigned_irq (in)
1276Returns: 0 on success, -1 on error
1277
1278Assigns an IRQ to a passed-through device.
1279
1280struct kvm_assigned_irq {
1281 __u32 assigned_dev_id;
91e3d71d 1282 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1283 __u32 guest_irq;
1284 __u32 flags;
1285 union {
49f48172
JK
1286 __u32 reserved[12];
1287 };
1288};
1289
1290The following flags are defined:
1291
1292#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1293#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1294#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1295
1296#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1297#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1298#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1299
1300It is not valid to specify multiple types per host or guest IRQ. However, the
1301IRQ type of host and guest can differ or can even be null.
1302
414fa985 1303
68ba6974 13044.51 KVM_DEASSIGN_DEV_IRQ
49f48172
JK
1305
1306Capability: KVM_CAP_ASSIGN_DEV_IRQ
1307Architectures: x86 ia64
1308Type: vm ioctl
1309Parameters: struct kvm_assigned_irq (in)
1310Returns: 0 on success, -1 on error
1311
1312Ends an IRQ assignment to a passed-through device.
1313
1314See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1315by assigned_dev_id, flags must correspond to the IRQ type specified on
1316KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1317
414fa985 1318
68ba6974 13194.52 KVM_SET_GSI_ROUTING
49f48172
JK
1320
1321Capability: KVM_CAP_IRQ_ROUTING
1322Architectures: x86 ia64
1323Type: vm ioctl
1324Parameters: struct kvm_irq_routing (in)
1325Returns: 0 on success, -1 on error
1326
1327Sets the GSI routing table entries, overwriting any previously set entries.
1328
1329struct kvm_irq_routing {
1330 __u32 nr;
1331 __u32 flags;
1332 struct kvm_irq_routing_entry entries[0];
1333};
1334
1335No flags are specified so far, the corresponding field must be set to zero.
1336
1337struct kvm_irq_routing_entry {
1338 __u32 gsi;
1339 __u32 type;
1340 __u32 flags;
1341 __u32 pad;
1342 union {
1343 struct kvm_irq_routing_irqchip irqchip;
1344 struct kvm_irq_routing_msi msi;
1345 __u32 pad[8];
1346 } u;
1347};
1348
1349/* gsi routing entry types */
1350#define KVM_IRQ_ROUTING_IRQCHIP 1
1351#define KVM_IRQ_ROUTING_MSI 2
1352
1353No flags are specified so far, the corresponding field must be set to zero.
1354
1355struct kvm_irq_routing_irqchip {
1356 __u32 irqchip;
1357 __u32 pin;
1358};
1359
1360struct kvm_irq_routing_msi {
1361 __u32 address_lo;
1362 __u32 address_hi;
1363 __u32 data;
1364 __u32 pad;
1365};
1366
414fa985 1367
68ba6974 13684.53 KVM_ASSIGN_SET_MSIX_NR
49f48172
JK
1369
1370Capability: KVM_CAP_DEVICE_MSIX
1371Architectures: x86 ia64
1372Type: vm ioctl
1373Parameters: struct kvm_assigned_msix_nr (in)
1374Returns: 0 on success, -1 on error
1375
58f0964e
JK
1376Set the number of MSI-X interrupts for an assigned device. The number is
1377reset again by terminating the MSI-X assignment of the device via
1378KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1379point will fail.
49f48172
JK
1380
1381struct kvm_assigned_msix_nr {
1382 __u32 assigned_dev_id;
1383 __u16 entry_nr;
1384 __u16 padding;
1385};
1386
1387#define KVM_MAX_MSIX_PER_DEV 256
1388
414fa985 1389
68ba6974 13904.54 KVM_ASSIGN_SET_MSIX_ENTRY
49f48172
JK
1391
1392Capability: KVM_CAP_DEVICE_MSIX
1393Architectures: x86 ia64
1394Type: vm ioctl
1395Parameters: struct kvm_assigned_msix_entry (in)
1396Returns: 0 on success, -1 on error
1397
1398Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1399the GSI vector to zero means disabling the interrupt.
1400
1401struct kvm_assigned_msix_entry {
1402 __u32 assigned_dev_id;
1403 __u32 gsi;
1404 __u16 entry; /* The index of entry in the MSI-X table */
1405 __u16 padding[3];
1406};
1407
414fa985
JK
1408
14094.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1410
1411Capability: KVM_CAP_TSC_CONTROL
1412Architectures: x86
1413Type: vcpu ioctl
1414Parameters: virtual tsc_khz
1415Returns: 0 on success, -1 on error
1416
1417Specifies the tsc frequency for the virtual machine. The unit of the
1418frequency is KHz.
1419
414fa985
JK
1420
14214.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1422
1423Capability: KVM_CAP_GET_TSC_KHZ
1424Architectures: x86
1425Type: vcpu ioctl
1426Parameters: none
1427Returns: virtual tsc-khz on success, negative value on error
1428
1429Returns the tsc frequency of the guest. The unit of the return value is
1430KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1431error.
1432
414fa985
JK
1433
14344.57 KVM_GET_LAPIC
e7677933
AK
1435
1436Capability: KVM_CAP_IRQCHIP
1437Architectures: x86
1438Type: vcpu ioctl
1439Parameters: struct kvm_lapic_state (out)
1440Returns: 0 on success, -1 on error
1441
1442#define KVM_APIC_REG_SIZE 0x400
1443struct kvm_lapic_state {
1444 char regs[KVM_APIC_REG_SIZE];
1445};
1446
1447Reads the Local APIC registers and copies them into the input argument. The
1448data format and layout are the same as documented in the architecture manual.
1449
414fa985
JK
1450
14514.58 KVM_SET_LAPIC
e7677933
AK
1452
1453Capability: KVM_CAP_IRQCHIP
1454Architectures: x86
1455Type: vcpu ioctl
1456Parameters: struct kvm_lapic_state (in)
1457Returns: 0 on success, -1 on error
1458
1459#define KVM_APIC_REG_SIZE 0x400
1460struct kvm_lapic_state {
1461 char regs[KVM_APIC_REG_SIZE];
1462};
1463
1464Copies the input argument into the the Local APIC registers. The data format
1465and layout are the same as documented in the architecture manual.
1466
414fa985
JK
1467
14684.59 KVM_IOEVENTFD
55399a02
SL
1469
1470Capability: KVM_CAP_IOEVENTFD
1471Architectures: all
1472Type: vm ioctl
1473Parameters: struct kvm_ioeventfd (in)
1474Returns: 0 on success, !0 on error
1475
1476This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1477within the guest. A guest write in the registered address will signal the
1478provided event instead of triggering an exit.
1479
1480struct kvm_ioeventfd {
1481 __u64 datamatch;
1482 __u64 addr; /* legal pio/mmio address */
1483 __u32 len; /* 1, 2, 4, or 8 bytes */
1484 __s32 fd;
1485 __u32 flags;
1486 __u8 pad[36];
1487};
1488
1489The following flags are defined:
1490
1491#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1492#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1493#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
1494
1495If datamatch flag is set, the event will be signaled only if the written value
1496to the registered address is equal to datamatch in struct kvm_ioeventfd.
1497
414fa985
JK
1498
14994.60 KVM_DIRTY_TLB
dc83b8bc
SW
1500
1501Capability: KVM_CAP_SW_TLB
1502Architectures: ppc
1503Type: vcpu ioctl
1504Parameters: struct kvm_dirty_tlb (in)
1505Returns: 0 on success, -1 on error
1506
1507struct kvm_dirty_tlb {
1508 __u64 bitmap;
1509 __u32 num_dirty;
1510};
1511
1512This must be called whenever userspace has changed an entry in the shared
1513TLB, prior to calling KVM_RUN on the associated vcpu.
1514
1515The "bitmap" field is the userspace address of an array. This array
1516consists of a number of bits, equal to the total number of TLB entries as
1517determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1518nearest multiple of 64.
1519
1520Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1521array.
1522
1523The array is little-endian: the bit 0 is the least significant bit of the
1524first byte, bit 8 is the least significant bit of the second byte, etc.
1525This avoids any complications with differing word sizes.
1526
1527The "num_dirty" field is a performance hint for KVM to determine whether it
1528should skip processing the bitmap and just invalidate everything. It must
1529be set to the number of set bits in the bitmap.
1530
414fa985
JK
1531
15324.61 KVM_ASSIGN_SET_INTX_MASK
07700a94
JK
1533
1534Capability: KVM_CAP_PCI_2_3
1535Architectures: x86
1536Type: vm ioctl
1537Parameters: struct kvm_assigned_pci_dev (in)
1538Returns: 0 on success, -1 on error
1539
1540Allows userspace to mask PCI INTx interrupts from the assigned device. The
1541kernel will not deliver INTx interrupts to the guest between setting and
1542clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1543and emulation of PCI 2.3 INTx disable command register behavior.
1544
1545This may be used for both PCI 2.3 devices supporting INTx disable natively and
1546older devices lacking this support. Userspace is responsible for emulating the
1547read value of the INTx disable bit in the guest visible PCI command register.
1548When modifying the INTx disable state, userspace should precede updating the
1549physical device command register by calling this ioctl to inform the kernel of
1550the new intended INTx mask state.
1551
1552Note that the kernel uses the device INTx disable bit to internally manage the
1553device interrupt state for PCI 2.3 devices. Reads of this register may
1554therefore not match the expected value. Writes should always use the guest
1555intended INTx disable value rather than attempting to read-copy-update the
1556current physical device state. Races between user and kernel updates to the
1557INTx disable bit are handled lazily in the kernel. It's possible the device
1558may generate unintended interrupts, but they will not be injected into the
1559guest.
1560
1561See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1562by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1563evaluated.
1564
414fa985 1565
54738c09
DG
15664.62 KVM_CREATE_SPAPR_TCE
1567
1568Capability: KVM_CAP_SPAPR_TCE
1569Architectures: powerpc
1570Type: vm ioctl
1571Parameters: struct kvm_create_spapr_tce (in)
1572Returns: file descriptor for manipulating the created TCE table
1573
1574This creates a virtual TCE (translation control entry) table, which
1575is an IOMMU for PAPR-style virtual I/O. It is used to translate
1576logical addresses used in virtual I/O into guest physical addresses,
1577and provides a scatter/gather capability for PAPR virtual I/O.
1578
1579/* for KVM_CAP_SPAPR_TCE */
1580struct kvm_create_spapr_tce {
1581 __u64 liobn;
1582 __u32 window_size;
1583};
1584
1585The liobn field gives the logical IO bus number for which to create a
1586TCE table. The window_size field specifies the size of the DMA window
1587which this TCE table will translate - the table will contain one 64
1588bit TCE entry for every 4kiB of the DMA window.
1589
1590When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1591table has been created using this ioctl(), the kernel will handle it
1592in real mode, updating the TCE table. H_PUT_TCE calls for other
1593liobns will cause a vm exit and must be handled by userspace.
1594
1595The return value is a file descriptor which can be passed to mmap(2)
1596to map the created TCE table into userspace. This lets userspace read
1597the entries written by kernel-handled H_PUT_TCE calls, and also lets
1598userspace update the TCE table directly which is useful in some
1599circumstances.
1600
414fa985 1601
aa04b4cc
PM
16024.63 KVM_ALLOCATE_RMA
1603
1604Capability: KVM_CAP_PPC_RMA
1605Architectures: powerpc
1606Type: vm ioctl
1607Parameters: struct kvm_allocate_rma (out)
1608Returns: file descriptor for mapping the allocated RMA
1609
1610This allocates a Real Mode Area (RMA) from the pool allocated at boot
1611time by the kernel. An RMA is a physically-contiguous, aligned region
1612of memory used on older POWER processors to provide the memory which
1613will be accessed by real-mode (MMU off) accesses in a KVM guest.
1614POWER processors support a set of sizes for the RMA that usually
1615includes 64MB, 128MB, 256MB and some larger powers of two.
1616
1617/* for KVM_ALLOCATE_RMA */
1618struct kvm_allocate_rma {
1619 __u64 rma_size;
1620};
1621
1622The return value is a file descriptor which can be passed to mmap(2)
1623to map the allocated RMA into userspace. The mapped area can then be
1624passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1625RMA for a virtual machine. The size of the RMA in bytes (which is
1626fixed at host kernel boot time) is returned in the rma_size field of
1627the argument structure.
1628
1629The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1630is supported; 2 if the processor requires all virtual machines to have
1631an RMA, or 1 if the processor can use an RMA but doesn't require it,
1632because it supports the Virtual RMA (VRMA) facility.
1633
414fa985 1634
3f745f1e
AK
16354.64 KVM_NMI
1636
1637Capability: KVM_CAP_USER_NMI
1638Architectures: x86
1639Type: vcpu ioctl
1640Parameters: none
1641Returns: 0 on success, -1 on error
1642
1643Queues an NMI on the thread's vcpu. Note this is well defined only
1644when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1645between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1646has been called, this interface is completely emulated within the kernel.
1647
1648To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1649following algorithm:
1650
1651 - pause the vpcu
1652 - read the local APIC's state (KVM_GET_LAPIC)
1653 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1654 - if so, issue KVM_NMI
1655 - resume the vcpu
1656
1657Some guests configure the LINT1 NMI input to cause a panic, aiding in
1658debugging.
1659
414fa985 1660
e24ed81f 16614.65 KVM_S390_UCAS_MAP
27e0393f
CO
1662
1663Capability: KVM_CAP_S390_UCONTROL
1664Architectures: s390
1665Type: vcpu ioctl
1666Parameters: struct kvm_s390_ucas_mapping (in)
1667Returns: 0 in case of success
1668
1669The parameter is defined like this:
1670 struct kvm_s390_ucas_mapping {
1671 __u64 user_addr;
1672 __u64 vcpu_addr;
1673 __u64 length;
1674 };
1675
1676This ioctl maps the memory at "user_addr" with the length "length" to
1677the vcpu's address space starting at "vcpu_addr". All parameters need to
1678be alligned by 1 megabyte.
1679
414fa985 1680
e24ed81f 16814.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1682
1683Capability: KVM_CAP_S390_UCONTROL
1684Architectures: s390
1685Type: vcpu ioctl
1686Parameters: struct kvm_s390_ucas_mapping (in)
1687Returns: 0 in case of success
1688
1689The parameter is defined like this:
1690 struct kvm_s390_ucas_mapping {
1691 __u64 user_addr;
1692 __u64 vcpu_addr;
1693 __u64 length;
1694 };
1695
1696This ioctl unmaps the memory in the vcpu's address space starting at
1697"vcpu_addr" with the length "length". The field "user_addr" is ignored.
1698All parameters need to be alligned by 1 megabyte.
1699
414fa985 1700
e24ed81f 17014.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1702
1703Capability: KVM_CAP_S390_UCONTROL
1704Architectures: s390
1705Type: vcpu ioctl
1706Parameters: vcpu absolute address (in)
1707Returns: 0 in case of success
1708
1709This call creates a page table entry on the virtual cpu's address space
1710(for user controlled virtual machines) or the virtual machine's address
1711space (for regular virtual machines). This only works for minor faults,
1712thus it's recommended to access subject memory page via the user page
1713table upfront. This is useful to handle validity intercepts for user
1714controlled virtual machines to fault in the virtual cpu's lowcore pages
1715prior to calling the KVM_RUN ioctl.
1716
414fa985 1717
e24ed81f
AG
17184.68 KVM_SET_ONE_REG
1719
1720Capability: KVM_CAP_ONE_REG
1721Architectures: all
1722Type: vcpu ioctl
1723Parameters: struct kvm_one_reg (in)
1724Returns: 0 on success, negative value on failure
1725
1726struct kvm_one_reg {
1727 __u64 id;
1728 __u64 addr;
1729};
1730
1731Using this ioctl, a single vcpu register can be set to a specific value
1732defined by user space with the passed in struct kvm_one_reg, where id
1733refers to the register identifier as described below and addr is a pointer
1734to a variable with the respective size. There can be architecture agnostic
1735and architecture specific registers. Each have their own range of operation
1736and their own constants and width. To keep track of the implemented
1737registers, find a list below:
1738
1739 Arch | Register | Width (bits)
1740 | |
1022fc3d 1741 PPC | KVM_REG_PPC_HIOR | 64
2e232702
BB
1742 PPC | KVM_REG_PPC_IAC1 | 64
1743 PPC | KVM_REG_PPC_IAC2 | 64
1744 PPC | KVM_REG_PPC_IAC3 | 64
1745 PPC | KVM_REG_PPC_IAC4 | 64
1746 PPC | KVM_REG_PPC_DAC1 | 64
1747 PPC | KVM_REG_PPC_DAC2 | 64
a136a8bd
PM
1748 PPC | KVM_REG_PPC_DABR | 64
1749 PPC | KVM_REG_PPC_DSCR | 64
1750 PPC | KVM_REG_PPC_PURR | 64
1751 PPC | KVM_REG_PPC_SPURR | 64
1752 PPC | KVM_REG_PPC_DAR | 64
1753 PPC | KVM_REG_PPC_DSISR | 32
1754 PPC | KVM_REG_PPC_AMR | 64
1755 PPC | KVM_REG_PPC_UAMOR | 64
1756 PPC | KVM_REG_PPC_MMCR0 | 64
1757 PPC | KVM_REG_PPC_MMCR1 | 64
1758 PPC | KVM_REG_PPC_MMCRA | 64
1759 PPC | KVM_REG_PPC_PMC1 | 32
1760 PPC | KVM_REG_PPC_PMC2 | 32
1761 PPC | KVM_REG_PPC_PMC3 | 32
1762 PPC | KVM_REG_PPC_PMC4 | 32
1763 PPC | KVM_REG_PPC_PMC5 | 32
1764 PPC | KVM_REG_PPC_PMC6 | 32
1765 PPC | KVM_REG_PPC_PMC7 | 32
1766 PPC | KVM_REG_PPC_PMC8 | 32
a8bd19ef
PM
1767 PPC | KVM_REG_PPC_FPR0 | 64
1768 ...
1769 PPC | KVM_REG_PPC_FPR31 | 64
1770 PPC | KVM_REG_PPC_VR0 | 128
1771 ...
1772 PPC | KVM_REG_PPC_VR31 | 128
1773 PPC | KVM_REG_PPC_VSR0 | 128
1774 ...
1775 PPC | KVM_REG_PPC_VSR31 | 128
1776 PPC | KVM_REG_PPC_FPSCR | 64
1777 PPC | KVM_REG_PPC_VSCR | 32
55b665b0
PM
1778 PPC | KVM_REG_PPC_VPA_ADDR | 64
1779 PPC | KVM_REG_PPC_VPA_SLB | 128
1780 PPC | KVM_REG_PPC_VPA_DTL | 128
352df1de 1781 PPC | KVM_REG_PPC_EPCR | 32
324b3e63 1782 PPC | KVM_REG_PPC_EPR | 32
414fa985 1783
749cf76c
CD
1784ARM registers are mapped using the lower 32 bits. The upper 16 of that
1785is the register group type, or coprocessor number:
1786
1787ARM core registers have the following id bit patterns:
1788 0x4002 0000 0010 <index into the kvm_regs struct:16>
1789
1138245c
CD
1790ARM 32-bit CP15 registers have the following id bit patterns:
1791 0x4002 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1792
1793ARM 64-bit CP15 registers have the following id bit patterns:
1794 0x4003 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 1795
c27581ed
CD
1796ARM CCSIDR registers are demultiplexed by CSSELR value:
1797 0x4002 0000 0011 00 <csselr:8>
749cf76c 1798
4fe21e4c
RR
1799ARM 32-bit VFP control registers have the following id bit patterns:
1800 0x4002 0000 0012 1 <regno:12>
1801
1802ARM 64-bit FP registers have the following id bit patterns:
1803 0x4002 0000 0012 0 <regno:12>
1804
e24ed81f
AG
18054.69 KVM_GET_ONE_REG
1806
1807Capability: KVM_CAP_ONE_REG
1808Architectures: all
1809Type: vcpu ioctl
1810Parameters: struct kvm_one_reg (in and out)
1811Returns: 0 on success, negative value on failure
1812
1813This ioctl allows to receive the value of a single register implemented
1814in a vcpu. The register to read is indicated by the "id" field of the
1815kvm_one_reg struct passed in. On success, the register value can be found
1816at the memory location pointed to by "addr".
1817
1818The list of registers accessible using this interface is identical to the
2e232702 1819list in 4.68.
e24ed81f 1820
414fa985 1821
1c0b28c2
EM
18224.70 KVM_KVMCLOCK_CTRL
1823
1824Capability: KVM_CAP_KVMCLOCK_CTRL
1825Architectures: Any that implement pvclocks (currently x86 only)
1826Type: vcpu ioctl
1827Parameters: None
1828Returns: 0 on success, -1 on error
1829
1830This signals to the host kernel that the specified guest is being paused by
1831userspace. The host will set a flag in the pvclock structure that is checked
1832from the soft lockup watchdog. The flag is part of the pvclock structure that
1833is shared between guest and host, specifically the second bit of the flags
1834field of the pvclock_vcpu_time_info structure. It will be set exclusively by
1835the host and read/cleared exclusively by the guest. The guest operation of
1836checking and clearing the flag must an atomic operation so
1837load-link/store-conditional, or equivalent must be used. There are two cases
1838where the guest will clear the flag: when the soft lockup watchdog timer resets
1839itself or when a soft lockup is detected. This ioctl can be called any time
1840after pausing the vcpu, but before it is resumed.
1841
414fa985 1842
07975ad3
JK
18434.71 KVM_SIGNAL_MSI
1844
1845Capability: KVM_CAP_SIGNAL_MSI
1846Architectures: x86
1847Type: vm ioctl
1848Parameters: struct kvm_msi (in)
1849Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
1850
1851Directly inject a MSI message. Only valid with in-kernel irqchip that handles
1852MSI messages.
1853
1854struct kvm_msi {
1855 __u32 address_lo;
1856 __u32 address_hi;
1857 __u32 data;
1858 __u32 flags;
1859 __u8 pad[16];
1860};
1861
1862No flags are defined so far. The corresponding field must be 0.
1863
414fa985 1864
0589ff6c
JK
18654.71 KVM_CREATE_PIT2
1866
1867Capability: KVM_CAP_PIT2
1868Architectures: x86
1869Type: vm ioctl
1870Parameters: struct kvm_pit_config (in)
1871Returns: 0 on success, -1 on error
1872
1873Creates an in-kernel device model for the i8254 PIT. This call is only valid
1874after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
1875parameters have to be passed:
1876
1877struct kvm_pit_config {
1878 __u32 flags;
1879 __u32 pad[15];
1880};
1881
1882Valid flags are:
1883
1884#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
1885
b6ddf05f
JK
1886PIT timer interrupts may use a per-VM kernel thread for injection. If it
1887exists, this thread will have a name of the following pattern:
1888
1889kvm-pit/<owner-process-pid>
1890
1891When running a guest with elevated priorities, the scheduling parameters of
1892this thread may have to be adjusted accordingly.
1893
0589ff6c
JK
1894This IOCTL replaces the obsolete KVM_CREATE_PIT.
1895
1896
18974.72 KVM_GET_PIT2
1898
1899Capability: KVM_CAP_PIT_STATE2
1900Architectures: x86
1901Type: vm ioctl
1902Parameters: struct kvm_pit_state2 (out)
1903Returns: 0 on success, -1 on error
1904
1905Retrieves the state of the in-kernel PIT model. Only valid after
1906KVM_CREATE_PIT2. The state is returned in the following structure:
1907
1908struct kvm_pit_state2 {
1909 struct kvm_pit_channel_state channels[3];
1910 __u32 flags;
1911 __u32 reserved[9];
1912};
1913
1914Valid flags are:
1915
1916/* disable PIT in HPET legacy mode */
1917#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
1918
1919This IOCTL replaces the obsolete KVM_GET_PIT.
1920
1921
19224.73 KVM_SET_PIT2
1923
1924Capability: KVM_CAP_PIT_STATE2
1925Architectures: x86
1926Type: vm ioctl
1927Parameters: struct kvm_pit_state2 (in)
1928Returns: 0 on success, -1 on error
1929
1930Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
1931See KVM_GET_PIT2 for details on struct kvm_pit_state2.
1932
1933This IOCTL replaces the obsolete KVM_SET_PIT.
1934
1935
5b74716e
BH
19364.74 KVM_PPC_GET_SMMU_INFO
1937
1938Capability: KVM_CAP_PPC_GET_SMMU_INFO
1939Architectures: powerpc
1940Type: vm ioctl
1941Parameters: None
1942Returns: 0 on success, -1 on error
1943
1944This populates and returns a structure describing the features of
1945the "Server" class MMU emulation supported by KVM.
1946This can in turn be used by userspace to generate the appropariate
1947device-tree properties for the guest operating system.
1948
1949The structure contains some global informations, followed by an
1950array of supported segment page sizes:
1951
1952 struct kvm_ppc_smmu_info {
1953 __u64 flags;
1954 __u32 slb_size;
1955 __u32 pad;
1956 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
1957 };
1958
1959The supported flags are:
1960
1961 - KVM_PPC_PAGE_SIZES_REAL:
1962 When that flag is set, guest page sizes must "fit" the backing
1963 store page sizes. When not set, any page size in the list can
1964 be used regardless of how they are backed by userspace.
1965
1966 - KVM_PPC_1T_SEGMENTS
1967 The emulated MMU supports 1T segments in addition to the
1968 standard 256M ones.
1969
1970The "slb_size" field indicates how many SLB entries are supported
1971
1972The "sps" array contains 8 entries indicating the supported base
1973page sizes for a segment in increasing order. Each entry is defined
1974as follow:
1975
1976 struct kvm_ppc_one_seg_page_size {
1977 __u32 page_shift; /* Base page shift of segment (or 0) */
1978 __u32 slb_enc; /* SLB encoding for BookS */
1979 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
1980 };
1981
1982An entry with a "page_shift" of 0 is unused. Because the array is
1983organized in increasing order, a lookup can stop when encoutering
1984such an entry.
1985
1986The "slb_enc" field provides the encoding to use in the SLB for the
1987page size. The bits are in positions such as the value can directly
1988be OR'ed into the "vsid" argument of the slbmte instruction.
1989
1990The "enc" array is a list which for each of those segment base page
1991size provides the list of supported actual page sizes (which can be
1992only larger or equal to the base page size), along with the
1993corresponding encoding in the hash PTE. Similarily, the array is
19948 entries sorted by increasing sizes and an entry with a "0" shift
1995is an empty entry and a terminator:
1996
1997 struct kvm_ppc_one_page_size {
1998 __u32 page_shift; /* Page shift (or 0) */
1999 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2000 };
2001
2002The "pte_enc" field provides a value that can OR'ed into the hash
2003PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2004into the hash PTE second double word).
2005
f36992e3
AW
20064.75 KVM_IRQFD
2007
2008Capability: KVM_CAP_IRQFD
2009Architectures: x86
2010Type: vm ioctl
2011Parameters: struct kvm_irqfd (in)
2012Returns: 0 on success, -1 on error
2013
2014Allows setting an eventfd to directly trigger a guest interrupt.
2015kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2016kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
2017an event is tiggered on the eventfd, an interrupt is injected into
2018the guest using the specified gsi pin. The irqfd is removed using
2019the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2020and kvm_irqfd.gsi.
2021
7a84428a
AW
2022With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2023mechanism allowing emulation of level-triggered, irqfd-based
2024interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2025additional eventfd in the kvm_irqfd.resamplefd field. When operating
2026in resample mode, posting of an interrupt through kvm_irq.fd asserts
2027the specified gsi in the irqchip. When the irqchip is resampled, such
2028as from an EOI, the gsi is de-asserted and the user is notifed via
2029kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2030the interrupt if the device making use of it still requires service.
2031Note that closing the resamplefd is not sufficient to disable the
2032irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2033and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2034
5fecc9d8 20354.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2036
2037Capability: KVM_CAP_PPC_ALLOC_HTAB
2038Architectures: powerpc
2039Type: vm ioctl
2040Parameters: Pointer to u32 containing hash table order (in/out)
2041Returns: 0 on success, -1 on error
2042
2043This requests the host kernel to allocate an MMU hash table for a
2044guest using the PAPR paravirtualization interface. This only does
2045anything if the kernel is configured to use the Book 3S HV style of
2046virtualization. Otherwise the capability doesn't exist and the ioctl
2047returns an ENOTTY error. The rest of this description assumes Book 3S
2048HV.
2049
2050There must be no vcpus running when this ioctl is called; if there
2051are, it will do nothing and return an EBUSY error.
2052
2053The parameter is a pointer to a 32-bit unsigned integer variable
2054containing the order (log base 2) of the desired size of the hash
2055table, which must be between 18 and 46. On successful return from the
2056ioctl, it will have been updated with the order of the hash table that
2057was allocated.
2058
2059If no hash table has been allocated when any vcpu is asked to run
2060(with the KVM_RUN ioctl), the host kernel will allocate a
2061default-sized hash table (16 MB).
2062
2063If this ioctl is called when a hash table has already been allocated,
2064the kernel will clear out the existing hash table (zero all HPTEs) and
2065return the hash table order in the parameter. (If the guest is using
2066the virtualized real-mode area (VRMA) facility, the kernel will
2067re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2068
416ad65f
CH
20694.77 KVM_S390_INTERRUPT
2070
2071Capability: basic
2072Architectures: s390
2073Type: vm ioctl, vcpu ioctl
2074Parameters: struct kvm_s390_interrupt (in)
2075Returns: 0 on success, -1 on error
2076
2077Allows to inject an interrupt to the guest. Interrupts can be floating
2078(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2079
2080Interrupt parameters are passed via kvm_s390_interrupt:
2081
2082struct kvm_s390_interrupt {
2083 __u32 type;
2084 __u32 parm;
2085 __u64 parm64;
2086};
2087
2088type can be one of the following:
2089
2090KVM_S390_SIGP_STOP (vcpu) - sigp restart
2091KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2092KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2093KVM_S390_RESTART (vcpu) - restart
2094KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2095 parameters in parm and parm64
2096KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2097KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2098KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2099KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2100 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2101 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2102 interruption subclass)
48a3e950
CH
2103KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2104 machine check interrupt code in parm64 (note that
2105 machine checks needing further payload are not
2106 supported by this ioctl)
416ad65f
CH
2107
2108Note that the vcpu ioctl is asynchronous to vcpu execution.
2109
a2932923
PM
21104.78 KVM_PPC_GET_HTAB_FD
2111
2112Capability: KVM_CAP_PPC_HTAB_FD
2113Architectures: powerpc
2114Type: vm ioctl
2115Parameters: Pointer to struct kvm_get_htab_fd (in)
2116Returns: file descriptor number (>= 0) on success, -1 on error
2117
2118This returns a file descriptor that can be used either to read out the
2119entries in the guest's hashed page table (HPT), or to write entries to
2120initialize the HPT. The returned fd can only be written to if the
2121KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2122can only be read if that bit is clear. The argument struct looks like
2123this:
2124
2125/* For KVM_PPC_GET_HTAB_FD */
2126struct kvm_get_htab_fd {
2127 __u64 flags;
2128 __u64 start_index;
2129 __u64 reserved[2];
2130};
2131
2132/* Values for kvm_get_htab_fd.flags */
2133#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2134#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2135
2136The `start_index' field gives the index in the HPT of the entry at
2137which to start reading. It is ignored when writing.
2138
2139Reads on the fd will initially supply information about all
2140"interesting" HPT entries. Interesting entries are those with the
2141bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2142all entries. When the end of the HPT is reached, the read() will
2143return. If read() is called again on the fd, it will start again from
2144the beginning of the HPT, but will only return HPT entries that have
2145changed since they were last read.
2146
2147Data read or written is structured as a header (8 bytes) followed by a
2148series of valid HPT entries (16 bytes) each. The header indicates how
2149many valid HPT entries there are and how many invalid entries follow
2150the valid entries. The invalid entries are not represented explicitly
2151in the stream. The header format is:
2152
2153struct kvm_get_htab_header {
2154 __u32 index;
2155 __u16 n_valid;
2156 __u16 n_invalid;
2157};
2158
2159Writes to the fd create HPT entries starting at the index given in the
2160header; first `n_valid' valid entries with contents from the data
2161written, then `n_invalid' invalid entries, invalidating any previously
2162valid entries found.
2163
f36992e3 2164
749cf76c
CD
21654.77 KVM_ARM_VCPU_INIT
2166
2167Capability: basic
2168Architectures: arm
2169Type: vcpu ioctl
2170Parameters: struct struct kvm_vcpu_init (in)
2171Returns: 0 on success; -1 on error
2172Errors:
2173  EINVAL:    the target is unknown, or the combination of features is invalid.
2174  ENOENT:    a features bit specified is unknown.
2175
2176This tells KVM what type of CPU to present to the guest, and what
2177optional features it should have.  This will cause a reset of the cpu
2178registers to their initial values.  If this is not called, KVM_RUN will
2179return ENOEXEC for that vcpu.
2180
2181Note that because some registers reflect machine topology, all vcpus
2182should be created before this ioctl is invoked.
2183
aa024c2f
MZ
2184Possible features:
2185 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
2186 Depends on KVM_CAP_ARM_PSCI.
2187
749cf76c
CD
2188
21894.78 KVM_GET_REG_LIST
2190
2191Capability: basic
2192Architectures: arm
2193Type: vcpu ioctl
2194Parameters: struct kvm_reg_list (in/out)
2195Returns: 0 on success; -1 on error
2196Errors:
2197  E2BIG:     the reg index list is too big to fit in the array specified by
2198             the user (the number required will be written into n).
2199
2200struct kvm_reg_list {
2201 __u64 n; /* number of registers in reg[] */
2202 __u64 reg[0];
2203};
2204
2205This ioctl returns the guest registers that are supported for the
2206KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2207
2208
3401d546
CD
22094.80 KVM_ARM_SET_DEVICE_ADDR
2210
2211Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
2212Architectures: arm
2213Type: vm ioctl
2214Parameters: struct kvm_arm_device_address (in)
2215Returns: 0 on success, -1 on error
2216Errors:
2217 ENODEV: The device id is unknown
2218 ENXIO: Device not supported on current system
2219 EEXIST: Address already set
2220 E2BIG: Address outside guest physical address space
330690cd 2221 EBUSY: Address overlaps with other device range
3401d546
CD
2222
2223struct kvm_arm_device_addr {
2224 __u64 id;
2225 __u64 addr;
2226};
2227
2228Specify a device address in the guest's physical address space where guests
2229can access emulated or directly exposed devices, which the host kernel needs
2230to know about. The id field is an architecture specific identifier for a
2231specific device.
2232
2233ARM divides the id field into two parts, a device id and an address type id
2234specific to the individual device.
2235
2236  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2237 field: | 0x00000000 | device id | addr type id |
2238
2239ARM currently only require this when using the in-kernel GIC support for the
2240hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2 as the device id. When
2241setting the base address for the guest's mapping of the VGIC virtual CPU
2242and distributor interface, the ioctl must be called after calling
2243KVM_CREATE_IRQCHIP, but before calling KVM_RUN on any of the VCPUs. Calling
2244this ioctl twice for any of the base addresses will return -EEXIST.
2245
2246
9c1b96e3 22475. The kvm_run structure
414fa985 2248------------------------
9c1b96e3
AK
2249
2250Application code obtains a pointer to the kvm_run structure by
2251mmap()ing a vcpu fd. From that point, application code can control
2252execution by changing fields in kvm_run prior to calling the KVM_RUN
2253ioctl, and obtain information about the reason KVM_RUN returned by
2254looking up structure members.
2255
2256struct kvm_run {
2257 /* in */
2258 __u8 request_interrupt_window;
2259
2260Request that KVM_RUN return when it becomes possible to inject external
2261interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
2262
2263 __u8 padding1[7];
2264
2265 /* out */
2266 __u32 exit_reason;
2267
2268When KVM_RUN has returned successfully (return value 0), this informs
2269application code why KVM_RUN has returned. Allowable values for this
2270field are detailed below.
2271
2272 __u8 ready_for_interrupt_injection;
2273
2274If request_interrupt_window has been specified, this field indicates
2275an interrupt can be injected now with KVM_INTERRUPT.
2276
2277 __u8 if_flag;
2278
2279The value of the current interrupt flag. Only valid if in-kernel
2280local APIC is not used.
2281
2282 __u8 padding2[2];
2283
2284 /* in (pre_kvm_run), out (post_kvm_run) */
2285 __u64 cr8;
2286
2287The value of the cr8 register. Only valid if in-kernel local APIC is
2288not used. Both input and output.
2289
2290 __u64 apic_base;
2291
2292The value of the APIC BASE msr. Only valid if in-kernel local
2293APIC is not used. Both input and output.
2294
2295 union {
2296 /* KVM_EXIT_UNKNOWN */
2297 struct {
2298 __u64 hardware_exit_reason;
2299 } hw;
2300
2301If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
2302reasons. Further architecture-specific information is available in
2303hardware_exit_reason.
2304
2305 /* KVM_EXIT_FAIL_ENTRY */
2306 struct {
2307 __u64 hardware_entry_failure_reason;
2308 } fail_entry;
2309
2310If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
2311to unknown reasons. Further architecture-specific information is
2312available in hardware_entry_failure_reason.
2313
2314 /* KVM_EXIT_EXCEPTION */
2315 struct {
2316 __u32 exception;
2317 __u32 error_code;
2318 } ex;
2319
2320Unused.
2321
2322 /* KVM_EXIT_IO */
2323 struct {
2324#define KVM_EXIT_IO_IN 0
2325#define KVM_EXIT_IO_OUT 1
2326 __u8 direction;
2327 __u8 size; /* bytes */
2328 __u16 port;
2329 __u32 count;
2330 __u64 data_offset; /* relative to kvm_run start */
2331 } io;
2332
2044892d 2333If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
2334executed a port I/O instruction which could not be satisfied by kvm.
2335data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
2336where kvm expects application code to place the data for the next
2044892d 2337KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3
AK
2338
2339 struct {
2340 struct kvm_debug_exit_arch arch;
2341 } debug;
2342
2343Unused.
2344
2345 /* KVM_EXIT_MMIO */
2346 struct {
2347 __u64 phys_addr;
2348 __u8 data[8];
2349 __u32 len;
2350 __u8 is_write;
2351 } mmio;
2352
2044892d 2353If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
2354executed a memory-mapped I/O instruction which could not be satisfied
2355by kvm. The 'data' member contains the written data if 'is_write' is
2356true, and should be filled by application code otherwise.
2357
1c810636
AG
2358NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_DCR,
2359 KVM_EXIT_PAPR and KVM_EXIT_EPR the corresponding
ad0a048b
AG
2360operations are complete (and guest state is consistent) only after userspace
2361has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
2362incomplete operations and then check for pending signals. Userspace
2363can re-enter the guest with an unmasked signal pending to complete
2364pending operations.
2365
9c1b96e3
AK
2366 /* KVM_EXIT_HYPERCALL */
2367 struct {
2368 __u64 nr;
2369 __u64 args[6];
2370 __u64 ret;
2371 __u32 longmode;
2372 __u32 pad;
2373 } hypercall;
2374
647dc49e
AK
2375Unused. This was once used for 'hypercall to userspace'. To implement
2376such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
2377Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
2378
2379 /* KVM_EXIT_TPR_ACCESS */
2380 struct {
2381 __u64 rip;
2382 __u32 is_write;
2383 __u32 pad;
2384 } tpr_access;
2385
2386To be documented (KVM_TPR_ACCESS_REPORTING).
2387
2388 /* KVM_EXIT_S390_SIEIC */
2389 struct {
2390 __u8 icptcode;
2391 __u64 mask; /* psw upper half */
2392 __u64 addr; /* psw lower half */
2393 __u16 ipa;
2394 __u32 ipb;
2395 } s390_sieic;
2396
2397s390 specific.
2398
2399 /* KVM_EXIT_S390_RESET */
2400#define KVM_S390_RESET_POR 1
2401#define KVM_S390_RESET_CLEAR 2
2402#define KVM_S390_RESET_SUBSYSTEM 4
2403#define KVM_S390_RESET_CPU_INIT 8
2404#define KVM_S390_RESET_IPL 16
2405 __u64 s390_reset_flags;
2406
2407s390 specific.
2408
e168bf8d
CO
2409 /* KVM_EXIT_S390_UCONTROL */
2410 struct {
2411 __u64 trans_exc_code;
2412 __u32 pgm_code;
2413 } s390_ucontrol;
2414
2415s390 specific. A page fault has occurred for a user controlled virtual
2416machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
2417resolved by the kernel.
2418The program code and the translation exception code that were placed
2419in the cpu's lowcore are presented here as defined by the z Architecture
2420Principles of Operation Book in the Chapter for Dynamic Address Translation
2421(DAT)
2422
9c1b96e3
AK
2423 /* KVM_EXIT_DCR */
2424 struct {
2425 __u32 dcrn;
2426 __u32 data;
2427 __u8 is_write;
2428 } dcr;
2429
2430powerpc specific.
2431
ad0a048b
AG
2432 /* KVM_EXIT_OSI */
2433 struct {
2434 __u64 gprs[32];
2435 } osi;
2436
2437MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
2438hypercalls and exit with this exit struct that contains all the guest gprs.
2439
2440If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
2441Userspace can now handle the hypercall and when it's done modify the gprs as
2442necessary. Upon guest entry all guest GPRs will then be replaced by the values
2443in this struct.
2444
de56a948
PM
2445 /* KVM_EXIT_PAPR_HCALL */
2446 struct {
2447 __u64 nr;
2448 __u64 ret;
2449 __u64 args[9];
2450 } papr_hcall;
2451
2452This is used on 64-bit PowerPC when emulating a pSeries partition,
2453e.g. with the 'pseries' machine type in qemu. It occurs when the
2454guest does a hypercall using the 'sc 1' instruction. The 'nr' field
2455contains the hypercall number (from the guest R3), and 'args' contains
2456the arguments (from the guest R4 - R12). Userspace should put the
2457return code in 'ret' and any extra returned values in args[].
2458The possible hypercalls are defined in the Power Architecture Platform
2459Requirements (PAPR) document available from www.power.org (free
2460developer registration required to access it).
2461
fa6b7fe9
CH
2462 /* KVM_EXIT_S390_TSCH */
2463 struct {
2464 __u16 subchannel_id;
2465 __u16 subchannel_nr;
2466 __u32 io_int_parm;
2467 __u32 io_int_word;
2468 __u32 ipb;
2469 __u8 dequeued;
2470 } s390_tsch;
2471
2472s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
2473and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
2474interrupt for the target subchannel has been dequeued and subchannel_id,
2475subchannel_nr, io_int_parm and io_int_word contain the parameters for that
2476interrupt. ipb is needed for instruction parameter decoding.
2477
1c810636
AG
2478 /* KVM_EXIT_EPR */
2479 struct {
2480 __u32 epr;
2481 } epr;
2482
2483On FSL BookE PowerPC chips, the interrupt controller has a fast patch
2484interrupt acknowledge path to the core. When the core successfully
2485delivers an interrupt, it automatically populates the EPR register with
2486the interrupt vector number and acknowledges the interrupt inside
2487the interrupt controller.
2488
2489In case the interrupt controller lives in user space, we need to do
2490the interrupt acknowledge cycle through it to fetch the next to be
2491delivered interrupt vector using this exit.
2492
2493It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
2494external interrupt has just been delivered into the guest. User space
2495should put the acknowledged interrupt vector into the 'epr' field.
2496
9c1b96e3
AK
2497 /* Fix the size of the union. */
2498 char padding[256];
2499 };
b9e5dc8d
CB
2500
2501 /*
2502 * shared registers between kvm and userspace.
2503 * kvm_valid_regs specifies the register classes set by the host
2504 * kvm_dirty_regs specified the register classes dirtied by userspace
2505 * struct kvm_sync_regs is architecture specific, as well as the
2506 * bits for kvm_valid_regs and kvm_dirty_regs
2507 */
2508 __u64 kvm_valid_regs;
2509 __u64 kvm_dirty_regs;
2510 union {
2511 struct kvm_sync_regs regs;
2512 char padding[1024];
2513 } s;
2514
2515If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
2516certain guest registers without having to call SET/GET_*REGS. Thus we can
2517avoid some system call overhead if userspace has to handle the exit.
2518Userspace can query the validity of the structure by checking
2519kvm_valid_regs for specific bits. These bits are architecture specific
2520and usually define the validity of a groups of registers. (e.g. one bit
2521 for general purpose registers)
2522
9c1b96e3 2523};
821246a5 2524
414fa985 2525
821246a5 25266. Capabilities that can be enabled
414fa985 2527-----------------------------------
821246a5
AG
2528
2529There are certain capabilities that change the behavior of the virtual CPU when
2530enabled. To enable them, please see section 4.37. Below you can find a list of
2531capabilities and what their effect on the vCPU is when enabling them.
2532
2533The following information is provided along with the description:
2534
2535 Architectures: which instruction set architectures provide this ioctl.
2536 x86 includes both i386 and x86_64.
2537
2538 Parameters: what parameters are accepted by the capability.
2539
2540 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
2541 are not detailed, but errors with specific meanings are.
2542
414fa985 2543
821246a5
AG
25446.1 KVM_CAP_PPC_OSI
2545
2546Architectures: ppc
2547Parameters: none
2548Returns: 0 on success; -1 on error
2549
2550This capability enables interception of OSI hypercalls that otherwise would
2551be treated as normal system calls to be injected into the guest. OSI hypercalls
2552were invented by Mac-on-Linux to have a standardized communication mechanism
2553between the guest and the host.
2554
2555When this capability is enabled, KVM_EXIT_OSI can occur.
2556
414fa985 2557
821246a5
AG
25586.2 KVM_CAP_PPC_PAPR
2559
2560Architectures: ppc
2561Parameters: none
2562Returns: 0 on success; -1 on error
2563
2564This capability enables interception of PAPR hypercalls. PAPR hypercalls are
2565done using the hypercall instruction "sc 1".
2566
2567It also sets the guest privilege level to "supervisor" mode. Usually the guest
2568runs in "hypervisor" privilege mode with a few missing features.
2569
2570In addition to the above, it changes the semantics of SDR1. In this mode, the
2571HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
2572HTAB invisible to the guest.
2573
2574When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 2575
414fa985 2576
dc83b8bc
SW
25776.3 KVM_CAP_SW_TLB
2578
2579Architectures: ppc
2580Parameters: args[0] is the address of a struct kvm_config_tlb
2581Returns: 0 on success; -1 on error
2582
2583struct kvm_config_tlb {
2584 __u64 params;
2585 __u64 array;
2586 __u32 mmu_type;
2587 __u32 array_len;
2588};
2589
2590Configures the virtual CPU's TLB array, establishing a shared memory area
2591between userspace and KVM. The "params" and "array" fields are userspace
2592addresses of mmu-type-specific data structures. The "array_len" field is an
2593safety mechanism, and should be set to the size in bytes of the memory that
2594userspace has reserved for the array. It must be at least the size dictated
2595by "mmu_type" and "params".
2596
2597While KVM_RUN is active, the shared region is under control of KVM. Its
2598contents are undefined, and any modification by userspace results in
2599boundedly undefined behavior.
2600
2601On return from KVM_RUN, the shared region will reflect the current state of
2602the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
2603to tell KVM which entries have been changed, prior to calling KVM_RUN again
2604on this vcpu.
2605
2606For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
2607 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
2608 - The "array" field points to an array of type "struct
2609 kvm_book3e_206_tlb_entry".
2610 - The array consists of all entries in the first TLB, followed by all
2611 entries in the second TLB.
2612 - Within a TLB, entries are ordered first by increasing set number. Within a
2613 set, entries are ordered by way (increasing ESEL).
2614 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
2615 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
2616 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
2617 hardware ignores this value for TLB0.
fa6b7fe9
CH
2618
26196.4 KVM_CAP_S390_CSS_SUPPORT
2620
2621Architectures: s390
2622Parameters: none
2623Returns: 0 on success; -1 on error
2624
2625This capability enables support for handling of channel I/O instructions.
2626
2627TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
2628handled in-kernel, while the other I/O instructions are passed to userspace.
2629
2630When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
2631SUBCHANNEL intercepts.
1c810636
AG
2632
26336.5 KVM_CAP_PPC_EPR
2634
2635Architectures: ppc
2636Parameters: args[0] defines whether the proxy facility is active
2637Returns: 0 on success; -1 on error
2638
2639This capability enables or disables the delivery of interrupts through the
2640external proxy facility.
2641
2642When enabled (args[0] != 0), every time the guest gets an external interrupt
2643delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
2644to receive the topmost interrupt vector.
2645
2646When disabled (args[0] == 0), behavior is as if this facility is unsupported.
2647
2648When this capability is enabled, KVM_EXIT_EPR can occur.