]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - Documentation/virtual/kvm/api.txt
KVM: arm64: vgic-its: Enable ITS emulation as a virtual MSI controller
[mirror_ubuntu-zesty-kernel.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
c9f3f2d8 56The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
7f05db6a 71 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
9c1b96e3 72 means availability needs to be checked with KVM_CHECK_EXTENSION
7f05db6a
MT
73 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
9c1b96e3
AK
77
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
414fa985 88
9c1b96e3
AK
894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
414fa985 104
9c1b96e3
AK
1054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
e08b9637 110Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
111Returns: a VM fd that can be used to control the new virtual machine.
112
113The new VM has no virtual cpus and no memory. An mmap() of a VM fd
114will access the virtual machine's physical address space; offset zero
115corresponds to guest physical address zero. Use of mmap() on a VM fd
116is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
117available.
e08b9637
CO
118You most certainly want to use 0 as machine type.
119
120In order to create user controlled virtual machines on S390, check
121KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
122privileged user (CAP_SYS_ADMIN).
9c1b96e3 123
414fa985 124
9c1b96e3
AK
1254.3 KVM_GET_MSR_INDEX_LIST
126
127Capability: basic
128Architectures: x86
129Type: system
130Parameters: struct kvm_msr_list (in/out)
131Returns: 0 on success; -1 on error
132Errors:
133 E2BIG: the msr index list is to be to fit in the array specified by
134 the user.
135
136struct kvm_msr_list {
137 __u32 nmsrs; /* number of msrs in entries */
138 __u32 indices[0];
139};
140
141This ioctl returns the guest msrs that are supported. The list varies
142by kvm version and host processor, but does not change otherwise. The
143user fills in the size of the indices array in nmsrs, and in return
144kvm adjusts nmsrs to reflect the actual number of msrs and fills in
145the indices array with their numbers.
146
2e2602ca
AK
147Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
148not returned in the MSR list, as different vcpus can have a different number
149of banks, as set via the KVM_X86_SETUP_MCE ioctl.
150
414fa985 151
9c1b96e3
AK
1524.4 KVM_CHECK_EXTENSION
153
92b591a4 154Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
9c1b96e3 155Architectures: all
92b591a4 156Type: system ioctl, vm ioctl
9c1b96e3
AK
157Parameters: extension identifier (KVM_CAP_*)
158Returns: 0 if unsupported; 1 (or some other positive integer) if supported
159
160The API allows the application to query about extensions to the core
161kvm API. Userspace passes an extension identifier (an integer) and
162receives an integer that describes the extension availability.
163Generally 0 means no and 1 means yes, but some extensions may report
164additional information in the integer return value.
165
92b591a4
AG
166Based on their initialization different VMs may have different capabilities.
167It is thus encouraged to use the vm ioctl to query for capabilities (available
168with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
414fa985 169
9c1b96e3
AK
1704.5 KVM_GET_VCPU_MMAP_SIZE
171
172Capability: basic
173Architectures: all
174Type: system ioctl
175Parameters: none
176Returns: size of vcpu mmap area, in bytes
177
178The KVM_RUN ioctl (cf.) communicates with userspace via a shared
179memory region. This ioctl returns the size of that region. See the
180KVM_RUN documentation for details.
181
414fa985 182
9c1b96e3
AK
1834.6 KVM_SET_MEMORY_REGION
184
185Capability: basic
186Architectures: all
187Type: vm ioctl
188Parameters: struct kvm_memory_region (in)
189Returns: 0 on success, -1 on error
190
b74a07be 191This ioctl is obsolete and has been removed.
9c1b96e3 192
414fa985 193
68ba6974 1944.7 KVM_CREATE_VCPU
9c1b96e3
AK
195
196Capability: basic
197Architectures: all
198Type: vm ioctl
199Parameters: vcpu id (apic id on x86)
200Returns: vcpu fd on success, -1 on error
201
0b1b1dfd
GK
202This API adds a vcpu to a virtual machine. No more than max_vcpus may be added.
203The vcpu id is an integer in the range [0, max_vcpu_id).
8c3ba334
SL
204
205The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
206the KVM_CHECK_EXTENSION ioctl() at run-time.
207The maximum possible value for max_vcpus can be retrieved using the
208KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
209
76d25402
PE
210If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
211cpus max.
8c3ba334
SL
212If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
213same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 214
0b1b1dfd
GK
215The maximum possible value for max_vcpu_id can be retrieved using the
216KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time.
217
218If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id
219is the same as the value returned from KVM_CAP_MAX_VCPUS.
220
371fefd6
PM
221On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
222threads in one or more virtual CPU cores. (This is because the
223hardware requires all the hardware threads in a CPU core to be in the
224same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
225of vcpus per virtual core (vcore). The vcore id is obtained by
226dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
227given vcore will always be in the same physical core as each other
228(though that might be a different physical core from time to time).
229Userspace can control the threading (SMT) mode of the guest by its
230allocation of vcpu ids. For example, if userspace wants
231single-threaded guest vcpus, it should make all vcpu ids be a multiple
232of the number of vcpus per vcore.
233
5b1c1493
CO
234For virtual cpus that have been created with S390 user controlled virtual
235machines, the resulting vcpu fd can be memory mapped at page offset
236KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
237cpu's hardware control block.
238
414fa985 239
68ba6974 2404.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
241
242Capability: basic
243Architectures: x86
244Type: vm ioctl
245Parameters: struct kvm_dirty_log (in/out)
246Returns: 0 on success, -1 on error
247
248/* for KVM_GET_DIRTY_LOG */
249struct kvm_dirty_log {
250 __u32 slot;
251 __u32 padding;
252 union {
253 void __user *dirty_bitmap; /* one bit per page */
254 __u64 padding;
255 };
256};
257
258Given a memory slot, return a bitmap containing any pages dirtied
259since the last call to this ioctl. Bit 0 is the first page in the
260memory slot. Ensure the entire structure is cleared to avoid padding
261issues.
262
f481b069
PB
263If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
264the address space for which you want to return the dirty bitmap.
265They must be less than the value that KVM_CHECK_EXTENSION returns for
266the KVM_CAP_MULTI_ADDRESS_SPACE capability.
267
414fa985 268
68ba6974 2694.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
270
271Capability: basic
272Architectures: x86
273Type: vm ioctl
274Parameters: struct kvm_memory_alias (in)
275Returns: 0 (success), -1 (error)
276
a1f4d395 277This ioctl is obsolete and has been removed.
9c1b96e3 278
414fa985 279
68ba6974 2804.10 KVM_RUN
9c1b96e3
AK
281
282Capability: basic
283Architectures: all
284Type: vcpu ioctl
285Parameters: none
286Returns: 0 on success, -1 on error
287Errors:
288 EINTR: an unmasked signal is pending
289
290This ioctl is used to run a guest virtual cpu. While there are no
291explicit parameters, there is an implicit parameter block that can be
292obtained by mmap()ing the vcpu fd at offset 0, with the size given by
293KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
294kvm_run' (see below).
295
414fa985 296
68ba6974 2974.11 KVM_GET_REGS
9c1b96e3
AK
298
299Capability: basic
379e04c7 300Architectures: all except ARM, arm64
9c1b96e3
AK
301Type: vcpu ioctl
302Parameters: struct kvm_regs (out)
303Returns: 0 on success, -1 on error
304
305Reads the general purpose registers from the vcpu.
306
307/* x86 */
308struct kvm_regs {
309 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
310 __u64 rax, rbx, rcx, rdx;
311 __u64 rsi, rdi, rsp, rbp;
312 __u64 r8, r9, r10, r11;
313 __u64 r12, r13, r14, r15;
314 __u64 rip, rflags;
315};
316
c2d2c21b
JH
317/* mips */
318struct kvm_regs {
319 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
320 __u64 gpr[32];
321 __u64 hi;
322 __u64 lo;
323 __u64 pc;
324};
325
414fa985 326
68ba6974 3274.12 KVM_SET_REGS
9c1b96e3
AK
328
329Capability: basic
379e04c7 330Architectures: all except ARM, arm64
9c1b96e3
AK
331Type: vcpu ioctl
332Parameters: struct kvm_regs (in)
333Returns: 0 on success, -1 on error
334
335Writes the general purpose registers into the vcpu.
336
337See KVM_GET_REGS for the data structure.
338
414fa985 339
68ba6974 3404.13 KVM_GET_SREGS
9c1b96e3
AK
341
342Capability: basic
5ce941ee 343Architectures: x86, ppc
9c1b96e3
AK
344Type: vcpu ioctl
345Parameters: struct kvm_sregs (out)
346Returns: 0 on success, -1 on error
347
348Reads special registers from the vcpu.
349
350/* x86 */
351struct kvm_sregs {
352 struct kvm_segment cs, ds, es, fs, gs, ss;
353 struct kvm_segment tr, ldt;
354 struct kvm_dtable gdt, idt;
355 __u64 cr0, cr2, cr3, cr4, cr8;
356 __u64 efer;
357 __u64 apic_base;
358 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
359};
360
68e2ffed 361/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 362
9c1b96e3
AK
363interrupt_bitmap is a bitmap of pending external interrupts. At most
364one bit may be set. This interrupt has been acknowledged by the APIC
365but not yet injected into the cpu core.
366
414fa985 367
68ba6974 3684.14 KVM_SET_SREGS
9c1b96e3
AK
369
370Capability: basic
5ce941ee 371Architectures: x86, ppc
9c1b96e3
AK
372Type: vcpu ioctl
373Parameters: struct kvm_sregs (in)
374Returns: 0 on success, -1 on error
375
376Writes special registers into the vcpu. See KVM_GET_SREGS for the
377data structures.
378
414fa985 379
68ba6974 3804.15 KVM_TRANSLATE
9c1b96e3
AK
381
382Capability: basic
383Architectures: x86
384Type: vcpu ioctl
385Parameters: struct kvm_translation (in/out)
386Returns: 0 on success, -1 on error
387
388Translates a virtual address according to the vcpu's current address
389translation mode.
390
391struct kvm_translation {
392 /* in */
393 __u64 linear_address;
394
395 /* out */
396 __u64 physical_address;
397 __u8 valid;
398 __u8 writeable;
399 __u8 usermode;
400 __u8 pad[5];
401};
402
414fa985 403
68ba6974 4044.16 KVM_INTERRUPT
9c1b96e3
AK
405
406Capability: basic
c2d2c21b 407Architectures: x86, ppc, mips
9c1b96e3
AK
408Type: vcpu ioctl
409Parameters: struct kvm_interrupt (in)
1c1a9ce9 410Returns: 0 on success, negative on failure.
9c1b96e3 411
1c1a9ce9 412Queues a hardware interrupt vector to be injected.
9c1b96e3
AK
413
414/* for KVM_INTERRUPT */
415struct kvm_interrupt {
416 /* in */
417 __u32 irq;
418};
419
6f7a2bd4
AG
420X86:
421
1c1a9ce9
SR
422Returns: 0 on success,
423 -EEXIST if an interrupt is already enqueued
424 -EINVAL the the irq number is invalid
425 -ENXIO if the PIC is in the kernel
426 -EFAULT if the pointer is invalid
427
428Note 'irq' is an interrupt vector, not an interrupt pin or line. This
429ioctl is useful if the in-kernel PIC is not used.
9c1b96e3 430
6f7a2bd4
AG
431PPC:
432
433Queues an external interrupt to be injected. This ioctl is overleaded
434with 3 different irq values:
435
436a) KVM_INTERRUPT_SET
437
438 This injects an edge type external interrupt into the guest once it's ready
439 to receive interrupts. When injected, the interrupt is done.
440
441b) KVM_INTERRUPT_UNSET
442
443 This unsets any pending interrupt.
444
445 Only available with KVM_CAP_PPC_UNSET_IRQ.
446
447c) KVM_INTERRUPT_SET_LEVEL
448
449 This injects a level type external interrupt into the guest context. The
450 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
451 is triggered.
452
453 Only available with KVM_CAP_PPC_IRQ_LEVEL.
454
455Note that any value for 'irq' other than the ones stated above is invalid
456and incurs unexpected behavior.
457
c2d2c21b
JH
458MIPS:
459
460Queues an external interrupt to be injected into the virtual CPU. A negative
461interrupt number dequeues the interrupt.
462
414fa985 463
68ba6974 4644.17 KVM_DEBUG_GUEST
9c1b96e3
AK
465
466Capability: basic
467Architectures: none
468Type: vcpu ioctl
469Parameters: none)
470Returns: -1 on error
471
472Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
473
414fa985 474
68ba6974 4754.18 KVM_GET_MSRS
9c1b96e3
AK
476
477Capability: basic
478Architectures: x86
479Type: vcpu ioctl
480Parameters: struct kvm_msrs (in/out)
481Returns: 0 on success, -1 on error
482
483Reads model-specific registers from the vcpu. Supported msr indices can
484be obtained using KVM_GET_MSR_INDEX_LIST.
485
486struct kvm_msrs {
487 __u32 nmsrs; /* number of msrs in entries */
488 __u32 pad;
489
490 struct kvm_msr_entry entries[0];
491};
492
493struct kvm_msr_entry {
494 __u32 index;
495 __u32 reserved;
496 __u64 data;
497};
498
499Application code should set the 'nmsrs' member (which indicates the
500size of the entries array) and the 'index' member of each array entry.
501kvm will fill in the 'data' member.
502
414fa985 503
68ba6974 5044.19 KVM_SET_MSRS
9c1b96e3
AK
505
506Capability: basic
507Architectures: x86
508Type: vcpu ioctl
509Parameters: struct kvm_msrs (in)
510Returns: 0 on success, -1 on error
511
512Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
513data structures.
514
515Application code should set the 'nmsrs' member (which indicates the
516size of the entries array), and the 'index' and 'data' members of each
517array entry.
518
414fa985 519
68ba6974 5204.20 KVM_SET_CPUID
9c1b96e3
AK
521
522Capability: basic
523Architectures: x86
524Type: vcpu ioctl
525Parameters: struct kvm_cpuid (in)
526Returns: 0 on success, -1 on error
527
528Defines the vcpu responses to the cpuid instruction. Applications
529should use the KVM_SET_CPUID2 ioctl if available.
530
531
532struct kvm_cpuid_entry {
533 __u32 function;
534 __u32 eax;
535 __u32 ebx;
536 __u32 ecx;
537 __u32 edx;
538 __u32 padding;
539};
540
541/* for KVM_SET_CPUID */
542struct kvm_cpuid {
543 __u32 nent;
544 __u32 padding;
545 struct kvm_cpuid_entry entries[0];
546};
547
414fa985 548
68ba6974 5494.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
550
551Capability: basic
572e0929 552Architectures: all
9c1b96e3
AK
553Type: vcpu ioctl
554Parameters: struct kvm_signal_mask (in)
555Returns: 0 on success, -1 on error
556
557Defines which signals are blocked during execution of KVM_RUN. This
558signal mask temporarily overrides the threads signal mask. Any
559unblocked signal received (except SIGKILL and SIGSTOP, which retain
560their traditional behaviour) will cause KVM_RUN to return with -EINTR.
561
562Note the signal will only be delivered if not blocked by the original
563signal mask.
564
565/* for KVM_SET_SIGNAL_MASK */
566struct kvm_signal_mask {
567 __u32 len;
568 __u8 sigset[0];
569};
570
414fa985 571
68ba6974 5724.22 KVM_GET_FPU
9c1b96e3
AK
573
574Capability: basic
575Architectures: x86
576Type: vcpu ioctl
577Parameters: struct kvm_fpu (out)
578Returns: 0 on success, -1 on error
579
580Reads the floating point state from the vcpu.
581
582/* for KVM_GET_FPU and KVM_SET_FPU */
583struct kvm_fpu {
584 __u8 fpr[8][16];
585 __u16 fcw;
586 __u16 fsw;
587 __u8 ftwx; /* in fxsave format */
588 __u8 pad1;
589 __u16 last_opcode;
590 __u64 last_ip;
591 __u64 last_dp;
592 __u8 xmm[16][16];
593 __u32 mxcsr;
594 __u32 pad2;
595};
596
414fa985 597
68ba6974 5984.23 KVM_SET_FPU
9c1b96e3
AK
599
600Capability: basic
601Architectures: x86
602Type: vcpu ioctl
603Parameters: struct kvm_fpu (in)
604Returns: 0 on success, -1 on error
605
606Writes the floating point state to the vcpu.
607
608/* for KVM_GET_FPU and KVM_SET_FPU */
609struct kvm_fpu {
610 __u8 fpr[8][16];
611 __u16 fcw;
612 __u16 fsw;
613 __u8 ftwx; /* in fxsave format */
614 __u8 pad1;
615 __u16 last_opcode;
616 __u64 last_ip;
617 __u64 last_dp;
618 __u8 xmm[16][16];
619 __u32 mxcsr;
620 __u32 pad2;
621};
622
414fa985 623
68ba6974 6244.24 KVM_CREATE_IRQCHIP
5dadbfd6 625
84223598 626Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
c32a4272 627Architectures: x86, ARM, arm64, s390
5dadbfd6
AK
628Type: vm ioctl
629Parameters: none
630Returns: 0 on success, -1 on error
631
ac3d3735
AP
632Creates an interrupt controller model in the kernel.
633On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
634future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
635PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
636On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
637KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
638KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
639On s390, a dummy irq routing table is created.
84223598
CH
640
641Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
642before KVM_CREATE_IRQCHIP can be used.
5dadbfd6 643
414fa985 644
68ba6974 6454.25 KVM_IRQ_LINE
5dadbfd6
AK
646
647Capability: KVM_CAP_IRQCHIP
c32a4272 648Architectures: x86, arm, arm64
5dadbfd6
AK
649Type: vm ioctl
650Parameters: struct kvm_irq_level
651Returns: 0 on success, -1 on error
652
653Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
654On some architectures it is required that an interrupt controller model has
655been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
656interrupts require the level to be set to 1 and then back to 0.
657
100943c5
GS
658On real hardware, interrupt pins can be active-low or active-high. This
659does not matter for the level field of struct kvm_irq_level: 1 always
660means active (asserted), 0 means inactive (deasserted).
661
662x86 allows the operating system to program the interrupt polarity
663(active-low/active-high) for level-triggered interrupts, and KVM used
664to consider the polarity. However, due to bitrot in the handling of
665active-low interrupts, the above convention is now valid on x86 too.
666This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
667should not present interrupts to the guest as active-low unless this
668capability is present (or unless it is not using the in-kernel irqchip,
669of course).
670
671
379e04c7
MZ
672ARM/arm64 can signal an interrupt either at the CPU level, or at the
673in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
674use PPIs designated for specific cpus. The irq field is interpreted
675like this:
86ce8535
CD
676
677  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
678 field: | irq_type | vcpu_index | irq_id |
679
680The irq_type field has the following values:
681- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
682- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
683 (the vcpu_index field is ignored)
684- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
685
686(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
687
100943c5 688In both cases, level is used to assert/deassert the line.
5dadbfd6
AK
689
690struct kvm_irq_level {
691 union {
692 __u32 irq; /* GSI */
693 __s32 status; /* not used for KVM_IRQ_LEVEL */
694 };
695 __u32 level; /* 0 or 1 */
696};
697
414fa985 698
68ba6974 6994.26 KVM_GET_IRQCHIP
5dadbfd6
AK
700
701Capability: KVM_CAP_IRQCHIP
c32a4272 702Architectures: x86
5dadbfd6
AK
703Type: vm ioctl
704Parameters: struct kvm_irqchip (in/out)
705Returns: 0 on success, -1 on error
706
707Reads the state of a kernel interrupt controller created with
708KVM_CREATE_IRQCHIP into a buffer provided by the caller.
709
710struct kvm_irqchip {
711 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
712 __u32 pad;
713 union {
714 char dummy[512]; /* reserving space */
715 struct kvm_pic_state pic;
716 struct kvm_ioapic_state ioapic;
717 } chip;
718};
719
414fa985 720
68ba6974 7214.27 KVM_SET_IRQCHIP
5dadbfd6
AK
722
723Capability: KVM_CAP_IRQCHIP
c32a4272 724Architectures: x86
5dadbfd6
AK
725Type: vm ioctl
726Parameters: struct kvm_irqchip (in)
727Returns: 0 on success, -1 on error
728
729Sets the state of a kernel interrupt controller created with
730KVM_CREATE_IRQCHIP from a buffer provided by the caller.
731
732struct kvm_irqchip {
733 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
734 __u32 pad;
735 union {
736 char dummy[512]; /* reserving space */
737 struct kvm_pic_state pic;
738 struct kvm_ioapic_state ioapic;
739 } chip;
740};
741
414fa985 742
68ba6974 7434.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
744
745Capability: KVM_CAP_XEN_HVM
746Architectures: x86
747Type: vm ioctl
748Parameters: struct kvm_xen_hvm_config (in)
749Returns: 0 on success, -1 on error
750
751Sets the MSR that the Xen HVM guest uses to initialize its hypercall
752page, and provides the starting address and size of the hypercall
753blobs in userspace. When the guest writes the MSR, kvm copies one
754page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
755memory.
756
757struct kvm_xen_hvm_config {
758 __u32 flags;
759 __u32 msr;
760 __u64 blob_addr_32;
761 __u64 blob_addr_64;
762 __u8 blob_size_32;
763 __u8 blob_size_64;
764 __u8 pad2[30];
765};
766
414fa985 767
68ba6974 7684.29 KVM_GET_CLOCK
afbcf7ab
GC
769
770Capability: KVM_CAP_ADJUST_CLOCK
771Architectures: x86
772Type: vm ioctl
773Parameters: struct kvm_clock_data (out)
774Returns: 0 on success, -1 on error
775
776Gets the current timestamp of kvmclock as seen by the current guest. In
777conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
778such as migration.
779
780struct kvm_clock_data {
781 __u64 clock; /* kvmclock current value */
782 __u32 flags;
783 __u32 pad[9];
784};
785
414fa985 786
68ba6974 7874.30 KVM_SET_CLOCK
afbcf7ab
GC
788
789Capability: KVM_CAP_ADJUST_CLOCK
790Architectures: x86
791Type: vm ioctl
792Parameters: struct kvm_clock_data (in)
793Returns: 0 on success, -1 on error
794
2044892d 795Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
796In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
797such as migration.
798
799struct kvm_clock_data {
800 __u64 clock; /* kvmclock current value */
801 __u32 flags;
802 __u32 pad[9];
803};
804
414fa985 805
68ba6974 8064.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
807
808Capability: KVM_CAP_VCPU_EVENTS
48005f64 809Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
810Architectures: x86
811Type: vm ioctl
812Parameters: struct kvm_vcpu_event (out)
813Returns: 0 on success, -1 on error
814
815Gets currently pending exceptions, interrupts, and NMIs as well as related
816states of the vcpu.
817
818struct kvm_vcpu_events {
819 struct {
820 __u8 injected;
821 __u8 nr;
822 __u8 has_error_code;
823 __u8 pad;
824 __u32 error_code;
825 } exception;
826 struct {
827 __u8 injected;
828 __u8 nr;
829 __u8 soft;
48005f64 830 __u8 shadow;
3cfc3092
JK
831 } interrupt;
832 struct {
833 __u8 injected;
834 __u8 pending;
835 __u8 masked;
836 __u8 pad;
837 } nmi;
838 __u32 sipi_vector;
dab4b911 839 __u32 flags;
f077825a
PB
840 struct {
841 __u8 smm;
842 __u8 pending;
843 __u8 smm_inside_nmi;
844 __u8 latched_init;
845 } smi;
3cfc3092
JK
846};
847
f077825a
PB
848Only two fields are defined in the flags field:
849
850- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
851 interrupt.shadow contains a valid state.
48005f64 852
f077825a
PB
853- KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that
854 smi contains a valid state.
414fa985 855
68ba6974 8564.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
857
858Capability: KVM_CAP_VCPU_EVENTS
48005f64 859Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
860Architectures: x86
861Type: vm ioctl
862Parameters: struct kvm_vcpu_event (in)
863Returns: 0 on success, -1 on error
864
865Set pending exceptions, interrupts, and NMIs as well as related states of the
866vcpu.
867
868See KVM_GET_VCPU_EVENTS for the data structure.
869
dab4b911 870Fields that may be modified asynchronously by running VCPUs can be excluded
f077825a
PB
871from the update. These fields are nmi.pending, sipi_vector, smi.smm,
872smi.pending. Keep the corresponding bits in the flags field cleared to
873suppress overwriting the current in-kernel state. The bits are:
dab4b911
JK
874
875KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
876KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
f077825a 877KVM_VCPUEVENT_VALID_SMM - transfer the smi sub-struct.
dab4b911 878
48005f64
JK
879If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
880the flags field to signal that interrupt.shadow contains a valid state and
881shall be written into the VCPU.
882
f077825a
PB
883KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
884
414fa985 885
68ba6974 8864.33 KVM_GET_DEBUGREGS
a1efbe77
JK
887
888Capability: KVM_CAP_DEBUGREGS
889Architectures: x86
890Type: vm ioctl
891Parameters: struct kvm_debugregs (out)
892Returns: 0 on success, -1 on error
893
894Reads debug registers from the vcpu.
895
896struct kvm_debugregs {
897 __u64 db[4];
898 __u64 dr6;
899 __u64 dr7;
900 __u64 flags;
901 __u64 reserved[9];
902};
903
414fa985 904
68ba6974 9054.34 KVM_SET_DEBUGREGS
a1efbe77
JK
906
907Capability: KVM_CAP_DEBUGREGS
908Architectures: x86
909Type: vm ioctl
910Parameters: struct kvm_debugregs (in)
911Returns: 0 on success, -1 on error
912
913Writes debug registers into the vcpu.
914
915See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
916yet and must be cleared on entry.
917
414fa985 918
68ba6974 9194.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
920
921Capability: KVM_CAP_USER_MEM
922Architectures: all
923Type: vm ioctl
924Parameters: struct kvm_userspace_memory_region (in)
925Returns: 0 on success, -1 on error
926
927struct kvm_userspace_memory_region {
928 __u32 slot;
929 __u32 flags;
930 __u64 guest_phys_addr;
931 __u64 memory_size; /* bytes */
932 __u64 userspace_addr; /* start of the userspace allocated memory */
933};
934
935/* for kvm_memory_region::flags */
4d8b81ab
XG
936#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
937#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
938
939This ioctl allows the user to create or modify a guest physical memory
940slot. When changing an existing slot, it may be moved in the guest
941physical memory space, or its flags may be modified. It may not be
942resized. Slots may not overlap in guest physical address space.
943
f481b069
PB
944If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot"
945specifies the address space which is being modified. They must be
946less than the value that KVM_CHECK_EXTENSION returns for the
947KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces
948are unrelated; the restriction on overlapping slots only applies within
949each address space.
950
0f2d8f4d
AK
951Memory for the region is taken starting at the address denoted by the
952field userspace_addr, which must point at user addressable memory for
953the entire memory slot size. Any object may back this memory, including
954anonymous memory, ordinary files, and hugetlbfs.
955
956It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
957be identical. This allows large pages in the guest to be backed by large
958pages in the host.
959
75d61fbc
TY
960The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
961KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
962writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
963use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
964to make a new slot read-only. In this case, writes to this memory will be
965posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
966
967When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
968the memory region are automatically reflected into the guest. For example, an
969mmap() that affects the region will be made visible immediately. Another
970example is madvise(MADV_DROP).
0f2d8f4d
AK
971
972It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
973The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
974allocation and is deprecated.
3cfc3092 975
414fa985 976
68ba6974 9774.36 KVM_SET_TSS_ADDR
8a5416db
AK
978
979Capability: KVM_CAP_SET_TSS_ADDR
980Architectures: x86
981Type: vm ioctl
982Parameters: unsigned long tss_address (in)
983Returns: 0 on success, -1 on error
984
985This ioctl defines the physical address of a three-page region in the guest
986physical address space. The region must be within the first 4GB of the
987guest physical address space and must not conflict with any memory slot
988or any mmio address. The guest may malfunction if it accesses this memory
989region.
990
991This ioctl is required on Intel-based hosts. This is needed on Intel hardware
992because of a quirk in the virtualization implementation (see the internals
993documentation when it pops into existence).
994
414fa985 995
68ba6974 9964.37 KVM_ENABLE_CAP
71fbfd5f 997
d938dc55 998Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
90de4a18
NA
999Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM),
1000 mips (only KVM_CAP_ENABLE_CAP), ppc, s390
d938dc55 1001Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
71fbfd5f
AG
1002Parameters: struct kvm_enable_cap (in)
1003Returns: 0 on success; -1 on error
1004
1005+Not all extensions are enabled by default. Using this ioctl the application
1006can enable an extension, making it available to the guest.
1007
1008On systems that do not support this ioctl, it always fails. On systems that
1009do support it, it only works for extensions that are supported for enablement.
1010
1011To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
1012be used.
1013
1014struct kvm_enable_cap {
1015 /* in */
1016 __u32 cap;
1017
1018The capability that is supposed to get enabled.
1019
1020 __u32 flags;
1021
1022A bitfield indicating future enhancements. Has to be 0 for now.
1023
1024 __u64 args[4];
1025
1026Arguments for enabling a feature. If a feature needs initial values to
1027function properly, this is the place to put them.
1028
1029 __u8 pad[64];
1030};
1031
d938dc55
CH
1032The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1033for vm-wide capabilities.
414fa985 1034
68ba6974 10354.38 KVM_GET_MP_STATE
b843f065
AK
1036
1037Capability: KVM_CAP_MP_STATE
ecccf0cc 1038Architectures: x86, s390, arm, arm64
b843f065
AK
1039Type: vcpu ioctl
1040Parameters: struct kvm_mp_state (out)
1041Returns: 0 on success; -1 on error
1042
1043struct kvm_mp_state {
1044 __u32 mp_state;
1045};
1046
1047Returns the vcpu's current "multiprocessing state" (though also valid on
1048uniprocessor guests).
1049
1050Possible values are:
1051
ecccf0cc 1052 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64]
b843f065 1053 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
c32a4272 1054 which has not yet received an INIT signal [x86]
b843f065 1055 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
c32a4272 1056 now ready for a SIPI [x86]
b843f065 1057 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
c32a4272 1058 is waiting for an interrupt [x86]
b843f065 1059 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
c32a4272 1060 accessible via KVM_GET_VCPU_EVENTS) [x86]
ecccf0cc 1061 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64]
6352e4d2
DH
1062 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1063 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1064 [s390]
1065 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1066 [s390]
b843f065 1067
c32a4272 1068On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1069in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1070these architectures.
b843f065 1071
ecccf0cc
AB
1072For arm/arm64:
1073
1074The only states that are valid are KVM_MP_STATE_STOPPED and
1075KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
414fa985 1076
68ba6974 10774.39 KVM_SET_MP_STATE
b843f065
AK
1078
1079Capability: KVM_CAP_MP_STATE
ecccf0cc 1080Architectures: x86, s390, arm, arm64
b843f065
AK
1081Type: vcpu ioctl
1082Parameters: struct kvm_mp_state (in)
1083Returns: 0 on success; -1 on error
1084
1085Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1086arguments.
1087
c32a4272 1088On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1089in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1090these architectures.
b843f065 1091
ecccf0cc
AB
1092For arm/arm64:
1093
1094The only states that are valid are KVM_MP_STATE_STOPPED and
1095KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
414fa985 1096
68ba6974 10974.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1098
1099Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1100Architectures: x86
1101Type: vm ioctl
1102Parameters: unsigned long identity (in)
1103Returns: 0 on success, -1 on error
1104
1105This ioctl defines the physical address of a one-page region in the guest
1106physical address space. The region must be within the first 4GB of the
1107guest physical address space and must not conflict with any memory slot
1108or any mmio address. The guest may malfunction if it accesses this memory
1109region.
1110
1111This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1112because of a quirk in the virtualization implementation (see the internals
1113documentation when it pops into existence).
1114
414fa985 1115
68ba6974 11164.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1117
1118Capability: KVM_CAP_SET_BOOT_CPU_ID
c32a4272 1119Architectures: x86
57bc24cf
AK
1120Type: vm ioctl
1121Parameters: unsigned long vcpu_id
1122Returns: 0 on success, -1 on error
1123
1124Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1125as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1126is vcpu 0.
1127
414fa985 1128
68ba6974 11294.42 KVM_GET_XSAVE
2d5b5a66
SY
1130
1131Capability: KVM_CAP_XSAVE
1132Architectures: x86
1133Type: vcpu ioctl
1134Parameters: struct kvm_xsave (out)
1135Returns: 0 on success, -1 on error
1136
1137struct kvm_xsave {
1138 __u32 region[1024];
1139};
1140
1141This ioctl would copy current vcpu's xsave struct to the userspace.
1142
414fa985 1143
68ba6974 11444.43 KVM_SET_XSAVE
2d5b5a66
SY
1145
1146Capability: KVM_CAP_XSAVE
1147Architectures: x86
1148Type: vcpu ioctl
1149Parameters: struct kvm_xsave (in)
1150Returns: 0 on success, -1 on error
1151
1152struct kvm_xsave {
1153 __u32 region[1024];
1154};
1155
1156This ioctl would copy userspace's xsave struct to the kernel.
1157
414fa985 1158
68ba6974 11594.44 KVM_GET_XCRS
2d5b5a66
SY
1160
1161Capability: KVM_CAP_XCRS
1162Architectures: x86
1163Type: vcpu ioctl
1164Parameters: struct kvm_xcrs (out)
1165Returns: 0 on success, -1 on error
1166
1167struct kvm_xcr {
1168 __u32 xcr;
1169 __u32 reserved;
1170 __u64 value;
1171};
1172
1173struct kvm_xcrs {
1174 __u32 nr_xcrs;
1175 __u32 flags;
1176 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1177 __u64 padding[16];
1178};
1179
1180This ioctl would copy current vcpu's xcrs to the userspace.
1181
414fa985 1182
68ba6974 11834.45 KVM_SET_XCRS
2d5b5a66
SY
1184
1185Capability: KVM_CAP_XCRS
1186Architectures: x86
1187Type: vcpu ioctl
1188Parameters: struct kvm_xcrs (in)
1189Returns: 0 on success, -1 on error
1190
1191struct kvm_xcr {
1192 __u32 xcr;
1193 __u32 reserved;
1194 __u64 value;
1195};
1196
1197struct kvm_xcrs {
1198 __u32 nr_xcrs;
1199 __u32 flags;
1200 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1201 __u64 padding[16];
1202};
1203
1204This ioctl would set vcpu's xcr to the value userspace specified.
1205
414fa985 1206
68ba6974 12074.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1208
1209Capability: KVM_CAP_EXT_CPUID
1210Architectures: x86
1211Type: system ioctl
1212Parameters: struct kvm_cpuid2 (in/out)
1213Returns: 0 on success, -1 on error
1214
1215struct kvm_cpuid2 {
1216 __u32 nent;
1217 __u32 padding;
1218 struct kvm_cpuid_entry2 entries[0];
1219};
1220
9c15bb1d
BP
1221#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1222#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1223#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
d153513d
AK
1224
1225struct kvm_cpuid_entry2 {
1226 __u32 function;
1227 __u32 index;
1228 __u32 flags;
1229 __u32 eax;
1230 __u32 ebx;
1231 __u32 ecx;
1232 __u32 edx;
1233 __u32 padding[3];
1234};
1235
1236This ioctl returns x86 cpuid features which are supported by both the hardware
1237and kvm. Userspace can use the information returned by this ioctl to
1238construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1239hardware, kernel, and userspace capabilities, and with user requirements (for
1240example, the user may wish to constrain cpuid to emulate older hardware,
1241or for feature consistency across a cluster).
1242
1243Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1244with the 'nent' field indicating the number of entries in the variable-size
1245array 'entries'. If the number of entries is too low to describe the cpu
1246capabilities, an error (E2BIG) is returned. If the number is too high,
1247the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1248number is just right, the 'nent' field is adjusted to the number of valid
1249entries in the 'entries' array, which is then filled.
1250
1251The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1252with unknown or unsupported features masked out. Some features (for example,
1253x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1254emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1255
1256 function: the eax value used to obtain the entry
1257 index: the ecx value used to obtain the entry (for entries that are
1258 affected by ecx)
1259 flags: an OR of zero or more of the following:
1260 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1261 if the index field is valid
1262 KVM_CPUID_FLAG_STATEFUL_FUNC:
1263 if cpuid for this function returns different values for successive
1264 invocations; there will be several entries with the same function,
1265 all with this flag set
1266 KVM_CPUID_FLAG_STATE_READ_NEXT:
1267 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1268 the first entry to be read by a cpu
1269 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1270 this function/index combination
1271
4d25a066
JK
1272The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1273as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1274support. Instead it is reported via
1275
1276 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1277
1278if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1279feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1280
414fa985 1281
68ba6974 12824.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1283
1284Capability: KVM_CAP_PPC_GET_PVINFO
1285Architectures: ppc
1286Type: vm ioctl
1287Parameters: struct kvm_ppc_pvinfo (out)
1288Returns: 0 on success, !0 on error
1289
1290struct kvm_ppc_pvinfo {
1291 __u32 flags;
1292 __u32 hcall[4];
1293 __u8 pad[108];
1294};
1295
1296This ioctl fetches PV specific information that need to be passed to the guest
1297using the device tree or other means from vm context.
1298
9202e076 1299The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1300
1301If any additional field gets added to this structure later on, a bit for that
1302additional piece of information will be set in the flags bitmap.
1303
9202e076
LYB
1304The flags bitmap is defined as:
1305
1306 /* the host supports the ePAPR idle hcall
1307 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1308
e80a4a94 13094.48 KVM_ASSIGN_PCI_DEVICE (deprecated)
49f48172 1310
7f05db6a 1311Capability: none
c32a4272 1312Architectures: x86
49f48172
JK
1313Type: vm ioctl
1314Parameters: struct kvm_assigned_pci_dev (in)
1315Returns: 0 on success, -1 on error
1316
1317Assigns a host PCI device to the VM.
1318
1319struct kvm_assigned_pci_dev {
1320 __u32 assigned_dev_id;
1321 __u32 busnr;
1322 __u32 devfn;
1323 __u32 flags;
1324 __u32 segnr;
1325 union {
1326 __u32 reserved[11];
1327 };
1328};
1329
1330The PCI device is specified by the triple segnr, busnr, and devfn.
1331Identification in succeeding service requests is done via assigned_dev_id. The
1332following flags are specified:
1333
1334/* Depends on KVM_CAP_IOMMU */
1335#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1336/* The following two depend on KVM_CAP_PCI_2_3 */
1337#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1338#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1339
1340If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1341via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1342assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1343guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1344
42387373
AW
1345The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1346isolation of the device. Usages not specifying this flag are deprecated.
1347
3d27e23b
AW
1348Only PCI header type 0 devices with PCI BAR resources are supported by
1349device assignment. The user requesting this ioctl must have read/write
1350access to the PCI sysfs resource files associated with the device.
1351
7f05db6a
MT
1352Errors:
1353 ENOTTY: kernel does not support this ioctl
1354
1355 Other error conditions may be defined by individual device types or
1356 have their standard meanings.
1357
414fa985 1358
e80a4a94 13594.49 KVM_DEASSIGN_PCI_DEVICE (deprecated)
49f48172 1360
7f05db6a 1361Capability: none
c32a4272 1362Architectures: x86
49f48172
JK
1363Type: vm ioctl
1364Parameters: struct kvm_assigned_pci_dev (in)
1365Returns: 0 on success, -1 on error
1366
1367Ends PCI device assignment, releasing all associated resources.
1368
7f05db6a 1369See KVM_ASSIGN_PCI_DEVICE for the data structure. Only assigned_dev_id is
49f48172
JK
1370used in kvm_assigned_pci_dev to identify the device.
1371
7f05db6a
MT
1372Errors:
1373 ENOTTY: kernel does not support this ioctl
1374
1375 Other error conditions may be defined by individual device types or
1376 have their standard meanings.
414fa985 1377
e80a4a94 13784.50 KVM_ASSIGN_DEV_IRQ (deprecated)
49f48172
JK
1379
1380Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1381Architectures: x86
49f48172
JK
1382Type: vm ioctl
1383Parameters: struct kvm_assigned_irq (in)
1384Returns: 0 on success, -1 on error
1385
1386Assigns an IRQ to a passed-through device.
1387
1388struct kvm_assigned_irq {
1389 __u32 assigned_dev_id;
91e3d71d 1390 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1391 __u32 guest_irq;
1392 __u32 flags;
1393 union {
49f48172
JK
1394 __u32 reserved[12];
1395 };
1396};
1397
1398The following flags are defined:
1399
1400#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1401#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1402#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1403
1404#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1405#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1406#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1407
1408It is not valid to specify multiple types per host or guest IRQ. However, the
1409IRQ type of host and guest can differ or can even be null.
1410
7f05db6a
MT
1411Errors:
1412 ENOTTY: kernel does not support this ioctl
1413
1414 Other error conditions may be defined by individual device types or
1415 have their standard meanings.
1416
414fa985 1417
e80a4a94 14184.51 KVM_DEASSIGN_DEV_IRQ (deprecated)
49f48172
JK
1419
1420Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1421Architectures: x86
49f48172
JK
1422Type: vm ioctl
1423Parameters: struct kvm_assigned_irq (in)
1424Returns: 0 on success, -1 on error
1425
1426Ends an IRQ assignment to a passed-through device.
1427
1428See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1429by assigned_dev_id, flags must correspond to the IRQ type specified on
1430KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1431
414fa985 1432
68ba6974 14334.52 KVM_SET_GSI_ROUTING
49f48172
JK
1434
1435Capability: KVM_CAP_IRQ_ROUTING
c32a4272 1436Architectures: x86 s390
49f48172
JK
1437Type: vm ioctl
1438Parameters: struct kvm_irq_routing (in)
1439Returns: 0 on success, -1 on error
1440
1441Sets the GSI routing table entries, overwriting any previously set entries.
1442
1443struct kvm_irq_routing {
1444 __u32 nr;
1445 __u32 flags;
1446 struct kvm_irq_routing_entry entries[0];
1447};
1448
1449No flags are specified so far, the corresponding field must be set to zero.
1450
1451struct kvm_irq_routing_entry {
1452 __u32 gsi;
1453 __u32 type;
1454 __u32 flags;
1455 __u32 pad;
1456 union {
1457 struct kvm_irq_routing_irqchip irqchip;
1458 struct kvm_irq_routing_msi msi;
84223598 1459 struct kvm_irq_routing_s390_adapter adapter;
5c919412 1460 struct kvm_irq_routing_hv_sint hv_sint;
49f48172
JK
1461 __u32 pad[8];
1462 } u;
1463};
1464
1465/* gsi routing entry types */
1466#define KVM_IRQ_ROUTING_IRQCHIP 1
1467#define KVM_IRQ_ROUTING_MSI 2
84223598 1468#define KVM_IRQ_ROUTING_S390_ADAPTER 3
5c919412 1469#define KVM_IRQ_ROUTING_HV_SINT 4
49f48172
JK
1470
1471No flags are specified so far, the corresponding field must be set to zero.
1472
1473struct kvm_irq_routing_irqchip {
1474 __u32 irqchip;
1475 __u32 pin;
1476};
1477
1478struct kvm_irq_routing_msi {
1479 __u32 address_lo;
1480 __u32 address_hi;
1481 __u32 data;
1482 __u32 pad;
1483};
1484
84223598
CH
1485struct kvm_irq_routing_s390_adapter {
1486 __u64 ind_addr;
1487 __u64 summary_addr;
1488 __u64 ind_offset;
1489 __u32 summary_offset;
1490 __u32 adapter_id;
1491};
1492
5c919412
AS
1493struct kvm_irq_routing_hv_sint {
1494 __u32 vcpu;
1495 __u32 sint;
1496};
414fa985 1497
e80a4a94 14984.53 KVM_ASSIGN_SET_MSIX_NR (deprecated)
49f48172 1499
7f05db6a 1500Capability: none
c32a4272 1501Architectures: x86
49f48172
JK
1502Type: vm ioctl
1503Parameters: struct kvm_assigned_msix_nr (in)
1504Returns: 0 on success, -1 on error
1505
58f0964e
JK
1506Set the number of MSI-X interrupts for an assigned device. The number is
1507reset again by terminating the MSI-X assignment of the device via
1508KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1509point will fail.
49f48172
JK
1510
1511struct kvm_assigned_msix_nr {
1512 __u32 assigned_dev_id;
1513 __u16 entry_nr;
1514 __u16 padding;
1515};
1516
1517#define KVM_MAX_MSIX_PER_DEV 256
1518
414fa985 1519
e80a4a94 15204.54 KVM_ASSIGN_SET_MSIX_ENTRY (deprecated)
49f48172 1521
7f05db6a 1522Capability: none
c32a4272 1523Architectures: x86
49f48172
JK
1524Type: vm ioctl
1525Parameters: struct kvm_assigned_msix_entry (in)
1526Returns: 0 on success, -1 on error
1527
1528Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1529the GSI vector to zero means disabling the interrupt.
1530
1531struct kvm_assigned_msix_entry {
1532 __u32 assigned_dev_id;
1533 __u32 gsi;
1534 __u16 entry; /* The index of entry in the MSI-X table */
1535 __u16 padding[3];
1536};
1537
7f05db6a
MT
1538Errors:
1539 ENOTTY: kernel does not support this ioctl
1540
1541 Other error conditions may be defined by individual device types or
1542 have their standard meanings.
1543
414fa985
JK
1544
15454.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1546
1547Capability: KVM_CAP_TSC_CONTROL
1548Architectures: x86
1549Type: vcpu ioctl
1550Parameters: virtual tsc_khz
1551Returns: 0 on success, -1 on error
1552
1553Specifies the tsc frequency for the virtual machine. The unit of the
1554frequency is KHz.
1555
414fa985
JK
1556
15574.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1558
1559Capability: KVM_CAP_GET_TSC_KHZ
1560Architectures: x86
1561Type: vcpu ioctl
1562Parameters: none
1563Returns: virtual tsc-khz on success, negative value on error
1564
1565Returns the tsc frequency of the guest. The unit of the return value is
1566KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1567error.
1568
414fa985
JK
1569
15704.57 KVM_GET_LAPIC
e7677933
AK
1571
1572Capability: KVM_CAP_IRQCHIP
1573Architectures: x86
1574Type: vcpu ioctl
1575Parameters: struct kvm_lapic_state (out)
1576Returns: 0 on success, -1 on error
1577
1578#define KVM_APIC_REG_SIZE 0x400
1579struct kvm_lapic_state {
1580 char regs[KVM_APIC_REG_SIZE];
1581};
1582
1583Reads the Local APIC registers and copies them into the input argument. The
1584data format and layout are the same as documented in the architecture manual.
1585
414fa985
JK
1586
15874.58 KVM_SET_LAPIC
e7677933
AK
1588
1589Capability: KVM_CAP_IRQCHIP
1590Architectures: x86
1591Type: vcpu ioctl
1592Parameters: struct kvm_lapic_state (in)
1593Returns: 0 on success, -1 on error
1594
1595#define KVM_APIC_REG_SIZE 0x400
1596struct kvm_lapic_state {
1597 char regs[KVM_APIC_REG_SIZE];
1598};
1599
df5cbb27 1600Copies the input argument into the Local APIC registers. The data format
e7677933
AK
1601and layout are the same as documented in the architecture manual.
1602
414fa985
JK
1603
16044.59 KVM_IOEVENTFD
55399a02
SL
1605
1606Capability: KVM_CAP_IOEVENTFD
1607Architectures: all
1608Type: vm ioctl
1609Parameters: struct kvm_ioeventfd (in)
1610Returns: 0 on success, !0 on error
1611
1612This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1613within the guest. A guest write in the registered address will signal the
1614provided event instead of triggering an exit.
1615
1616struct kvm_ioeventfd {
1617 __u64 datamatch;
1618 __u64 addr; /* legal pio/mmio address */
e9ea5069 1619 __u32 len; /* 0, 1, 2, 4, or 8 bytes */
55399a02
SL
1620 __s32 fd;
1621 __u32 flags;
1622 __u8 pad[36];
1623};
1624
2b83451b
CH
1625For the special case of virtio-ccw devices on s390, the ioevent is matched
1626to a subchannel/virtqueue tuple instead.
1627
55399a02
SL
1628The following flags are defined:
1629
1630#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1631#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1632#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
2b83451b
CH
1633#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1634 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1635
1636If datamatch flag is set, the event will be signaled only if the written value
1637to the registered address is equal to datamatch in struct kvm_ioeventfd.
1638
2b83451b
CH
1639For virtio-ccw devices, addr contains the subchannel id and datamatch the
1640virtqueue index.
1641
e9ea5069
JW
1642With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and
1643the kernel will ignore the length of guest write and may get a faster vmexit.
1644The speedup may only apply to specific architectures, but the ioeventfd will
1645work anyway.
414fa985
JK
1646
16474.60 KVM_DIRTY_TLB
dc83b8bc
SW
1648
1649Capability: KVM_CAP_SW_TLB
1650Architectures: ppc
1651Type: vcpu ioctl
1652Parameters: struct kvm_dirty_tlb (in)
1653Returns: 0 on success, -1 on error
1654
1655struct kvm_dirty_tlb {
1656 __u64 bitmap;
1657 __u32 num_dirty;
1658};
1659
1660This must be called whenever userspace has changed an entry in the shared
1661TLB, prior to calling KVM_RUN on the associated vcpu.
1662
1663The "bitmap" field is the userspace address of an array. This array
1664consists of a number of bits, equal to the total number of TLB entries as
1665determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1666nearest multiple of 64.
1667
1668Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1669array.
1670
1671The array is little-endian: the bit 0 is the least significant bit of the
1672first byte, bit 8 is the least significant bit of the second byte, etc.
1673This avoids any complications with differing word sizes.
1674
1675The "num_dirty" field is a performance hint for KVM to determine whether it
1676should skip processing the bitmap and just invalidate everything. It must
1677be set to the number of set bits in the bitmap.
1678
414fa985 1679
e80a4a94 16804.61 KVM_ASSIGN_SET_INTX_MASK (deprecated)
07700a94
JK
1681
1682Capability: KVM_CAP_PCI_2_3
1683Architectures: x86
1684Type: vm ioctl
1685Parameters: struct kvm_assigned_pci_dev (in)
1686Returns: 0 on success, -1 on error
1687
1688Allows userspace to mask PCI INTx interrupts from the assigned device. The
1689kernel will not deliver INTx interrupts to the guest between setting and
1690clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1691and emulation of PCI 2.3 INTx disable command register behavior.
1692
1693This may be used for both PCI 2.3 devices supporting INTx disable natively and
1694older devices lacking this support. Userspace is responsible for emulating the
1695read value of the INTx disable bit in the guest visible PCI command register.
1696When modifying the INTx disable state, userspace should precede updating the
1697physical device command register by calling this ioctl to inform the kernel of
1698the new intended INTx mask state.
1699
1700Note that the kernel uses the device INTx disable bit to internally manage the
1701device interrupt state for PCI 2.3 devices. Reads of this register may
1702therefore not match the expected value. Writes should always use the guest
1703intended INTx disable value rather than attempting to read-copy-update the
1704current physical device state. Races between user and kernel updates to the
1705INTx disable bit are handled lazily in the kernel. It's possible the device
1706may generate unintended interrupts, but they will not be injected into the
1707guest.
1708
1709See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1710by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1711evaluated.
1712
414fa985 1713
54738c09
DG
17144.62 KVM_CREATE_SPAPR_TCE
1715
1716Capability: KVM_CAP_SPAPR_TCE
1717Architectures: powerpc
1718Type: vm ioctl
1719Parameters: struct kvm_create_spapr_tce (in)
1720Returns: file descriptor for manipulating the created TCE table
1721
1722This creates a virtual TCE (translation control entry) table, which
1723is an IOMMU for PAPR-style virtual I/O. It is used to translate
1724logical addresses used in virtual I/O into guest physical addresses,
1725and provides a scatter/gather capability for PAPR virtual I/O.
1726
1727/* for KVM_CAP_SPAPR_TCE */
1728struct kvm_create_spapr_tce {
1729 __u64 liobn;
1730 __u32 window_size;
1731};
1732
1733The liobn field gives the logical IO bus number for which to create a
1734TCE table. The window_size field specifies the size of the DMA window
1735which this TCE table will translate - the table will contain one 64
1736bit TCE entry for every 4kiB of the DMA window.
1737
1738When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1739table has been created using this ioctl(), the kernel will handle it
1740in real mode, updating the TCE table. H_PUT_TCE calls for other
1741liobns will cause a vm exit and must be handled by userspace.
1742
1743The return value is a file descriptor which can be passed to mmap(2)
1744to map the created TCE table into userspace. This lets userspace read
1745the entries written by kernel-handled H_PUT_TCE calls, and also lets
1746userspace update the TCE table directly which is useful in some
1747circumstances.
1748
414fa985 1749
aa04b4cc
PM
17504.63 KVM_ALLOCATE_RMA
1751
1752Capability: KVM_CAP_PPC_RMA
1753Architectures: powerpc
1754Type: vm ioctl
1755Parameters: struct kvm_allocate_rma (out)
1756Returns: file descriptor for mapping the allocated RMA
1757
1758This allocates a Real Mode Area (RMA) from the pool allocated at boot
1759time by the kernel. An RMA is a physically-contiguous, aligned region
1760of memory used on older POWER processors to provide the memory which
1761will be accessed by real-mode (MMU off) accesses in a KVM guest.
1762POWER processors support a set of sizes for the RMA that usually
1763includes 64MB, 128MB, 256MB and some larger powers of two.
1764
1765/* for KVM_ALLOCATE_RMA */
1766struct kvm_allocate_rma {
1767 __u64 rma_size;
1768};
1769
1770The return value is a file descriptor which can be passed to mmap(2)
1771to map the allocated RMA into userspace. The mapped area can then be
1772passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1773RMA for a virtual machine. The size of the RMA in bytes (which is
1774fixed at host kernel boot time) is returned in the rma_size field of
1775the argument structure.
1776
1777The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1778is supported; 2 if the processor requires all virtual machines to have
1779an RMA, or 1 if the processor can use an RMA but doesn't require it,
1780because it supports the Virtual RMA (VRMA) facility.
1781
414fa985 1782
3f745f1e
AK
17834.64 KVM_NMI
1784
1785Capability: KVM_CAP_USER_NMI
1786Architectures: x86
1787Type: vcpu ioctl
1788Parameters: none
1789Returns: 0 on success, -1 on error
1790
1791Queues an NMI on the thread's vcpu. Note this is well defined only
1792when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1793between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1794has been called, this interface is completely emulated within the kernel.
1795
1796To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1797following algorithm:
1798
5d4f6f3d 1799 - pause the vcpu
3f745f1e
AK
1800 - read the local APIC's state (KVM_GET_LAPIC)
1801 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1802 - if so, issue KVM_NMI
1803 - resume the vcpu
1804
1805Some guests configure the LINT1 NMI input to cause a panic, aiding in
1806debugging.
1807
414fa985 1808
e24ed81f 18094.65 KVM_S390_UCAS_MAP
27e0393f
CO
1810
1811Capability: KVM_CAP_S390_UCONTROL
1812Architectures: s390
1813Type: vcpu ioctl
1814Parameters: struct kvm_s390_ucas_mapping (in)
1815Returns: 0 in case of success
1816
1817The parameter is defined like this:
1818 struct kvm_s390_ucas_mapping {
1819 __u64 user_addr;
1820 __u64 vcpu_addr;
1821 __u64 length;
1822 };
1823
1824This ioctl maps the memory at "user_addr" with the length "length" to
1825the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 1826be aligned by 1 megabyte.
27e0393f 1827
414fa985 1828
e24ed81f 18294.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1830
1831Capability: KVM_CAP_S390_UCONTROL
1832Architectures: s390
1833Type: vcpu ioctl
1834Parameters: struct kvm_s390_ucas_mapping (in)
1835Returns: 0 in case of success
1836
1837The parameter is defined like this:
1838 struct kvm_s390_ucas_mapping {
1839 __u64 user_addr;
1840 __u64 vcpu_addr;
1841 __u64 length;
1842 };
1843
1844This ioctl unmaps the memory in the vcpu's address space starting at
1845"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 1846All parameters need to be aligned by 1 megabyte.
27e0393f 1847
414fa985 1848
e24ed81f 18494.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1850
1851Capability: KVM_CAP_S390_UCONTROL
1852Architectures: s390
1853Type: vcpu ioctl
1854Parameters: vcpu absolute address (in)
1855Returns: 0 in case of success
1856
1857This call creates a page table entry on the virtual cpu's address space
1858(for user controlled virtual machines) or the virtual machine's address
1859space (for regular virtual machines). This only works for minor faults,
1860thus it's recommended to access subject memory page via the user page
1861table upfront. This is useful to handle validity intercepts for user
1862controlled virtual machines to fault in the virtual cpu's lowcore pages
1863prior to calling the KVM_RUN ioctl.
1864
414fa985 1865
e24ed81f
AG
18664.68 KVM_SET_ONE_REG
1867
1868Capability: KVM_CAP_ONE_REG
1869Architectures: all
1870Type: vcpu ioctl
1871Parameters: struct kvm_one_reg (in)
1872Returns: 0 on success, negative value on failure
1873
1874struct kvm_one_reg {
1875 __u64 id;
1876 __u64 addr;
1877};
1878
1879Using this ioctl, a single vcpu register can be set to a specific value
1880defined by user space with the passed in struct kvm_one_reg, where id
1881refers to the register identifier as described below and addr is a pointer
1882to a variable with the respective size. There can be architecture agnostic
1883and architecture specific registers. Each have their own range of operation
1884and their own constants and width. To keep track of the implemented
1885registers, find a list below:
1886
bf5590f3
JH
1887 Arch | Register | Width (bits)
1888 | |
1889 PPC | KVM_REG_PPC_HIOR | 64
1890 PPC | KVM_REG_PPC_IAC1 | 64
1891 PPC | KVM_REG_PPC_IAC2 | 64
1892 PPC | KVM_REG_PPC_IAC3 | 64
1893 PPC | KVM_REG_PPC_IAC4 | 64
1894 PPC | KVM_REG_PPC_DAC1 | 64
1895 PPC | KVM_REG_PPC_DAC2 | 64
1896 PPC | KVM_REG_PPC_DABR | 64
1897 PPC | KVM_REG_PPC_DSCR | 64
1898 PPC | KVM_REG_PPC_PURR | 64
1899 PPC | KVM_REG_PPC_SPURR | 64
1900 PPC | KVM_REG_PPC_DAR | 64
1901 PPC | KVM_REG_PPC_DSISR | 32
1902 PPC | KVM_REG_PPC_AMR | 64
1903 PPC | KVM_REG_PPC_UAMOR | 64
1904 PPC | KVM_REG_PPC_MMCR0 | 64
1905 PPC | KVM_REG_PPC_MMCR1 | 64
1906 PPC | KVM_REG_PPC_MMCRA | 64
1907 PPC | KVM_REG_PPC_MMCR2 | 64
1908 PPC | KVM_REG_PPC_MMCRS | 64
1909 PPC | KVM_REG_PPC_SIAR | 64
1910 PPC | KVM_REG_PPC_SDAR | 64
1911 PPC | KVM_REG_PPC_SIER | 64
1912 PPC | KVM_REG_PPC_PMC1 | 32
1913 PPC | KVM_REG_PPC_PMC2 | 32
1914 PPC | KVM_REG_PPC_PMC3 | 32
1915 PPC | KVM_REG_PPC_PMC4 | 32
1916 PPC | KVM_REG_PPC_PMC5 | 32
1917 PPC | KVM_REG_PPC_PMC6 | 32
1918 PPC | KVM_REG_PPC_PMC7 | 32
1919 PPC | KVM_REG_PPC_PMC8 | 32
1920 PPC | KVM_REG_PPC_FPR0 | 64
a8bd19ef 1921 ...
bf5590f3
JH
1922 PPC | KVM_REG_PPC_FPR31 | 64
1923 PPC | KVM_REG_PPC_VR0 | 128
a8bd19ef 1924 ...
bf5590f3
JH
1925 PPC | KVM_REG_PPC_VR31 | 128
1926 PPC | KVM_REG_PPC_VSR0 | 128
a8bd19ef 1927 ...
bf5590f3
JH
1928 PPC | KVM_REG_PPC_VSR31 | 128
1929 PPC | KVM_REG_PPC_FPSCR | 64
1930 PPC | KVM_REG_PPC_VSCR | 32
1931 PPC | KVM_REG_PPC_VPA_ADDR | 64
1932 PPC | KVM_REG_PPC_VPA_SLB | 128
1933 PPC | KVM_REG_PPC_VPA_DTL | 128
1934 PPC | KVM_REG_PPC_EPCR | 32
1935 PPC | KVM_REG_PPC_EPR | 32
1936 PPC | KVM_REG_PPC_TCR | 32
1937 PPC | KVM_REG_PPC_TSR | 32
1938 PPC | KVM_REG_PPC_OR_TSR | 32
1939 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1940 PPC | KVM_REG_PPC_MAS0 | 32
1941 PPC | KVM_REG_PPC_MAS1 | 32
1942 PPC | KVM_REG_PPC_MAS2 | 64
1943 PPC | KVM_REG_PPC_MAS7_3 | 64
1944 PPC | KVM_REG_PPC_MAS4 | 32
1945 PPC | KVM_REG_PPC_MAS6 | 32
1946 PPC | KVM_REG_PPC_MMUCFG | 32
1947 PPC | KVM_REG_PPC_TLB0CFG | 32
1948 PPC | KVM_REG_PPC_TLB1CFG | 32
1949 PPC | KVM_REG_PPC_TLB2CFG | 32
1950 PPC | KVM_REG_PPC_TLB3CFG | 32
1951 PPC | KVM_REG_PPC_TLB0PS | 32
1952 PPC | KVM_REG_PPC_TLB1PS | 32
1953 PPC | KVM_REG_PPC_TLB2PS | 32
1954 PPC | KVM_REG_PPC_TLB3PS | 32
1955 PPC | KVM_REG_PPC_EPTCFG | 32
1956 PPC | KVM_REG_PPC_ICP_STATE | 64
1957 PPC | KVM_REG_PPC_TB_OFFSET | 64
1958 PPC | KVM_REG_PPC_SPMC1 | 32
1959 PPC | KVM_REG_PPC_SPMC2 | 32
1960 PPC | KVM_REG_PPC_IAMR | 64
1961 PPC | KVM_REG_PPC_TFHAR | 64
1962 PPC | KVM_REG_PPC_TFIAR | 64
1963 PPC | KVM_REG_PPC_TEXASR | 64
1964 PPC | KVM_REG_PPC_FSCR | 64
1965 PPC | KVM_REG_PPC_PSPB | 32
1966 PPC | KVM_REG_PPC_EBBHR | 64
1967 PPC | KVM_REG_PPC_EBBRR | 64
1968 PPC | KVM_REG_PPC_BESCR | 64
1969 PPC | KVM_REG_PPC_TAR | 64
1970 PPC | KVM_REG_PPC_DPDES | 64
1971 PPC | KVM_REG_PPC_DAWR | 64
1972 PPC | KVM_REG_PPC_DAWRX | 64
1973 PPC | KVM_REG_PPC_CIABR | 64
1974 PPC | KVM_REG_PPC_IC | 64
1975 PPC | KVM_REG_PPC_VTB | 64
1976 PPC | KVM_REG_PPC_CSIGR | 64
1977 PPC | KVM_REG_PPC_TACR | 64
1978 PPC | KVM_REG_PPC_TCSCR | 64
1979 PPC | KVM_REG_PPC_PID | 64
1980 PPC | KVM_REG_PPC_ACOP | 64
1981 PPC | KVM_REG_PPC_VRSAVE | 32
cc568ead
PB
1982 PPC | KVM_REG_PPC_LPCR | 32
1983 PPC | KVM_REG_PPC_LPCR_64 | 64
bf5590f3
JH
1984 PPC | KVM_REG_PPC_PPR | 64
1985 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
1986 PPC | KVM_REG_PPC_DABRX | 32
1987 PPC | KVM_REG_PPC_WORT | 64
bc8a4e5c
BB
1988 PPC | KVM_REG_PPC_SPRG9 | 64
1989 PPC | KVM_REG_PPC_DBSR | 32
bf5590f3 1990 PPC | KVM_REG_PPC_TM_GPR0 | 64
3b783474 1991 ...
bf5590f3
JH
1992 PPC | KVM_REG_PPC_TM_GPR31 | 64
1993 PPC | KVM_REG_PPC_TM_VSR0 | 128
3b783474 1994 ...
bf5590f3
JH
1995 PPC | KVM_REG_PPC_TM_VSR63 | 128
1996 PPC | KVM_REG_PPC_TM_CR | 64
1997 PPC | KVM_REG_PPC_TM_LR | 64
1998 PPC | KVM_REG_PPC_TM_CTR | 64
1999 PPC | KVM_REG_PPC_TM_FPSCR | 64
2000 PPC | KVM_REG_PPC_TM_AMR | 64
2001 PPC | KVM_REG_PPC_TM_PPR | 64
2002 PPC | KVM_REG_PPC_TM_VRSAVE | 64
2003 PPC | KVM_REG_PPC_TM_VSCR | 32
2004 PPC | KVM_REG_PPC_TM_DSCR | 64
2005 PPC | KVM_REG_PPC_TM_TAR | 64
c2d2c21b
JH
2006 | |
2007 MIPS | KVM_REG_MIPS_R0 | 64
2008 ...
2009 MIPS | KVM_REG_MIPS_R31 | 64
2010 MIPS | KVM_REG_MIPS_HI | 64
2011 MIPS | KVM_REG_MIPS_LO | 64
2012 MIPS | KVM_REG_MIPS_PC | 64
2013 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
2014 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
2015 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
2016 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
2017 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
2018 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
2019 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
2020 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
2021 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
2022 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
2023 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
2024 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
2025 MIPS | KVM_REG_MIPS_CP0_EPC | 64
1068eaaf 2026 MIPS | KVM_REG_MIPS_CP0_PRID | 32
c2d2c21b
JH
2027 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
2028 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
2029 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
2030 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
c771607a
JH
2031 MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32
2032 MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32
c2d2c21b
JH
2033 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
2034 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
05108709
JH
2035 MIPS | KVM_REG_MIPS_CP0_KSCRATCH1 | 64
2036 MIPS | KVM_REG_MIPS_CP0_KSCRATCH2 | 64
2037 MIPS | KVM_REG_MIPS_CP0_KSCRATCH3 | 64
2038 MIPS | KVM_REG_MIPS_CP0_KSCRATCH4 | 64
2039 MIPS | KVM_REG_MIPS_CP0_KSCRATCH5 | 64
2040 MIPS | KVM_REG_MIPS_CP0_KSCRATCH6 | 64
c2d2c21b
JH
2041 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
2042 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
2043 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
379245cd
JH
2044 MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32
2045 MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64
ab86bd60 2046 MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128
379245cd
JH
2047 MIPS | KVM_REG_MIPS_FCR_IR | 32
2048 MIPS | KVM_REG_MIPS_FCR_CSR | 32
ab86bd60
JH
2049 MIPS | KVM_REG_MIPS_MSA_IR | 32
2050 MIPS | KVM_REG_MIPS_MSA_CSR | 32
414fa985 2051
749cf76c
CD
2052ARM registers are mapped using the lower 32 bits. The upper 16 of that
2053is the register group type, or coprocessor number:
2054
2055ARM core registers have the following id bit patterns:
aa404ddf 2056 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 2057
1138245c 2058ARM 32-bit CP15 registers have the following id bit patterns:
aa404ddf 2059 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c
CD
2060
2061ARM 64-bit CP15 registers have the following id bit patterns:
aa404ddf 2062 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 2063
c27581ed 2064ARM CCSIDR registers are demultiplexed by CSSELR value:
aa404ddf 2065 0x4020 0000 0011 00 <csselr:8>
749cf76c 2066
4fe21e4c 2067ARM 32-bit VFP control registers have the following id bit patterns:
aa404ddf 2068 0x4020 0000 0012 1 <regno:12>
4fe21e4c
RR
2069
2070ARM 64-bit FP registers have the following id bit patterns:
aa404ddf 2071 0x4030 0000 0012 0 <regno:12>
4fe21e4c 2072
379e04c7
MZ
2073
2074arm64 registers are mapped using the lower 32 bits. The upper 16 of
2075that is the register group type, or coprocessor number:
2076
2077arm64 core/FP-SIMD registers have the following id bit patterns. Note
2078that the size of the access is variable, as the kvm_regs structure
2079contains elements ranging from 32 to 128 bits. The index is a 32bit
2080value in the kvm_regs structure seen as a 32bit array.
2081 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2082
2083arm64 CCSIDR registers are demultiplexed by CSSELR value:
2084 0x6020 0000 0011 00 <csselr:8>
2085
2086arm64 system registers have the following id bit patterns:
2087 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2088
c2d2c21b
JH
2089
2090MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2091the register group type:
2092
2093MIPS core registers (see above) have the following id bit patterns:
2094 0x7030 0000 0000 <reg:16>
2095
2096MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
2097patterns depending on whether they're 32-bit or 64-bit registers:
2098 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2099 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2100
2101MIPS KVM control registers (see above) have the following id bit patterns:
2102 0x7030 0000 0002 <reg:16>
2103
379245cd
JH
2104MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
2105id bit patterns depending on the size of the register being accessed. They are
2106always accessed according to the current guest FPU mode (Status.FR and
2107Config5.FRE), i.e. as the guest would see them, and they become unpredictable
ab86bd60
JH
2108if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
2109registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
2110overlap the FPU registers:
379245cd
JH
2111 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
2112 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
ab86bd60 2113 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
379245cd
JH
2114
2115MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
2116following id bit patterns:
2117 0x7020 0000 0003 01 <0:3> <reg:5>
2118
ab86bd60
JH
2119MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
2120following id bit patterns:
2121 0x7020 0000 0003 02 <0:3> <reg:5>
2122
c2d2c21b 2123
e24ed81f
AG
21244.69 KVM_GET_ONE_REG
2125
2126Capability: KVM_CAP_ONE_REG
2127Architectures: all
2128Type: vcpu ioctl
2129Parameters: struct kvm_one_reg (in and out)
2130Returns: 0 on success, negative value on failure
2131
2132This ioctl allows to receive the value of a single register implemented
2133in a vcpu. The register to read is indicated by the "id" field of the
2134kvm_one_reg struct passed in. On success, the register value can be found
2135at the memory location pointed to by "addr".
2136
2137The list of registers accessible using this interface is identical to the
2e232702 2138list in 4.68.
e24ed81f 2139
414fa985 2140
1c0b28c2
EM
21414.70 KVM_KVMCLOCK_CTRL
2142
2143Capability: KVM_CAP_KVMCLOCK_CTRL
2144Architectures: Any that implement pvclocks (currently x86 only)
2145Type: vcpu ioctl
2146Parameters: None
2147Returns: 0 on success, -1 on error
2148
2149This signals to the host kernel that the specified guest is being paused by
2150userspace. The host will set a flag in the pvclock structure that is checked
2151from the soft lockup watchdog. The flag is part of the pvclock structure that
2152is shared between guest and host, specifically the second bit of the flags
2153field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2154the host and read/cleared exclusively by the guest. The guest operation of
2155checking and clearing the flag must an atomic operation so
2156load-link/store-conditional, or equivalent must be used. There are two cases
2157where the guest will clear the flag: when the soft lockup watchdog timer resets
2158itself or when a soft lockup is detected. This ioctl can be called any time
2159after pausing the vcpu, but before it is resumed.
2160
414fa985 2161
07975ad3
JK
21624.71 KVM_SIGNAL_MSI
2163
2164Capability: KVM_CAP_SIGNAL_MSI
0e4e82f1 2165Architectures: x86 arm64
07975ad3
JK
2166Type: vm ioctl
2167Parameters: struct kvm_msi (in)
2168Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2169
2170Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2171MSI messages.
2172
2173struct kvm_msi {
2174 __u32 address_lo;
2175 __u32 address_hi;
2176 __u32 data;
2177 __u32 flags;
2b8ddd93
AP
2178 __u32 devid;
2179 __u8 pad[12];
07975ad3
JK
2180};
2181
2b8ddd93
AP
2182flags: KVM_MSI_VALID_DEVID: devid contains a valid value
2183devid: If KVM_MSI_VALID_DEVID is set, contains a unique device identifier
2184 for the device that wrote the MSI message.
2185 For PCI, this is usually a BFD identifier in the lower 16 bits.
2186
2187The per-VM KVM_CAP_MSI_DEVID capability advertises the need to provide
2188the device ID. If this capability is not set, userland cannot rely on
2189the kernel to allow the KVM_MSI_VALID_DEVID flag being set.
07975ad3 2190
414fa985 2191
0589ff6c
JK
21924.71 KVM_CREATE_PIT2
2193
2194Capability: KVM_CAP_PIT2
2195Architectures: x86
2196Type: vm ioctl
2197Parameters: struct kvm_pit_config (in)
2198Returns: 0 on success, -1 on error
2199
2200Creates an in-kernel device model for the i8254 PIT. This call is only valid
2201after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2202parameters have to be passed:
2203
2204struct kvm_pit_config {
2205 __u32 flags;
2206 __u32 pad[15];
2207};
2208
2209Valid flags are:
2210
2211#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2212
b6ddf05f
JK
2213PIT timer interrupts may use a per-VM kernel thread for injection. If it
2214exists, this thread will have a name of the following pattern:
2215
2216kvm-pit/<owner-process-pid>
2217
2218When running a guest with elevated priorities, the scheduling parameters of
2219this thread may have to be adjusted accordingly.
2220
0589ff6c
JK
2221This IOCTL replaces the obsolete KVM_CREATE_PIT.
2222
2223
22244.72 KVM_GET_PIT2
2225
2226Capability: KVM_CAP_PIT_STATE2
2227Architectures: x86
2228Type: vm ioctl
2229Parameters: struct kvm_pit_state2 (out)
2230Returns: 0 on success, -1 on error
2231
2232Retrieves the state of the in-kernel PIT model. Only valid after
2233KVM_CREATE_PIT2. The state is returned in the following structure:
2234
2235struct kvm_pit_state2 {
2236 struct kvm_pit_channel_state channels[3];
2237 __u32 flags;
2238 __u32 reserved[9];
2239};
2240
2241Valid flags are:
2242
2243/* disable PIT in HPET legacy mode */
2244#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2245
2246This IOCTL replaces the obsolete KVM_GET_PIT.
2247
2248
22494.73 KVM_SET_PIT2
2250
2251Capability: KVM_CAP_PIT_STATE2
2252Architectures: x86
2253Type: vm ioctl
2254Parameters: struct kvm_pit_state2 (in)
2255Returns: 0 on success, -1 on error
2256
2257Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2258See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2259
2260This IOCTL replaces the obsolete KVM_SET_PIT.
2261
2262
5b74716e
BH
22634.74 KVM_PPC_GET_SMMU_INFO
2264
2265Capability: KVM_CAP_PPC_GET_SMMU_INFO
2266Architectures: powerpc
2267Type: vm ioctl
2268Parameters: None
2269Returns: 0 on success, -1 on error
2270
2271This populates and returns a structure describing the features of
2272the "Server" class MMU emulation supported by KVM.
cc22c354 2273This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2274device-tree properties for the guest operating system.
2275
c98be0c9 2276The structure contains some global information, followed by an
5b74716e
BH
2277array of supported segment page sizes:
2278
2279 struct kvm_ppc_smmu_info {
2280 __u64 flags;
2281 __u32 slb_size;
2282 __u32 pad;
2283 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2284 };
2285
2286The supported flags are:
2287
2288 - KVM_PPC_PAGE_SIZES_REAL:
2289 When that flag is set, guest page sizes must "fit" the backing
2290 store page sizes. When not set, any page size in the list can
2291 be used regardless of how they are backed by userspace.
2292
2293 - KVM_PPC_1T_SEGMENTS
2294 The emulated MMU supports 1T segments in addition to the
2295 standard 256M ones.
2296
2297The "slb_size" field indicates how many SLB entries are supported
2298
2299The "sps" array contains 8 entries indicating the supported base
2300page sizes for a segment in increasing order. Each entry is defined
2301as follow:
2302
2303 struct kvm_ppc_one_seg_page_size {
2304 __u32 page_shift; /* Base page shift of segment (or 0) */
2305 __u32 slb_enc; /* SLB encoding for BookS */
2306 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2307 };
2308
2309An entry with a "page_shift" of 0 is unused. Because the array is
2310organized in increasing order, a lookup can stop when encoutering
2311such an entry.
2312
2313The "slb_enc" field provides the encoding to use in the SLB for the
2314page size. The bits are in positions such as the value can directly
2315be OR'ed into the "vsid" argument of the slbmte instruction.
2316
2317The "enc" array is a list which for each of those segment base page
2318size provides the list of supported actual page sizes (which can be
2319only larger or equal to the base page size), along with the
f884ab15 2320corresponding encoding in the hash PTE. Similarly, the array is
5b74716e
BH
23218 entries sorted by increasing sizes and an entry with a "0" shift
2322is an empty entry and a terminator:
2323
2324 struct kvm_ppc_one_page_size {
2325 __u32 page_shift; /* Page shift (or 0) */
2326 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2327 };
2328
2329The "pte_enc" field provides a value that can OR'ed into the hash
2330PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2331into the hash PTE second double word).
2332
f36992e3
AW
23334.75 KVM_IRQFD
2334
2335Capability: KVM_CAP_IRQFD
174178fe 2336Architectures: x86 s390 arm arm64
f36992e3
AW
2337Type: vm ioctl
2338Parameters: struct kvm_irqfd (in)
2339Returns: 0 on success, -1 on error
2340
2341Allows setting an eventfd to directly trigger a guest interrupt.
2342kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2343kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
17180032 2344an event is triggered on the eventfd, an interrupt is injected into
f36992e3
AW
2345the guest using the specified gsi pin. The irqfd is removed using
2346the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2347and kvm_irqfd.gsi.
2348
7a84428a
AW
2349With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2350mechanism allowing emulation of level-triggered, irqfd-based
2351interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2352additional eventfd in the kvm_irqfd.resamplefd field. When operating
2353in resample mode, posting of an interrupt through kvm_irq.fd asserts
2354the specified gsi in the irqchip. When the irqchip is resampled, such
17180032 2355as from an EOI, the gsi is de-asserted and the user is notified via
7a84428a
AW
2356kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2357the interrupt if the device making use of it still requires service.
2358Note that closing the resamplefd is not sufficient to disable the
2359irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2360and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2361
174178fe
EA
2362On ARM/ARM64, the gsi field in the kvm_irqfd struct specifies the Shared
2363Peripheral Interrupt (SPI) index, such that the GIC interrupt ID is
2364given by gsi + 32.
2365
5fecc9d8 23664.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2367
2368Capability: KVM_CAP_PPC_ALLOC_HTAB
2369Architectures: powerpc
2370Type: vm ioctl
2371Parameters: Pointer to u32 containing hash table order (in/out)
2372Returns: 0 on success, -1 on error
2373
2374This requests the host kernel to allocate an MMU hash table for a
2375guest using the PAPR paravirtualization interface. This only does
2376anything if the kernel is configured to use the Book 3S HV style of
2377virtualization. Otherwise the capability doesn't exist and the ioctl
2378returns an ENOTTY error. The rest of this description assumes Book 3S
2379HV.
2380
2381There must be no vcpus running when this ioctl is called; if there
2382are, it will do nothing and return an EBUSY error.
2383
2384The parameter is a pointer to a 32-bit unsigned integer variable
2385containing the order (log base 2) of the desired size of the hash
2386table, which must be between 18 and 46. On successful return from the
2387ioctl, it will have been updated with the order of the hash table that
2388was allocated.
2389
2390If no hash table has been allocated when any vcpu is asked to run
2391(with the KVM_RUN ioctl), the host kernel will allocate a
2392default-sized hash table (16 MB).
2393
2394If this ioctl is called when a hash table has already been allocated,
2395the kernel will clear out the existing hash table (zero all HPTEs) and
2396return the hash table order in the parameter. (If the guest is using
2397the virtualized real-mode area (VRMA) facility, the kernel will
2398re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2399
416ad65f
CH
24004.77 KVM_S390_INTERRUPT
2401
2402Capability: basic
2403Architectures: s390
2404Type: vm ioctl, vcpu ioctl
2405Parameters: struct kvm_s390_interrupt (in)
2406Returns: 0 on success, -1 on error
2407
2408Allows to inject an interrupt to the guest. Interrupts can be floating
2409(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2410
2411Interrupt parameters are passed via kvm_s390_interrupt:
2412
2413struct kvm_s390_interrupt {
2414 __u32 type;
2415 __u32 parm;
2416 __u64 parm64;
2417};
2418
2419type can be one of the following:
2420
2822545f 2421KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
416ad65f
CH
2422KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2423KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2424KVM_S390_RESTART (vcpu) - restart
e029ae5b
TH
2425KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2426KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
416ad65f
CH
2427KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2428 parameters in parm and parm64
2429KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2430KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2431KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2432KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2433 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2434 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2435 interruption subclass)
48a3e950
CH
2436KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2437 machine check interrupt code in parm64 (note that
2438 machine checks needing further payload are not
2439 supported by this ioctl)
416ad65f
CH
2440
2441Note that the vcpu ioctl is asynchronous to vcpu execution.
2442
a2932923
PM
24434.78 KVM_PPC_GET_HTAB_FD
2444
2445Capability: KVM_CAP_PPC_HTAB_FD
2446Architectures: powerpc
2447Type: vm ioctl
2448Parameters: Pointer to struct kvm_get_htab_fd (in)
2449Returns: file descriptor number (>= 0) on success, -1 on error
2450
2451This returns a file descriptor that can be used either to read out the
2452entries in the guest's hashed page table (HPT), or to write entries to
2453initialize the HPT. The returned fd can only be written to if the
2454KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2455can only be read if that bit is clear. The argument struct looks like
2456this:
2457
2458/* For KVM_PPC_GET_HTAB_FD */
2459struct kvm_get_htab_fd {
2460 __u64 flags;
2461 __u64 start_index;
2462 __u64 reserved[2];
2463};
2464
2465/* Values for kvm_get_htab_fd.flags */
2466#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2467#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2468
2469The `start_index' field gives the index in the HPT of the entry at
2470which to start reading. It is ignored when writing.
2471
2472Reads on the fd will initially supply information about all
2473"interesting" HPT entries. Interesting entries are those with the
2474bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2475all entries. When the end of the HPT is reached, the read() will
2476return. If read() is called again on the fd, it will start again from
2477the beginning of the HPT, but will only return HPT entries that have
2478changed since they were last read.
2479
2480Data read or written is structured as a header (8 bytes) followed by a
2481series of valid HPT entries (16 bytes) each. The header indicates how
2482many valid HPT entries there are and how many invalid entries follow
2483the valid entries. The invalid entries are not represented explicitly
2484in the stream. The header format is:
2485
2486struct kvm_get_htab_header {
2487 __u32 index;
2488 __u16 n_valid;
2489 __u16 n_invalid;
2490};
2491
2492Writes to the fd create HPT entries starting at the index given in the
2493header; first `n_valid' valid entries with contents from the data
2494written, then `n_invalid' invalid entries, invalidating any previously
2495valid entries found.
2496
852b6d57
SW
24974.79 KVM_CREATE_DEVICE
2498
2499Capability: KVM_CAP_DEVICE_CTRL
2500Type: vm ioctl
2501Parameters: struct kvm_create_device (in/out)
2502Returns: 0 on success, -1 on error
2503Errors:
2504 ENODEV: The device type is unknown or unsupported
2505 EEXIST: Device already created, and this type of device may not
2506 be instantiated multiple times
2507
2508 Other error conditions may be defined by individual device types or
2509 have their standard meanings.
2510
2511Creates an emulated device in the kernel. The file descriptor returned
2512in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2513
2514If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2515device type is supported (not necessarily whether it can be created
2516in the current vm).
2517
2518Individual devices should not define flags. Attributes should be used
2519for specifying any behavior that is not implied by the device type
2520number.
2521
2522struct kvm_create_device {
2523 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2524 __u32 fd; /* out: device handle */
2525 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2526};
2527
25284.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2529
f577f6c2
SZ
2530Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2531 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2532Type: device ioctl, vm ioctl, vcpu ioctl
852b6d57
SW
2533Parameters: struct kvm_device_attr
2534Returns: 0 on success, -1 on error
2535Errors:
2536 ENXIO: The group or attribute is unknown/unsupported for this device
f9cbd9b0 2537 or hardware support is missing.
852b6d57
SW
2538 EPERM: The attribute cannot (currently) be accessed this way
2539 (e.g. read-only attribute, or attribute that only makes
2540 sense when the device is in a different state)
2541
2542 Other error conditions may be defined by individual device types.
2543
2544Gets/sets a specified piece of device configuration and/or state. The
2545semantics are device-specific. See individual device documentation in
2546the "devices" directory. As with ONE_REG, the size of the data
2547transferred is defined by the particular attribute.
2548
2549struct kvm_device_attr {
2550 __u32 flags; /* no flags currently defined */
2551 __u32 group; /* device-defined */
2552 __u64 attr; /* group-defined */
2553 __u64 addr; /* userspace address of attr data */
2554};
2555
25564.81 KVM_HAS_DEVICE_ATTR
2557
f577f6c2
SZ
2558Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2559 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2560Type: device ioctl, vm ioctl, vcpu ioctl
852b6d57
SW
2561Parameters: struct kvm_device_attr
2562Returns: 0 on success, -1 on error
2563Errors:
2564 ENXIO: The group or attribute is unknown/unsupported for this device
f9cbd9b0 2565 or hardware support is missing.
852b6d57
SW
2566
2567Tests whether a device supports a particular attribute. A successful
2568return indicates the attribute is implemented. It does not necessarily
2569indicate that the attribute can be read or written in the device's
2570current state. "addr" is ignored.
f36992e3 2571
d8968f1f 25724.82 KVM_ARM_VCPU_INIT
749cf76c
CD
2573
2574Capability: basic
379e04c7 2575Architectures: arm, arm64
749cf76c 2576Type: vcpu ioctl
beb11fc7 2577Parameters: struct kvm_vcpu_init (in)
749cf76c
CD
2578Returns: 0 on success; -1 on error
2579Errors:
2580  EINVAL:    the target is unknown, or the combination of features is invalid.
2581  ENOENT:    a features bit specified is unknown.
2582
2583This tells KVM what type of CPU to present to the guest, and what
2584optional features it should have.  This will cause a reset of the cpu
2585registers to their initial values.  If this is not called, KVM_RUN will
2586return ENOEXEC for that vcpu.
2587
2588Note that because some registers reflect machine topology, all vcpus
2589should be created before this ioctl is invoked.
2590
f7fa034d
CD
2591Userspace can call this function multiple times for a given vcpu, including
2592after the vcpu has been run. This will reset the vcpu to its initial
2593state. All calls to this function after the initial call must use the same
2594target and same set of feature flags, otherwise EINVAL will be returned.
2595
aa024c2f
MZ
2596Possible features:
2597 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
3ad8b3de
CD
2598 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2599 and execute guest code when KVM_RUN is called.
379e04c7
MZ
2600 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2601 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
50bb0c94
AP
2602 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2603 Depends on KVM_CAP_ARM_PSCI_0_2.
808e7381
SZ
2604 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU.
2605 Depends on KVM_CAP_ARM_PMU_V3.
aa024c2f 2606
749cf76c 2607
740edfc0
AP
26084.83 KVM_ARM_PREFERRED_TARGET
2609
2610Capability: basic
2611Architectures: arm, arm64
2612Type: vm ioctl
2613Parameters: struct struct kvm_vcpu_init (out)
2614Returns: 0 on success; -1 on error
2615Errors:
a7265fb1 2616 ENODEV: no preferred target available for the host
740edfc0
AP
2617
2618This queries KVM for preferred CPU target type which can be emulated
2619by KVM on underlying host.
2620
2621The ioctl returns struct kvm_vcpu_init instance containing information
2622about preferred CPU target type and recommended features for it. The
2623kvm_vcpu_init->features bitmap returned will have feature bits set if
2624the preferred target recommends setting these features, but this is
2625not mandatory.
2626
2627The information returned by this ioctl can be used to prepare an instance
2628of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2629in VCPU matching underlying host.
2630
2631
26324.84 KVM_GET_REG_LIST
749cf76c
CD
2633
2634Capability: basic
c2d2c21b 2635Architectures: arm, arm64, mips
749cf76c
CD
2636Type: vcpu ioctl
2637Parameters: struct kvm_reg_list (in/out)
2638Returns: 0 on success; -1 on error
2639Errors:
2640  E2BIG:     the reg index list is too big to fit in the array specified by
2641             the user (the number required will be written into n).
2642
2643struct kvm_reg_list {
2644 __u64 n; /* number of registers in reg[] */
2645 __u64 reg[0];
2646};
2647
2648This ioctl returns the guest registers that are supported for the
2649KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2650
ce01e4e8
CD
2651
26524.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
3401d546
CD
2653
2654Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
379e04c7 2655Architectures: arm, arm64
3401d546
CD
2656Type: vm ioctl
2657Parameters: struct kvm_arm_device_address (in)
2658Returns: 0 on success, -1 on error
2659Errors:
2660 ENODEV: The device id is unknown
2661 ENXIO: Device not supported on current system
2662 EEXIST: Address already set
2663 E2BIG: Address outside guest physical address space
330690cd 2664 EBUSY: Address overlaps with other device range
3401d546
CD
2665
2666struct kvm_arm_device_addr {
2667 __u64 id;
2668 __u64 addr;
2669};
2670
2671Specify a device address in the guest's physical address space where guests
2672can access emulated or directly exposed devices, which the host kernel needs
2673to know about. The id field is an architecture specific identifier for a
2674specific device.
2675
379e04c7
MZ
2676ARM/arm64 divides the id field into two parts, a device id and an
2677address type id specific to the individual device.
3401d546
CD
2678
2679  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2680 field: | 0x00000000 | device id | addr type id |
2681
379e04c7
MZ
2682ARM/arm64 currently only require this when using the in-kernel GIC
2683support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2684as the device id. When setting the base address for the guest's
2685mapping of the VGIC virtual CPU and distributor interface, the ioctl
2686must be called after calling KVM_CREATE_IRQCHIP, but before calling
2687KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2688base addresses will return -EEXIST.
3401d546 2689
ce01e4e8
CD
2690Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2691should be used instead.
2692
2693
740edfc0 26944.86 KVM_PPC_RTAS_DEFINE_TOKEN
8e591cb7
ME
2695
2696Capability: KVM_CAP_PPC_RTAS
2697Architectures: ppc
2698Type: vm ioctl
2699Parameters: struct kvm_rtas_token_args
2700Returns: 0 on success, -1 on error
2701
2702Defines a token value for a RTAS (Run Time Abstraction Services)
2703service in order to allow it to be handled in the kernel. The
2704argument struct gives the name of the service, which must be the name
2705of a service that has a kernel-side implementation. If the token
2706value is non-zero, it will be associated with that service, and
2707subsequent RTAS calls by the guest specifying that token will be
2708handled by the kernel. If the token value is 0, then any token
2709associated with the service will be forgotten, and subsequent RTAS
2710calls by the guest for that service will be passed to userspace to be
2711handled.
2712
4bd9d344
AB
27134.87 KVM_SET_GUEST_DEBUG
2714
2715Capability: KVM_CAP_SET_GUEST_DEBUG
0e6f07f2 2716Architectures: x86, s390, ppc, arm64
4bd9d344
AB
2717Type: vcpu ioctl
2718Parameters: struct kvm_guest_debug (in)
2719Returns: 0 on success; -1 on error
2720
2721struct kvm_guest_debug {
2722 __u32 control;
2723 __u32 pad;
2724 struct kvm_guest_debug_arch arch;
2725};
2726
2727Set up the processor specific debug registers and configure vcpu for
2728handling guest debug events. There are two parts to the structure, the
2729first a control bitfield indicates the type of debug events to handle
2730when running. Common control bits are:
2731
2732 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2733 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2734
2735The top 16 bits of the control field are architecture specific control
2736flags which can include the following:
2737
4bd611ca 2738 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64]
834bf887 2739 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64]
4bd9d344
AB
2740 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2741 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2742 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2743
2744For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2745are enabled in memory so we need to ensure breakpoint exceptions are
2746correctly trapped and the KVM run loop exits at the breakpoint and not
2747running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2748we need to ensure the guest vCPUs architecture specific registers are
2749updated to the correct (supplied) values.
2750
2751The second part of the structure is architecture specific and
2752typically contains a set of debug registers.
2753
834bf887
AB
2754For arm64 the number of debug registers is implementation defined and
2755can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and
2756KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number
2757indicating the number of supported registers.
2758
4bd9d344
AB
2759When debug events exit the main run loop with the reason
2760KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2761structure containing architecture specific debug information.
3401d546 2762
209cf19f
AB
27634.88 KVM_GET_EMULATED_CPUID
2764
2765Capability: KVM_CAP_EXT_EMUL_CPUID
2766Architectures: x86
2767Type: system ioctl
2768Parameters: struct kvm_cpuid2 (in/out)
2769Returns: 0 on success, -1 on error
2770
2771struct kvm_cpuid2 {
2772 __u32 nent;
2773 __u32 flags;
2774 struct kvm_cpuid_entry2 entries[0];
2775};
2776
2777The member 'flags' is used for passing flags from userspace.
2778
2779#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2780#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2781#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2782
2783struct kvm_cpuid_entry2 {
2784 __u32 function;
2785 __u32 index;
2786 __u32 flags;
2787 __u32 eax;
2788 __u32 ebx;
2789 __u32 ecx;
2790 __u32 edx;
2791 __u32 padding[3];
2792};
2793
2794This ioctl returns x86 cpuid features which are emulated by
2795kvm.Userspace can use the information returned by this ioctl to query
2796which features are emulated by kvm instead of being present natively.
2797
2798Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2799structure with the 'nent' field indicating the number of entries in
2800the variable-size array 'entries'. If the number of entries is too low
2801to describe the cpu capabilities, an error (E2BIG) is returned. If the
2802number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2803is returned. If the number is just right, the 'nent' field is adjusted
2804to the number of valid entries in the 'entries' array, which is then
2805filled.
2806
2807The entries returned are the set CPUID bits of the respective features
2808which kvm emulates, as returned by the CPUID instruction, with unknown
2809or unsupported feature bits cleared.
2810
2811Features like x2apic, for example, may not be present in the host cpu
2812but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2813emulated efficiently and thus not included here.
2814
2815The fields in each entry are defined as follows:
2816
2817 function: the eax value used to obtain the entry
2818 index: the ecx value used to obtain the entry (for entries that are
2819 affected by ecx)
2820 flags: an OR of zero or more of the following:
2821 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2822 if the index field is valid
2823 KVM_CPUID_FLAG_STATEFUL_FUNC:
2824 if cpuid for this function returns different values for successive
2825 invocations; there will be several entries with the same function,
2826 all with this flag set
2827 KVM_CPUID_FLAG_STATE_READ_NEXT:
2828 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2829 the first entry to be read by a cpu
2830 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2831 this function/index combination
2832
41408c28
TH
28334.89 KVM_S390_MEM_OP
2834
2835Capability: KVM_CAP_S390_MEM_OP
2836Architectures: s390
2837Type: vcpu ioctl
2838Parameters: struct kvm_s390_mem_op (in)
2839Returns: = 0 on success,
2840 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2841 > 0 if an exception occurred while walking the page tables
2842
5d4f6f3d 2843Read or write data from/to the logical (virtual) memory of a VCPU.
41408c28
TH
2844
2845Parameters are specified via the following structure:
2846
2847struct kvm_s390_mem_op {
2848 __u64 gaddr; /* the guest address */
2849 __u64 flags; /* flags */
2850 __u32 size; /* amount of bytes */
2851 __u32 op; /* type of operation */
2852 __u64 buf; /* buffer in userspace */
2853 __u8 ar; /* the access register number */
2854 __u8 reserved[31]; /* should be set to 0 */
2855};
2856
2857The type of operation is specified in the "op" field. It is either
2858KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2859KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2860KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2861whether the corresponding memory access would create an access exception
2862(without touching the data in the memory at the destination). In case an
2863access exception occurred while walking the MMU tables of the guest, the
2864ioctl returns a positive error number to indicate the type of exception.
2865This exception is also raised directly at the corresponding VCPU if the
2866flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2867
2868The start address of the memory region has to be specified in the "gaddr"
2869field, and the length of the region in the "size" field. "buf" is the buffer
2870supplied by the userspace application where the read data should be written
2871to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2872is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2873when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2874register number to be used.
2875
2876The "reserved" field is meant for future extensions. It is not used by
2877KVM with the currently defined set of flags.
2878
30ee2a98
JH
28794.90 KVM_S390_GET_SKEYS
2880
2881Capability: KVM_CAP_S390_SKEYS
2882Architectures: s390
2883Type: vm ioctl
2884Parameters: struct kvm_s390_skeys
2885Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2886 keys, negative value on error
2887
2888This ioctl is used to get guest storage key values on the s390
2889architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2890
2891struct kvm_s390_skeys {
2892 __u64 start_gfn;
2893 __u64 count;
2894 __u64 skeydata_addr;
2895 __u32 flags;
2896 __u32 reserved[9];
2897};
2898
2899The start_gfn field is the number of the first guest frame whose storage keys
2900you want to get.
2901
2902The count field is the number of consecutive frames (starting from start_gfn)
2903whose storage keys to get. The count field must be at least 1 and the maximum
2904allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2905will cause the ioctl to return -EINVAL.
2906
2907The skeydata_addr field is the address to a buffer large enough to hold count
2908bytes. This buffer will be filled with storage key data by the ioctl.
2909
29104.91 KVM_S390_SET_SKEYS
2911
2912Capability: KVM_CAP_S390_SKEYS
2913Architectures: s390
2914Type: vm ioctl
2915Parameters: struct kvm_s390_skeys
2916Returns: 0 on success, negative value on error
2917
2918This ioctl is used to set guest storage key values on the s390
2919architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2920See section on KVM_S390_GET_SKEYS for struct definition.
2921
2922The start_gfn field is the number of the first guest frame whose storage keys
2923you want to set.
2924
2925The count field is the number of consecutive frames (starting from start_gfn)
2926whose storage keys to get. The count field must be at least 1 and the maximum
2927allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2928will cause the ioctl to return -EINVAL.
2929
2930The skeydata_addr field is the address to a buffer containing count bytes of
2931storage keys. Each byte in the buffer will be set as the storage key for a
2932single frame starting at start_gfn for count frames.
2933
2934Note: If any architecturally invalid key value is found in the given data then
2935the ioctl will return -EINVAL.
2936
47b43c52
JF
29374.92 KVM_S390_IRQ
2938
2939Capability: KVM_CAP_S390_INJECT_IRQ
2940Architectures: s390
2941Type: vcpu ioctl
2942Parameters: struct kvm_s390_irq (in)
2943Returns: 0 on success, -1 on error
2944Errors:
2945 EINVAL: interrupt type is invalid
2946 type is KVM_S390_SIGP_STOP and flag parameter is invalid value
2947 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
2948 than the maximum of VCPUs
2949 EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
2950 type is KVM_S390_SIGP_STOP and a stop irq is already pending
2951 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
2952 is already pending
2953
2954Allows to inject an interrupt to the guest.
2955
2956Using struct kvm_s390_irq as a parameter allows
2957to inject additional payload which is not
2958possible via KVM_S390_INTERRUPT.
2959
2960Interrupt parameters are passed via kvm_s390_irq:
2961
2962struct kvm_s390_irq {
2963 __u64 type;
2964 union {
2965 struct kvm_s390_io_info io;
2966 struct kvm_s390_ext_info ext;
2967 struct kvm_s390_pgm_info pgm;
2968 struct kvm_s390_emerg_info emerg;
2969 struct kvm_s390_extcall_info extcall;
2970 struct kvm_s390_prefix_info prefix;
2971 struct kvm_s390_stop_info stop;
2972 struct kvm_s390_mchk_info mchk;
2973 char reserved[64];
2974 } u;
2975};
2976
2977type can be one of the following:
2978
2979KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
2980KVM_S390_PROGRAM_INT - program check; parameters in .pgm
2981KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
2982KVM_S390_RESTART - restart; no parameters
2983KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
2984KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
2985KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
2986KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
2987KVM_S390_MCHK - machine check interrupt; parameters in .mchk
2988
2989
2990Note that the vcpu ioctl is asynchronous to vcpu execution.
2991
816c7667
JF
29924.94 KVM_S390_GET_IRQ_STATE
2993
2994Capability: KVM_CAP_S390_IRQ_STATE
2995Architectures: s390
2996Type: vcpu ioctl
2997Parameters: struct kvm_s390_irq_state (out)
2998Returns: >= number of bytes copied into buffer,
2999 -EINVAL if buffer size is 0,
3000 -ENOBUFS if buffer size is too small to fit all pending interrupts,
3001 -EFAULT if the buffer address was invalid
3002
3003This ioctl allows userspace to retrieve the complete state of all currently
3004pending interrupts in a single buffer. Use cases include migration
3005and introspection. The parameter structure contains the address of a
3006userspace buffer and its length:
3007
3008struct kvm_s390_irq_state {
3009 __u64 buf;
3010 __u32 flags;
3011 __u32 len;
3012 __u32 reserved[4];
3013};
3014
3015Userspace passes in the above struct and for each pending interrupt a
3016struct kvm_s390_irq is copied to the provided buffer.
3017
3018If -ENOBUFS is returned the buffer provided was too small and userspace
3019may retry with a bigger buffer.
3020
30214.95 KVM_S390_SET_IRQ_STATE
3022
3023Capability: KVM_CAP_S390_IRQ_STATE
3024Architectures: s390
3025Type: vcpu ioctl
3026Parameters: struct kvm_s390_irq_state (in)
3027Returns: 0 on success,
3028 -EFAULT if the buffer address was invalid,
3029 -EINVAL for an invalid buffer length (see below),
3030 -EBUSY if there were already interrupts pending,
3031 errors occurring when actually injecting the
3032 interrupt. See KVM_S390_IRQ.
3033
3034This ioctl allows userspace to set the complete state of all cpu-local
3035interrupts currently pending for the vcpu. It is intended for restoring
3036interrupt state after a migration. The input parameter is a userspace buffer
3037containing a struct kvm_s390_irq_state:
3038
3039struct kvm_s390_irq_state {
3040 __u64 buf;
3041 __u32 len;
3042 __u32 pad;
3043};
3044
3045The userspace memory referenced by buf contains a struct kvm_s390_irq
3046for each interrupt to be injected into the guest.
3047If one of the interrupts could not be injected for some reason the
3048ioctl aborts.
3049
3050len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
3051and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
3052which is the maximum number of possibly pending cpu-local interrupts.
47b43c52 3053
ed8e5a24 30544.96 KVM_SMI
f077825a
PB
3055
3056Capability: KVM_CAP_X86_SMM
3057Architectures: x86
3058Type: vcpu ioctl
3059Parameters: none
3060Returns: 0 on success, -1 on error
3061
3062Queues an SMI on the thread's vcpu.
3063
d3695aa4
AK
30644.97 KVM_CAP_PPC_MULTITCE
3065
3066Capability: KVM_CAP_PPC_MULTITCE
3067Architectures: ppc
3068Type: vm
3069
3070This capability means the kernel is capable of handling hypercalls
3071H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user
3072space. This significantly accelerates DMA operations for PPC KVM guests.
3073User space should expect that its handlers for these hypercalls
3074are not going to be called if user space previously registered LIOBN
3075in KVM (via KVM_CREATE_SPAPR_TCE or similar calls).
3076
3077In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest,
3078user space might have to advertise it for the guest. For example,
3079IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is
3080present in the "ibm,hypertas-functions" device-tree property.
3081
3082The hypercalls mentioned above may or may not be processed successfully
3083in the kernel based fast path. If they can not be handled by the kernel,
3084they will get passed on to user space. So user space still has to have
3085an implementation for these despite the in kernel acceleration.
3086
3087This capability is always enabled.
3088
58ded420
AK
30894.98 KVM_CREATE_SPAPR_TCE_64
3090
3091Capability: KVM_CAP_SPAPR_TCE_64
3092Architectures: powerpc
3093Type: vm ioctl
3094Parameters: struct kvm_create_spapr_tce_64 (in)
3095Returns: file descriptor for manipulating the created TCE table
3096
3097This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit
3098windows, described in 4.62 KVM_CREATE_SPAPR_TCE
3099
3100This capability uses extended struct in ioctl interface:
3101
3102/* for KVM_CAP_SPAPR_TCE_64 */
3103struct kvm_create_spapr_tce_64 {
3104 __u64 liobn;
3105 __u32 page_shift;
3106 __u32 flags;
3107 __u64 offset; /* in pages */
3108 __u64 size; /* in pages */
3109};
3110
3111The aim of extension is to support an additional bigger DMA window with
3112a variable page size.
3113KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and
3114a bus offset of the corresponding DMA window, @size and @offset are numbers
3115of IOMMU pages.
3116
3117@flags are not used at the moment.
3118
3119The rest of functionality is identical to KVM_CREATE_SPAPR_TCE.
3120
107d44a2
RK
31214.98 KVM_REINJECT_CONTROL
3122
3123Capability: KVM_CAP_REINJECT_CONTROL
3124Architectures: x86
3125Type: vm ioctl
3126Parameters: struct kvm_reinject_control (in)
3127Returns: 0 on success,
3128 -EFAULT if struct kvm_reinject_control cannot be read,
3129 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier.
3130
3131i8254 (PIT) has two modes, reinject and !reinject. The default is reinject,
3132where KVM queues elapsed i8254 ticks and monitors completion of interrupt from
3133vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its
3134interrupt whenever there isn't a pending interrupt from i8254.
3135!reinject mode injects an interrupt as soon as a tick arrives.
3136
3137struct kvm_reinject_control {
3138 __u8 pit_reinject;
3139 __u8 reserved[31];
3140};
3141
3142pit_reinject = 0 (!reinject mode) is recommended, unless running an old
3143operating system that uses the PIT for timing (e.g. Linux 2.4.x).
3144
9c1b96e3 31455. The kvm_run structure
414fa985 3146------------------------
9c1b96e3
AK
3147
3148Application code obtains a pointer to the kvm_run structure by
3149mmap()ing a vcpu fd. From that point, application code can control
3150execution by changing fields in kvm_run prior to calling the KVM_RUN
3151ioctl, and obtain information about the reason KVM_RUN returned by
3152looking up structure members.
3153
3154struct kvm_run {
3155 /* in */
3156 __u8 request_interrupt_window;
3157
3158Request that KVM_RUN return when it becomes possible to inject external
3159interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
3160
3161 __u8 padding1[7];
3162
3163 /* out */
3164 __u32 exit_reason;
3165
3166When KVM_RUN has returned successfully (return value 0), this informs
3167application code why KVM_RUN has returned. Allowable values for this
3168field are detailed below.
3169
3170 __u8 ready_for_interrupt_injection;
3171
3172If request_interrupt_window has been specified, this field indicates
3173an interrupt can be injected now with KVM_INTERRUPT.
3174
3175 __u8 if_flag;
3176
3177The value of the current interrupt flag. Only valid if in-kernel
3178local APIC is not used.
3179
f077825a
PB
3180 __u16 flags;
3181
3182More architecture-specific flags detailing state of the VCPU that may
3183affect the device's behavior. The only currently defined flag is
3184KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
3185VCPU is in system management mode.
9c1b96e3
AK
3186
3187 /* in (pre_kvm_run), out (post_kvm_run) */
3188 __u64 cr8;
3189
3190The value of the cr8 register. Only valid if in-kernel local APIC is
3191not used. Both input and output.
3192
3193 __u64 apic_base;
3194
3195The value of the APIC BASE msr. Only valid if in-kernel local
3196APIC is not used. Both input and output.
3197
3198 union {
3199 /* KVM_EXIT_UNKNOWN */
3200 struct {
3201 __u64 hardware_exit_reason;
3202 } hw;
3203
3204If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
3205reasons. Further architecture-specific information is available in
3206hardware_exit_reason.
3207
3208 /* KVM_EXIT_FAIL_ENTRY */
3209 struct {
3210 __u64 hardware_entry_failure_reason;
3211 } fail_entry;
3212
3213If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
3214to unknown reasons. Further architecture-specific information is
3215available in hardware_entry_failure_reason.
3216
3217 /* KVM_EXIT_EXCEPTION */
3218 struct {
3219 __u32 exception;
3220 __u32 error_code;
3221 } ex;
3222
3223Unused.
3224
3225 /* KVM_EXIT_IO */
3226 struct {
3227#define KVM_EXIT_IO_IN 0
3228#define KVM_EXIT_IO_OUT 1
3229 __u8 direction;
3230 __u8 size; /* bytes */
3231 __u16 port;
3232 __u32 count;
3233 __u64 data_offset; /* relative to kvm_run start */
3234 } io;
3235
2044892d 3236If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
3237executed a port I/O instruction which could not be satisfied by kvm.
3238data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
3239where kvm expects application code to place the data for the next
2044892d 3240KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3 3241
8ab30c15 3242 /* KVM_EXIT_DEBUG */
9c1b96e3
AK
3243 struct {
3244 struct kvm_debug_exit_arch arch;
3245 } debug;
3246
8ab30c15
AB
3247If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
3248for which architecture specific information is returned.
9c1b96e3
AK
3249
3250 /* KVM_EXIT_MMIO */
3251 struct {
3252 __u64 phys_addr;
3253 __u8 data[8];
3254 __u32 len;
3255 __u8 is_write;
3256 } mmio;
3257
2044892d 3258If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
3259executed a memory-mapped I/O instruction which could not be satisfied
3260by kvm. The 'data' member contains the written data if 'is_write' is
3261true, and should be filled by application code otherwise.
3262
6acdb160
CD
3263The 'data' member contains, in its first 'len' bytes, the value as it would
3264appear if the VCPU performed a load or store of the appropriate width directly
3265to the byte array.
3266
cc568ead 3267NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
ce91ddc4 3268 KVM_EXIT_EPR the corresponding
ad0a048b
AG
3269operations are complete (and guest state is consistent) only after userspace
3270has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
3271incomplete operations and then check for pending signals. Userspace
3272can re-enter the guest with an unmasked signal pending to complete
3273pending operations.
3274
9c1b96e3
AK
3275 /* KVM_EXIT_HYPERCALL */
3276 struct {
3277 __u64 nr;
3278 __u64 args[6];
3279 __u64 ret;
3280 __u32 longmode;
3281 __u32 pad;
3282 } hypercall;
3283
647dc49e
AK
3284Unused. This was once used for 'hypercall to userspace'. To implement
3285such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
3286Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
3287
3288 /* KVM_EXIT_TPR_ACCESS */
3289 struct {
3290 __u64 rip;
3291 __u32 is_write;
3292 __u32 pad;
3293 } tpr_access;
3294
3295To be documented (KVM_TPR_ACCESS_REPORTING).
3296
3297 /* KVM_EXIT_S390_SIEIC */
3298 struct {
3299 __u8 icptcode;
3300 __u64 mask; /* psw upper half */
3301 __u64 addr; /* psw lower half */
3302 __u16 ipa;
3303 __u32 ipb;
3304 } s390_sieic;
3305
3306s390 specific.
3307
3308 /* KVM_EXIT_S390_RESET */
3309#define KVM_S390_RESET_POR 1
3310#define KVM_S390_RESET_CLEAR 2
3311#define KVM_S390_RESET_SUBSYSTEM 4
3312#define KVM_S390_RESET_CPU_INIT 8
3313#define KVM_S390_RESET_IPL 16
3314 __u64 s390_reset_flags;
3315
3316s390 specific.
3317
e168bf8d
CO
3318 /* KVM_EXIT_S390_UCONTROL */
3319 struct {
3320 __u64 trans_exc_code;
3321 __u32 pgm_code;
3322 } s390_ucontrol;
3323
3324s390 specific. A page fault has occurred for a user controlled virtual
3325machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
3326resolved by the kernel.
3327The program code and the translation exception code that were placed
3328in the cpu's lowcore are presented here as defined by the z Architecture
3329Principles of Operation Book in the Chapter for Dynamic Address Translation
3330(DAT)
3331
9c1b96e3
AK
3332 /* KVM_EXIT_DCR */
3333 struct {
3334 __u32 dcrn;
3335 __u32 data;
3336 __u8 is_write;
3337 } dcr;
3338
ce91ddc4 3339Deprecated - was used for 440 KVM.
9c1b96e3 3340
ad0a048b
AG
3341 /* KVM_EXIT_OSI */
3342 struct {
3343 __u64 gprs[32];
3344 } osi;
3345
3346MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3347hypercalls and exit with this exit struct that contains all the guest gprs.
3348
3349If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3350Userspace can now handle the hypercall and when it's done modify the gprs as
3351necessary. Upon guest entry all guest GPRs will then be replaced by the values
3352in this struct.
3353
de56a948
PM
3354 /* KVM_EXIT_PAPR_HCALL */
3355 struct {
3356 __u64 nr;
3357 __u64 ret;
3358 __u64 args[9];
3359 } papr_hcall;
3360
3361This is used on 64-bit PowerPC when emulating a pSeries partition,
3362e.g. with the 'pseries' machine type in qemu. It occurs when the
3363guest does a hypercall using the 'sc 1' instruction. The 'nr' field
3364contains the hypercall number (from the guest R3), and 'args' contains
3365the arguments (from the guest R4 - R12). Userspace should put the
3366return code in 'ret' and any extra returned values in args[].
3367The possible hypercalls are defined in the Power Architecture Platform
3368Requirements (PAPR) document available from www.power.org (free
3369developer registration required to access it).
3370
fa6b7fe9
CH
3371 /* KVM_EXIT_S390_TSCH */
3372 struct {
3373 __u16 subchannel_id;
3374 __u16 subchannel_nr;
3375 __u32 io_int_parm;
3376 __u32 io_int_word;
3377 __u32 ipb;
3378 __u8 dequeued;
3379 } s390_tsch;
3380
3381s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
3382and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
3383interrupt for the target subchannel has been dequeued and subchannel_id,
3384subchannel_nr, io_int_parm and io_int_word contain the parameters for that
3385interrupt. ipb is needed for instruction parameter decoding.
3386
1c810636
AG
3387 /* KVM_EXIT_EPR */
3388 struct {
3389 __u32 epr;
3390 } epr;
3391
3392On FSL BookE PowerPC chips, the interrupt controller has a fast patch
3393interrupt acknowledge path to the core. When the core successfully
3394delivers an interrupt, it automatically populates the EPR register with
3395the interrupt vector number and acknowledges the interrupt inside
3396the interrupt controller.
3397
3398In case the interrupt controller lives in user space, we need to do
3399the interrupt acknowledge cycle through it to fetch the next to be
3400delivered interrupt vector using this exit.
3401
3402It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
3403external interrupt has just been delivered into the guest. User space
3404should put the acknowledged interrupt vector into the 'epr' field.
3405
8ad6b634
AP
3406 /* KVM_EXIT_SYSTEM_EVENT */
3407 struct {
3408#define KVM_SYSTEM_EVENT_SHUTDOWN 1
3409#define KVM_SYSTEM_EVENT_RESET 2
2ce79189 3410#define KVM_SYSTEM_EVENT_CRASH 3
8ad6b634
AP
3411 __u32 type;
3412 __u64 flags;
3413 } system_event;
3414
3415If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
3416a system-level event using some architecture specific mechanism (hypercall
3417or some special instruction). In case of ARM/ARM64, this is triggered using
3418HVC instruction based PSCI call from the vcpu. The 'type' field describes
3419the system-level event type. The 'flags' field describes architecture
3420specific flags for the system-level event.
3421
cf5d3188
CD
3422Valid values for 'type' are:
3423 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
3424 VM. Userspace is not obliged to honour this, and if it does honour
3425 this does not need to destroy the VM synchronously (ie it may call
3426 KVM_RUN again before shutdown finally occurs).
3427 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
3428 As with SHUTDOWN, userspace can choose to ignore the request, or
3429 to schedule the reset to occur in the future and may call KVM_RUN again.
2ce79189
AS
3430 KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
3431 has requested a crash condition maintenance. Userspace can choose
3432 to ignore the request, or to gather VM memory core dump and/or
3433 reset/shutdown of the VM.
cf5d3188 3434
7543a635
SR
3435 /* KVM_EXIT_IOAPIC_EOI */
3436 struct {
3437 __u8 vector;
3438 } eoi;
3439
3440Indicates that the VCPU's in-kernel local APIC received an EOI for a
3441level-triggered IOAPIC interrupt. This exit only triggers when the
3442IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled);
3443the userspace IOAPIC should process the EOI and retrigger the interrupt if
3444it is still asserted. Vector is the LAPIC interrupt vector for which the
3445EOI was received.
3446
db397571
AS
3447 struct kvm_hyperv_exit {
3448#define KVM_EXIT_HYPERV_SYNIC 1
83326e43 3449#define KVM_EXIT_HYPERV_HCALL 2
db397571
AS
3450 __u32 type;
3451 union {
3452 struct {
3453 __u32 msr;
3454 __u64 control;
3455 __u64 evt_page;
3456 __u64 msg_page;
3457 } synic;
83326e43
AS
3458 struct {
3459 __u64 input;
3460 __u64 result;
3461 __u64 params[2];
3462 } hcall;
db397571
AS
3463 } u;
3464 };
3465 /* KVM_EXIT_HYPERV */
3466 struct kvm_hyperv_exit hyperv;
3467Indicates that the VCPU exits into userspace to process some tasks
3468related to Hyper-V emulation.
3469Valid values for 'type' are:
3470 KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about
3471Hyper-V SynIC state change. Notification is used to remap SynIC
3472event/message pages and to enable/disable SynIC messages/events processing
3473in userspace.
3474
9c1b96e3
AK
3475 /* Fix the size of the union. */
3476 char padding[256];
3477 };
b9e5dc8d
CB
3478
3479 /*
3480 * shared registers between kvm and userspace.
3481 * kvm_valid_regs specifies the register classes set by the host
3482 * kvm_dirty_regs specified the register classes dirtied by userspace
3483 * struct kvm_sync_regs is architecture specific, as well as the
3484 * bits for kvm_valid_regs and kvm_dirty_regs
3485 */
3486 __u64 kvm_valid_regs;
3487 __u64 kvm_dirty_regs;
3488 union {
3489 struct kvm_sync_regs regs;
3490 char padding[1024];
3491 } s;
3492
3493If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3494certain guest registers without having to call SET/GET_*REGS. Thus we can
3495avoid some system call overhead if userspace has to handle the exit.
3496Userspace can query the validity of the structure by checking
3497kvm_valid_regs for specific bits. These bits are architecture specific
3498and usually define the validity of a groups of registers. (e.g. one bit
3499 for general purpose registers)
3500
d8482c0d
DH
3501Please note that the kernel is allowed to use the kvm_run structure as the
3502primary storage for certain register types. Therefore, the kernel may use the
3503values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3504
9c1b96e3 3505};
821246a5 3506
414fa985 3507
9c15bb1d 3508
699a0ea0
PM
35096. Capabilities that can be enabled on vCPUs
3510--------------------------------------------
821246a5 3511
0907c855
CH
3512There are certain capabilities that change the behavior of the virtual CPU or
3513the virtual machine when enabled. To enable them, please see section 4.37.
3514Below you can find a list of capabilities and what their effect on the vCPU or
3515the virtual machine is when enabling them.
821246a5
AG
3516
3517The following information is provided along with the description:
3518
3519 Architectures: which instruction set architectures provide this ioctl.
3520 x86 includes both i386 and x86_64.
3521
0907c855
CH
3522 Target: whether this is a per-vcpu or per-vm capability.
3523
821246a5
AG
3524 Parameters: what parameters are accepted by the capability.
3525
3526 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3527 are not detailed, but errors with specific meanings are.
3528
414fa985 3529
821246a5
AG
35306.1 KVM_CAP_PPC_OSI
3531
3532Architectures: ppc
0907c855 3533Target: vcpu
821246a5
AG
3534Parameters: none
3535Returns: 0 on success; -1 on error
3536
3537This capability enables interception of OSI hypercalls that otherwise would
3538be treated as normal system calls to be injected into the guest. OSI hypercalls
3539were invented by Mac-on-Linux to have a standardized communication mechanism
3540between the guest and the host.
3541
3542When this capability is enabled, KVM_EXIT_OSI can occur.
3543
414fa985 3544
821246a5
AG
35456.2 KVM_CAP_PPC_PAPR
3546
3547Architectures: ppc
0907c855 3548Target: vcpu
821246a5
AG
3549Parameters: none
3550Returns: 0 on success; -1 on error
3551
3552This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3553done using the hypercall instruction "sc 1".
3554
3555It also sets the guest privilege level to "supervisor" mode. Usually the guest
3556runs in "hypervisor" privilege mode with a few missing features.
3557
3558In addition to the above, it changes the semantics of SDR1. In this mode, the
3559HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3560HTAB invisible to the guest.
3561
3562When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 3563
414fa985 3564
dc83b8bc
SW
35656.3 KVM_CAP_SW_TLB
3566
3567Architectures: ppc
0907c855 3568Target: vcpu
dc83b8bc
SW
3569Parameters: args[0] is the address of a struct kvm_config_tlb
3570Returns: 0 on success; -1 on error
3571
3572struct kvm_config_tlb {
3573 __u64 params;
3574 __u64 array;
3575 __u32 mmu_type;
3576 __u32 array_len;
3577};
3578
3579Configures the virtual CPU's TLB array, establishing a shared memory area
3580between userspace and KVM. The "params" and "array" fields are userspace
3581addresses of mmu-type-specific data structures. The "array_len" field is an
3582safety mechanism, and should be set to the size in bytes of the memory that
3583userspace has reserved for the array. It must be at least the size dictated
3584by "mmu_type" and "params".
3585
3586While KVM_RUN is active, the shared region is under control of KVM. Its
3587contents are undefined, and any modification by userspace results in
3588boundedly undefined behavior.
3589
3590On return from KVM_RUN, the shared region will reflect the current state of
3591the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3592to tell KVM which entries have been changed, prior to calling KVM_RUN again
3593on this vcpu.
3594
3595For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3596 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3597 - The "array" field points to an array of type "struct
3598 kvm_book3e_206_tlb_entry".
3599 - The array consists of all entries in the first TLB, followed by all
3600 entries in the second TLB.
3601 - Within a TLB, entries are ordered first by increasing set number. Within a
3602 set, entries are ordered by way (increasing ESEL).
3603 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3604 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3605 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3606 hardware ignores this value for TLB0.
fa6b7fe9
CH
3607
36086.4 KVM_CAP_S390_CSS_SUPPORT
3609
3610Architectures: s390
0907c855 3611Target: vcpu
fa6b7fe9
CH
3612Parameters: none
3613Returns: 0 on success; -1 on error
3614
3615This capability enables support for handling of channel I/O instructions.
3616
3617TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3618handled in-kernel, while the other I/O instructions are passed to userspace.
3619
3620When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3621SUBCHANNEL intercepts.
1c810636 3622
0907c855
CH
3623Note that even though this capability is enabled per-vcpu, the complete
3624virtual machine is affected.
3625
1c810636
AG
36266.5 KVM_CAP_PPC_EPR
3627
3628Architectures: ppc
0907c855 3629Target: vcpu
1c810636
AG
3630Parameters: args[0] defines whether the proxy facility is active
3631Returns: 0 on success; -1 on error
3632
3633This capability enables or disables the delivery of interrupts through the
3634external proxy facility.
3635
3636When enabled (args[0] != 0), every time the guest gets an external interrupt
3637delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3638to receive the topmost interrupt vector.
3639
3640When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3641
3642When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
3643
36446.6 KVM_CAP_IRQ_MPIC
3645
3646Architectures: ppc
3647Parameters: args[0] is the MPIC device fd
3648 args[1] is the MPIC CPU number for this vcpu
3649
3650This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
3651
36526.7 KVM_CAP_IRQ_XICS
3653
3654Architectures: ppc
0907c855 3655Target: vcpu
5975a2e0
PM
3656Parameters: args[0] is the XICS device fd
3657 args[1] is the XICS CPU number (server ID) for this vcpu
3658
3659This capability connects the vcpu to an in-kernel XICS device.
8a366a4b
CH
3660
36616.8 KVM_CAP_S390_IRQCHIP
3662
3663Architectures: s390
3664Target: vm
3665Parameters: none
3666
3667This capability enables the in-kernel irqchip for s390. Please refer to
3668"4.24 KVM_CREATE_IRQCHIP" for details.
699a0ea0 3669
5fafd874
JH
36706.9 KVM_CAP_MIPS_FPU
3671
3672Architectures: mips
3673Target: vcpu
3674Parameters: args[0] is reserved for future use (should be 0).
3675
3676This capability allows the use of the host Floating Point Unit by the guest. It
3677allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
3678done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
3679(depending on the current guest FPU register mode), and the Status.FR,
3680Config5.FRE bits are accessible via the KVM API and also from the guest,
3681depending on them being supported by the FPU.
3682
d952bd07
JH
36836.10 KVM_CAP_MIPS_MSA
3684
3685Architectures: mips
3686Target: vcpu
3687Parameters: args[0] is reserved for future use (should be 0).
3688
3689This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
3690It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
3691Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
3692accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
3693the guest.
3694
699a0ea0
PM
36957. Capabilities that can be enabled on VMs
3696------------------------------------------
3697
3698There are certain capabilities that change the behavior of the virtual
3699machine when enabled. To enable them, please see section 4.37. Below
3700you can find a list of capabilities and what their effect on the VM
3701is when enabling them.
3702
3703The following information is provided along with the description:
3704
3705 Architectures: which instruction set architectures provide this ioctl.
3706 x86 includes both i386 and x86_64.
3707
3708 Parameters: what parameters are accepted by the capability.
3709
3710 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3711 are not detailed, but errors with specific meanings are.
3712
3713
37147.1 KVM_CAP_PPC_ENABLE_HCALL
3715
3716Architectures: ppc
3717Parameters: args[0] is the sPAPR hcall number
3718 args[1] is 0 to disable, 1 to enable in-kernel handling
3719
3720This capability controls whether individual sPAPR hypercalls (hcalls)
3721get handled by the kernel or not. Enabling or disabling in-kernel
3722handling of an hcall is effective across the VM. On creation, an
3723initial set of hcalls are enabled for in-kernel handling, which
3724consists of those hcalls for which in-kernel handlers were implemented
3725before this capability was implemented. If disabled, the kernel will
3726not to attempt to handle the hcall, but will always exit to userspace
3727to handle it. Note that it may not make sense to enable some and
3728disable others of a group of related hcalls, but KVM does not prevent
3729userspace from doing that.
ae2113a4
PM
3730
3731If the hcall number specified is not one that has an in-kernel
3732implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3733error.
2444b352
DH
3734
37357.2 KVM_CAP_S390_USER_SIGP
3736
3737Architectures: s390
3738Parameters: none
3739
3740This capability controls which SIGP orders will be handled completely in user
3741space. With this capability enabled, all fast orders will be handled completely
3742in the kernel:
3743- SENSE
3744- SENSE RUNNING
3745- EXTERNAL CALL
3746- EMERGENCY SIGNAL
3747- CONDITIONAL EMERGENCY SIGNAL
3748
3749All other orders will be handled completely in user space.
3750
3751Only privileged operation exceptions will be checked for in the kernel (or even
3752in the hardware prior to interception). If this capability is not enabled, the
3753old way of handling SIGP orders is used (partially in kernel and user space).
68c55750
EF
3754
37557.3 KVM_CAP_S390_VECTOR_REGISTERS
3756
3757Architectures: s390
3758Parameters: none
3759Returns: 0 on success, negative value on error
3760
3761Allows use of the vector registers introduced with z13 processor, and
3762provides for the synchronization between host and user space. Will
3763return -EINVAL if the machine does not support vectors.
e44fc8c9
ET
3764
37657.4 KVM_CAP_S390_USER_STSI
3766
3767Architectures: s390
3768Parameters: none
3769
3770This capability allows post-handlers for the STSI instruction. After
3771initial handling in the kernel, KVM exits to user space with
3772KVM_EXIT_S390_STSI to allow user space to insert further data.
3773
3774Before exiting to userspace, kvm handlers should fill in s390_stsi field of
3775vcpu->run:
3776struct {
3777 __u64 addr;
3778 __u8 ar;
3779 __u8 reserved;
3780 __u8 fc;
3781 __u8 sel1;
3782 __u16 sel2;
3783} s390_stsi;
3784
3785@addr - guest address of STSI SYSIB
3786@fc - function code
3787@sel1 - selector 1
3788@sel2 - selector 2
3789@ar - access register number
3790
3791KVM handlers should exit to userspace with rc = -EREMOTE.
e928e9cb 3792
49df6397
SR
37937.5 KVM_CAP_SPLIT_IRQCHIP
3794
3795Architectures: x86
b053b2ae 3796Parameters: args[0] - number of routes reserved for userspace IOAPICs
49df6397
SR
3797Returns: 0 on success, -1 on error
3798
3799Create a local apic for each processor in the kernel. This can be used
3800instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
3801IOAPIC and PIC (and also the PIT, even though this has to be enabled
3802separately).
3803
b053b2ae
SR
3804This capability also enables in kernel routing of interrupt requests;
3805when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
3806used in the IRQ routing table. The first args[0] MSI routes are reserved
3807for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes,
3808a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.
49df6397
SR
3809
3810Fails if VCPU has already been created, or if the irqchip is already in the
3811kernel (i.e. KVM_CREATE_IRQCHIP has already been called).
3812
051c87f7
DH
38137.6 KVM_CAP_S390_RI
3814
3815Architectures: s390
3816Parameters: none
3817
3818Allows use of runtime-instrumentation introduced with zEC12 processor.
3819Will return -EINVAL if the machine does not support runtime-instrumentation.
3820Will return -EBUSY if a VCPU has already been created.
e928e9cb
ME
3821
38228. Other capabilities.
3823----------------------
3824
3825This section lists capabilities that give information about other
3826features of the KVM implementation.
3827
38288.1 KVM_CAP_PPC_HWRNG
3829
3830Architectures: ppc
3831
3832This capability, if KVM_CHECK_EXTENSION indicates that it is
3833available, means that that the kernel has an implementation of the
3834H_RANDOM hypercall backed by a hardware random-number generator.
3835If present, the kernel H_RANDOM handler can be enabled for guest use
3836with the KVM_CAP_PPC_ENABLE_HCALL capability.
5c919412
AS
3837
38388.2 KVM_CAP_HYPERV_SYNIC
3839
3840Architectures: x86
3841This capability, if KVM_CHECK_EXTENSION indicates that it is
3842available, means that that the kernel has an implementation of the
3843Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is
3844used to support Windows Hyper-V based guest paravirt drivers(VMBus).
3845
3846In order to use SynIC, it has to be activated by setting this
3847capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this
3848will disable the use of APIC hardware virtualization even if supported
3849by the CPU, as it's incompatible with SynIC auto-EOI behavior.