]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - Documentation/virtual/kvm/api.txt
KVM: s390: forward hrtimer if guest ckc not pending yet
[mirror_ubuntu-zesty-kernel.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
c9f3f2d8 56The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
7f05db6a 71 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
9c1b96e3 72 means availability needs to be checked with KVM_CHECK_EXTENSION
7f05db6a
MT
73 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
9c1b96e3
AK
77
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
414fa985 88
9c1b96e3
AK
894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
414fa985 104
9c1b96e3
AK
1054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
e08b9637 110Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
111Returns: a VM fd that can be used to control the new virtual machine.
112
113The new VM has no virtual cpus and no memory. An mmap() of a VM fd
114will access the virtual machine's physical address space; offset zero
115corresponds to guest physical address zero. Use of mmap() on a VM fd
116is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
117available.
e08b9637
CO
118You most certainly want to use 0 as machine type.
119
120In order to create user controlled virtual machines on S390, check
121KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
122privileged user (CAP_SYS_ADMIN).
9c1b96e3 123
414fa985 124
9c1b96e3
AK
1254.3 KVM_GET_MSR_INDEX_LIST
126
127Capability: basic
128Architectures: x86
129Type: system
130Parameters: struct kvm_msr_list (in/out)
131Returns: 0 on success; -1 on error
132Errors:
133 E2BIG: the msr index list is to be to fit in the array specified by
134 the user.
135
136struct kvm_msr_list {
137 __u32 nmsrs; /* number of msrs in entries */
138 __u32 indices[0];
139};
140
141This ioctl returns the guest msrs that are supported. The list varies
142by kvm version and host processor, but does not change otherwise. The
143user fills in the size of the indices array in nmsrs, and in return
144kvm adjusts nmsrs to reflect the actual number of msrs and fills in
145the indices array with their numbers.
146
2e2602ca
AK
147Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
148not returned in the MSR list, as different vcpus can have a different number
149of banks, as set via the KVM_X86_SETUP_MCE ioctl.
150
414fa985 151
9c1b96e3
AK
1524.4 KVM_CHECK_EXTENSION
153
92b591a4 154Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
9c1b96e3 155Architectures: all
92b591a4 156Type: system ioctl, vm ioctl
9c1b96e3
AK
157Parameters: extension identifier (KVM_CAP_*)
158Returns: 0 if unsupported; 1 (or some other positive integer) if supported
159
160The API allows the application to query about extensions to the core
161kvm API. Userspace passes an extension identifier (an integer) and
162receives an integer that describes the extension availability.
163Generally 0 means no and 1 means yes, but some extensions may report
164additional information in the integer return value.
165
92b591a4
AG
166Based on their initialization different VMs may have different capabilities.
167It is thus encouraged to use the vm ioctl to query for capabilities (available
168with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
414fa985 169
9c1b96e3
AK
1704.5 KVM_GET_VCPU_MMAP_SIZE
171
172Capability: basic
173Architectures: all
174Type: system ioctl
175Parameters: none
176Returns: size of vcpu mmap area, in bytes
177
178The KVM_RUN ioctl (cf.) communicates with userspace via a shared
179memory region. This ioctl returns the size of that region. See the
180KVM_RUN documentation for details.
181
414fa985 182
9c1b96e3
AK
1834.6 KVM_SET_MEMORY_REGION
184
185Capability: basic
186Architectures: all
187Type: vm ioctl
188Parameters: struct kvm_memory_region (in)
189Returns: 0 on success, -1 on error
190
b74a07be 191This ioctl is obsolete and has been removed.
9c1b96e3 192
414fa985 193
68ba6974 1944.7 KVM_CREATE_VCPU
9c1b96e3
AK
195
196Capability: basic
197Architectures: all
198Type: vm ioctl
199Parameters: vcpu id (apic id on x86)
200Returns: vcpu fd on success, -1 on error
201
202This API adds a vcpu to a virtual machine. The vcpu id is a small integer
8c3ba334
SL
203in the range [0, max_vcpus).
204
205The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
206the KVM_CHECK_EXTENSION ioctl() at run-time.
207The maximum possible value for max_vcpus can be retrieved using the
208KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
209
76d25402
PE
210If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
211cpus max.
8c3ba334
SL
212If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
213same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 214
371fefd6
PM
215On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
216threads in one or more virtual CPU cores. (This is because the
217hardware requires all the hardware threads in a CPU core to be in the
218same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
219of vcpus per virtual core (vcore). The vcore id is obtained by
220dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
221given vcore will always be in the same physical core as each other
222(though that might be a different physical core from time to time).
223Userspace can control the threading (SMT) mode of the guest by its
224allocation of vcpu ids. For example, if userspace wants
225single-threaded guest vcpus, it should make all vcpu ids be a multiple
226of the number of vcpus per vcore.
227
5b1c1493
CO
228For virtual cpus that have been created with S390 user controlled virtual
229machines, the resulting vcpu fd can be memory mapped at page offset
230KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
231cpu's hardware control block.
232
414fa985 233
68ba6974 2344.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
235
236Capability: basic
237Architectures: x86
238Type: vm ioctl
239Parameters: struct kvm_dirty_log (in/out)
240Returns: 0 on success, -1 on error
241
242/* for KVM_GET_DIRTY_LOG */
243struct kvm_dirty_log {
244 __u32 slot;
245 __u32 padding;
246 union {
247 void __user *dirty_bitmap; /* one bit per page */
248 __u64 padding;
249 };
250};
251
252Given a memory slot, return a bitmap containing any pages dirtied
253since the last call to this ioctl. Bit 0 is the first page in the
254memory slot. Ensure the entire structure is cleared to avoid padding
255issues.
256
414fa985 257
68ba6974 2584.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
259
260Capability: basic
261Architectures: x86
262Type: vm ioctl
263Parameters: struct kvm_memory_alias (in)
264Returns: 0 (success), -1 (error)
265
a1f4d395 266This ioctl is obsolete and has been removed.
9c1b96e3 267
414fa985 268
68ba6974 2694.10 KVM_RUN
9c1b96e3
AK
270
271Capability: basic
272Architectures: all
273Type: vcpu ioctl
274Parameters: none
275Returns: 0 on success, -1 on error
276Errors:
277 EINTR: an unmasked signal is pending
278
279This ioctl is used to run a guest virtual cpu. While there are no
280explicit parameters, there is an implicit parameter block that can be
281obtained by mmap()ing the vcpu fd at offset 0, with the size given by
282KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
283kvm_run' (see below).
284
414fa985 285
68ba6974 2864.11 KVM_GET_REGS
9c1b96e3
AK
287
288Capability: basic
379e04c7 289Architectures: all except ARM, arm64
9c1b96e3
AK
290Type: vcpu ioctl
291Parameters: struct kvm_regs (out)
292Returns: 0 on success, -1 on error
293
294Reads the general purpose registers from the vcpu.
295
296/* x86 */
297struct kvm_regs {
298 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
299 __u64 rax, rbx, rcx, rdx;
300 __u64 rsi, rdi, rsp, rbp;
301 __u64 r8, r9, r10, r11;
302 __u64 r12, r13, r14, r15;
303 __u64 rip, rflags;
304};
305
c2d2c21b
JH
306/* mips */
307struct kvm_regs {
308 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
309 __u64 gpr[32];
310 __u64 hi;
311 __u64 lo;
312 __u64 pc;
313};
314
414fa985 315
68ba6974 3164.12 KVM_SET_REGS
9c1b96e3
AK
317
318Capability: basic
379e04c7 319Architectures: all except ARM, arm64
9c1b96e3
AK
320Type: vcpu ioctl
321Parameters: struct kvm_regs (in)
322Returns: 0 on success, -1 on error
323
324Writes the general purpose registers into the vcpu.
325
326See KVM_GET_REGS for the data structure.
327
414fa985 328
68ba6974 3294.13 KVM_GET_SREGS
9c1b96e3
AK
330
331Capability: basic
5ce941ee 332Architectures: x86, ppc
9c1b96e3
AK
333Type: vcpu ioctl
334Parameters: struct kvm_sregs (out)
335Returns: 0 on success, -1 on error
336
337Reads special registers from the vcpu.
338
339/* x86 */
340struct kvm_sregs {
341 struct kvm_segment cs, ds, es, fs, gs, ss;
342 struct kvm_segment tr, ldt;
343 struct kvm_dtable gdt, idt;
344 __u64 cr0, cr2, cr3, cr4, cr8;
345 __u64 efer;
346 __u64 apic_base;
347 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
348};
349
68e2ffed 350/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 351
9c1b96e3
AK
352interrupt_bitmap is a bitmap of pending external interrupts. At most
353one bit may be set. This interrupt has been acknowledged by the APIC
354but not yet injected into the cpu core.
355
414fa985 356
68ba6974 3574.14 KVM_SET_SREGS
9c1b96e3
AK
358
359Capability: basic
5ce941ee 360Architectures: x86, ppc
9c1b96e3
AK
361Type: vcpu ioctl
362Parameters: struct kvm_sregs (in)
363Returns: 0 on success, -1 on error
364
365Writes special registers into the vcpu. See KVM_GET_SREGS for the
366data structures.
367
414fa985 368
68ba6974 3694.15 KVM_TRANSLATE
9c1b96e3
AK
370
371Capability: basic
372Architectures: x86
373Type: vcpu ioctl
374Parameters: struct kvm_translation (in/out)
375Returns: 0 on success, -1 on error
376
377Translates a virtual address according to the vcpu's current address
378translation mode.
379
380struct kvm_translation {
381 /* in */
382 __u64 linear_address;
383
384 /* out */
385 __u64 physical_address;
386 __u8 valid;
387 __u8 writeable;
388 __u8 usermode;
389 __u8 pad[5];
390};
391
414fa985 392
68ba6974 3934.16 KVM_INTERRUPT
9c1b96e3
AK
394
395Capability: basic
c2d2c21b 396Architectures: x86, ppc, mips
9c1b96e3
AK
397Type: vcpu ioctl
398Parameters: struct kvm_interrupt (in)
399Returns: 0 on success, -1 on error
400
401Queues a hardware interrupt vector to be injected. This is only
6f7a2bd4 402useful if in-kernel local APIC or equivalent is not used.
9c1b96e3
AK
403
404/* for KVM_INTERRUPT */
405struct kvm_interrupt {
406 /* in */
407 __u32 irq;
408};
409
6f7a2bd4
AG
410X86:
411
9c1b96e3
AK
412Note 'irq' is an interrupt vector, not an interrupt pin or line.
413
6f7a2bd4
AG
414PPC:
415
416Queues an external interrupt to be injected. This ioctl is overleaded
417with 3 different irq values:
418
419a) KVM_INTERRUPT_SET
420
421 This injects an edge type external interrupt into the guest once it's ready
422 to receive interrupts. When injected, the interrupt is done.
423
424b) KVM_INTERRUPT_UNSET
425
426 This unsets any pending interrupt.
427
428 Only available with KVM_CAP_PPC_UNSET_IRQ.
429
430c) KVM_INTERRUPT_SET_LEVEL
431
432 This injects a level type external interrupt into the guest context. The
433 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
434 is triggered.
435
436 Only available with KVM_CAP_PPC_IRQ_LEVEL.
437
438Note that any value for 'irq' other than the ones stated above is invalid
439and incurs unexpected behavior.
440
c2d2c21b
JH
441MIPS:
442
443Queues an external interrupt to be injected into the virtual CPU. A negative
444interrupt number dequeues the interrupt.
445
414fa985 446
68ba6974 4474.17 KVM_DEBUG_GUEST
9c1b96e3
AK
448
449Capability: basic
450Architectures: none
451Type: vcpu ioctl
452Parameters: none)
453Returns: -1 on error
454
455Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
456
414fa985 457
68ba6974 4584.18 KVM_GET_MSRS
9c1b96e3
AK
459
460Capability: basic
461Architectures: x86
462Type: vcpu ioctl
463Parameters: struct kvm_msrs (in/out)
464Returns: 0 on success, -1 on error
465
466Reads model-specific registers from the vcpu. Supported msr indices can
467be obtained using KVM_GET_MSR_INDEX_LIST.
468
469struct kvm_msrs {
470 __u32 nmsrs; /* number of msrs in entries */
471 __u32 pad;
472
473 struct kvm_msr_entry entries[0];
474};
475
476struct kvm_msr_entry {
477 __u32 index;
478 __u32 reserved;
479 __u64 data;
480};
481
482Application code should set the 'nmsrs' member (which indicates the
483size of the entries array) and the 'index' member of each array entry.
484kvm will fill in the 'data' member.
485
414fa985 486
68ba6974 4874.19 KVM_SET_MSRS
9c1b96e3
AK
488
489Capability: basic
490Architectures: x86
491Type: vcpu ioctl
492Parameters: struct kvm_msrs (in)
493Returns: 0 on success, -1 on error
494
495Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
496data structures.
497
498Application code should set the 'nmsrs' member (which indicates the
499size of the entries array), and the 'index' and 'data' members of each
500array entry.
501
414fa985 502
68ba6974 5034.20 KVM_SET_CPUID
9c1b96e3
AK
504
505Capability: basic
506Architectures: x86
507Type: vcpu ioctl
508Parameters: struct kvm_cpuid (in)
509Returns: 0 on success, -1 on error
510
511Defines the vcpu responses to the cpuid instruction. Applications
512should use the KVM_SET_CPUID2 ioctl if available.
513
514
515struct kvm_cpuid_entry {
516 __u32 function;
517 __u32 eax;
518 __u32 ebx;
519 __u32 ecx;
520 __u32 edx;
521 __u32 padding;
522};
523
524/* for KVM_SET_CPUID */
525struct kvm_cpuid {
526 __u32 nent;
527 __u32 padding;
528 struct kvm_cpuid_entry entries[0];
529};
530
414fa985 531
68ba6974 5324.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
533
534Capability: basic
572e0929 535Architectures: all
9c1b96e3
AK
536Type: vcpu ioctl
537Parameters: struct kvm_signal_mask (in)
538Returns: 0 on success, -1 on error
539
540Defines which signals are blocked during execution of KVM_RUN. This
541signal mask temporarily overrides the threads signal mask. Any
542unblocked signal received (except SIGKILL and SIGSTOP, which retain
543their traditional behaviour) will cause KVM_RUN to return with -EINTR.
544
545Note the signal will only be delivered if not blocked by the original
546signal mask.
547
548/* for KVM_SET_SIGNAL_MASK */
549struct kvm_signal_mask {
550 __u32 len;
551 __u8 sigset[0];
552};
553
414fa985 554
68ba6974 5554.22 KVM_GET_FPU
9c1b96e3
AK
556
557Capability: basic
558Architectures: x86
559Type: vcpu ioctl
560Parameters: struct kvm_fpu (out)
561Returns: 0 on success, -1 on error
562
563Reads the floating point state from the vcpu.
564
565/* for KVM_GET_FPU and KVM_SET_FPU */
566struct kvm_fpu {
567 __u8 fpr[8][16];
568 __u16 fcw;
569 __u16 fsw;
570 __u8 ftwx; /* in fxsave format */
571 __u8 pad1;
572 __u16 last_opcode;
573 __u64 last_ip;
574 __u64 last_dp;
575 __u8 xmm[16][16];
576 __u32 mxcsr;
577 __u32 pad2;
578};
579
414fa985 580
68ba6974 5814.23 KVM_SET_FPU
9c1b96e3
AK
582
583Capability: basic
584Architectures: x86
585Type: vcpu ioctl
586Parameters: struct kvm_fpu (in)
587Returns: 0 on success, -1 on error
588
589Writes the floating point state to the vcpu.
590
591/* for KVM_GET_FPU and KVM_SET_FPU */
592struct kvm_fpu {
593 __u8 fpr[8][16];
594 __u16 fcw;
595 __u16 fsw;
596 __u8 ftwx; /* in fxsave format */
597 __u8 pad1;
598 __u16 last_opcode;
599 __u64 last_ip;
600 __u64 last_dp;
601 __u8 xmm[16][16];
602 __u32 mxcsr;
603 __u32 pad2;
604};
605
414fa985 606
68ba6974 6074.24 KVM_CREATE_IRQCHIP
5dadbfd6 608
84223598 609Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
c32a4272 610Architectures: x86, ARM, arm64, s390
5dadbfd6
AK
611Type: vm ioctl
612Parameters: none
613Returns: 0 on success, -1 on error
614
615Creates an interrupt controller model in the kernel. On x86, creates a virtual
616ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
617local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
c32a4272 618only go to the IOAPIC. On ARM/arm64, a GIC is
84223598
CH
619created. On s390, a dummy irq routing table is created.
620
621Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
622before KVM_CREATE_IRQCHIP can be used.
5dadbfd6 623
414fa985 624
68ba6974 6254.25 KVM_IRQ_LINE
5dadbfd6
AK
626
627Capability: KVM_CAP_IRQCHIP
c32a4272 628Architectures: x86, arm, arm64
5dadbfd6
AK
629Type: vm ioctl
630Parameters: struct kvm_irq_level
631Returns: 0 on success, -1 on error
632
633Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
634On some architectures it is required that an interrupt controller model has
635been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
636interrupts require the level to be set to 1 and then back to 0.
637
100943c5
GS
638On real hardware, interrupt pins can be active-low or active-high. This
639does not matter for the level field of struct kvm_irq_level: 1 always
640means active (asserted), 0 means inactive (deasserted).
641
642x86 allows the operating system to program the interrupt polarity
643(active-low/active-high) for level-triggered interrupts, and KVM used
644to consider the polarity. However, due to bitrot in the handling of
645active-low interrupts, the above convention is now valid on x86 too.
646This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
647should not present interrupts to the guest as active-low unless this
648capability is present (or unless it is not using the in-kernel irqchip,
649of course).
650
651
379e04c7
MZ
652ARM/arm64 can signal an interrupt either at the CPU level, or at the
653in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
654use PPIs designated for specific cpus. The irq field is interpreted
655like this:
86ce8535
CD
656
657  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
658 field: | irq_type | vcpu_index | irq_id |
659
660The irq_type field has the following values:
661- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
662- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
663 (the vcpu_index field is ignored)
664- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
665
666(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
667
100943c5 668In both cases, level is used to assert/deassert the line.
5dadbfd6
AK
669
670struct kvm_irq_level {
671 union {
672 __u32 irq; /* GSI */
673 __s32 status; /* not used for KVM_IRQ_LEVEL */
674 };
675 __u32 level; /* 0 or 1 */
676};
677
414fa985 678
68ba6974 6794.26 KVM_GET_IRQCHIP
5dadbfd6
AK
680
681Capability: KVM_CAP_IRQCHIP
c32a4272 682Architectures: x86
5dadbfd6
AK
683Type: vm ioctl
684Parameters: struct kvm_irqchip (in/out)
685Returns: 0 on success, -1 on error
686
687Reads the state of a kernel interrupt controller created with
688KVM_CREATE_IRQCHIP into a buffer provided by the caller.
689
690struct kvm_irqchip {
691 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
692 __u32 pad;
693 union {
694 char dummy[512]; /* reserving space */
695 struct kvm_pic_state pic;
696 struct kvm_ioapic_state ioapic;
697 } chip;
698};
699
414fa985 700
68ba6974 7014.27 KVM_SET_IRQCHIP
5dadbfd6
AK
702
703Capability: KVM_CAP_IRQCHIP
c32a4272 704Architectures: x86
5dadbfd6
AK
705Type: vm ioctl
706Parameters: struct kvm_irqchip (in)
707Returns: 0 on success, -1 on error
708
709Sets the state of a kernel interrupt controller created with
710KVM_CREATE_IRQCHIP from a buffer provided by the caller.
711
712struct kvm_irqchip {
713 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
714 __u32 pad;
715 union {
716 char dummy[512]; /* reserving space */
717 struct kvm_pic_state pic;
718 struct kvm_ioapic_state ioapic;
719 } chip;
720};
721
414fa985 722
68ba6974 7234.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
724
725Capability: KVM_CAP_XEN_HVM
726Architectures: x86
727Type: vm ioctl
728Parameters: struct kvm_xen_hvm_config (in)
729Returns: 0 on success, -1 on error
730
731Sets the MSR that the Xen HVM guest uses to initialize its hypercall
732page, and provides the starting address and size of the hypercall
733blobs in userspace. When the guest writes the MSR, kvm copies one
734page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
735memory.
736
737struct kvm_xen_hvm_config {
738 __u32 flags;
739 __u32 msr;
740 __u64 blob_addr_32;
741 __u64 blob_addr_64;
742 __u8 blob_size_32;
743 __u8 blob_size_64;
744 __u8 pad2[30];
745};
746
414fa985 747
68ba6974 7484.29 KVM_GET_CLOCK
afbcf7ab
GC
749
750Capability: KVM_CAP_ADJUST_CLOCK
751Architectures: x86
752Type: vm ioctl
753Parameters: struct kvm_clock_data (out)
754Returns: 0 on success, -1 on error
755
756Gets the current timestamp of kvmclock as seen by the current guest. In
757conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
758such as migration.
759
760struct kvm_clock_data {
761 __u64 clock; /* kvmclock current value */
762 __u32 flags;
763 __u32 pad[9];
764};
765
414fa985 766
68ba6974 7674.30 KVM_SET_CLOCK
afbcf7ab
GC
768
769Capability: KVM_CAP_ADJUST_CLOCK
770Architectures: x86
771Type: vm ioctl
772Parameters: struct kvm_clock_data (in)
773Returns: 0 on success, -1 on error
774
2044892d 775Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
776In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
777such as migration.
778
779struct kvm_clock_data {
780 __u64 clock; /* kvmclock current value */
781 __u32 flags;
782 __u32 pad[9];
783};
784
414fa985 785
68ba6974 7864.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
787
788Capability: KVM_CAP_VCPU_EVENTS
48005f64 789Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
790Architectures: x86
791Type: vm ioctl
792Parameters: struct kvm_vcpu_event (out)
793Returns: 0 on success, -1 on error
794
795Gets currently pending exceptions, interrupts, and NMIs as well as related
796states of the vcpu.
797
798struct kvm_vcpu_events {
799 struct {
800 __u8 injected;
801 __u8 nr;
802 __u8 has_error_code;
803 __u8 pad;
804 __u32 error_code;
805 } exception;
806 struct {
807 __u8 injected;
808 __u8 nr;
809 __u8 soft;
48005f64 810 __u8 shadow;
3cfc3092
JK
811 } interrupt;
812 struct {
813 __u8 injected;
814 __u8 pending;
815 __u8 masked;
816 __u8 pad;
817 } nmi;
818 __u32 sipi_vector;
dab4b911 819 __u32 flags;
3cfc3092
JK
820};
821
48005f64
JK
822KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
823interrupt.shadow contains a valid state. Otherwise, this field is undefined.
824
414fa985 825
68ba6974 8264.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
827
828Capability: KVM_CAP_VCPU_EVENTS
48005f64 829Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
830Architectures: x86
831Type: vm ioctl
832Parameters: struct kvm_vcpu_event (in)
833Returns: 0 on success, -1 on error
834
835Set pending exceptions, interrupts, and NMIs as well as related states of the
836vcpu.
837
838See KVM_GET_VCPU_EVENTS for the data structure.
839
dab4b911
JK
840Fields that may be modified asynchronously by running VCPUs can be excluded
841from the update. These fields are nmi.pending and sipi_vector. Keep the
842corresponding bits in the flags field cleared to suppress overwriting the
843current in-kernel state. The bits are:
844
845KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
846KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
847
48005f64
JK
848If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
849the flags field to signal that interrupt.shadow contains a valid state and
850shall be written into the VCPU.
851
414fa985 852
68ba6974 8534.33 KVM_GET_DEBUGREGS
a1efbe77
JK
854
855Capability: KVM_CAP_DEBUGREGS
856Architectures: x86
857Type: vm ioctl
858Parameters: struct kvm_debugregs (out)
859Returns: 0 on success, -1 on error
860
861Reads debug registers from the vcpu.
862
863struct kvm_debugregs {
864 __u64 db[4];
865 __u64 dr6;
866 __u64 dr7;
867 __u64 flags;
868 __u64 reserved[9];
869};
870
414fa985 871
68ba6974 8724.34 KVM_SET_DEBUGREGS
a1efbe77
JK
873
874Capability: KVM_CAP_DEBUGREGS
875Architectures: x86
876Type: vm ioctl
877Parameters: struct kvm_debugregs (in)
878Returns: 0 on success, -1 on error
879
880Writes debug registers into the vcpu.
881
882See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
883yet and must be cleared on entry.
884
414fa985 885
68ba6974 8864.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
887
888Capability: KVM_CAP_USER_MEM
889Architectures: all
890Type: vm ioctl
891Parameters: struct kvm_userspace_memory_region (in)
892Returns: 0 on success, -1 on error
893
894struct kvm_userspace_memory_region {
895 __u32 slot;
896 __u32 flags;
897 __u64 guest_phys_addr;
898 __u64 memory_size; /* bytes */
899 __u64 userspace_addr; /* start of the userspace allocated memory */
900};
901
902/* for kvm_memory_region::flags */
4d8b81ab
XG
903#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
904#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
905
906This ioctl allows the user to create or modify a guest physical memory
907slot. When changing an existing slot, it may be moved in the guest
908physical memory space, or its flags may be modified. It may not be
909resized. Slots may not overlap in guest physical address space.
910
911Memory for the region is taken starting at the address denoted by the
912field userspace_addr, which must point at user addressable memory for
913the entire memory slot size. Any object may back this memory, including
914anonymous memory, ordinary files, and hugetlbfs.
915
916It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
917be identical. This allows large pages in the guest to be backed by large
918pages in the host.
919
75d61fbc
TY
920The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
921KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
922writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
923use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
924to make a new slot read-only. In this case, writes to this memory will be
925posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
926
927When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
928the memory region are automatically reflected into the guest. For example, an
929mmap() that affects the region will be made visible immediately. Another
930example is madvise(MADV_DROP).
0f2d8f4d
AK
931
932It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
933The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
934allocation and is deprecated.
3cfc3092 935
414fa985 936
68ba6974 9374.36 KVM_SET_TSS_ADDR
8a5416db
AK
938
939Capability: KVM_CAP_SET_TSS_ADDR
940Architectures: x86
941Type: vm ioctl
942Parameters: unsigned long tss_address (in)
943Returns: 0 on success, -1 on error
944
945This ioctl defines the physical address of a three-page region in the guest
946physical address space. The region must be within the first 4GB of the
947guest physical address space and must not conflict with any memory slot
948or any mmio address. The guest may malfunction if it accesses this memory
949region.
950
951This ioctl is required on Intel-based hosts. This is needed on Intel hardware
952because of a quirk in the virtualization implementation (see the internals
953documentation when it pops into existence).
954
414fa985 955
68ba6974 9564.37 KVM_ENABLE_CAP
71fbfd5f 957
d938dc55 958Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
d6712df9 959Architectures: ppc, s390
d938dc55 960Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
71fbfd5f
AG
961Parameters: struct kvm_enable_cap (in)
962Returns: 0 on success; -1 on error
963
964+Not all extensions are enabled by default. Using this ioctl the application
965can enable an extension, making it available to the guest.
966
967On systems that do not support this ioctl, it always fails. On systems that
968do support it, it only works for extensions that are supported for enablement.
969
970To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
971be used.
972
973struct kvm_enable_cap {
974 /* in */
975 __u32 cap;
976
977The capability that is supposed to get enabled.
978
979 __u32 flags;
980
981A bitfield indicating future enhancements. Has to be 0 for now.
982
983 __u64 args[4];
984
985Arguments for enabling a feature. If a feature needs initial values to
986function properly, this is the place to put them.
987
988 __u8 pad[64];
989};
990
d938dc55
CH
991The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
992for vm-wide capabilities.
414fa985 993
68ba6974 9944.38 KVM_GET_MP_STATE
b843f065
AK
995
996Capability: KVM_CAP_MP_STATE
c32a4272 997Architectures: x86, s390
b843f065
AK
998Type: vcpu ioctl
999Parameters: struct kvm_mp_state (out)
1000Returns: 0 on success; -1 on error
1001
1002struct kvm_mp_state {
1003 __u32 mp_state;
1004};
1005
1006Returns the vcpu's current "multiprocessing state" (though also valid on
1007uniprocessor guests).
1008
1009Possible values are:
1010
c32a4272 1011 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86]
b843f065 1012 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
c32a4272 1013 which has not yet received an INIT signal [x86]
b843f065 1014 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
c32a4272 1015 now ready for a SIPI [x86]
b843f065 1016 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
c32a4272 1017 is waiting for an interrupt [x86]
b843f065 1018 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
c32a4272 1019 accessible via KVM_GET_VCPU_EVENTS) [x86]
6352e4d2
DH
1020 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390]
1021 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1022 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1023 [s390]
1024 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1025 [s390]
b843f065 1026
c32a4272 1027On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1028in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1029these architectures.
b843f065 1030
414fa985 1031
68ba6974 10324.39 KVM_SET_MP_STATE
b843f065
AK
1033
1034Capability: KVM_CAP_MP_STATE
c32a4272 1035Architectures: x86, s390
b843f065
AK
1036Type: vcpu ioctl
1037Parameters: struct kvm_mp_state (in)
1038Returns: 0 on success; -1 on error
1039
1040Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1041arguments.
1042
c32a4272 1043On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1044in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1045these architectures.
b843f065 1046
414fa985 1047
68ba6974 10484.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1049
1050Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1051Architectures: x86
1052Type: vm ioctl
1053Parameters: unsigned long identity (in)
1054Returns: 0 on success, -1 on error
1055
1056This ioctl defines the physical address of a one-page region in the guest
1057physical address space. The region must be within the first 4GB of the
1058guest physical address space and must not conflict with any memory slot
1059or any mmio address. The guest may malfunction if it accesses this memory
1060region.
1061
1062This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1063because of a quirk in the virtualization implementation (see the internals
1064documentation when it pops into existence).
1065
414fa985 1066
68ba6974 10674.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1068
1069Capability: KVM_CAP_SET_BOOT_CPU_ID
c32a4272 1070Architectures: x86
57bc24cf
AK
1071Type: vm ioctl
1072Parameters: unsigned long vcpu_id
1073Returns: 0 on success, -1 on error
1074
1075Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1076as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1077is vcpu 0.
1078
414fa985 1079
68ba6974 10804.42 KVM_GET_XSAVE
2d5b5a66
SY
1081
1082Capability: KVM_CAP_XSAVE
1083Architectures: x86
1084Type: vcpu ioctl
1085Parameters: struct kvm_xsave (out)
1086Returns: 0 on success, -1 on error
1087
1088struct kvm_xsave {
1089 __u32 region[1024];
1090};
1091
1092This ioctl would copy current vcpu's xsave struct to the userspace.
1093
414fa985 1094
68ba6974 10954.43 KVM_SET_XSAVE
2d5b5a66
SY
1096
1097Capability: KVM_CAP_XSAVE
1098Architectures: x86
1099Type: vcpu ioctl
1100Parameters: struct kvm_xsave (in)
1101Returns: 0 on success, -1 on error
1102
1103struct kvm_xsave {
1104 __u32 region[1024];
1105};
1106
1107This ioctl would copy userspace's xsave struct to the kernel.
1108
414fa985 1109
68ba6974 11104.44 KVM_GET_XCRS
2d5b5a66
SY
1111
1112Capability: KVM_CAP_XCRS
1113Architectures: x86
1114Type: vcpu ioctl
1115Parameters: struct kvm_xcrs (out)
1116Returns: 0 on success, -1 on error
1117
1118struct kvm_xcr {
1119 __u32 xcr;
1120 __u32 reserved;
1121 __u64 value;
1122};
1123
1124struct kvm_xcrs {
1125 __u32 nr_xcrs;
1126 __u32 flags;
1127 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1128 __u64 padding[16];
1129};
1130
1131This ioctl would copy current vcpu's xcrs to the userspace.
1132
414fa985 1133
68ba6974 11344.45 KVM_SET_XCRS
2d5b5a66
SY
1135
1136Capability: KVM_CAP_XCRS
1137Architectures: x86
1138Type: vcpu ioctl
1139Parameters: struct kvm_xcrs (in)
1140Returns: 0 on success, -1 on error
1141
1142struct kvm_xcr {
1143 __u32 xcr;
1144 __u32 reserved;
1145 __u64 value;
1146};
1147
1148struct kvm_xcrs {
1149 __u32 nr_xcrs;
1150 __u32 flags;
1151 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1152 __u64 padding[16];
1153};
1154
1155This ioctl would set vcpu's xcr to the value userspace specified.
1156
414fa985 1157
68ba6974 11584.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1159
1160Capability: KVM_CAP_EXT_CPUID
1161Architectures: x86
1162Type: system ioctl
1163Parameters: struct kvm_cpuid2 (in/out)
1164Returns: 0 on success, -1 on error
1165
1166struct kvm_cpuid2 {
1167 __u32 nent;
1168 __u32 padding;
1169 struct kvm_cpuid_entry2 entries[0];
1170};
1171
9c15bb1d
BP
1172#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1173#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1174#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
d153513d
AK
1175
1176struct kvm_cpuid_entry2 {
1177 __u32 function;
1178 __u32 index;
1179 __u32 flags;
1180 __u32 eax;
1181 __u32 ebx;
1182 __u32 ecx;
1183 __u32 edx;
1184 __u32 padding[3];
1185};
1186
1187This ioctl returns x86 cpuid features which are supported by both the hardware
1188and kvm. Userspace can use the information returned by this ioctl to
1189construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1190hardware, kernel, and userspace capabilities, and with user requirements (for
1191example, the user may wish to constrain cpuid to emulate older hardware,
1192or for feature consistency across a cluster).
1193
1194Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1195with the 'nent' field indicating the number of entries in the variable-size
1196array 'entries'. If the number of entries is too low to describe the cpu
1197capabilities, an error (E2BIG) is returned. If the number is too high,
1198the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1199number is just right, the 'nent' field is adjusted to the number of valid
1200entries in the 'entries' array, which is then filled.
1201
1202The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1203with unknown or unsupported features masked out. Some features (for example,
1204x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1205emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1206
1207 function: the eax value used to obtain the entry
1208 index: the ecx value used to obtain the entry (for entries that are
1209 affected by ecx)
1210 flags: an OR of zero or more of the following:
1211 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1212 if the index field is valid
1213 KVM_CPUID_FLAG_STATEFUL_FUNC:
1214 if cpuid for this function returns different values for successive
1215 invocations; there will be several entries with the same function,
1216 all with this flag set
1217 KVM_CPUID_FLAG_STATE_READ_NEXT:
1218 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1219 the first entry to be read by a cpu
1220 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1221 this function/index combination
1222
4d25a066
JK
1223The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1224as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1225support. Instead it is reported via
1226
1227 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1228
1229if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1230feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1231
414fa985 1232
68ba6974 12334.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1234
1235Capability: KVM_CAP_PPC_GET_PVINFO
1236Architectures: ppc
1237Type: vm ioctl
1238Parameters: struct kvm_ppc_pvinfo (out)
1239Returns: 0 on success, !0 on error
1240
1241struct kvm_ppc_pvinfo {
1242 __u32 flags;
1243 __u32 hcall[4];
1244 __u8 pad[108];
1245};
1246
1247This ioctl fetches PV specific information that need to be passed to the guest
1248using the device tree or other means from vm context.
1249
9202e076 1250The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1251
1252If any additional field gets added to this structure later on, a bit for that
1253additional piece of information will be set in the flags bitmap.
1254
9202e076
LYB
1255The flags bitmap is defined as:
1256
1257 /* the host supports the ePAPR idle hcall
1258 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1259
68ba6974 12604.48 KVM_ASSIGN_PCI_DEVICE
49f48172 1261
7f05db6a 1262Capability: none
c32a4272 1263Architectures: x86
49f48172
JK
1264Type: vm ioctl
1265Parameters: struct kvm_assigned_pci_dev (in)
1266Returns: 0 on success, -1 on error
1267
1268Assigns a host PCI device to the VM.
1269
1270struct kvm_assigned_pci_dev {
1271 __u32 assigned_dev_id;
1272 __u32 busnr;
1273 __u32 devfn;
1274 __u32 flags;
1275 __u32 segnr;
1276 union {
1277 __u32 reserved[11];
1278 };
1279};
1280
1281The PCI device is specified by the triple segnr, busnr, and devfn.
1282Identification in succeeding service requests is done via assigned_dev_id. The
1283following flags are specified:
1284
1285/* Depends on KVM_CAP_IOMMU */
1286#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1287/* The following two depend on KVM_CAP_PCI_2_3 */
1288#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1289#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1290
1291If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1292via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1293assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1294guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1295
42387373
AW
1296The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1297isolation of the device. Usages not specifying this flag are deprecated.
1298
3d27e23b
AW
1299Only PCI header type 0 devices with PCI BAR resources are supported by
1300device assignment. The user requesting this ioctl must have read/write
1301access to the PCI sysfs resource files associated with the device.
1302
7f05db6a
MT
1303Errors:
1304 ENOTTY: kernel does not support this ioctl
1305
1306 Other error conditions may be defined by individual device types or
1307 have their standard meanings.
1308
414fa985 1309
68ba6974 13104.49 KVM_DEASSIGN_PCI_DEVICE
49f48172 1311
7f05db6a 1312Capability: none
c32a4272 1313Architectures: x86
49f48172
JK
1314Type: vm ioctl
1315Parameters: struct kvm_assigned_pci_dev (in)
1316Returns: 0 on success, -1 on error
1317
1318Ends PCI device assignment, releasing all associated resources.
1319
7f05db6a 1320See KVM_ASSIGN_PCI_DEVICE for the data structure. Only assigned_dev_id is
49f48172
JK
1321used in kvm_assigned_pci_dev to identify the device.
1322
7f05db6a
MT
1323Errors:
1324 ENOTTY: kernel does not support this ioctl
1325
1326 Other error conditions may be defined by individual device types or
1327 have their standard meanings.
414fa985 1328
68ba6974 13294.50 KVM_ASSIGN_DEV_IRQ
49f48172
JK
1330
1331Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1332Architectures: x86
49f48172
JK
1333Type: vm ioctl
1334Parameters: struct kvm_assigned_irq (in)
1335Returns: 0 on success, -1 on error
1336
1337Assigns an IRQ to a passed-through device.
1338
1339struct kvm_assigned_irq {
1340 __u32 assigned_dev_id;
91e3d71d 1341 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1342 __u32 guest_irq;
1343 __u32 flags;
1344 union {
49f48172
JK
1345 __u32 reserved[12];
1346 };
1347};
1348
1349The following flags are defined:
1350
1351#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1352#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1353#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1354
1355#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1356#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1357#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1358
1359It is not valid to specify multiple types per host or guest IRQ. However, the
1360IRQ type of host and guest can differ or can even be null.
1361
7f05db6a
MT
1362Errors:
1363 ENOTTY: kernel does not support this ioctl
1364
1365 Other error conditions may be defined by individual device types or
1366 have their standard meanings.
1367
414fa985 1368
68ba6974 13694.51 KVM_DEASSIGN_DEV_IRQ
49f48172
JK
1370
1371Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1372Architectures: x86
49f48172
JK
1373Type: vm ioctl
1374Parameters: struct kvm_assigned_irq (in)
1375Returns: 0 on success, -1 on error
1376
1377Ends an IRQ assignment to a passed-through device.
1378
1379See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1380by assigned_dev_id, flags must correspond to the IRQ type specified on
1381KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1382
414fa985 1383
68ba6974 13844.52 KVM_SET_GSI_ROUTING
49f48172
JK
1385
1386Capability: KVM_CAP_IRQ_ROUTING
c32a4272 1387Architectures: x86 s390
49f48172
JK
1388Type: vm ioctl
1389Parameters: struct kvm_irq_routing (in)
1390Returns: 0 on success, -1 on error
1391
1392Sets the GSI routing table entries, overwriting any previously set entries.
1393
1394struct kvm_irq_routing {
1395 __u32 nr;
1396 __u32 flags;
1397 struct kvm_irq_routing_entry entries[0];
1398};
1399
1400No flags are specified so far, the corresponding field must be set to zero.
1401
1402struct kvm_irq_routing_entry {
1403 __u32 gsi;
1404 __u32 type;
1405 __u32 flags;
1406 __u32 pad;
1407 union {
1408 struct kvm_irq_routing_irqchip irqchip;
1409 struct kvm_irq_routing_msi msi;
84223598 1410 struct kvm_irq_routing_s390_adapter adapter;
49f48172
JK
1411 __u32 pad[8];
1412 } u;
1413};
1414
1415/* gsi routing entry types */
1416#define KVM_IRQ_ROUTING_IRQCHIP 1
1417#define KVM_IRQ_ROUTING_MSI 2
84223598 1418#define KVM_IRQ_ROUTING_S390_ADAPTER 3
49f48172
JK
1419
1420No flags are specified so far, the corresponding field must be set to zero.
1421
1422struct kvm_irq_routing_irqchip {
1423 __u32 irqchip;
1424 __u32 pin;
1425};
1426
1427struct kvm_irq_routing_msi {
1428 __u32 address_lo;
1429 __u32 address_hi;
1430 __u32 data;
1431 __u32 pad;
1432};
1433
84223598
CH
1434struct kvm_irq_routing_s390_adapter {
1435 __u64 ind_addr;
1436 __u64 summary_addr;
1437 __u64 ind_offset;
1438 __u32 summary_offset;
1439 __u32 adapter_id;
1440};
1441
414fa985 1442
68ba6974 14434.53 KVM_ASSIGN_SET_MSIX_NR
49f48172 1444
7f05db6a 1445Capability: none
c32a4272 1446Architectures: x86
49f48172
JK
1447Type: vm ioctl
1448Parameters: struct kvm_assigned_msix_nr (in)
1449Returns: 0 on success, -1 on error
1450
58f0964e
JK
1451Set the number of MSI-X interrupts for an assigned device. The number is
1452reset again by terminating the MSI-X assignment of the device via
1453KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1454point will fail.
49f48172
JK
1455
1456struct kvm_assigned_msix_nr {
1457 __u32 assigned_dev_id;
1458 __u16 entry_nr;
1459 __u16 padding;
1460};
1461
1462#define KVM_MAX_MSIX_PER_DEV 256
1463
414fa985 1464
68ba6974 14654.54 KVM_ASSIGN_SET_MSIX_ENTRY
49f48172 1466
7f05db6a 1467Capability: none
c32a4272 1468Architectures: x86
49f48172
JK
1469Type: vm ioctl
1470Parameters: struct kvm_assigned_msix_entry (in)
1471Returns: 0 on success, -1 on error
1472
1473Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1474the GSI vector to zero means disabling the interrupt.
1475
1476struct kvm_assigned_msix_entry {
1477 __u32 assigned_dev_id;
1478 __u32 gsi;
1479 __u16 entry; /* The index of entry in the MSI-X table */
1480 __u16 padding[3];
1481};
1482
7f05db6a
MT
1483Errors:
1484 ENOTTY: kernel does not support this ioctl
1485
1486 Other error conditions may be defined by individual device types or
1487 have their standard meanings.
1488
414fa985
JK
1489
14904.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1491
1492Capability: KVM_CAP_TSC_CONTROL
1493Architectures: x86
1494Type: vcpu ioctl
1495Parameters: virtual tsc_khz
1496Returns: 0 on success, -1 on error
1497
1498Specifies the tsc frequency for the virtual machine. The unit of the
1499frequency is KHz.
1500
414fa985
JK
1501
15024.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1503
1504Capability: KVM_CAP_GET_TSC_KHZ
1505Architectures: x86
1506Type: vcpu ioctl
1507Parameters: none
1508Returns: virtual tsc-khz on success, negative value on error
1509
1510Returns the tsc frequency of the guest. The unit of the return value is
1511KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1512error.
1513
414fa985
JK
1514
15154.57 KVM_GET_LAPIC
e7677933
AK
1516
1517Capability: KVM_CAP_IRQCHIP
1518Architectures: x86
1519Type: vcpu ioctl
1520Parameters: struct kvm_lapic_state (out)
1521Returns: 0 on success, -1 on error
1522
1523#define KVM_APIC_REG_SIZE 0x400
1524struct kvm_lapic_state {
1525 char regs[KVM_APIC_REG_SIZE];
1526};
1527
1528Reads the Local APIC registers and copies them into the input argument. The
1529data format and layout are the same as documented in the architecture manual.
1530
414fa985
JK
1531
15324.58 KVM_SET_LAPIC
e7677933
AK
1533
1534Capability: KVM_CAP_IRQCHIP
1535Architectures: x86
1536Type: vcpu ioctl
1537Parameters: struct kvm_lapic_state (in)
1538Returns: 0 on success, -1 on error
1539
1540#define KVM_APIC_REG_SIZE 0x400
1541struct kvm_lapic_state {
1542 char regs[KVM_APIC_REG_SIZE];
1543};
1544
df5cbb27 1545Copies the input argument into the Local APIC registers. The data format
e7677933
AK
1546and layout are the same as documented in the architecture manual.
1547
414fa985
JK
1548
15494.59 KVM_IOEVENTFD
55399a02
SL
1550
1551Capability: KVM_CAP_IOEVENTFD
1552Architectures: all
1553Type: vm ioctl
1554Parameters: struct kvm_ioeventfd (in)
1555Returns: 0 on success, !0 on error
1556
1557This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1558within the guest. A guest write in the registered address will signal the
1559provided event instead of triggering an exit.
1560
1561struct kvm_ioeventfd {
1562 __u64 datamatch;
1563 __u64 addr; /* legal pio/mmio address */
1564 __u32 len; /* 1, 2, 4, or 8 bytes */
1565 __s32 fd;
1566 __u32 flags;
1567 __u8 pad[36];
1568};
1569
2b83451b
CH
1570For the special case of virtio-ccw devices on s390, the ioevent is matched
1571to a subchannel/virtqueue tuple instead.
1572
55399a02
SL
1573The following flags are defined:
1574
1575#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1576#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1577#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
2b83451b
CH
1578#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1579 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1580
1581If datamatch flag is set, the event will be signaled only if the written value
1582to the registered address is equal to datamatch in struct kvm_ioeventfd.
1583
2b83451b
CH
1584For virtio-ccw devices, addr contains the subchannel id and datamatch the
1585virtqueue index.
1586
414fa985
JK
1587
15884.60 KVM_DIRTY_TLB
dc83b8bc
SW
1589
1590Capability: KVM_CAP_SW_TLB
1591Architectures: ppc
1592Type: vcpu ioctl
1593Parameters: struct kvm_dirty_tlb (in)
1594Returns: 0 on success, -1 on error
1595
1596struct kvm_dirty_tlb {
1597 __u64 bitmap;
1598 __u32 num_dirty;
1599};
1600
1601This must be called whenever userspace has changed an entry in the shared
1602TLB, prior to calling KVM_RUN on the associated vcpu.
1603
1604The "bitmap" field is the userspace address of an array. This array
1605consists of a number of bits, equal to the total number of TLB entries as
1606determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1607nearest multiple of 64.
1608
1609Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1610array.
1611
1612The array is little-endian: the bit 0 is the least significant bit of the
1613first byte, bit 8 is the least significant bit of the second byte, etc.
1614This avoids any complications with differing word sizes.
1615
1616The "num_dirty" field is a performance hint for KVM to determine whether it
1617should skip processing the bitmap and just invalidate everything. It must
1618be set to the number of set bits in the bitmap.
1619
414fa985
JK
1620
16214.61 KVM_ASSIGN_SET_INTX_MASK
07700a94
JK
1622
1623Capability: KVM_CAP_PCI_2_3
1624Architectures: x86
1625Type: vm ioctl
1626Parameters: struct kvm_assigned_pci_dev (in)
1627Returns: 0 on success, -1 on error
1628
1629Allows userspace to mask PCI INTx interrupts from the assigned device. The
1630kernel will not deliver INTx interrupts to the guest between setting and
1631clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1632and emulation of PCI 2.3 INTx disable command register behavior.
1633
1634This may be used for both PCI 2.3 devices supporting INTx disable natively and
1635older devices lacking this support. Userspace is responsible for emulating the
1636read value of the INTx disable bit in the guest visible PCI command register.
1637When modifying the INTx disable state, userspace should precede updating the
1638physical device command register by calling this ioctl to inform the kernel of
1639the new intended INTx mask state.
1640
1641Note that the kernel uses the device INTx disable bit to internally manage the
1642device interrupt state for PCI 2.3 devices. Reads of this register may
1643therefore not match the expected value. Writes should always use the guest
1644intended INTx disable value rather than attempting to read-copy-update the
1645current physical device state. Races between user and kernel updates to the
1646INTx disable bit are handled lazily in the kernel. It's possible the device
1647may generate unintended interrupts, but they will not be injected into the
1648guest.
1649
1650See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1651by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1652evaluated.
1653
414fa985 1654
54738c09
DG
16554.62 KVM_CREATE_SPAPR_TCE
1656
1657Capability: KVM_CAP_SPAPR_TCE
1658Architectures: powerpc
1659Type: vm ioctl
1660Parameters: struct kvm_create_spapr_tce (in)
1661Returns: file descriptor for manipulating the created TCE table
1662
1663This creates a virtual TCE (translation control entry) table, which
1664is an IOMMU for PAPR-style virtual I/O. It is used to translate
1665logical addresses used in virtual I/O into guest physical addresses,
1666and provides a scatter/gather capability for PAPR virtual I/O.
1667
1668/* for KVM_CAP_SPAPR_TCE */
1669struct kvm_create_spapr_tce {
1670 __u64 liobn;
1671 __u32 window_size;
1672};
1673
1674The liobn field gives the logical IO bus number for which to create a
1675TCE table. The window_size field specifies the size of the DMA window
1676which this TCE table will translate - the table will contain one 64
1677bit TCE entry for every 4kiB of the DMA window.
1678
1679When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1680table has been created using this ioctl(), the kernel will handle it
1681in real mode, updating the TCE table. H_PUT_TCE calls for other
1682liobns will cause a vm exit and must be handled by userspace.
1683
1684The return value is a file descriptor which can be passed to mmap(2)
1685to map the created TCE table into userspace. This lets userspace read
1686the entries written by kernel-handled H_PUT_TCE calls, and also lets
1687userspace update the TCE table directly which is useful in some
1688circumstances.
1689
414fa985 1690
aa04b4cc
PM
16914.63 KVM_ALLOCATE_RMA
1692
1693Capability: KVM_CAP_PPC_RMA
1694Architectures: powerpc
1695Type: vm ioctl
1696Parameters: struct kvm_allocate_rma (out)
1697Returns: file descriptor for mapping the allocated RMA
1698
1699This allocates a Real Mode Area (RMA) from the pool allocated at boot
1700time by the kernel. An RMA is a physically-contiguous, aligned region
1701of memory used on older POWER processors to provide the memory which
1702will be accessed by real-mode (MMU off) accesses in a KVM guest.
1703POWER processors support a set of sizes for the RMA that usually
1704includes 64MB, 128MB, 256MB and some larger powers of two.
1705
1706/* for KVM_ALLOCATE_RMA */
1707struct kvm_allocate_rma {
1708 __u64 rma_size;
1709};
1710
1711The return value is a file descriptor which can be passed to mmap(2)
1712to map the allocated RMA into userspace. The mapped area can then be
1713passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1714RMA for a virtual machine. The size of the RMA in bytes (which is
1715fixed at host kernel boot time) is returned in the rma_size field of
1716the argument structure.
1717
1718The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1719is supported; 2 if the processor requires all virtual machines to have
1720an RMA, or 1 if the processor can use an RMA but doesn't require it,
1721because it supports the Virtual RMA (VRMA) facility.
1722
414fa985 1723
3f745f1e
AK
17244.64 KVM_NMI
1725
1726Capability: KVM_CAP_USER_NMI
1727Architectures: x86
1728Type: vcpu ioctl
1729Parameters: none
1730Returns: 0 on success, -1 on error
1731
1732Queues an NMI on the thread's vcpu. Note this is well defined only
1733when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1734between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1735has been called, this interface is completely emulated within the kernel.
1736
1737To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1738following algorithm:
1739
1740 - pause the vpcu
1741 - read the local APIC's state (KVM_GET_LAPIC)
1742 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1743 - if so, issue KVM_NMI
1744 - resume the vcpu
1745
1746Some guests configure the LINT1 NMI input to cause a panic, aiding in
1747debugging.
1748
414fa985 1749
e24ed81f 17504.65 KVM_S390_UCAS_MAP
27e0393f
CO
1751
1752Capability: KVM_CAP_S390_UCONTROL
1753Architectures: s390
1754Type: vcpu ioctl
1755Parameters: struct kvm_s390_ucas_mapping (in)
1756Returns: 0 in case of success
1757
1758The parameter is defined like this:
1759 struct kvm_s390_ucas_mapping {
1760 __u64 user_addr;
1761 __u64 vcpu_addr;
1762 __u64 length;
1763 };
1764
1765This ioctl maps the memory at "user_addr" with the length "length" to
1766the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 1767be aligned by 1 megabyte.
27e0393f 1768
414fa985 1769
e24ed81f 17704.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1771
1772Capability: KVM_CAP_S390_UCONTROL
1773Architectures: s390
1774Type: vcpu ioctl
1775Parameters: struct kvm_s390_ucas_mapping (in)
1776Returns: 0 in case of success
1777
1778The parameter is defined like this:
1779 struct kvm_s390_ucas_mapping {
1780 __u64 user_addr;
1781 __u64 vcpu_addr;
1782 __u64 length;
1783 };
1784
1785This ioctl unmaps the memory in the vcpu's address space starting at
1786"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 1787All parameters need to be aligned by 1 megabyte.
27e0393f 1788
414fa985 1789
e24ed81f 17904.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1791
1792Capability: KVM_CAP_S390_UCONTROL
1793Architectures: s390
1794Type: vcpu ioctl
1795Parameters: vcpu absolute address (in)
1796Returns: 0 in case of success
1797
1798This call creates a page table entry on the virtual cpu's address space
1799(for user controlled virtual machines) or the virtual machine's address
1800space (for regular virtual machines). This only works for minor faults,
1801thus it's recommended to access subject memory page via the user page
1802table upfront. This is useful to handle validity intercepts for user
1803controlled virtual machines to fault in the virtual cpu's lowcore pages
1804prior to calling the KVM_RUN ioctl.
1805
414fa985 1806
e24ed81f
AG
18074.68 KVM_SET_ONE_REG
1808
1809Capability: KVM_CAP_ONE_REG
1810Architectures: all
1811Type: vcpu ioctl
1812Parameters: struct kvm_one_reg (in)
1813Returns: 0 on success, negative value on failure
1814
1815struct kvm_one_reg {
1816 __u64 id;
1817 __u64 addr;
1818};
1819
1820Using this ioctl, a single vcpu register can be set to a specific value
1821defined by user space with the passed in struct kvm_one_reg, where id
1822refers to the register identifier as described below and addr is a pointer
1823to a variable with the respective size. There can be architecture agnostic
1824and architecture specific registers. Each have their own range of operation
1825and their own constants and width. To keep track of the implemented
1826registers, find a list below:
1827
bf5590f3
JH
1828 Arch | Register | Width (bits)
1829 | |
1830 PPC | KVM_REG_PPC_HIOR | 64
1831 PPC | KVM_REG_PPC_IAC1 | 64
1832 PPC | KVM_REG_PPC_IAC2 | 64
1833 PPC | KVM_REG_PPC_IAC3 | 64
1834 PPC | KVM_REG_PPC_IAC4 | 64
1835 PPC | KVM_REG_PPC_DAC1 | 64
1836 PPC | KVM_REG_PPC_DAC2 | 64
1837 PPC | KVM_REG_PPC_DABR | 64
1838 PPC | KVM_REG_PPC_DSCR | 64
1839 PPC | KVM_REG_PPC_PURR | 64
1840 PPC | KVM_REG_PPC_SPURR | 64
1841 PPC | KVM_REG_PPC_DAR | 64
1842 PPC | KVM_REG_PPC_DSISR | 32
1843 PPC | KVM_REG_PPC_AMR | 64
1844 PPC | KVM_REG_PPC_UAMOR | 64
1845 PPC | KVM_REG_PPC_MMCR0 | 64
1846 PPC | KVM_REG_PPC_MMCR1 | 64
1847 PPC | KVM_REG_PPC_MMCRA | 64
1848 PPC | KVM_REG_PPC_MMCR2 | 64
1849 PPC | KVM_REG_PPC_MMCRS | 64
1850 PPC | KVM_REG_PPC_SIAR | 64
1851 PPC | KVM_REG_PPC_SDAR | 64
1852 PPC | KVM_REG_PPC_SIER | 64
1853 PPC | KVM_REG_PPC_PMC1 | 32
1854 PPC | KVM_REG_PPC_PMC2 | 32
1855 PPC | KVM_REG_PPC_PMC3 | 32
1856 PPC | KVM_REG_PPC_PMC4 | 32
1857 PPC | KVM_REG_PPC_PMC5 | 32
1858 PPC | KVM_REG_PPC_PMC6 | 32
1859 PPC | KVM_REG_PPC_PMC7 | 32
1860 PPC | KVM_REG_PPC_PMC8 | 32
1861 PPC | KVM_REG_PPC_FPR0 | 64
a8bd19ef 1862 ...
bf5590f3
JH
1863 PPC | KVM_REG_PPC_FPR31 | 64
1864 PPC | KVM_REG_PPC_VR0 | 128
a8bd19ef 1865 ...
bf5590f3
JH
1866 PPC | KVM_REG_PPC_VR31 | 128
1867 PPC | KVM_REG_PPC_VSR0 | 128
a8bd19ef 1868 ...
bf5590f3
JH
1869 PPC | KVM_REG_PPC_VSR31 | 128
1870 PPC | KVM_REG_PPC_FPSCR | 64
1871 PPC | KVM_REG_PPC_VSCR | 32
1872 PPC | KVM_REG_PPC_VPA_ADDR | 64
1873 PPC | KVM_REG_PPC_VPA_SLB | 128
1874 PPC | KVM_REG_PPC_VPA_DTL | 128
1875 PPC | KVM_REG_PPC_EPCR | 32
1876 PPC | KVM_REG_PPC_EPR | 32
1877 PPC | KVM_REG_PPC_TCR | 32
1878 PPC | KVM_REG_PPC_TSR | 32
1879 PPC | KVM_REG_PPC_OR_TSR | 32
1880 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1881 PPC | KVM_REG_PPC_MAS0 | 32
1882 PPC | KVM_REG_PPC_MAS1 | 32
1883 PPC | KVM_REG_PPC_MAS2 | 64
1884 PPC | KVM_REG_PPC_MAS7_3 | 64
1885 PPC | KVM_REG_PPC_MAS4 | 32
1886 PPC | KVM_REG_PPC_MAS6 | 32
1887 PPC | KVM_REG_PPC_MMUCFG | 32
1888 PPC | KVM_REG_PPC_TLB0CFG | 32
1889 PPC | KVM_REG_PPC_TLB1CFG | 32
1890 PPC | KVM_REG_PPC_TLB2CFG | 32
1891 PPC | KVM_REG_PPC_TLB3CFG | 32
1892 PPC | KVM_REG_PPC_TLB0PS | 32
1893 PPC | KVM_REG_PPC_TLB1PS | 32
1894 PPC | KVM_REG_PPC_TLB2PS | 32
1895 PPC | KVM_REG_PPC_TLB3PS | 32
1896 PPC | KVM_REG_PPC_EPTCFG | 32
1897 PPC | KVM_REG_PPC_ICP_STATE | 64
1898 PPC | KVM_REG_PPC_TB_OFFSET | 64
1899 PPC | KVM_REG_PPC_SPMC1 | 32
1900 PPC | KVM_REG_PPC_SPMC2 | 32
1901 PPC | KVM_REG_PPC_IAMR | 64
1902 PPC | KVM_REG_PPC_TFHAR | 64
1903 PPC | KVM_REG_PPC_TFIAR | 64
1904 PPC | KVM_REG_PPC_TEXASR | 64
1905 PPC | KVM_REG_PPC_FSCR | 64
1906 PPC | KVM_REG_PPC_PSPB | 32
1907 PPC | KVM_REG_PPC_EBBHR | 64
1908 PPC | KVM_REG_PPC_EBBRR | 64
1909 PPC | KVM_REG_PPC_BESCR | 64
1910 PPC | KVM_REG_PPC_TAR | 64
1911 PPC | KVM_REG_PPC_DPDES | 64
1912 PPC | KVM_REG_PPC_DAWR | 64
1913 PPC | KVM_REG_PPC_DAWRX | 64
1914 PPC | KVM_REG_PPC_CIABR | 64
1915 PPC | KVM_REG_PPC_IC | 64
1916 PPC | KVM_REG_PPC_VTB | 64
1917 PPC | KVM_REG_PPC_CSIGR | 64
1918 PPC | KVM_REG_PPC_TACR | 64
1919 PPC | KVM_REG_PPC_TCSCR | 64
1920 PPC | KVM_REG_PPC_PID | 64
1921 PPC | KVM_REG_PPC_ACOP | 64
1922 PPC | KVM_REG_PPC_VRSAVE | 32
cc568ead
PB
1923 PPC | KVM_REG_PPC_LPCR | 32
1924 PPC | KVM_REG_PPC_LPCR_64 | 64
bf5590f3
JH
1925 PPC | KVM_REG_PPC_PPR | 64
1926 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
1927 PPC | KVM_REG_PPC_DABRX | 32
1928 PPC | KVM_REG_PPC_WORT | 64
bc8a4e5c
BB
1929 PPC | KVM_REG_PPC_SPRG9 | 64
1930 PPC | KVM_REG_PPC_DBSR | 32
bf5590f3 1931 PPC | KVM_REG_PPC_TM_GPR0 | 64
3b783474 1932 ...
bf5590f3
JH
1933 PPC | KVM_REG_PPC_TM_GPR31 | 64
1934 PPC | KVM_REG_PPC_TM_VSR0 | 128
3b783474 1935 ...
bf5590f3
JH
1936 PPC | KVM_REG_PPC_TM_VSR63 | 128
1937 PPC | KVM_REG_PPC_TM_CR | 64
1938 PPC | KVM_REG_PPC_TM_LR | 64
1939 PPC | KVM_REG_PPC_TM_CTR | 64
1940 PPC | KVM_REG_PPC_TM_FPSCR | 64
1941 PPC | KVM_REG_PPC_TM_AMR | 64
1942 PPC | KVM_REG_PPC_TM_PPR | 64
1943 PPC | KVM_REG_PPC_TM_VRSAVE | 64
1944 PPC | KVM_REG_PPC_TM_VSCR | 32
1945 PPC | KVM_REG_PPC_TM_DSCR | 64
1946 PPC | KVM_REG_PPC_TM_TAR | 64
c2d2c21b
JH
1947 | |
1948 MIPS | KVM_REG_MIPS_R0 | 64
1949 ...
1950 MIPS | KVM_REG_MIPS_R31 | 64
1951 MIPS | KVM_REG_MIPS_HI | 64
1952 MIPS | KVM_REG_MIPS_LO | 64
1953 MIPS | KVM_REG_MIPS_PC | 64
1954 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
1955 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
1956 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
1957 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
1958 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
1959 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
1960 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
1961 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
1962 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
1963 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
1964 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
1965 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
1966 MIPS | KVM_REG_MIPS_CP0_EPC | 64
1967 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
1968 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
1969 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
1970 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
1971 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
1972 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
1973 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
1974 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
1975 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
414fa985 1976
749cf76c
CD
1977ARM registers are mapped using the lower 32 bits. The upper 16 of that
1978is the register group type, or coprocessor number:
1979
1980ARM core registers have the following id bit patterns:
aa404ddf 1981 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 1982
1138245c 1983ARM 32-bit CP15 registers have the following id bit patterns:
aa404ddf 1984 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c
CD
1985
1986ARM 64-bit CP15 registers have the following id bit patterns:
aa404ddf 1987 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 1988
c27581ed 1989ARM CCSIDR registers are demultiplexed by CSSELR value:
aa404ddf 1990 0x4020 0000 0011 00 <csselr:8>
749cf76c 1991
4fe21e4c 1992ARM 32-bit VFP control registers have the following id bit patterns:
aa404ddf 1993 0x4020 0000 0012 1 <regno:12>
4fe21e4c
RR
1994
1995ARM 64-bit FP registers have the following id bit patterns:
aa404ddf 1996 0x4030 0000 0012 0 <regno:12>
4fe21e4c 1997
379e04c7
MZ
1998
1999arm64 registers are mapped using the lower 32 bits. The upper 16 of
2000that is the register group type, or coprocessor number:
2001
2002arm64 core/FP-SIMD registers have the following id bit patterns. Note
2003that the size of the access is variable, as the kvm_regs structure
2004contains elements ranging from 32 to 128 bits. The index is a 32bit
2005value in the kvm_regs structure seen as a 32bit array.
2006 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2007
2008arm64 CCSIDR registers are demultiplexed by CSSELR value:
2009 0x6020 0000 0011 00 <csselr:8>
2010
2011arm64 system registers have the following id bit patterns:
2012 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2013
c2d2c21b
JH
2014
2015MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2016the register group type:
2017
2018MIPS core registers (see above) have the following id bit patterns:
2019 0x7030 0000 0000 <reg:16>
2020
2021MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
2022patterns depending on whether they're 32-bit or 64-bit registers:
2023 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2024 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2025
2026MIPS KVM control registers (see above) have the following id bit patterns:
2027 0x7030 0000 0002 <reg:16>
2028
2029
e24ed81f
AG
20304.69 KVM_GET_ONE_REG
2031
2032Capability: KVM_CAP_ONE_REG
2033Architectures: all
2034Type: vcpu ioctl
2035Parameters: struct kvm_one_reg (in and out)
2036Returns: 0 on success, negative value on failure
2037
2038This ioctl allows to receive the value of a single register implemented
2039in a vcpu. The register to read is indicated by the "id" field of the
2040kvm_one_reg struct passed in. On success, the register value can be found
2041at the memory location pointed to by "addr".
2042
2043The list of registers accessible using this interface is identical to the
2e232702 2044list in 4.68.
e24ed81f 2045
414fa985 2046
1c0b28c2
EM
20474.70 KVM_KVMCLOCK_CTRL
2048
2049Capability: KVM_CAP_KVMCLOCK_CTRL
2050Architectures: Any that implement pvclocks (currently x86 only)
2051Type: vcpu ioctl
2052Parameters: None
2053Returns: 0 on success, -1 on error
2054
2055This signals to the host kernel that the specified guest is being paused by
2056userspace. The host will set a flag in the pvclock structure that is checked
2057from the soft lockup watchdog. The flag is part of the pvclock structure that
2058is shared between guest and host, specifically the second bit of the flags
2059field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2060the host and read/cleared exclusively by the guest. The guest operation of
2061checking and clearing the flag must an atomic operation so
2062load-link/store-conditional, or equivalent must be used. There are two cases
2063where the guest will clear the flag: when the soft lockup watchdog timer resets
2064itself or when a soft lockup is detected. This ioctl can be called any time
2065after pausing the vcpu, but before it is resumed.
2066
414fa985 2067
07975ad3
JK
20684.71 KVM_SIGNAL_MSI
2069
2070Capability: KVM_CAP_SIGNAL_MSI
2071Architectures: x86
2072Type: vm ioctl
2073Parameters: struct kvm_msi (in)
2074Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2075
2076Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2077MSI messages.
2078
2079struct kvm_msi {
2080 __u32 address_lo;
2081 __u32 address_hi;
2082 __u32 data;
2083 __u32 flags;
2084 __u8 pad[16];
2085};
2086
2087No flags are defined so far. The corresponding field must be 0.
2088
414fa985 2089
0589ff6c
JK
20904.71 KVM_CREATE_PIT2
2091
2092Capability: KVM_CAP_PIT2
2093Architectures: x86
2094Type: vm ioctl
2095Parameters: struct kvm_pit_config (in)
2096Returns: 0 on success, -1 on error
2097
2098Creates an in-kernel device model for the i8254 PIT. This call is only valid
2099after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2100parameters have to be passed:
2101
2102struct kvm_pit_config {
2103 __u32 flags;
2104 __u32 pad[15];
2105};
2106
2107Valid flags are:
2108
2109#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2110
b6ddf05f
JK
2111PIT timer interrupts may use a per-VM kernel thread for injection. If it
2112exists, this thread will have a name of the following pattern:
2113
2114kvm-pit/<owner-process-pid>
2115
2116When running a guest with elevated priorities, the scheduling parameters of
2117this thread may have to be adjusted accordingly.
2118
0589ff6c
JK
2119This IOCTL replaces the obsolete KVM_CREATE_PIT.
2120
2121
21224.72 KVM_GET_PIT2
2123
2124Capability: KVM_CAP_PIT_STATE2
2125Architectures: x86
2126Type: vm ioctl
2127Parameters: struct kvm_pit_state2 (out)
2128Returns: 0 on success, -1 on error
2129
2130Retrieves the state of the in-kernel PIT model. Only valid after
2131KVM_CREATE_PIT2. The state is returned in the following structure:
2132
2133struct kvm_pit_state2 {
2134 struct kvm_pit_channel_state channels[3];
2135 __u32 flags;
2136 __u32 reserved[9];
2137};
2138
2139Valid flags are:
2140
2141/* disable PIT in HPET legacy mode */
2142#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2143
2144This IOCTL replaces the obsolete KVM_GET_PIT.
2145
2146
21474.73 KVM_SET_PIT2
2148
2149Capability: KVM_CAP_PIT_STATE2
2150Architectures: x86
2151Type: vm ioctl
2152Parameters: struct kvm_pit_state2 (in)
2153Returns: 0 on success, -1 on error
2154
2155Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2156See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2157
2158This IOCTL replaces the obsolete KVM_SET_PIT.
2159
2160
5b74716e
BH
21614.74 KVM_PPC_GET_SMMU_INFO
2162
2163Capability: KVM_CAP_PPC_GET_SMMU_INFO
2164Architectures: powerpc
2165Type: vm ioctl
2166Parameters: None
2167Returns: 0 on success, -1 on error
2168
2169This populates and returns a structure describing the features of
2170the "Server" class MMU emulation supported by KVM.
cc22c354 2171This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2172device-tree properties for the guest operating system.
2173
c98be0c9 2174The structure contains some global information, followed by an
5b74716e
BH
2175array of supported segment page sizes:
2176
2177 struct kvm_ppc_smmu_info {
2178 __u64 flags;
2179 __u32 slb_size;
2180 __u32 pad;
2181 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2182 };
2183
2184The supported flags are:
2185
2186 - KVM_PPC_PAGE_SIZES_REAL:
2187 When that flag is set, guest page sizes must "fit" the backing
2188 store page sizes. When not set, any page size in the list can
2189 be used regardless of how they are backed by userspace.
2190
2191 - KVM_PPC_1T_SEGMENTS
2192 The emulated MMU supports 1T segments in addition to the
2193 standard 256M ones.
2194
2195The "slb_size" field indicates how many SLB entries are supported
2196
2197The "sps" array contains 8 entries indicating the supported base
2198page sizes for a segment in increasing order. Each entry is defined
2199as follow:
2200
2201 struct kvm_ppc_one_seg_page_size {
2202 __u32 page_shift; /* Base page shift of segment (or 0) */
2203 __u32 slb_enc; /* SLB encoding for BookS */
2204 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2205 };
2206
2207An entry with a "page_shift" of 0 is unused. Because the array is
2208organized in increasing order, a lookup can stop when encoutering
2209such an entry.
2210
2211The "slb_enc" field provides the encoding to use in the SLB for the
2212page size. The bits are in positions such as the value can directly
2213be OR'ed into the "vsid" argument of the slbmte instruction.
2214
2215The "enc" array is a list which for each of those segment base page
2216size provides the list of supported actual page sizes (which can be
2217only larger or equal to the base page size), along with the
f884ab15 2218corresponding encoding in the hash PTE. Similarly, the array is
5b74716e
BH
22198 entries sorted by increasing sizes and an entry with a "0" shift
2220is an empty entry and a terminator:
2221
2222 struct kvm_ppc_one_page_size {
2223 __u32 page_shift; /* Page shift (or 0) */
2224 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2225 };
2226
2227The "pte_enc" field provides a value that can OR'ed into the hash
2228PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2229into the hash PTE second double word).
2230
f36992e3
AW
22314.75 KVM_IRQFD
2232
2233Capability: KVM_CAP_IRQFD
ebc32262 2234Architectures: x86 s390
f36992e3
AW
2235Type: vm ioctl
2236Parameters: struct kvm_irqfd (in)
2237Returns: 0 on success, -1 on error
2238
2239Allows setting an eventfd to directly trigger a guest interrupt.
2240kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2241kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
17180032 2242an event is triggered on the eventfd, an interrupt is injected into
f36992e3
AW
2243the guest using the specified gsi pin. The irqfd is removed using
2244the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2245and kvm_irqfd.gsi.
2246
7a84428a
AW
2247With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2248mechanism allowing emulation of level-triggered, irqfd-based
2249interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2250additional eventfd in the kvm_irqfd.resamplefd field. When operating
2251in resample mode, posting of an interrupt through kvm_irq.fd asserts
2252the specified gsi in the irqchip. When the irqchip is resampled, such
17180032 2253as from an EOI, the gsi is de-asserted and the user is notified via
7a84428a
AW
2254kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2255the interrupt if the device making use of it still requires service.
2256Note that closing the resamplefd is not sufficient to disable the
2257irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2258and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2259
5fecc9d8 22604.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2261
2262Capability: KVM_CAP_PPC_ALLOC_HTAB
2263Architectures: powerpc
2264Type: vm ioctl
2265Parameters: Pointer to u32 containing hash table order (in/out)
2266Returns: 0 on success, -1 on error
2267
2268This requests the host kernel to allocate an MMU hash table for a
2269guest using the PAPR paravirtualization interface. This only does
2270anything if the kernel is configured to use the Book 3S HV style of
2271virtualization. Otherwise the capability doesn't exist and the ioctl
2272returns an ENOTTY error. The rest of this description assumes Book 3S
2273HV.
2274
2275There must be no vcpus running when this ioctl is called; if there
2276are, it will do nothing and return an EBUSY error.
2277
2278The parameter is a pointer to a 32-bit unsigned integer variable
2279containing the order (log base 2) of the desired size of the hash
2280table, which must be between 18 and 46. On successful return from the
2281ioctl, it will have been updated with the order of the hash table that
2282was allocated.
2283
2284If no hash table has been allocated when any vcpu is asked to run
2285(with the KVM_RUN ioctl), the host kernel will allocate a
2286default-sized hash table (16 MB).
2287
2288If this ioctl is called when a hash table has already been allocated,
2289the kernel will clear out the existing hash table (zero all HPTEs) and
2290return the hash table order in the parameter. (If the guest is using
2291the virtualized real-mode area (VRMA) facility, the kernel will
2292re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2293
416ad65f
CH
22944.77 KVM_S390_INTERRUPT
2295
2296Capability: basic
2297Architectures: s390
2298Type: vm ioctl, vcpu ioctl
2299Parameters: struct kvm_s390_interrupt (in)
2300Returns: 0 on success, -1 on error
2301
2302Allows to inject an interrupt to the guest. Interrupts can be floating
2303(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2304
2305Interrupt parameters are passed via kvm_s390_interrupt:
2306
2307struct kvm_s390_interrupt {
2308 __u32 type;
2309 __u32 parm;
2310 __u64 parm64;
2311};
2312
2313type can be one of the following:
2314
2315KVM_S390_SIGP_STOP (vcpu) - sigp restart
2316KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2317KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2318KVM_S390_RESTART (vcpu) - restart
e029ae5b
TH
2319KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2320KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
416ad65f
CH
2321KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2322 parameters in parm and parm64
2323KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2324KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2325KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2326KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2327 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2328 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2329 interruption subclass)
48a3e950
CH
2330KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2331 machine check interrupt code in parm64 (note that
2332 machine checks needing further payload are not
2333 supported by this ioctl)
416ad65f
CH
2334
2335Note that the vcpu ioctl is asynchronous to vcpu execution.
2336
a2932923
PM
23374.78 KVM_PPC_GET_HTAB_FD
2338
2339Capability: KVM_CAP_PPC_HTAB_FD
2340Architectures: powerpc
2341Type: vm ioctl
2342Parameters: Pointer to struct kvm_get_htab_fd (in)
2343Returns: file descriptor number (>= 0) on success, -1 on error
2344
2345This returns a file descriptor that can be used either to read out the
2346entries in the guest's hashed page table (HPT), or to write entries to
2347initialize the HPT. The returned fd can only be written to if the
2348KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2349can only be read if that bit is clear. The argument struct looks like
2350this:
2351
2352/* For KVM_PPC_GET_HTAB_FD */
2353struct kvm_get_htab_fd {
2354 __u64 flags;
2355 __u64 start_index;
2356 __u64 reserved[2];
2357};
2358
2359/* Values for kvm_get_htab_fd.flags */
2360#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2361#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2362
2363The `start_index' field gives the index in the HPT of the entry at
2364which to start reading. It is ignored when writing.
2365
2366Reads on the fd will initially supply information about all
2367"interesting" HPT entries. Interesting entries are those with the
2368bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2369all entries. When the end of the HPT is reached, the read() will
2370return. If read() is called again on the fd, it will start again from
2371the beginning of the HPT, but will only return HPT entries that have
2372changed since they were last read.
2373
2374Data read or written is structured as a header (8 bytes) followed by a
2375series of valid HPT entries (16 bytes) each. The header indicates how
2376many valid HPT entries there are and how many invalid entries follow
2377the valid entries. The invalid entries are not represented explicitly
2378in the stream. The header format is:
2379
2380struct kvm_get_htab_header {
2381 __u32 index;
2382 __u16 n_valid;
2383 __u16 n_invalid;
2384};
2385
2386Writes to the fd create HPT entries starting at the index given in the
2387header; first `n_valid' valid entries with contents from the data
2388written, then `n_invalid' invalid entries, invalidating any previously
2389valid entries found.
2390
852b6d57
SW
23914.79 KVM_CREATE_DEVICE
2392
2393Capability: KVM_CAP_DEVICE_CTRL
2394Type: vm ioctl
2395Parameters: struct kvm_create_device (in/out)
2396Returns: 0 on success, -1 on error
2397Errors:
2398 ENODEV: The device type is unknown or unsupported
2399 EEXIST: Device already created, and this type of device may not
2400 be instantiated multiple times
2401
2402 Other error conditions may be defined by individual device types or
2403 have their standard meanings.
2404
2405Creates an emulated device in the kernel. The file descriptor returned
2406in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2407
2408If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2409device type is supported (not necessarily whether it can be created
2410in the current vm).
2411
2412Individual devices should not define flags. Attributes should be used
2413for specifying any behavior that is not implied by the device type
2414number.
2415
2416struct kvm_create_device {
2417 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2418 __u32 fd; /* out: device handle */
2419 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2420};
2421
24224.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2423
f2061656
DD
2424Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2425Type: device ioctl, vm ioctl
852b6d57
SW
2426Parameters: struct kvm_device_attr
2427Returns: 0 on success, -1 on error
2428Errors:
2429 ENXIO: The group or attribute is unknown/unsupported for this device
2430 EPERM: The attribute cannot (currently) be accessed this way
2431 (e.g. read-only attribute, or attribute that only makes
2432 sense when the device is in a different state)
2433
2434 Other error conditions may be defined by individual device types.
2435
2436Gets/sets a specified piece of device configuration and/or state. The
2437semantics are device-specific. See individual device documentation in
2438the "devices" directory. As with ONE_REG, the size of the data
2439transferred is defined by the particular attribute.
2440
2441struct kvm_device_attr {
2442 __u32 flags; /* no flags currently defined */
2443 __u32 group; /* device-defined */
2444 __u64 attr; /* group-defined */
2445 __u64 addr; /* userspace address of attr data */
2446};
2447
24484.81 KVM_HAS_DEVICE_ATTR
2449
f2061656
DD
2450Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2451Type: device ioctl, vm ioctl
852b6d57
SW
2452Parameters: struct kvm_device_attr
2453Returns: 0 on success, -1 on error
2454Errors:
2455 ENXIO: The group or attribute is unknown/unsupported for this device
2456
2457Tests whether a device supports a particular attribute. A successful
2458return indicates the attribute is implemented. It does not necessarily
2459indicate that the attribute can be read or written in the device's
2460current state. "addr" is ignored.
f36992e3 2461
d8968f1f 24624.82 KVM_ARM_VCPU_INIT
749cf76c
CD
2463
2464Capability: basic
379e04c7 2465Architectures: arm, arm64
749cf76c 2466Type: vcpu ioctl
beb11fc7 2467Parameters: struct kvm_vcpu_init (in)
749cf76c
CD
2468Returns: 0 on success; -1 on error
2469Errors:
2470  EINVAL:    the target is unknown, or the combination of features is invalid.
2471  ENOENT:    a features bit specified is unknown.
2472
2473This tells KVM what type of CPU to present to the guest, and what
2474optional features it should have.  This will cause a reset of the cpu
2475registers to their initial values.  If this is not called, KVM_RUN will
2476return ENOEXEC for that vcpu.
2477
2478Note that because some registers reflect machine topology, all vcpus
2479should be created before this ioctl is invoked.
2480
f7fa034d
CD
2481Userspace can call this function multiple times for a given vcpu, including
2482after the vcpu has been run. This will reset the vcpu to its initial
2483state. All calls to this function after the initial call must use the same
2484target and same set of feature flags, otherwise EINVAL will be returned.
2485
aa024c2f
MZ
2486Possible features:
2487 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
3ad8b3de
CD
2488 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2489 and execute guest code when KVM_RUN is called.
379e04c7
MZ
2490 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2491 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
50bb0c94
AP
2492 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2493 Depends on KVM_CAP_ARM_PSCI_0_2.
aa024c2f 2494
749cf76c 2495
740edfc0
AP
24964.83 KVM_ARM_PREFERRED_TARGET
2497
2498Capability: basic
2499Architectures: arm, arm64
2500Type: vm ioctl
2501Parameters: struct struct kvm_vcpu_init (out)
2502Returns: 0 on success; -1 on error
2503Errors:
a7265fb1 2504 ENODEV: no preferred target available for the host
740edfc0
AP
2505
2506This queries KVM for preferred CPU target type which can be emulated
2507by KVM on underlying host.
2508
2509The ioctl returns struct kvm_vcpu_init instance containing information
2510about preferred CPU target type and recommended features for it. The
2511kvm_vcpu_init->features bitmap returned will have feature bits set if
2512the preferred target recommends setting these features, but this is
2513not mandatory.
2514
2515The information returned by this ioctl can be used to prepare an instance
2516of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2517in VCPU matching underlying host.
2518
2519
25204.84 KVM_GET_REG_LIST
749cf76c
CD
2521
2522Capability: basic
c2d2c21b 2523Architectures: arm, arm64, mips
749cf76c
CD
2524Type: vcpu ioctl
2525Parameters: struct kvm_reg_list (in/out)
2526Returns: 0 on success; -1 on error
2527Errors:
2528  E2BIG:     the reg index list is too big to fit in the array specified by
2529             the user (the number required will be written into n).
2530
2531struct kvm_reg_list {
2532 __u64 n; /* number of registers in reg[] */
2533 __u64 reg[0];
2534};
2535
2536This ioctl returns the guest registers that are supported for the
2537KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2538
ce01e4e8
CD
2539
25404.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
3401d546
CD
2541
2542Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
379e04c7 2543Architectures: arm, arm64
3401d546
CD
2544Type: vm ioctl
2545Parameters: struct kvm_arm_device_address (in)
2546Returns: 0 on success, -1 on error
2547Errors:
2548 ENODEV: The device id is unknown
2549 ENXIO: Device not supported on current system
2550 EEXIST: Address already set
2551 E2BIG: Address outside guest physical address space
330690cd 2552 EBUSY: Address overlaps with other device range
3401d546
CD
2553
2554struct kvm_arm_device_addr {
2555 __u64 id;
2556 __u64 addr;
2557};
2558
2559Specify a device address in the guest's physical address space where guests
2560can access emulated or directly exposed devices, which the host kernel needs
2561to know about. The id field is an architecture specific identifier for a
2562specific device.
2563
379e04c7
MZ
2564ARM/arm64 divides the id field into two parts, a device id and an
2565address type id specific to the individual device.
3401d546
CD
2566
2567  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2568 field: | 0x00000000 | device id | addr type id |
2569
379e04c7
MZ
2570ARM/arm64 currently only require this when using the in-kernel GIC
2571support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2572as the device id. When setting the base address for the guest's
2573mapping of the VGIC virtual CPU and distributor interface, the ioctl
2574must be called after calling KVM_CREATE_IRQCHIP, but before calling
2575KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2576base addresses will return -EEXIST.
3401d546 2577
ce01e4e8
CD
2578Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2579should be used instead.
2580
2581
740edfc0 25824.86 KVM_PPC_RTAS_DEFINE_TOKEN
8e591cb7
ME
2583
2584Capability: KVM_CAP_PPC_RTAS
2585Architectures: ppc
2586Type: vm ioctl
2587Parameters: struct kvm_rtas_token_args
2588Returns: 0 on success, -1 on error
2589
2590Defines a token value for a RTAS (Run Time Abstraction Services)
2591service in order to allow it to be handled in the kernel. The
2592argument struct gives the name of the service, which must be the name
2593of a service that has a kernel-side implementation. If the token
2594value is non-zero, it will be associated with that service, and
2595subsequent RTAS calls by the guest specifying that token will be
2596handled by the kernel. If the token value is 0, then any token
2597associated with the service will be forgotten, and subsequent RTAS
2598calls by the guest for that service will be passed to userspace to be
2599handled.
2600
4bd9d344
AB
26014.87 KVM_SET_GUEST_DEBUG
2602
2603Capability: KVM_CAP_SET_GUEST_DEBUG
2604Architectures: x86, s390, ppc
2605Type: vcpu ioctl
2606Parameters: struct kvm_guest_debug (in)
2607Returns: 0 on success; -1 on error
2608
2609struct kvm_guest_debug {
2610 __u32 control;
2611 __u32 pad;
2612 struct kvm_guest_debug_arch arch;
2613};
2614
2615Set up the processor specific debug registers and configure vcpu for
2616handling guest debug events. There are two parts to the structure, the
2617first a control bitfield indicates the type of debug events to handle
2618when running. Common control bits are:
2619
2620 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2621 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2622
2623The top 16 bits of the control field are architecture specific control
2624flags which can include the following:
2625
2626 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86]
2627 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390]
2628 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2629 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2630 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2631
2632For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2633are enabled in memory so we need to ensure breakpoint exceptions are
2634correctly trapped and the KVM run loop exits at the breakpoint and not
2635running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2636we need to ensure the guest vCPUs architecture specific registers are
2637updated to the correct (supplied) values.
2638
2639The second part of the structure is architecture specific and
2640typically contains a set of debug registers.
2641
2642When debug events exit the main run loop with the reason
2643KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2644structure containing architecture specific debug information.
3401d546 2645
209cf19f
AB
26464.88 KVM_GET_EMULATED_CPUID
2647
2648Capability: KVM_CAP_EXT_EMUL_CPUID
2649Architectures: x86
2650Type: system ioctl
2651Parameters: struct kvm_cpuid2 (in/out)
2652Returns: 0 on success, -1 on error
2653
2654struct kvm_cpuid2 {
2655 __u32 nent;
2656 __u32 flags;
2657 struct kvm_cpuid_entry2 entries[0];
2658};
2659
2660The member 'flags' is used for passing flags from userspace.
2661
2662#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2663#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2664#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2665
2666struct kvm_cpuid_entry2 {
2667 __u32 function;
2668 __u32 index;
2669 __u32 flags;
2670 __u32 eax;
2671 __u32 ebx;
2672 __u32 ecx;
2673 __u32 edx;
2674 __u32 padding[3];
2675};
2676
2677This ioctl returns x86 cpuid features which are emulated by
2678kvm.Userspace can use the information returned by this ioctl to query
2679which features are emulated by kvm instead of being present natively.
2680
2681Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2682structure with the 'nent' field indicating the number of entries in
2683the variable-size array 'entries'. If the number of entries is too low
2684to describe the cpu capabilities, an error (E2BIG) is returned. If the
2685number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2686is returned. If the number is just right, the 'nent' field is adjusted
2687to the number of valid entries in the 'entries' array, which is then
2688filled.
2689
2690The entries returned are the set CPUID bits of the respective features
2691which kvm emulates, as returned by the CPUID instruction, with unknown
2692or unsupported feature bits cleared.
2693
2694Features like x2apic, for example, may not be present in the host cpu
2695but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2696emulated efficiently and thus not included here.
2697
2698The fields in each entry are defined as follows:
2699
2700 function: the eax value used to obtain the entry
2701 index: the ecx value used to obtain the entry (for entries that are
2702 affected by ecx)
2703 flags: an OR of zero or more of the following:
2704 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2705 if the index field is valid
2706 KVM_CPUID_FLAG_STATEFUL_FUNC:
2707 if cpuid for this function returns different values for successive
2708 invocations; there will be several entries with the same function,
2709 all with this flag set
2710 KVM_CPUID_FLAG_STATE_READ_NEXT:
2711 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2712 the first entry to be read by a cpu
2713 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2714 this function/index combination
2715
9c1b96e3 27165. The kvm_run structure
414fa985 2717------------------------
9c1b96e3
AK
2718
2719Application code obtains a pointer to the kvm_run structure by
2720mmap()ing a vcpu fd. From that point, application code can control
2721execution by changing fields in kvm_run prior to calling the KVM_RUN
2722ioctl, and obtain information about the reason KVM_RUN returned by
2723looking up structure members.
2724
2725struct kvm_run {
2726 /* in */
2727 __u8 request_interrupt_window;
2728
2729Request that KVM_RUN return when it becomes possible to inject external
2730interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
2731
2732 __u8 padding1[7];
2733
2734 /* out */
2735 __u32 exit_reason;
2736
2737When KVM_RUN has returned successfully (return value 0), this informs
2738application code why KVM_RUN has returned. Allowable values for this
2739field are detailed below.
2740
2741 __u8 ready_for_interrupt_injection;
2742
2743If request_interrupt_window has been specified, this field indicates
2744an interrupt can be injected now with KVM_INTERRUPT.
2745
2746 __u8 if_flag;
2747
2748The value of the current interrupt flag. Only valid if in-kernel
2749local APIC is not used.
2750
2751 __u8 padding2[2];
2752
2753 /* in (pre_kvm_run), out (post_kvm_run) */
2754 __u64 cr8;
2755
2756The value of the cr8 register. Only valid if in-kernel local APIC is
2757not used. Both input and output.
2758
2759 __u64 apic_base;
2760
2761The value of the APIC BASE msr. Only valid if in-kernel local
2762APIC is not used. Both input and output.
2763
2764 union {
2765 /* KVM_EXIT_UNKNOWN */
2766 struct {
2767 __u64 hardware_exit_reason;
2768 } hw;
2769
2770If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
2771reasons. Further architecture-specific information is available in
2772hardware_exit_reason.
2773
2774 /* KVM_EXIT_FAIL_ENTRY */
2775 struct {
2776 __u64 hardware_entry_failure_reason;
2777 } fail_entry;
2778
2779If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
2780to unknown reasons. Further architecture-specific information is
2781available in hardware_entry_failure_reason.
2782
2783 /* KVM_EXIT_EXCEPTION */
2784 struct {
2785 __u32 exception;
2786 __u32 error_code;
2787 } ex;
2788
2789Unused.
2790
2791 /* KVM_EXIT_IO */
2792 struct {
2793#define KVM_EXIT_IO_IN 0
2794#define KVM_EXIT_IO_OUT 1
2795 __u8 direction;
2796 __u8 size; /* bytes */
2797 __u16 port;
2798 __u32 count;
2799 __u64 data_offset; /* relative to kvm_run start */
2800 } io;
2801
2044892d 2802If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
2803executed a port I/O instruction which could not be satisfied by kvm.
2804data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
2805where kvm expects application code to place the data for the next
2044892d 2806KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3
AK
2807
2808 struct {
2809 struct kvm_debug_exit_arch arch;
2810 } debug;
2811
2812Unused.
2813
2814 /* KVM_EXIT_MMIO */
2815 struct {
2816 __u64 phys_addr;
2817 __u8 data[8];
2818 __u32 len;
2819 __u8 is_write;
2820 } mmio;
2821
2044892d 2822If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
2823executed a memory-mapped I/O instruction which could not be satisfied
2824by kvm. The 'data' member contains the written data if 'is_write' is
2825true, and should be filled by application code otherwise.
2826
6acdb160
CD
2827The 'data' member contains, in its first 'len' bytes, the value as it would
2828appear if the VCPU performed a load or store of the appropriate width directly
2829to the byte array.
2830
cc568ead 2831NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
ce91ddc4 2832 KVM_EXIT_EPR the corresponding
ad0a048b
AG
2833operations are complete (and guest state is consistent) only after userspace
2834has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
2835incomplete operations and then check for pending signals. Userspace
2836can re-enter the guest with an unmasked signal pending to complete
2837pending operations.
2838
9c1b96e3
AK
2839 /* KVM_EXIT_HYPERCALL */
2840 struct {
2841 __u64 nr;
2842 __u64 args[6];
2843 __u64 ret;
2844 __u32 longmode;
2845 __u32 pad;
2846 } hypercall;
2847
647dc49e
AK
2848Unused. This was once used for 'hypercall to userspace'. To implement
2849such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
2850Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
2851
2852 /* KVM_EXIT_TPR_ACCESS */
2853 struct {
2854 __u64 rip;
2855 __u32 is_write;
2856 __u32 pad;
2857 } tpr_access;
2858
2859To be documented (KVM_TPR_ACCESS_REPORTING).
2860
2861 /* KVM_EXIT_S390_SIEIC */
2862 struct {
2863 __u8 icptcode;
2864 __u64 mask; /* psw upper half */
2865 __u64 addr; /* psw lower half */
2866 __u16 ipa;
2867 __u32 ipb;
2868 } s390_sieic;
2869
2870s390 specific.
2871
2872 /* KVM_EXIT_S390_RESET */
2873#define KVM_S390_RESET_POR 1
2874#define KVM_S390_RESET_CLEAR 2
2875#define KVM_S390_RESET_SUBSYSTEM 4
2876#define KVM_S390_RESET_CPU_INIT 8
2877#define KVM_S390_RESET_IPL 16
2878 __u64 s390_reset_flags;
2879
2880s390 specific.
2881
e168bf8d
CO
2882 /* KVM_EXIT_S390_UCONTROL */
2883 struct {
2884 __u64 trans_exc_code;
2885 __u32 pgm_code;
2886 } s390_ucontrol;
2887
2888s390 specific. A page fault has occurred for a user controlled virtual
2889machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
2890resolved by the kernel.
2891The program code and the translation exception code that were placed
2892in the cpu's lowcore are presented here as defined by the z Architecture
2893Principles of Operation Book in the Chapter for Dynamic Address Translation
2894(DAT)
2895
9c1b96e3
AK
2896 /* KVM_EXIT_DCR */
2897 struct {
2898 __u32 dcrn;
2899 __u32 data;
2900 __u8 is_write;
2901 } dcr;
2902
ce91ddc4 2903Deprecated - was used for 440 KVM.
9c1b96e3 2904
ad0a048b
AG
2905 /* KVM_EXIT_OSI */
2906 struct {
2907 __u64 gprs[32];
2908 } osi;
2909
2910MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
2911hypercalls and exit with this exit struct that contains all the guest gprs.
2912
2913If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
2914Userspace can now handle the hypercall and when it's done modify the gprs as
2915necessary. Upon guest entry all guest GPRs will then be replaced by the values
2916in this struct.
2917
de56a948
PM
2918 /* KVM_EXIT_PAPR_HCALL */
2919 struct {
2920 __u64 nr;
2921 __u64 ret;
2922 __u64 args[9];
2923 } papr_hcall;
2924
2925This is used on 64-bit PowerPC when emulating a pSeries partition,
2926e.g. with the 'pseries' machine type in qemu. It occurs when the
2927guest does a hypercall using the 'sc 1' instruction. The 'nr' field
2928contains the hypercall number (from the guest R3), and 'args' contains
2929the arguments (from the guest R4 - R12). Userspace should put the
2930return code in 'ret' and any extra returned values in args[].
2931The possible hypercalls are defined in the Power Architecture Platform
2932Requirements (PAPR) document available from www.power.org (free
2933developer registration required to access it).
2934
fa6b7fe9
CH
2935 /* KVM_EXIT_S390_TSCH */
2936 struct {
2937 __u16 subchannel_id;
2938 __u16 subchannel_nr;
2939 __u32 io_int_parm;
2940 __u32 io_int_word;
2941 __u32 ipb;
2942 __u8 dequeued;
2943 } s390_tsch;
2944
2945s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
2946and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
2947interrupt for the target subchannel has been dequeued and subchannel_id,
2948subchannel_nr, io_int_parm and io_int_word contain the parameters for that
2949interrupt. ipb is needed for instruction parameter decoding.
2950
1c810636
AG
2951 /* KVM_EXIT_EPR */
2952 struct {
2953 __u32 epr;
2954 } epr;
2955
2956On FSL BookE PowerPC chips, the interrupt controller has a fast patch
2957interrupt acknowledge path to the core. When the core successfully
2958delivers an interrupt, it automatically populates the EPR register with
2959the interrupt vector number and acknowledges the interrupt inside
2960the interrupt controller.
2961
2962In case the interrupt controller lives in user space, we need to do
2963the interrupt acknowledge cycle through it to fetch the next to be
2964delivered interrupt vector using this exit.
2965
2966It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
2967external interrupt has just been delivered into the guest. User space
2968should put the acknowledged interrupt vector into the 'epr' field.
2969
8ad6b634
AP
2970 /* KVM_EXIT_SYSTEM_EVENT */
2971 struct {
2972#define KVM_SYSTEM_EVENT_SHUTDOWN 1
2973#define KVM_SYSTEM_EVENT_RESET 2
2974 __u32 type;
2975 __u64 flags;
2976 } system_event;
2977
2978If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
2979a system-level event using some architecture specific mechanism (hypercall
2980or some special instruction). In case of ARM/ARM64, this is triggered using
2981HVC instruction based PSCI call from the vcpu. The 'type' field describes
2982the system-level event type. The 'flags' field describes architecture
2983specific flags for the system-level event.
2984
cf5d3188
CD
2985Valid values for 'type' are:
2986 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
2987 VM. Userspace is not obliged to honour this, and if it does honour
2988 this does not need to destroy the VM synchronously (ie it may call
2989 KVM_RUN again before shutdown finally occurs).
2990 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
2991 As with SHUTDOWN, userspace can choose to ignore the request, or
2992 to schedule the reset to occur in the future and may call KVM_RUN again.
2993
9c1b96e3
AK
2994 /* Fix the size of the union. */
2995 char padding[256];
2996 };
b9e5dc8d
CB
2997
2998 /*
2999 * shared registers between kvm and userspace.
3000 * kvm_valid_regs specifies the register classes set by the host
3001 * kvm_dirty_regs specified the register classes dirtied by userspace
3002 * struct kvm_sync_regs is architecture specific, as well as the
3003 * bits for kvm_valid_regs and kvm_dirty_regs
3004 */
3005 __u64 kvm_valid_regs;
3006 __u64 kvm_dirty_regs;
3007 union {
3008 struct kvm_sync_regs regs;
3009 char padding[1024];
3010 } s;
3011
3012If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3013certain guest registers without having to call SET/GET_*REGS. Thus we can
3014avoid some system call overhead if userspace has to handle the exit.
3015Userspace can query the validity of the structure by checking
3016kvm_valid_regs for specific bits. These bits are architecture specific
3017and usually define the validity of a groups of registers. (e.g. one bit
3018 for general purpose registers)
3019
d8482c0d
DH
3020Please note that the kernel is allowed to use the kvm_run structure as the
3021primary storage for certain register types. Therefore, the kernel may use the
3022values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3023
9c1b96e3 3024};
821246a5 3025
414fa985 3026
9c15bb1d 3027
699a0ea0
PM
30286. Capabilities that can be enabled on vCPUs
3029--------------------------------------------
821246a5 3030
0907c855
CH
3031There are certain capabilities that change the behavior of the virtual CPU or
3032the virtual machine when enabled. To enable them, please see section 4.37.
3033Below you can find a list of capabilities and what their effect on the vCPU or
3034the virtual machine is when enabling them.
821246a5
AG
3035
3036The following information is provided along with the description:
3037
3038 Architectures: which instruction set architectures provide this ioctl.
3039 x86 includes both i386 and x86_64.
3040
0907c855
CH
3041 Target: whether this is a per-vcpu or per-vm capability.
3042
821246a5
AG
3043 Parameters: what parameters are accepted by the capability.
3044
3045 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3046 are not detailed, but errors with specific meanings are.
3047
414fa985 3048
821246a5
AG
30496.1 KVM_CAP_PPC_OSI
3050
3051Architectures: ppc
0907c855 3052Target: vcpu
821246a5
AG
3053Parameters: none
3054Returns: 0 on success; -1 on error
3055
3056This capability enables interception of OSI hypercalls that otherwise would
3057be treated as normal system calls to be injected into the guest. OSI hypercalls
3058were invented by Mac-on-Linux to have a standardized communication mechanism
3059between the guest and the host.
3060
3061When this capability is enabled, KVM_EXIT_OSI can occur.
3062
414fa985 3063
821246a5
AG
30646.2 KVM_CAP_PPC_PAPR
3065
3066Architectures: ppc
0907c855 3067Target: vcpu
821246a5
AG
3068Parameters: none
3069Returns: 0 on success; -1 on error
3070
3071This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3072done using the hypercall instruction "sc 1".
3073
3074It also sets the guest privilege level to "supervisor" mode. Usually the guest
3075runs in "hypervisor" privilege mode with a few missing features.
3076
3077In addition to the above, it changes the semantics of SDR1. In this mode, the
3078HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3079HTAB invisible to the guest.
3080
3081When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 3082
414fa985 3083
dc83b8bc
SW
30846.3 KVM_CAP_SW_TLB
3085
3086Architectures: ppc
0907c855 3087Target: vcpu
dc83b8bc
SW
3088Parameters: args[0] is the address of a struct kvm_config_tlb
3089Returns: 0 on success; -1 on error
3090
3091struct kvm_config_tlb {
3092 __u64 params;
3093 __u64 array;
3094 __u32 mmu_type;
3095 __u32 array_len;
3096};
3097
3098Configures the virtual CPU's TLB array, establishing a shared memory area
3099between userspace and KVM. The "params" and "array" fields are userspace
3100addresses of mmu-type-specific data structures. The "array_len" field is an
3101safety mechanism, and should be set to the size in bytes of the memory that
3102userspace has reserved for the array. It must be at least the size dictated
3103by "mmu_type" and "params".
3104
3105While KVM_RUN is active, the shared region is under control of KVM. Its
3106contents are undefined, and any modification by userspace results in
3107boundedly undefined behavior.
3108
3109On return from KVM_RUN, the shared region will reflect the current state of
3110the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3111to tell KVM which entries have been changed, prior to calling KVM_RUN again
3112on this vcpu.
3113
3114For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3115 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3116 - The "array" field points to an array of type "struct
3117 kvm_book3e_206_tlb_entry".
3118 - The array consists of all entries in the first TLB, followed by all
3119 entries in the second TLB.
3120 - Within a TLB, entries are ordered first by increasing set number. Within a
3121 set, entries are ordered by way (increasing ESEL).
3122 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3123 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3124 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3125 hardware ignores this value for TLB0.
fa6b7fe9
CH
3126
31276.4 KVM_CAP_S390_CSS_SUPPORT
3128
3129Architectures: s390
0907c855 3130Target: vcpu
fa6b7fe9
CH
3131Parameters: none
3132Returns: 0 on success; -1 on error
3133
3134This capability enables support for handling of channel I/O instructions.
3135
3136TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3137handled in-kernel, while the other I/O instructions are passed to userspace.
3138
3139When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3140SUBCHANNEL intercepts.
1c810636 3141
0907c855
CH
3142Note that even though this capability is enabled per-vcpu, the complete
3143virtual machine is affected.
3144
1c810636
AG
31456.5 KVM_CAP_PPC_EPR
3146
3147Architectures: ppc
0907c855 3148Target: vcpu
1c810636
AG
3149Parameters: args[0] defines whether the proxy facility is active
3150Returns: 0 on success; -1 on error
3151
3152This capability enables or disables the delivery of interrupts through the
3153external proxy facility.
3154
3155When enabled (args[0] != 0), every time the guest gets an external interrupt
3156delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3157to receive the topmost interrupt vector.
3158
3159When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3160
3161When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
3162
31636.6 KVM_CAP_IRQ_MPIC
3164
3165Architectures: ppc
3166Parameters: args[0] is the MPIC device fd
3167 args[1] is the MPIC CPU number for this vcpu
3168
3169This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
3170
31716.7 KVM_CAP_IRQ_XICS
3172
3173Architectures: ppc
0907c855 3174Target: vcpu
5975a2e0
PM
3175Parameters: args[0] is the XICS device fd
3176 args[1] is the XICS CPU number (server ID) for this vcpu
3177
3178This capability connects the vcpu to an in-kernel XICS device.
8a366a4b
CH
3179
31806.8 KVM_CAP_S390_IRQCHIP
3181
3182Architectures: s390
3183Target: vm
3184Parameters: none
3185
3186This capability enables the in-kernel irqchip for s390. Please refer to
3187"4.24 KVM_CREATE_IRQCHIP" for details.
699a0ea0
PM
3188
31897. Capabilities that can be enabled on VMs
3190------------------------------------------
3191
3192There are certain capabilities that change the behavior of the virtual
3193machine when enabled. To enable them, please see section 4.37. Below
3194you can find a list of capabilities and what their effect on the VM
3195is when enabling them.
3196
3197The following information is provided along with the description:
3198
3199 Architectures: which instruction set architectures provide this ioctl.
3200 x86 includes both i386 and x86_64.
3201
3202 Parameters: what parameters are accepted by the capability.
3203
3204 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3205 are not detailed, but errors with specific meanings are.
3206
3207
32087.1 KVM_CAP_PPC_ENABLE_HCALL
3209
3210Architectures: ppc
3211Parameters: args[0] is the sPAPR hcall number
3212 args[1] is 0 to disable, 1 to enable in-kernel handling
3213
3214This capability controls whether individual sPAPR hypercalls (hcalls)
3215get handled by the kernel or not. Enabling or disabling in-kernel
3216handling of an hcall is effective across the VM. On creation, an
3217initial set of hcalls are enabled for in-kernel handling, which
3218consists of those hcalls for which in-kernel handlers were implemented
3219before this capability was implemented. If disabled, the kernel will
3220not to attempt to handle the hcall, but will always exit to userspace
3221to handle it. Note that it may not make sense to enable some and
3222disable others of a group of related hcalls, but KVM does not prevent
3223userspace from doing that.
ae2113a4
PM
3224
3225If the hcall number specified is not one that has an in-kernel
3226implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3227error.