]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - Documentation/virtual/kvm/api.txt
KVM: arm: introduce kvm_arm_init/setup/clear_debug
[mirror_ubuntu-zesty-kernel.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
c9f3f2d8 56The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
7f05db6a 71 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
9c1b96e3 72 means availability needs to be checked with KVM_CHECK_EXTENSION
7f05db6a
MT
73 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
9c1b96e3
AK
77
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
414fa985 88
9c1b96e3
AK
894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
414fa985 104
9c1b96e3
AK
1054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
e08b9637 110Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
111Returns: a VM fd that can be used to control the new virtual machine.
112
113The new VM has no virtual cpus and no memory. An mmap() of a VM fd
114will access the virtual machine's physical address space; offset zero
115corresponds to guest physical address zero. Use of mmap() on a VM fd
116is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
117available.
e08b9637
CO
118You most certainly want to use 0 as machine type.
119
120In order to create user controlled virtual machines on S390, check
121KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
122privileged user (CAP_SYS_ADMIN).
9c1b96e3 123
414fa985 124
9c1b96e3
AK
1254.3 KVM_GET_MSR_INDEX_LIST
126
127Capability: basic
128Architectures: x86
129Type: system
130Parameters: struct kvm_msr_list (in/out)
131Returns: 0 on success; -1 on error
132Errors:
133 E2BIG: the msr index list is to be to fit in the array specified by
134 the user.
135
136struct kvm_msr_list {
137 __u32 nmsrs; /* number of msrs in entries */
138 __u32 indices[0];
139};
140
141This ioctl returns the guest msrs that are supported. The list varies
142by kvm version and host processor, but does not change otherwise. The
143user fills in the size of the indices array in nmsrs, and in return
144kvm adjusts nmsrs to reflect the actual number of msrs and fills in
145the indices array with their numbers.
146
2e2602ca
AK
147Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
148not returned in the MSR list, as different vcpus can have a different number
149of banks, as set via the KVM_X86_SETUP_MCE ioctl.
150
414fa985 151
9c1b96e3
AK
1524.4 KVM_CHECK_EXTENSION
153
92b591a4 154Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
9c1b96e3 155Architectures: all
92b591a4 156Type: system ioctl, vm ioctl
9c1b96e3
AK
157Parameters: extension identifier (KVM_CAP_*)
158Returns: 0 if unsupported; 1 (or some other positive integer) if supported
159
160The API allows the application to query about extensions to the core
161kvm API. Userspace passes an extension identifier (an integer) and
162receives an integer that describes the extension availability.
163Generally 0 means no and 1 means yes, but some extensions may report
164additional information in the integer return value.
165
92b591a4
AG
166Based on their initialization different VMs may have different capabilities.
167It is thus encouraged to use the vm ioctl to query for capabilities (available
168with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
414fa985 169
9c1b96e3
AK
1704.5 KVM_GET_VCPU_MMAP_SIZE
171
172Capability: basic
173Architectures: all
174Type: system ioctl
175Parameters: none
176Returns: size of vcpu mmap area, in bytes
177
178The KVM_RUN ioctl (cf.) communicates with userspace via a shared
179memory region. This ioctl returns the size of that region. See the
180KVM_RUN documentation for details.
181
414fa985 182
9c1b96e3
AK
1834.6 KVM_SET_MEMORY_REGION
184
185Capability: basic
186Architectures: all
187Type: vm ioctl
188Parameters: struct kvm_memory_region (in)
189Returns: 0 on success, -1 on error
190
b74a07be 191This ioctl is obsolete and has been removed.
9c1b96e3 192
414fa985 193
68ba6974 1944.7 KVM_CREATE_VCPU
9c1b96e3
AK
195
196Capability: basic
197Architectures: all
198Type: vm ioctl
199Parameters: vcpu id (apic id on x86)
200Returns: vcpu fd on success, -1 on error
201
202This API adds a vcpu to a virtual machine. The vcpu id is a small integer
8c3ba334
SL
203in the range [0, max_vcpus).
204
205The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
206the KVM_CHECK_EXTENSION ioctl() at run-time.
207The maximum possible value for max_vcpus can be retrieved using the
208KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
209
76d25402
PE
210If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
211cpus max.
8c3ba334
SL
212If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
213same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 214
371fefd6
PM
215On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
216threads in one or more virtual CPU cores. (This is because the
217hardware requires all the hardware threads in a CPU core to be in the
218same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
219of vcpus per virtual core (vcore). The vcore id is obtained by
220dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
221given vcore will always be in the same physical core as each other
222(though that might be a different physical core from time to time).
223Userspace can control the threading (SMT) mode of the guest by its
224allocation of vcpu ids. For example, if userspace wants
225single-threaded guest vcpus, it should make all vcpu ids be a multiple
226of the number of vcpus per vcore.
227
5b1c1493
CO
228For virtual cpus that have been created with S390 user controlled virtual
229machines, the resulting vcpu fd can be memory mapped at page offset
230KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
231cpu's hardware control block.
232
414fa985 233
68ba6974 2344.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
235
236Capability: basic
237Architectures: x86
238Type: vm ioctl
239Parameters: struct kvm_dirty_log (in/out)
240Returns: 0 on success, -1 on error
241
242/* for KVM_GET_DIRTY_LOG */
243struct kvm_dirty_log {
244 __u32 slot;
245 __u32 padding;
246 union {
247 void __user *dirty_bitmap; /* one bit per page */
248 __u64 padding;
249 };
250};
251
252Given a memory slot, return a bitmap containing any pages dirtied
253since the last call to this ioctl. Bit 0 is the first page in the
254memory slot. Ensure the entire structure is cleared to avoid padding
255issues.
256
f481b069
PB
257If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
258the address space for which you want to return the dirty bitmap.
259They must be less than the value that KVM_CHECK_EXTENSION returns for
260the KVM_CAP_MULTI_ADDRESS_SPACE capability.
261
414fa985 262
68ba6974 2634.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
264
265Capability: basic
266Architectures: x86
267Type: vm ioctl
268Parameters: struct kvm_memory_alias (in)
269Returns: 0 (success), -1 (error)
270
a1f4d395 271This ioctl is obsolete and has been removed.
9c1b96e3 272
414fa985 273
68ba6974 2744.10 KVM_RUN
9c1b96e3
AK
275
276Capability: basic
277Architectures: all
278Type: vcpu ioctl
279Parameters: none
280Returns: 0 on success, -1 on error
281Errors:
282 EINTR: an unmasked signal is pending
283
284This ioctl is used to run a guest virtual cpu. While there are no
285explicit parameters, there is an implicit parameter block that can be
286obtained by mmap()ing the vcpu fd at offset 0, with the size given by
287KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
288kvm_run' (see below).
289
414fa985 290
68ba6974 2914.11 KVM_GET_REGS
9c1b96e3
AK
292
293Capability: basic
379e04c7 294Architectures: all except ARM, arm64
9c1b96e3
AK
295Type: vcpu ioctl
296Parameters: struct kvm_regs (out)
297Returns: 0 on success, -1 on error
298
299Reads the general purpose registers from the vcpu.
300
301/* x86 */
302struct kvm_regs {
303 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
304 __u64 rax, rbx, rcx, rdx;
305 __u64 rsi, rdi, rsp, rbp;
306 __u64 r8, r9, r10, r11;
307 __u64 r12, r13, r14, r15;
308 __u64 rip, rflags;
309};
310
c2d2c21b
JH
311/* mips */
312struct kvm_regs {
313 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
314 __u64 gpr[32];
315 __u64 hi;
316 __u64 lo;
317 __u64 pc;
318};
319
414fa985 320
68ba6974 3214.12 KVM_SET_REGS
9c1b96e3
AK
322
323Capability: basic
379e04c7 324Architectures: all except ARM, arm64
9c1b96e3
AK
325Type: vcpu ioctl
326Parameters: struct kvm_regs (in)
327Returns: 0 on success, -1 on error
328
329Writes the general purpose registers into the vcpu.
330
331See KVM_GET_REGS for the data structure.
332
414fa985 333
68ba6974 3344.13 KVM_GET_SREGS
9c1b96e3
AK
335
336Capability: basic
5ce941ee 337Architectures: x86, ppc
9c1b96e3
AK
338Type: vcpu ioctl
339Parameters: struct kvm_sregs (out)
340Returns: 0 on success, -1 on error
341
342Reads special registers from the vcpu.
343
344/* x86 */
345struct kvm_sregs {
346 struct kvm_segment cs, ds, es, fs, gs, ss;
347 struct kvm_segment tr, ldt;
348 struct kvm_dtable gdt, idt;
349 __u64 cr0, cr2, cr3, cr4, cr8;
350 __u64 efer;
351 __u64 apic_base;
352 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
353};
354
68e2ffed 355/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 356
9c1b96e3
AK
357interrupt_bitmap is a bitmap of pending external interrupts. At most
358one bit may be set. This interrupt has been acknowledged by the APIC
359but not yet injected into the cpu core.
360
414fa985 361
68ba6974 3624.14 KVM_SET_SREGS
9c1b96e3
AK
363
364Capability: basic
5ce941ee 365Architectures: x86, ppc
9c1b96e3
AK
366Type: vcpu ioctl
367Parameters: struct kvm_sregs (in)
368Returns: 0 on success, -1 on error
369
370Writes special registers into the vcpu. See KVM_GET_SREGS for the
371data structures.
372
414fa985 373
68ba6974 3744.15 KVM_TRANSLATE
9c1b96e3
AK
375
376Capability: basic
377Architectures: x86
378Type: vcpu ioctl
379Parameters: struct kvm_translation (in/out)
380Returns: 0 on success, -1 on error
381
382Translates a virtual address according to the vcpu's current address
383translation mode.
384
385struct kvm_translation {
386 /* in */
387 __u64 linear_address;
388
389 /* out */
390 __u64 physical_address;
391 __u8 valid;
392 __u8 writeable;
393 __u8 usermode;
394 __u8 pad[5];
395};
396
414fa985 397
68ba6974 3984.16 KVM_INTERRUPT
9c1b96e3
AK
399
400Capability: basic
c2d2c21b 401Architectures: x86, ppc, mips
9c1b96e3
AK
402Type: vcpu ioctl
403Parameters: struct kvm_interrupt (in)
404Returns: 0 on success, -1 on error
405
406Queues a hardware interrupt vector to be injected. This is only
6f7a2bd4 407useful if in-kernel local APIC or equivalent is not used.
9c1b96e3
AK
408
409/* for KVM_INTERRUPT */
410struct kvm_interrupt {
411 /* in */
412 __u32 irq;
413};
414
6f7a2bd4
AG
415X86:
416
9c1b96e3
AK
417Note 'irq' is an interrupt vector, not an interrupt pin or line.
418
6f7a2bd4
AG
419PPC:
420
421Queues an external interrupt to be injected. This ioctl is overleaded
422with 3 different irq values:
423
424a) KVM_INTERRUPT_SET
425
426 This injects an edge type external interrupt into the guest once it's ready
427 to receive interrupts. When injected, the interrupt is done.
428
429b) KVM_INTERRUPT_UNSET
430
431 This unsets any pending interrupt.
432
433 Only available with KVM_CAP_PPC_UNSET_IRQ.
434
435c) KVM_INTERRUPT_SET_LEVEL
436
437 This injects a level type external interrupt into the guest context. The
438 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
439 is triggered.
440
441 Only available with KVM_CAP_PPC_IRQ_LEVEL.
442
443Note that any value for 'irq' other than the ones stated above is invalid
444and incurs unexpected behavior.
445
c2d2c21b
JH
446MIPS:
447
448Queues an external interrupt to be injected into the virtual CPU. A negative
449interrupt number dequeues the interrupt.
450
414fa985 451
68ba6974 4524.17 KVM_DEBUG_GUEST
9c1b96e3
AK
453
454Capability: basic
455Architectures: none
456Type: vcpu ioctl
457Parameters: none)
458Returns: -1 on error
459
460Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
461
414fa985 462
68ba6974 4634.18 KVM_GET_MSRS
9c1b96e3
AK
464
465Capability: basic
466Architectures: x86
467Type: vcpu ioctl
468Parameters: struct kvm_msrs (in/out)
469Returns: 0 on success, -1 on error
470
471Reads model-specific registers from the vcpu. Supported msr indices can
472be obtained using KVM_GET_MSR_INDEX_LIST.
473
474struct kvm_msrs {
475 __u32 nmsrs; /* number of msrs in entries */
476 __u32 pad;
477
478 struct kvm_msr_entry entries[0];
479};
480
481struct kvm_msr_entry {
482 __u32 index;
483 __u32 reserved;
484 __u64 data;
485};
486
487Application code should set the 'nmsrs' member (which indicates the
488size of the entries array) and the 'index' member of each array entry.
489kvm will fill in the 'data' member.
490
414fa985 491
68ba6974 4924.19 KVM_SET_MSRS
9c1b96e3
AK
493
494Capability: basic
495Architectures: x86
496Type: vcpu ioctl
497Parameters: struct kvm_msrs (in)
498Returns: 0 on success, -1 on error
499
500Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
501data structures.
502
503Application code should set the 'nmsrs' member (which indicates the
504size of the entries array), and the 'index' and 'data' members of each
505array entry.
506
414fa985 507
68ba6974 5084.20 KVM_SET_CPUID
9c1b96e3
AK
509
510Capability: basic
511Architectures: x86
512Type: vcpu ioctl
513Parameters: struct kvm_cpuid (in)
514Returns: 0 on success, -1 on error
515
516Defines the vcpu responses to the cpuid instruction. Applications
517should use the KVM_SET_CPUID2 ioctl if available.
518
519
520struct kvm_cpuid_entry {
521 __u32 function;
522 __u32 eax;
523 __u32 ebx;
524 __u32 ecx;
525 __u32 edx;
526 __u32 padding;
527};
528
529/* for KVM_SET_CPUID */
530struct kvm_cpuid {
531 __u32 nent;
532 __u32 padding;
533 struct kvm_cpuid_entry entries[0];
534};
535
414fa985 536
68ba6974 5374.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
538
539Capability: basic
572e0929 540Architectures: all
9c1b96e3
AK
541Type: vcpu ioctl
542Parameters: struct kvm_signal_mask (in)
543Returns: 0 on success, -1 on error
544
545Defines which signals are blocked during execution of KVM_RUN. This
546signal mask temporarily overrides the threads signal mask. Any
547unblocked signal received (except SIGKILL and SIGSTOP, which retain
548their traditional behaviour) will cause KVM_RUN to return with -EINTR.
549
550Note the signal will only be delivered if not blocked by the original
551signal mask.
552
553/* for KVM_SET_SIGNAL_MASK */
554struct kvm_signal_mask {
555 __u32 len;
556 __u8 sigset[0];
557};
558
414fa985 559
68ba6974 5604.22 KVM_GET_FPU
9c1b96e3
AK
561
562Capability: basic
563Architectures: x86
564Type: vcpu ioctl
565Parameters: struct kvm_fpu (out)
566Returns: 0 on success, -1 on error
567
568Reads the floating point state from the vcpu.
569
570/* for KVM_GET_FPU and KVM_SET_FPU */
571struct kvm_fpu {
572 __u8 fpr[8][16];
573 __u16 fcw;
574 __u16 fsw;
575 __u8 ftwx; /* in fxsave format */
576 __u8 pad1;
577 __u16 last_opcode;
578 __u64 last_ip;
579 __u64 last_dp;
580 __u8 xmm[16][16];
581 __u32 mxcsr;
582 __u32 pad2;
583};
584
414fa985 585
68ba6974 5864.23 KVM_SET_FPU
9c1b96e3
AK
587
588Capability: basic
589Architectures: x86
590Type: vcpu ioctl
591Parameters: struct kvm_fpu (in)
592Returns: 0 on success, -1 on error
593
594Writes the floating point state to the vcpu.
595
596/* for KVM_GET_FPU and KVM_SET_FPU */
597struct kvm_fpu {
598 __u8 fpr[8][16];
599 __u16 fcw;
600 __u16 fsw;
601 __u8 ftwx; /* in fxsave format */
602 __u8 pad1;
603 __u16 last_opcode;
604 __u64 last_ip;
605 __u64 last_dp;
606 __u8 xmm[16][16];
607 __u32 mxcsr;
608 __u32 pad2;
609};
610
414fa985 611
68ba6974 6124.24 KVM_CREATE_IRQCHIP
5dadbfd6 613
84223598 614Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
c32a4272 615Architectures: x86, ARM, arm64, s390
5dadbfd6
AK
616Type: vm ioctl
617Parameters: none
618Returns: 0 on success, -1 on error
619
ac3d3735
AP
620Creates an interrupt controller model in the kernel.
621On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
622future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
623PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
624On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
625KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
626KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
627On s390, a dummy irq routing table is created.
84223598
CH
628
629Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
630before KVM_CREATE_IRQCHIP can be used.
5dadbfd6 631
414fa985 632
68ba6974 6334.25 KVM_IRQ_LINE
5dadbfd6
AK
634
635Capability: KVM_CAP_IRQCHIP
c32a4272 636Architectures: x86, arm, arm64
5dadbfd6
AK
637Type: vm ioctl
638Parameters: struct kvm_irq_level
639Returns: 0 on success, -1 on error
640
641Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
642On some architectures it is required that an interrupt controller model has
643been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
644interrupts require the level to be set to 1 and then back to 0.
645
100943c5
GS
646On real hardware, interrupt pins can be active-low or active-high. This
647does not matter for the level field of struct kvm_irq_level: 1 always
648means active (asserted), 0 means inactive (deasserted).
649
650x86 allows the operating system to program the interrupt polarity
651(active-low/active-high) for level-triggered interrupts, and KVM used
652to consider the polarity. However, due to bitrot in the handling of
653active-low interrupts, the above convention is now valid on x86 too.
654This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
655should not present interrupts to the guest as active-low unless this
656capability is present (or unless it is not using the in-kernel irqchip,
657of course).
658
659
379e04c7
MZ
660ARM/arm64 can signal an interrupt either at the CPU level, or at the
661in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
662use PPIs designated for specific cpus. The irq field is interpreted
663like this:
86ce8535
CD
664
665  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
666 field: | irq_type | vcpu_index | irq_id |
667
668The irq_type field has the following values:
669- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
670- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
671 (the vcpu_index field is ignored)
672- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
673
674(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
675
100943c5 676In both cases, level is used to assert/deassert the line.
5dadbfd6
AK
677
678struct kvm_irq_level {
679 union {
680 __u32 irq; /* GSI */
681 __s32 status; /* not used for KVM_IRQ_LEVEL */
682 };
683 __u32 level; /* 0 or 1 */
684};
685
414fa985 686
68ba6974 6874.26 KVM_GET_IRQCHIP
5dadbfd6
AK
688
689Capability: KVM_CAP_IRQCHIP
c32a4272 690Architectures: x86
5dadbfd6
AK
691Type: vm ioctl
692Parameters: struct kvm_irqchip (in/out)
693Returns: 0 on success, -1 on error
694
695Reads the state of a kernel interrupt controller created with
696KVM_CREATE_IRQCHIP into a buffer provided by the caller.
697
698struct kvm_irqchip {
699 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
700 __u32 pad;
701 union {
702 char dummy[512]; /* reserving space */
703 struct kvm_pic_state pic;
704 struct kvm_ioapic_state ioapic;
705 } chip;
706};
707
414fa985 708
68ba6974 7094.27 KVM_SET_IRQCHIP
5dadbfd6
AK
710
711Capability: KVM_CAP_IRQCHIP
c32a4272 712Architectures: x86
5dadbfd6
AK
713Type: vm ioctl
714Parameters: struct kvm_irqchip (in)
715Returns: 0 on success, -1 on error
716
717Sets the state of a kernel interrupt controller created with
718KVM_CREATE_IRQCHIP from a buffer provided by the caller.
719
720struct kvm_irqchip {
721 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
722 __u32 pad;
723 union {
724 char dummy[512]; /* reserving space */
725 struct kvm_pic_state pic;
726 struct kvm_ioapic_state ioapic;
727 } chip;
728};
729
414fa985 730
68ba6974 7314.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
732
733Capability: KVM_CAP_XEN_HVM
734Architectures: x86
735Type: vm ioctl
736Parameters: struct kvm_xen_hvm_config (in)
737Returns: 0 on success, -1 on error
738
739Sets the MSR that the Xen HVM guest uses to initialize its hypercall
740page, and provides the starting address and size of the hypercall
741blobs in userspace. When the guest writes the MSR, kvm copies one
742page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
743memory.
744
745struct kvm_xen_hvm_config {
746 __u32 flags;
747 __u32 msr;
748 __u64 blob_addr_32;
749 __u64 blob_addr_64;
750 __u8 blob_size_32;
751 __u8 blob_size_64;
752 __u8 pad2[30];
753};
754
414fa985 755
68ba6974 7564.29 KVM_GET_CLOCK
afbcf7ab
GC
757
758Capability: KVM_CAP_ADJUST_CLOCK
759Architectures: x86
760Type: vm ioctl
761Parameters: struct kvm_clock_data (out)
762Returns: 0 on success, -1 on error
763
764Gets the current timestamp of kvmclock as seen by the current guest. In
765conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
766such as migration.
767
768struct kvm_clock_data {
769 __u64 clock; /* kvmclock current value */
770 __u32 flags;
771 __u32 pad[9];
772};
773
414fa985 774
68ba6974 7754.30 KVM_SET_CLOCK
afbcf7ab
GC
776
777Capability: KVM_CAP_ADJUST_CLOCK
778Architectures: x86
779Type: vm ioctl
780Parameters: struct kvm_clock_data (in)
781Returns: 0 on success, -1 on error
782
2044892d 783Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
784In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
785such as migration.
786
787struct kvm_clock_data {
788 __u64 clock; /* kvmclock current value */
789 __u32 flags;
790 __u32 pad[9];
791};
792
414fa985 793
68ba6974 7944.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
795
796Capability: KVM_CAP_VCPU_EVENTS
48005f64 797Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
798Architectures: x86
799Type: vm ioctl
800Parameters: struct kvm_vcpu_event (out)
801Returns: 0 on success, -1 on error
802
803Gets currently pending exceptions, interrupts, and NMIs as well as related
804states of the vcpu.
805
806struct kvm_vcpu_events {
807 struct {
808 __u8 injected;
809 __u8 nr;
810 __u8 has_error_code;
811 __u8 pad;
812 __u32 error_code;
813 } exception;
814 struct {
815 __u8 injected;
816 __u8 nr;
817 __u8 soft;
48005f64 818 __u8 shadow;
3cfc3092
JK
819 } interrupt;
820 struct {
821 __u8 injected;
822 __u8 pending;
823 __u8 masked;
824 __u8 pad;
825 } nmi;
826 __u32 sipi_vector;
dab4b911 827 __u32 flags;
f077825a
PB
828 struct {
829 __u8 smm;
830 __u8 pending;
831 __u8 smm_inside_nmi;
832 __u8 latched_init;
833 } smi;
3cfc3092
JK
834};
835
f077825a
PB
836Only two fields are defined in the flags field:
837
838- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
839 interrupt.shadow contains a valid state.
48005f64 840
f077825a
PB
841- KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that
842 smi contains a valid state.
414fa985 843
68ba6974 8444.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
845
846Capability: KVM_CAP_VCPU_EVENTS
48005f64 847Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
848Architectures: x86
849Type: vm ioctl
850Parameters: struct kvm_vcpu_event (in)
851Returns: 0 on success, -1 on error
852
853Set pending exceptions, interrupts, and NMIs as well as related states of the
854vcpu.
855
856See KVM_GET_VCPU_EVENTS for the data structure.
857
dab4b911 858Fields that may be modified asynchronously by running VCPUs can be excluded
f077825a
PB
859from the update. These fields are nmi.pending, sipi_vector, smi.smm,
860smi.pending. Keep the corresponding bits in the flags field cleared to
861suppress overwriting the current in-kernel state. The bits are:
dab4b911
JK
862
863KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
864KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
f077825a 865KVM_VCPUEVENT_VALID_SMM - transfer the smi sub-struct.
dab4b911 866
48005f64
JK
867If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
868the flags field to signal that interrupt.shadow contains a valid state and
869shall be written into the VCPU.
870
f077825a
PB
871KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
872
414fa985 873
68ba6974 8744.33 KVM_GET_DEBUGREGS
a1efbe77
JK
875
876Capability: KVM_CAP_DEBUGREGS
877Architectures: x86
878Type: vm ioctl
879Parameters: struct kvm_debugregs (out)
880Returns: 0 on success, -1 on error
881
882Reads debug registers from the vcpu.
883
884struct kvm_debugregs {
885 __u64 db[4];
886 __u64 dr6;
887 __u64 dr7;
888 __u64 flags;
889 __u64 reserved[9];
890};
891
414fa985 892
68ba6974 8934.34 KVM_SET_DEBUGREGS
a1efbe77
JK
894
895Capability: KVM_CAP_DEBUGREGS
896Architectures: x86
897Type: vm ioctl
898Parameters: struct kvm_debugregs (in)
899Returns: 0 on success, -1 on error
900
901Writes debug registers into the vcpu.
902
903See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
904yet and must be cleared on entry.
905
414fa985 906
68ba6974 9074.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
908
909Capability: KVM_CAP_USER_MEM
910Architectures: all
911Type: vm ioctl
912Parameters: struct kvm_userspace_memory_region (in)
913Returns: 0 on success, -1 on error
914
915struct kvm_userspace_memory_region {
916 __u32 slot;
917 __u32 flags;
918 __u64 guest_phys_addr;
919 __u64 memory_size; /* bytes */
920 __u64 userspace_addr; /* start of the userspace allocated memory */
921};
922
923/* for kvm_memory_region::flags */
4d8b81ab
XG
924#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
925#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
926
927This ioctl allows the user to create or modify a guest physical memory
928slot. When changing an existing slot, it may be moved in the guest
929physical memory space, or its flags may be modified. It may not be
930resized. Slots may not overlap in guest physical address space.
931
f481b069
PB
932If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot"
933specifies the address space which is being modified. They must be
934less than the value that KVM_CHECK_EXTENSION returns for the
935KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces
936are unrelated; the restriction on overlapping slots only applies within
937each address space.
938
0f2d8f4d
AK
939Memory for the region is taken starting at the address denoted by the
940field userspace_addr, which must point at user addressable memory for
941the entire memory slot size. Any object may back this memory, including
942anonymous memory, ordinary files, and hugetlbfs.
943
944It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
945be identical. This allows large pages in the guest to be backed by large
946pages in the host.
947
75d61fbc
TY
948The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
949KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
950writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
951use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
952to make a new slot read-only. In this case, writes to this memory will be
953posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
954
955When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
956the memory region are automatically reflected into the guest. For example, an
957mmap() that affects the region will be made visible immediately. Another
958example is madvise(MADV_DROP).
0f2d8f4d
AK
959
960It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
961The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
962allocation and is deprecated.
3cfc3092 963
414fa985 964
68ba6974 9654.36 KVM_SET_TSS_ADDR
8a5416db
AK
966
967Capability: KVM_CAP_SET_TSS_ADDR
968Architectures: x86
969Type: vm ioctl
970Parameters: unsigned long tss_address (in)
971Returns: 0 on success, -1 on error
972
973This ioctl defines the physical address of a three-page region in the guest
974physical address space. The region must be within the first 4GB of the
975guest physical address space and must not conflict with any memory slot
976or any mmio address. The guest may malfunction if it accesses this memory
977region.
978
979This ioctl is required on Intel-based hosts. This is needed on Intel hardware
980because of a quirk in the virtualization implementation (see the internals
981documentation when it pops into existence).
982
414fa985 983
68ba6974 9844.37 KVM_ENABLE_CAP
71fbfd5f 985
d938dc55 986Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
90de4a18
NA
987Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM),
988 mips (only KVM_CAP_ENABLE_CAP), ppc, s390
d938dc55 989Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
71fbfd5f
AG
990Parameters: struct kvm_enable_cap (in)
991Returns: 0 on success; -1 on error
992
993+Not all extensions are enabled by default. Using this ioctl the application
994can enable an extension, making it available to the guest.
995
996On systems that do not support this ioctl, it always fails. On systems that
997do support it, it only works for extensions that are supported for enablement.
998
999To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
1000be used.
1001
1002struct kvm_enable_cap {
1003 /* in */
1004 __u32 cap;
1005
1006The capability that is supposed to get enabled.
1007
1008 __u32 flags;
1009
1010A bitfield indicating future enhancements. Has to be 0 for now.
1011
1012 __u64 args[4];
1013
1014Arguments for enabling a feature. If a feature needs initial values to
1015function properly, this is the place to put them.
1016
1017 __u8 pad[64];
1018};
1019
d938dc55
CH
1020The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1021for vm-wide capabilities.
414fa985 1022
68ba6974 10234.38 KVM_GET_MP_STATE
b843f065
AK
1024
1025Capability: KVM_CAP_MP_STATE
ecccf0cc 1026Architectures: x86, s390, arm, arm64
b843f065
AK
1027Type: vcpu ioctl
1028Parameters: struct kvm_mp_state (out)
1029Returns: 0 on success; -1 on error
1030
1031struct kvm_mp_state {
1032 __u32 mp_state;
1033};
1034
1035Returns the vcpu's current "multiprocessing state" (though also valid on
1036uniprocessor guests).
1037
1038Possible values are:
1039
ecccf0cc 1040 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64]
b843f065 1041 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
c32a4272 1042 which has not yet received an INIT signal [x86]
b843f065 1043 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
c32a4272 1044 now ready for a SIPI [x86]
b843f065 1045 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
c32a4272 1046 is waiting for an interrupt [x86]
b843f065 1047 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
c32a4272 1048 accessible via KVM_GET_VCPU_EVENTS) [x86]
ecccf0cc 1049 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64]
6352e4d2
DH
1050 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1051 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1052 [s390]
1053 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1054 [s390]
b843f065 1055
c32a4272 1056On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1057in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1058these architectures.
b843f065 1059
ecccf0cc
AB
1060For arm/arm64:
1061
1062The only states that are valid are KVM_MP_STATE_STOPPED and
1063KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
414fa985 1064
68ba6974 10654.39 KVM_SET_MP_STATE
b843f065
AK
1066
1067Capability: KVM_CAP_MP_STATE
ecccf0cc 1068Architectures: x86, s390, arm, arm64
b843f065
AK
1069Type: vcpu ioctl
1070Parameters: struct kvm_mp_state (in)
1071Returns: 0 on success; -1 on error
1072
1073Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1074arguments.
1075
c32a4272 1076On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1077in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1078these architectures.
b843f065 1079
ecccf0cc
AB
1080For arm/arm64:
1081
1082The only states that are valid are KVM_MP_STATE_STOPPED and
1083KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
414fa985 1084
68ba6974 10854.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1086
1087Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1088Architectures: x86
1089Type: vm ioctl
1090Parameters: unsigned long identity (in)
1091Returns: 0 on success, -1 on error
1092
1093This ioctl defines the physical address of a one-page region in the guest
1094physical address space. The region must be within the first 4GB of the
1095guest physical address space and must not conflict with any memory slot
1096or any mmio address. The guest may malfunction if it accesses this memory
1097region.
1098
1099This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1100because of a quirk in the virtualization implementation (see the internals
1101documentation when it pops into existence).
1102
414fa985 1103
68ba6974 11044.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1105
1106Capability: KVM_CAP_SET_BOOT_CPU_ID
c32a4272 1107Architectures: x86
57bc24cf
AK
1108Type: vm ioctl
1109Parameters: unsigned long vcpu_id
1110Returns: 0 on success, -1 on error
1111
1112Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1113as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1114is vcpu 0.
1115
414fa985 1116
68ba6974 11174.42 KVM_GET_XSAVE
2d5b5a66
SY
1118
1119Capability: KVM_CAP_XSAVE
1120Architectures: x86
1121Type: vcpu ioctl
1122Parameters: struct kvm_xsave (out)
1123Returns: 0 on success, -1 on error
1124
1125struct kvm_xsave {
1126 __u32 region[1024];
1127};
1128
1129This ioctl would copy current vcpu's xsave struct to the userspace.
1130
414fa985 1131
68ba6974 11324.43 KVM_SET_XSAVE
2d5b5a66
SY
1133
1134Capability: KVM_CAP_XSAVE
1135Architectures: x86
1136Type: vcpu ioctl
1137Parameters: struct kvm_xsave (in)
1138Returns: 0 on success, -1 on error
1139
1140struct kvm_xsave {
1141 __u32 region[1024];
1142};
1143
1144This ioctl would copy userspace's xsave struct to the kernel.
1145
414fa985 1146
68ba6974 11474.44 KVM_GET_XCRS
2d5b5a66
SY
1148
1149Capability: KVM_CAP_XCRS
1150Architectures: x86
1151Type: vcpu ioctl
1152Parameters: struct kvm_xcrs (out)
1153Returns: 0 on success, -1 on error
1154
1155struct kvm_xcr {
1156 __u32 xcr;
1157 __u32 reserved;
1158 __u64 value;
1159};
1160
1161struct kvm_xcrs {
1162 __u32 nr_xcrs;
1163 __u32 flags;
1164 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1165 __u64 padding[16];
1166};
1167
1168This ioctl would copy current vcpu's xcrs to the userspace.
1169
414fa985 1170
68ba6974 11714.45 KVM_SET_XCRS
2d5b5a66
SY
1172
1173Capability: KVM_CAP_XCRS
1174Architectures: x86
1175Type: vcpu ioctl
1176Parameters: struct kvm_xcrs (in)
1177Returns: 0 on success, -1 on error
1178
1179struct kvm_xcr {
1180 __u32 xcr;
1181 __u32 reserved;
1182 __u64 value;
1183};
1184
1185struct kvm_xcrs {
1186 __u32 nr_xcrs;
1187 __u32 flags;
1188 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1189 __u64 padding[16];
1190};
1191
1192This ioctl would set vcpu's xcr to the value userspace specified.
1193
414fa985 1194
68ba6974 11954.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1196
1197Capability: KVM_CAP_EXT_CPUID
1198Architectures: x86
1199Type: system ioctl
1200Parameters: struct kvm_cpuid2 (in/out)
1201Returns: 0 on success, -1 on error
1202
1203struct kvm_cpuid2 {
1204 __u32 nent;
1205 __u32 padding;
1206 struct kvm_cpuid_entry2 entries[0];
1207};
1208
9c15bb1d
BP
1209#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1210#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1211#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
d153513d
AK
1212
1213struct kvm_cpuid_entry2 {
1214 __u32 function;
1215 __u32 index;
1216 __u32 flags;
1217 __u32 eax;
1218 __u32 ebx;
1219 __u32 ecx;
1220 __u32 edx;
1221 __u32 padding[3];
1222};
1223
1224This ioctl returns x86 cpuid features which are supported by both the hardware
1225and kvm. Userspace can use the information returned by this ioctl to
1226construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1227hardware, kernel, and userspace capabilities, and with user requirements (for
1228example, the user may wish to constrain cpuid to emulate older hardware,
1229or for feature consistency across a cluster).
1230
1231Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1232with the 'nent' field indicating the number of entries in the variable-size
1233array 'entries'. If the number of entries is too low to describe the cpu
1234capabilities, an error (E2BIG) is returned. If the number is too high,
1235the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1236number is just right, the 'nent' field is adjusted to the number of valid
1237entries in the 'entries' array, which is then filled.
1238
1239The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1240with unknown or unsupported features masked out. Some features (for example,
1241x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1242emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1243
1244 function: the eax value used to obtain the entry
1245 index: the ecx value used to obtain the entry (for entries that are
1246 affected by ecx)
1247 flags: an OR of zero or more of the following:
1248 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1249 if the index field is valid
1250 KVM_CPUID_FLAG_STATEFUL_FUNC:
1251 if cpuid for this function returns different values for successive
1252 invocations; there will be several entries with the same function,
1253 all with this flag set
1254 KVM_CPUID_FLAG_STATE_READ_NEXT:
1255 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1256 the first entry to be read by a cpu
1257 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1258 this function/index combination
1259
4d25a066
JK
1260The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1261as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1262support. Instead it is reported via
1263
1264 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1265
1266if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1267feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1268
414fa985 1269
68ba6974 12704.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1271
1272Capability: KVM_CAP_PPC_GET_PVINFO
1273Architectures: ppc
1274Type: vm ioctl
1275Parameters: struct kvm_ppc_pvinfo (out)
1276Returns: 0 on success, !0 on error
1277
1278struct kvm_ppc_pvinfo {
1279 __u32 flags;
1280 __u32 hcall[4];
1281 __u8 pad[108];
1282};
1283
1284This ioctl fetches PV specific information that need to be passed to the guest
1285using the device tree or other means from vm context.
1286
9202e076 1287The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1288
1289If any additional field gets added to this structure later on, a bit for that
1290additional piece of information will be set in the flags bitmap.
1291
9202e076
LYB
1292The flags bitmap is defined as:
1293
1294 /* the host supports the ePAPR idle hcall
1295 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1296
e80a4a94 12974.48 KVM_ASSIGN_PCI_DEVICE (deprecated)
49f48172 1298
7f05db6a 1299Capability: none
c32a4272 1300Architectures: x86
49f48172
JK
1301Type: vm ioctl
1302Parameters: struct kvm_assigned_pci_dev (in)
1303Returns: 0 on success, -1 on error
1304
1305Assigns a host PCI device to the VM.
1306
1307struct kvm_assigned_pci_dev {
1308 __u32 assigned_dev_id;
1309 __u32 busnr;
1310 __u32 devfn;
1311 __u32 flags;
1312 __u32 segnr;
1313 union {
1314 __u32 reserved[11];
1315 };
1316};
1317
1318The PCI device is specified by the triple segnr, busnr, and devfn.
1319Identification in succeeding service requests is done via assigned_dev_id. The
1320following flags are specified:
1321
1322/* Depends on KVM_CAP_IOMMU */
1323#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1324/* The following two depend on KVM_CAP_PCI_2_3 */
1325#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1326#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1327
1328If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1329via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1330assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1331guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1332
42387373
AW
1333The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1334isolation of the device. Usages not specifying this flag are deprecated.
1335
3d27e23b
AW
1336Only PCI header type 0 devices with PCI BAR resources are supported by
1337device assignment. The user requesting this ioctl must have read/write
1338access to the PCI sysfs resource files associated with the device.
1339
7f05db6a
MT
1340Errors:
1341 ENOTTY: kernel does not support this ioctl
1342
1343 Other error conditions may be defined by individual device types or
1344 have their standard meanings.
1345
414fa985 1346
e80a4a94 13474.49 KVM_DEASSIGN_PCI_DEVICE (deprecated)
49f48172 1348
7f05db6a 1349Capability: none
c32a4272 1350Architectures: x86
49f48172
JK
1351Type: vm ioctl
1352Parameters: struct kvm_assigned_pci_dev (in)
1353Returns: 0 on success, -1 on error
1354
1355Ends PCI device assignment, releasing all associated resources.
1356
7f05db6a 1357See KVM_ASSIGN_PCI_DEVICE for the data structure. Only assigned_dev_id is
49f48172
JK
1358used in kvm_assigned_pci_dev to identify the device.
1359
7f05db6a
MT
1360Errors:
1361 ENOTTY: kernel does not support this ioctl
1362
1363 Other error conditions may be defined by individual device types or
1364 have their standard meanings.
414fa985 1365
e80a4a94 13664.50 KVM_ASSIGN_DEV_IRQ (deprecated)
49f48172
JK
1367
1368Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1369Architectures: x86
49f48172
JK
1370Type: vm ioctl
1371Parameters: struct kvm_assigned_irq (in)
1372Returns: 0 on success, -1 on error
1373
1374Assigns an IRQ to a passed-through device.
1375
1376struct kvm_assigned_irq {
1377 __u32 assigned_dev_id;
91e3d71d 1378 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1379 __u32 guest_irq;
1380 __u32 flags;
1381 union {
49f48172
JK
1382 __u32 reserved[12];
1383 };
1384};
1385
1386The following flags are defined:
1387
1388#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1389#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1390#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1391
1392#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1393#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1394#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1395
1396It is not valid to specify multiple types per host or guest IRQ. However, the
1397IRQ type of host and guest can differ or can even be null.
1398
7f05db6a
MT
1399Errors:
1400 ENOTTY: kernel does not support this ioctl
1401
1402 Other error conditions may be defined by individual device types or
1403 have their standard meanings.
1404
414fa985 1405
e80a4a94 14064.51 KVM_DEASSIGN_DEV_IRQ (deprecated)
49f48172
JK
1407
1408Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1409Architectures: x86
49f48172
JK
1410Type: vm ioctl
1411Parameters: struct kvm_assigned_irq (in)
1412Returns: 0 on success, -1 on error
1413
1414Ends an IRQ assignment to a passed-through device.
1415
1416See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1417by assigned_dev_id, flags must correspond to the IRQ type specified on
1418KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1419
414fa985 1420
68ba6974 14214.52 KVM_SET_GSI_ROUTING
49f48172
JK
1422
1423Capability: KVM_CAP_IRQ_ROUTING
c32a4272 1424Architectures: x86 s390
49f48172
JK
1425Type: vm ioctl
1426Parameters: struct kvm_irq_routing (in)
1427Returns: 0 on success, -1 on error
1428
1429Sets the GSI routing table entries, overwriting any previously set entries.
1430
1431struct kvm_irq_routing {
1432 __u32 nr;
1433 __u32 flags;
1434 struct kvm_irq_routing_entry entries[0];
1435};
1436
1437No flags are specified so far, the corresponding field must be set to zero.
1438
1439struct kvm_irq_routing_entry {
1440 __u32 gsi;
1441 __u32 type;
1442 __u32 flags;
1443 __u32 pad;
1444 union {
1445 struct kvm_irq_routing_irqchip irqchip;
1446 struct kvm_irq_routing_msi msi;
84223598 1447 struct kvm_irq_routing_s390_adapter adapter;
49f48172
JK
1448 __u32 pad[8];
1449 } u;
1450};
1451
1452/* gsi routing entry types */
1453#define KVM_IRQ_ROUTING_IRQCHIP 1
1454#define KVM_IRQ_ROUTING_MSI 2
84223598 1455#define KVM_IRQ_ROUTING_S390_ADAPTER 3
49f48172
JK
1456
1457No flags are specified so far, the corresponding field must be set to zero.
1458
1459struct kvm_irq_routing_irqchip {
1460 __u32 irqchip;
1461 __u32 pin;
1462};
1463
1464struct kvm_irq_routing_msi {
1465 __u32 address_lo;
1466 __u32 address_hi;
1467 __u32 data;
1468 __u32 pad;
1469};
1470
84223598
CH
1471struct kvm_irq_routing_s390_adapter {
1472 __u64 ind_addr;
1473 __u64 summary_addr;
1474 __u64 ind_offset;
1475 __u32 summary_offset;
1476 __u32 adapter_id;
1477};
1478
414fa985 1479
e80a4a94 14804.53 KVM_ASSIGN_SET_MSIX_NR (deprecated)
49f48172 1481
7f05db6a 1482Capability: none
c32a4272 1483Architectures: x86
49f48172
JK
1484Type: vm ioctl
1485Parameters: struct kvm_assigned_msix_nr (in)
1486Returns: 0 on success, -1 on error
1487
58f0964e
JK
1488Set the number of MSI-X interrupts for an assigned device. The number is
1489reset again by terminating the MSI-X assignment of the device via
1490KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1491point will fail.
49f48172
JK
1492
1493struct kvm_assigned_msix_nr {
1494 __u32 assigned_dev_id;
1495 __u16 entry_nr;
1496 __u16 padding;
1497};
1498
1499#define KVM_MAX_MSIX_PER_DEV 256
1500
414fa985 1501
e80a4a94 15024.54 KVM_ASSIGN_SET_MSIX_ENTRY (deprecated)
49f48172 1503
7f05db6a 1504Capability: none
c32a4272 1505Architectures: x86
49f48172
JK
1506Type: vm ioctl
1507Parameters: struct kvm_assigned_msix_entry (in)
1508Returns: 0 on success, -1 on error
1509
1510Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1511the GSI vector to zero means disabling the interrupt.
1512
1513struct kvm_assigned_msix_entry {
1514 __u32 assigned_dev_id;
1515 __u32 gsi;
1516 __u16 entry; /* The index of entry in the MSI-X table */
1517 __u16 padding[3];
1518};
1519
7f05db6a
MT
1520Errors:
1521 ENOTTY: kernel does not support this ioctl
1522
1523 Other error conditions may be defined by individual device types or
1524 have their standard meanings.
1525
414fa985
JK
1526
15274.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1528
1529Capability: KVM_CAP_TSC_CONTROL
1530Architectures: x86
1531Type: vcpu ioctl
1532Parameters: virtual tsc_khz
1533Returns: 0 on success, -1 on error
1534
1535Specifies the tsc frequency for the virtual machine. The unit of the
1536frequency is KHz.
1537
414fa985
JK
1538
15394.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1540
1541Capability: KVM_CAP_GET_TSC_KHZ
1542Architectures: x86
1543Type: vcpu ioctl
1544Parameters: none
1545Returns: virtual tsc-khz on success, negative value on error
1546
1547Returns the tsc frequency of the guest. The unit of the return value is
1548KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1549error.
1550
414fa985
JK
1551
15524.57 KVM_GET_LAPIC
e7677933
AK
1553
1554Capability: KVM_CAP_IRQCHIP
1555Architectures: x86
1556Type: vcpu ioctl
1557Parameters: struct kvm_lapic_state (out)
1558Returns: 0 on success, -1 on error
1559
1560#define KVM_APIC_REG_SIZE 0x400
1561struct kvm_lapic_state {
1562 char regs[KVM_APIC_REG_SIZE];
1563};
1564
1565Reads the Local APIC registers and copies them into the input argument. The
1566data format and layout are the same as documented in the architecture manual.
1567
414fa985
JK
1568
15694.58 KVM_SET_LAPIC
e7677933
AK
1570
1571Capability: KVM_CAP_IRQCHIP
1572Architectures: x86
1573Type: vcpu ioctl
1574Parameters: struct kvm_lapic_state (in)
1575Returns: 0 on success, -1 on error
1576
1577#define KVM_APIC_REG_SIZE 0x400
1578struct kvm_lapic_state {
1579 char regs[KVM_APIC_REG_SIZE];
1580};
1581
df5cbb27 1582Copies the input argument into the Local APIC registers. The data format
e7677933
AK
1583and layout are the same as documented in the architecture manual.
1584
414fa985
JK
1585
15864.59 KVM_IOEVENTFD
55399a02
SL
1587
1588Capability: KVM_CAP_IOEVENTFD
1589Architectures: all
1590Type: vm ioctl
1591Parameters: struct kvm_ioeventfd (in)
1592Returns: 0 on success, !0 on error
1593
1594This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1595within the guest. A guest write in the registered address will signal the
1596provided event instead of triggering an exit.
1597
1598struct kvm_ioeventfd {
1599 __u64 datamatch;
1600 __u64 addr; /* legal pio/mmio address */
1601 __u32 len; /* 1, 2, 4, or 8 bytes */
1602 __s32 fd;
1603 __u32 flags;
1604 __u8 pad[36];
1605};
1606
2b83451b
CH
1607For the special case of virtio-ccw devices on s390, the ioevent is matched
1608to a subchannel/virtqueue tuple instead.
1609
55399a02
SL
1610The following flags are defined:
1611
1612#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1613#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1614#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
2b83451b
CH
1615#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1616 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1617
1618If datamatch flag is set, the event will be signaled only if the written value
1619to the registered address is equal to datamatch in struct kvm_ioeventfd.
1620
2b83451b
CH
1621For virtio-ccw devices, addr contains the subchannel id and datamatch the
1622virtqueue index.
1623
414fa985
JK
1624
16254.60 KVM_DIRTY_TLB
dc83b8bc
SW
1626
1627Capability: KVM_CAP_SW_TLB
1628Architectures: ppc
1629Type: vcpu ioctl
1630Parameters: struct kvm_dirty_tlb (in)
1631Returns: 0 on success, -1 on error
1632
1633struct kvm_dirty_tlb {
1634 __u64 bitmap;
1635 __u32 num_dirty;
1636};
1637
1638This must be called whenever userspace has changed an entry in the shared
1639TLB, prior to calling KVM_RUN on the associated vcpu.
1640
1641The "bitmap" field is the userspace address of an array. This array
1642consists of a number of bits, equal to the total number of TLB entries as
1643determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1644nearest multiple of 64.
1645
1646Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1647array.
1648
1649The array is little-endian: the bit 0 is the least significant bit of the
1650first byte, bit 8 is the least significant bit of the second byte, etc.
1651This avoids any complications with differing word sizes.
1652
1653The "num_dirty" field is a performance hint for KVM to determine whether it
1654should skip processing the bitmap and just invalidate everything. It must
1655be set to the number of set bits in the bitmap.
1656
414fa985 1657
e80a4a94 16584.61 KVM_ASSIGN_SET_INTX_MASK (deprecated)
07700a94
JK
1659
1660Capability: KVM_CAP_PCI_2_3
1661Architectures: x86
1662Type: vm ioctl
1663Parameters: struct kvm_assigned_pci_dev (in)
1664Returns: 0 on success, -1 on error
1665
1666Allows userspace to mask PCI INTx interrupts from the assigned device. The
1667kernel will not deliver INTx interrupts to the guest between setting and
1668clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1669and emulation of PCI 2.3 INTx disable command register behavior.
1670
1671This may be used for both PCI 2.3 devices supporting INTx disable natively and
1672older devices lacking this support. Userspace is responsible for emulating the
1673read value of the INTx disable bit in the guest visible PCI command register.
1674When modifying the INTx disable state, userspace should precede updating the
1675physical device command register by calling this ioctl to inform the kernel of
1676the new intended INTx mask state.
1677
1678Note that the kernel uses the device INTx disable bit to internally manage the
1679device interrupt state for PCI 2.3 devices. Reads of this register may
1680therefore not match the expected value. Writes should always use the guest
1681intended INTx disable value rather than attempting to read-copy-update the
1682current physical device state. Races between user and kernel updates to the
1683INTx disable bit are handled lazily in the kernel. It's possible the device
1684may generate unintended interrupts, but they will not be injected into the
1685guest.
1686
1687See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1688by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1689evaluated.
1690
414fa985 1691
54738c09
DG
16924.62 KVM_CREATE_SPAPR_TCE
1693
1694Capability: KVM_CAP_SPAPR_TCE
1695Architectures: powerpc
1696Type: vm ioctl
1697Parameters: struct kvm_create_spapr_tce (in)
1698Returns: file descriptor for manipulating the created TCE table
1699
1700This creates a virtual TCE (translation control entry) table, which
1701is an IOMMU for PAPR-style virtual I/O. It is used to translate
1702logical addresses used in virtual I/O into guest physical addresses,
1703and provides a scatter/gather capability for PAPR virtual I/O.
1704
1705/* for KVM_CAP_SPAPR_TCE */
1706struct kvm_create_spapr_tce {
1707 __u64 liobn;
1708 __u32 window_size;
1709};
1710
1711The liobn field gives the logical IO bus number for which to create a
1712TCE table. The window_size field specifies the size of the DMA window
1713which this TCE table will translate - the table will contain one 64
1714bit TCE entry for every 4kiB of the DMA window.
1715
1716When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1717table has been created using this ioctl(), the kernel will handle it
1718in real mode, updating the TCE table. H_PUT_TCE calls for other
1719liobns will cause a vm exit and must be handled by userspace.
1720
1721The return value is a file descriptor which can be passed to mmap(2)
1722to map the created TCE table into userspace. This lets userspace read
1723the entries written by kernel-handled H_PUT_TCE calls, and also lets
1724userspace update the TCE table directly which is useful in some
1725circumstances.
1726
414fa985 1727
aa04b4cc
PM
17284.63 KVM_ALLOCATE_RMA
1729
1730Capability: KVM_CAP_PPC_RMA
1731Architectures: powerpc
1732Type: vm ioctl
1733Parameters: struct kvm_allocate_rma (out)
1734Returns: file descriptor for mapping the allocated RMA
1735
1736This allocates a Real Mode Area (RMA) from the pool allocated at boot
1737time by the kernel. An RMA is a physically-contiguous, aligned region
1738of memory used on older POWER processors to provide the memory which
1739will be accessed by real-mode (MMU off) accesses in a KVM guest.
1740POWER processors support a set of sizes for the RMA that usually
1741includes 64MB, 128MB, 256MB and some larger powers of two.
1742
1743/* for KVM_ALLOCATE_RMA */
1744struct kvm_allocate_rma {
1745 __u64 rma_size;
1746};
1747
1748The return value is a file descriptor which can be passed to mmap(2)
1749to map the allocated RMA into userspace. The mapped area can then be
1750passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1751RMA for a virtual machine. The size of the RMA in bytes (which is
1752fixed at host kernel boot time) is returned in the rma_size field of
1753the argument structure.
1754
1755The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1756is supported; 2 if the processor requires all virtual machines to have
1757an RMA, or 1 if the processor can use an RMA but doesn't require it,
1758because it supports the Virtual RMA (VRMA) facility.
1759
414fa985 1760
3f745f1e
AK
17614.64 KVM_NMI
1762
1763Capability: KVM_CAP_USER_NMI
1764Architectures: x86
1765Type: vcpu ioctl
1766Parameters: none
1767Returns: 0 on success, -1 on error
1768
1769Queues an NMI on the thread's vcpu. Note this is well defined only
1770when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1771between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1772has been called, this interface is completely emulated within the kernel.
1773
1774To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1775following algorithm:
1776
1777 - pause the vpcu
1778 - read the local APIC's state (KVM_GET_LAPIC)
1779 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1780 - if so, issue KVM_NMI
1781 - resume the vcpu
1782
1783Some guests configure the LINT1 NMI input to cause a panic, aiding in
1784debugging.
1785
414fa985 1786
e24ed81f 17874.65 KVM_S390_UCAS_MAP
27e0393f
CO
1788
1789Capability: KVM_CAP_S390_UCONTROL
1790Architectures: s390
1791Type: vcpu ioctl
1792Parameters: struct kvm_s390_ucas_mapping (in)
1793Returns: 0 in case of success
1794
1795The parameter is defined like this:
1796 struct kvm_s390_ucas_mapping {
1797 __u64 user_addr;
1798 __u64 vcpu_addr;
1799 __u64 length;
1800 };
1801
1802This ioctl maps the memory at "user_addr" with the length "length" to
1803the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 1804be aligned by 1 megabyte.
27e0393f 1805
414fa985 1806
e24ed81f 18074.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1808
1809Capability: KVM_CAP_S390_UCONTROL
1810Architectures: s390
1811Type: vcpu ioctl
1812Parameters: struct kvm_s390_ucas_mapping (in)
1813Returns: 0 in case of success
1814
1815The parameter is defined like this:
1816 struct kvm_s390_ucas_mapping {
1817 __u64 user_addr;
1818 __u64 vcpu_addr;
1819 __u64 length;
1820 };
1821
1822This ioctl unmaps the memory in the vcpu's address space starting at
1823"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 1824All parameters need to be aligned by 1 megabyte.
27e0393f 1825
414fa985 1826
e24ed81f 18274.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1828
1829Capability: KVM_CAP_S390_UCONTROL
1830Architectures: s390
1831Type: vcpu ioctl
1832Parameters: vcpu absolute address (in)
1833Returns: 0 in case of success
1834
1835This call creates a page table entry on the virtual cpu's address space
1836(for user controlled virtual machines) or the virtual machine's address
1837space (for regular virtual machines). This only works for minor faults,
1838thus it's recommended to access subject memory page via the user page
1839table upfront. This is useful to handle validity intercepts for user
1840controlled virtual machines to fault in the virtual cpu's lowcore pages
1841prior to calling the KVM_RUN ioctl.
1842
414fa985 1843
e24ed81f
AG
18444.68 KVM_SET_ONE_REG
1845
1846Capability: KVM_CAP_ONE_REG
1847Architectures: all
1848Type: vcpu ioctl
1849Parameters: struct kvm_one_reg (in)
1850Returns: 0 on success, negative value on failure
1851
1852struct kvm_one_reg {
1853 __u64 id;
1854 __u64 addr;
1855};
1856
1857Using this ioctl, a single vcpu register can be set to a specific value
1858defined by user space with the passed in struct kvm_one_reg, where id
1859refers to the register identifier as described below and addr is a pointer
1860to a variable with the respective size. There can be architecture agnostic
1861and architecture specific registers. Each have their own range of operation
1862and their own constants and width. To keep track of the implemented
1863registers, find a list below:
1864
bf5590f3
JH
1865 Arch | Register | Width (bits)
1866 | |
1867 PPC | KVM_REG_PPC_HIOR | 64
1868 PPC | KVM_REG_PPC_IAC1 | 64
1869 PPC | KVM_REG_PPC_IAC2 | 64
1870 PPC | KVM_REG_PPC_IAC3 | 64
1871 PPC | KVM_REG_PPC_IAC4 | 64
1872 PPC | KVM_REG_PPC_DAC1 | 64
1873 PPC | KVM_REG_PPC_DAC2 | 64
1874 PPC | KVM_REG_PPC_DABR | 64
1875 PPC | KVM_REG_PPC_DSCR | 64
1876 PPC | KVM_REG_PPC_PURR | 64
1877 PPC | KVM_REG_PPC_SPURR | 64
1878 PPC | KVM_REG_PPC_DAR | 64
1879 PPC | KVM_REG_PPC_DSISR | 32
1880 PPC | KVM_REG_PPC_AMR | 64
1881 PPC | KVM_REG_PPC_UAMOR | 64
1882 PPC | KVM_REG_PPC_MMCR0 | 64
1883 PPC | KVM_REG_PPC_MMCR1 | 64
1884 PPC | KVM_REG_PPC_MMCRA | 64
1885 PPC | KVM_REG_PPC_MMCR2 | 64
1886 PPC | KVM_REG_PPC_MMCRS | 64
1887 PPC | KVM_REG_PPC_SIAR | 64
1888 PPC | KVM_REG_PPC_SDAR | 64
1889 PPC | KVM_REG_PPC_SIER | 64
1890 PPC | KVM_REG_PPC_PMC1 | 32
1891 PPC | KVM_REG_PPC_PMC2 | 32
1892 PPC | KVM_REG_PPC_PMC3 | 32
1893 PPC | KVM_REG_PPC_PMC4 | 32
1894 PPC | KVM_REG_PPC_PMC5 | 32
1895 PPC | KVM_REG_PPC_PMC6 | 32
1896 PPC | KVM_REG_PPC_PMC7 | 32
1897 PPC | KVM_REG_PPC_PMC8 | 32
1898 PPC | KVM_REG_PPC_FPR0 | 64
a8bd19ef 1899 ...
bf5590f3
JH
1900 PPC | KVM_REG_PPC_FPR31 | 64
1901 PPC | KVM_REG_PPC_VR0 | 128
a8bd19ef 1902 ...
bf5590f3
JH
1903 PPC | KVM_REG_PPC_VR31 | 128
1904 PPC | KVM_REG_PPC_VSR0 | 128
a8bd19ef 1905 ...
bf5590f3
JH
1906 PPC | KVM_REG_PPC_VSR31 | 128
1907 PPC | KVM_REG_PPC_FPSCR | 64
1908 PPC | KVM_REG_PPC_VSCR | 32
1909 PPC | KVM_REG_PPC_VPA_ADDR | 64
1910 PPC | KVM_REG_PPC_VPA_SLB | 128
1911 PPC | KVM_REG_PPC_VPA_DTL | 128
1912 PPC | KVM_REG_PPC_EPCR | 32
1913 PPC | KVM_REG_PPC_EPR | 32
1914 PPC | KVM_REG_PPC_TCR | 32
1915 PPC | KVM_REG_PPC_TSR | 32
1916 PPC | KVM_REG_PPC_OR_TSR | 32
1917 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1918 PPC | KVM_REG_PPC_MAS0 | 32
1919 PPC | KVM_REG_PPC_MAS1 | 32
1920 PPC | KVM_REG_PPC_MAS2 | 64
1921 PPC | KVM_REG_PPC_MAS7_3 | 64
1922 PPC | KVM_REG_PPC_MAS4 | 32
1923 PPC | KVM_REG_PPC_MAS6 | 32
1924 PPC | KVM_REG_PPC_MMUCFG | 32
1925 PPC | KVM_REG_PPC_TLB0CFG | 32
1926 PPC | KVM_REG_PPC_TLB1CFG | 32
1927 PPC | KVM_REG_PPC_TLB2CFG | 32
1928 PPC | KVM_REG_PPC_TLB3CFG | 32
1929 PPC | KVM_REG_PPC_TLB0PS | 32
1930 PPC | KVM_REG_PPC_TLB1PS | 32
1931 PPC | KVM_REG_PPC_TLB2PS | 32
1932 PPC | KVM_REG_PPC_TLB3PS | 32
1933 PPC | KVM_REG_PPC_EPTCFG | 32
1934 PPC | KVM_REG_PPC_ICP_STATE | 64
1935 PPC | KVM_REG_PPC_TB_OFFSET | 64
1936 PPC | KVM_REG_PPC_SPMC1 | 32
1937 PPC | KVM_REG_PPC_SPMC2 | 32
1938 PPC | KVM_REG_PPC_IAMR | 64
1939 PPC | KVM_REG_PPC_TFHAR | 64
1940 PPC | KVM_REG_PPC_TFIAR | 64
1941 PPC | KVM_REG_PPC_TEXASR | 64
1942 PPC | KVM_REG_PPC_FSCR | 64
1943 PPC | KVM_REG_PPC_PSPB | 32
1944 PPC | KVM_REG_PPC_EBBHR | 64
1945 PPC | KVM_REG_PPC_EBBRR | 64
1946 PPC | KVM_REG_PPC_BESCR | 64
1947 PPC | KVM_REG_PPC_TAR | 64
1948 PPC | KVM_REG_PPC_DPDES | 64
1949 PPC | KVM_REG_PPC_DAWR | 64
1950 PPC | KVM_REG_PPC_DAWRX | 64
1951 PPC | KVM_REG_PPC_CIABR | 64
1952 PPC | KVM_REG_PPC_IC | 64
1953 PPC | KVM_REG_PPC_VTB | 64
1954 PPC | KVM_REG_PPC_CSIGR | 64
1955 PPC | KVM_REG_PPC_TACR | 64
1956 PPC | KVM_REG_PPC_TCSCR | 64
1957 PPC | KVM_REG_PPC_PID | 64
1958 PPC | KVM_REG_PPC_ACOP | 64
1959 PPC | KVM_REG_PPC_VRSAVE | 32
cc568ead
PB
1960 PPC | KVM_REG_PPC_LPCR | 32
1961 PPC | KVM_REG_PPC_LPCR_64 | 64
bf5590f3
JH
1962 PPC | KVM_REG_PPC_PPR | 64
1963 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
1964 PPC | KVM_REG_PPC_DABRX | 32
1965 PPC | KVM_REG_PPC_WORT | 64
bc8a4e5c
BB
1966 PPC | KVM_REG_PPC_SPRG9 | 64
1967 PPC | KVM_REG_PPC_DBSR | 32
bf5590f3 1968 PPC | KVM_REG_PPC_TM_GPR0 | 64
3b783474 1969 ...
bf5590f3
JH
1970 PPC | KVM_REG_PPC_TM_GPR31 | 64
1971 PPC | KVM_REG_PPC_TM_VSR0 | 128
3b783474 1972 ...
bf5590f3
JH
1973 PPC | KVM_REG_PPC_TM_VSR63 | 128
1974 PPC | KVM_REG_PPC_TM_CR | 64
1975 PPC | KVM_REG_PPC_TM_LR | 64
1976 PPC | KVM_REG_PPC_TM_CTR | 64
1977 PPC | KVM_REG_PPC_TM_FPSCR | 64
1978 PPC | KVM_REG_PPC_TM_AMR | 64
1979 PPC | KVM_REG_PPC_TM_PPR | 64
1980 PPC | KVM_REG_PPC_TM_VRSAVE | 64
1981 PPC | KVM_REG_PPC_TM_VSCR | 32
1982 PPC | KVM_REG_PPC_TM_DSCR | 64
1983 PPC | KVM_REG_PPC_TM_TAR | 64
c2d2c21b
JH
1984 | |
1985 MIPS | KVM_REG_MIPS_R0 | 64
1986 ...
1987 MIPS | KVM_REG_MIPS_R31 | 64
1988 MIPS | KVM_REG_MIPS_HI | 64
1989 MIPS | KVM_REG_MIPS_LO | 64
1990 MIPS | KVM_REG_MIPS_PC | 64
1991 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
1992 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
1993 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
1994 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
1995 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
1996 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
1997 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
1998 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
1999 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
2000 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
2001 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
2002 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
2003 MIPS | KVM_REG_MIPS_CP0_EPC | 64
1068eaaf 2004 MIPS | KVM_REG_MIPS_CP0_PRID | 32
c2d2c21b
JH
2005 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
2006 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
2007 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
2008 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
c771607a
JH
2009 MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32
2010 MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32
c2d2c21b
JH
2011 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
2012 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
2013 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
2014 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
2015 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
379245cd
JH
2016 MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32
2017 MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64
ab86bd60 2018 MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128
379245cd
JH
2019 MIPS | KVM_REG_MIPS_FCR_IR | 32
2020 MIPS | KVM_REG_MIPS_FCR_CSR | 32
ab86bd60
JH
2021 MIPS | KVM_REG_MIPS_MSA_IR | 32
2022 MIPS | KVM_REG_MIPS_MSA_CSR | 32
414fa985 2023
749cf76c
CD
2024ARM registers are mapped using the lower 32 bits. The upper 16 of that
2025is the register group type, or coprocessor number:
2026
2027ARM core registers have the following id bit patterns:
aa404ddf 2028 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 2029
1138245c 2030ARM 32-bit CP15 registers have the following id bit patterns:
aa404ddf 2031 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c
CD
2032
2033ARM 64-bit CP15 registers have the following id bit patterns:
aa404ddf 2034 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 2035
c27581ed 2036ARM CCSIDR registers are demultiplexed by CSSELR value:
aa404ddf 2037 0x4020 0000 0011 00 <csselr:8>
749cf76c 2038
4fe21e4c 2039ARM 32-bit VFP control registers have the following id bit patterns:
aa404ddf 2040 0x4020 0000 0012 1 <regno:12>
4fe21e4c
RR
2041
2042ARM 64-bit FP registers have the following id bit patterns:
aa404ddf 2043 0x4030 0000 0012 0 <regno:12>
4fe21e4c 2044
379e04c7
MZ
2045
2046arm64 registers are mapped using the lower 32 bits. The upper 16 of
2047that is the register group type, or coprocessor number:
2048
2049arm64 core/FP-SIMD registers have the following id bit patterns. Note
2050that the size of the access is variable, as the kvm_regs structure
2051contains elements ranging from 32 to 128 bits. The index is a 32bit
2052value in the kvm_regs structure seen as a 32bit array.
2053 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2054
2055arm64 CCSIDR registers are demultiplexed by CSSELR value:
2056 0x6020 0000 0011 00 <csselr:8>
2057
2058arm64 system registers have the following id bit patterns:
2059 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2060
c2d2c21b
JH
2061
2062MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2063the register group type:
2064
2065MIPS core registers (see above) have the following id bit patterns:
2066 0x7030 0000 0000 <reg:16>
2067
2068MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
2069patterns depending on whether they're 32-bit or 64-bit registers:
2070 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2071 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2072
2073MIPS KVM control registers (see above) have the following id bit patterns:
2074 0x7030 0000 0002 <reg:16>
2075
379245cd
JH
2076MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
2077id bit patterns depending on the size of the register being accessed. They are
2078always accessed according to the current guest FPU mode (Status.FR and
2079Config5.FRE), i.e. as the guest would see them, and they become unpredictable
ab86bd60
JH
2080if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
2081registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
2082overlap the FPU registers:
379245cd
JH
2083 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
2084 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
ab86bd60 2085 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
379245cd
JH
2086
2087MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
2088following id bit patterns:
2089 0x7020 0000 0003 01 <0:3> <reg:5>
2090
ab86bd60
JH
2091MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
2092following id bit patterns:
2093 0x7020 0000 0003 02 <0:3> <reg:5>
2094
c2d2c21b 2095
e24ed81f
AG
20964.69 KVM_GET_ONE_REG
2097
2098Capability: KVM_CAP_ONE_REG
2099Architectures: all
2100Type: vcpu ioctl
2101Parameters: struct kvm_one_reg (in and out)
2102Returns: 0 on success, negative value on failure
2103
2104This ioctl allows to receive the value of a single register implemented
2105in a vcpu. The register to read is indicated by the "id" field of the
2106kvm_one_reg struct passed in. On success, the register value can be found
2107at the memory location pointed to by "addr".
2108
2109The list of registers accessible using this interface is identical to the
2e232702 2110list in 4.68.
e24ed81f 2111
414fa985 2112
1c0b28c2
EM
21134.70 KVM_KVMCLOCK_CTRL
2114
2115Capability: KVM_CAP_KVMCLOCK_CTRL
2116Architectures: Any that implement pvclocks (currently x86 only)
2117Type: vcpu ioctl
2118Parameters: None
2119Returns: 0 on success, -1 on error
2120
2121This signals to the host kernel that the specified guest is being paused by
2122userspace. The host will set a flag in the pvclock structure that is checked
2123from the soft lockup watchdog. The flag is part of the pvclock structure that
2124is shared between guest and host, specifically the second bit of the flags
2125field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2126the host and read/cleared exclusively by the guest. The guest operation of
2127checking and clearing the flag must an atomic operation so
2128load-link/store-conditional, or equivalent must be used. There are two cases
2129where the guest will clear the flag: when the soft lockup watchdog timer resets
2130itself or when a soft lockup is detected. This ioctl can be called any time
2131after pausing the vcpu, but before it is resumed.
2132
414fa985 2133
07975ad3
JK
21344.71 KVM_SIGNAL_MSI
2135
2136Capability: KVM_CAP_SIGNAL_MSI
2137Architectures: x86
2138Type: vm ioctl
2139Parameters: struct kvm_msi (in)
2140Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2141
2142Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2143MSI messages.
2144
2145struct kvm_msi {
2146 __u32 address_lo;
2147 __u32 address_hi;
2148 __u32 data;
2149 __u32 flags;
2150 __u8 pad[16];
2151};
2152
2153No flags are defined so far. The corresponding field must be 0.
2154
414fa985 2155
0589ff6c
JK
21564.71 KVM_CREATE_PIT2
2157
2158Capability: KVM_CAP_PIT2
2159Architectures: x86
2160Type: vm ioctl
2161Parameters: struct kvm_pit_config (in)
2162Returns: 0 on success, -1 on error
2163
2164Creates an in-kernel device model for the i8254 PIT. This call is only valid
2165after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2166parameters have to be passed:
2167
2168struct kvm_pit_config {
2169 __u32 flags;
2170 __u32 pad[15];
2171};
2172
2173Valid flags are:
2174
2175#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2176
b6ddf05f
JK
2177PIT timer interrupts may use a per-VM kernel thread for injection. If it
2178exists, this thread will have a name of the following pattern:
2179
2180kvm-pit/<owner-process-pid>
2181
2182When running a guest with elevated priorities, the scheduling parameters of
2183this thread may have to be adjusted accordingly.
2184
0589ff6c
JK
2185This IOCTL replaces the obsolete KVM_CREATE_PIT.
2186
2187
21884.72 KVM_GET_PIT2
2189
2190Capability: KVM_CAP_PIT_STATE2
2191Architectures: x86
2192Type: vm ioctl
2193Parameters: struct kvm_pit_state2 (out)
2194Returns: 0 on success, -1 on error
2195
2196Retrieves the state of the in-kernel PIT model. Only valid after
2197KVM_CREATE_PIT2. The state is returned in the following structure:
2198
2199struct kvm_pit_state2 {
2200 struct kvm_pit_channel_state channels[3];
2201 __u32 flags;
2202 __u32 reserved[9];
2203};
2204
2205Valid flags are:
2206
2207/* disable PIT in HPET legacy mode */
2208#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2209
2210This IOCTL replaces the obsolete KVM_GET_PIT.
2211
2212
22134.73 KVM_SET_PIT2
2214
2215Capability: KVM_CAP_PIT_STATE2
2216Architectures: x86
2217Type: vm ioctl
2218Parameters: struct kvm_pit_state2 (in)
2219Returns: 0 on success, -1 on error
2220
2221Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2222See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2223
2224This IOCTL replaces the obsolete KVM_SET_PIT.
2225
2226
5b74716e
BH
22274.74 KVM_PPC_GET_SMMU_INFO
2228
2229Capability: KVM_CAP_PPC_GET_SMMU_INFO
2230Architectures: powerpc
2231Type: vm ioctl
2232Parameters: None
2233Returns: 0 on success, -1 on error
2234
2235This populates and returns a structure describing the features of
2236the "Server" class MMU emulation supported by KVM.
cc22c354 2237This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2238device-tree properties for the guest operating system.
2239
c98be0c9 2240The structure contains some global information, followed by an
5b74716e
BH
2241array of supported segment page sizes:
2242
2243 struct kvm_ppc_smmu_info {
2244 __u64 flags;
2245 __u32 slb_size;
2246 __u32 pad;
2247 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2248 };
2249
2250The supported flags are:
2251
2252 - KVM_PPC_PAGE_SIZES_REAL:
2253 When that flag is set, guest page sizes must "fit" the backing
2254 store page sizes. When not set, any page size in the list can
2255 be used regardless of how they are backed by userspace.
2256
2257 - KVM_PPC_1T_SEGMENTS
2258 The emulated MMU supports 1T segments in addition to the
2259 standard 256M ones.
2260
2261The "slb_size" field indicates how many SLB entries are supported
2262
2263The "sps" array contains 8 entries indicating the supported base
2264page sizes for a segment in increasing order. Each entry is defined
2265as follow:
2266
2267 struct kvm_ppc_one_seg_page_size {
2268 __u32 page_shift; /* Base page shift of segment (or 0) */
2269 __u32 slb_enc; /* SLB encoding for BookS */
2270 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2271 };
2272
2273An entry with a "page_shift" of 0 is unused. Because the array is
2274organized in increasing order, a lookup can stop when encoutering
2275such an entry.
2276
2277The "slb_enc" field provides the encoding to use in the SLB for the
2278page size. The bits are in positions such as the value can directly
2279be OR'ed into the "vsid" argument of the slbmte instruction.
2280
2281The "enc" array is a list which for each of those segment base page
2282size provides the list of supported actual page sizes (which can be
2283only larger or equal to the base page size), along with the
f884ab15 2284corresponding encoding in the hash PTE. Similarly, the array is
5b74716e
BH
22858 entries sorted by increasing sizes and an entry with a "0" shift
2286is an empty entry and a terminator:
2287
2288 struct kvm_ppc_one_page_size {
2289 __u32 page_shift; /* Page shift (or 0) */
2290 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2291 };
2292
2293The "pte_enc" field provides a value that can OR'ed into the hash
2294PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2295into the hash PTE second double word).
2296
f36992e3
AW
22974.75 KVM_IRQFD
2298
2299Capability: KVM_CAP_IRQFD
174178fe 2300Architectures: x86 s390 arm arm64
f36992e3
AW
2301Type: vm ioctl
2302Parameters: struct kvm_irqfd (in)
2303Returns: 0 on success, -1 on error
2304
2305Allows setting an eventfd to directly trigger a guest interrupt.
2306kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2307kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
17180032 2308an event is triggered on the eventfd, an interrupt is injected into
f36992e3
AW
2309the guest using the specified gsi pin. The irqfd is removed using
2310the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2311and kvm_irqfd.gsi.
2312
7a84428a
AW
2313With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2314mechanism allowing emulation of level-triggered, irqfd-based
2315interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2316additional eventfd in the kvm_irqfd.resamplefd field. When operating
2317in resample mode, posting of an interrupt through kvm_irq.fd asserts
2318the specified gsi in the irqchip. When the irqchip is resampled, such
17180032 2319as from an EOI, the gsi is de-asserted and the user is notified via
7a84428a
AW
2320kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2321the interrupt if the device making use of it still requires service.
2322Note that closing the resamplefd is not sufficient to disable the
2323irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2324and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2325
174178fe
EA
2326On ARM/ARM64, the gsi field in the kvm_irqfd struct specifies the Shared
2327Peripheral Interrupt (SPI) index, such that the GIC interrupt ID is
2328given by gsi + 32.
2329
5fecc9d8 23304.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2331
2332Capability: KVM_CAP_PPC_ALLOC_HTAB
2333Architectures: powerpc
2334Type: vm ioctl
2335Parameters: Pointer to u32 containing hash table order (in/out)
2336Returns: 0 on success, -1 on error
2337
2338This requests the host kernel to allocate an MMU hash table for a
2339guest using the PAPR paravirtualization interface. This only does
2340anything if the kernel is configured to use the Book 3S HV style of
2341virtualization. Otherwise the capability doesn't exist and the ioctl
2342returns an ENOTTY error. The rest of this description assumes Book 3S
2343HV.
2344
2345There must be no vcpus running when this ioctl is called; if there
2346are, it will do nothing and return an EBUSY error.
2347
2348The parameter is a pointer to a 32-bit unsigned integer variable
2349containing the order (log base 2) of the desired size of the hash
2350table, which must be between 18 and 46. On successful return from the
2351ioctl, it will have been updated with the order of the hash table that
2352was allocated.
2353
2354If no hash table has been allocated when any vcpu is asked to run
2355(with the KVM_RUN ioctl), the host kernel will allocate a
2356default-sized hash table (16 MB).
2357
2358If this ioctl is called when a hash table has already been allocated,
2359the kernel will clear out the existing hash table (zero all HPTEs) and
2360return the hash table order in the parameter. (If the guest is using
2361the virtualized real-mode area (VRMA) facility, the kernel will
2362re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2363
416ad65f
CH
23644.77 KVM_S390_INTERRUPT
2365
2366Capability: basic
2367Architectures: s390
2368Type: vm ioctl, vcpu ioctl
2369Parameters: struct kvm_s390_interrupt (in)
2370Returns: 0 on success, -1 on error
2371
2372Allows to inject an interrupt to the guest. Interrupts can be floating
2373(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2374
2375Interrupt parameters are passed via kvm_s390_interrupt:
2376
2377struct kvm_s390_interrupt {
2378 __u32 type;
2379 __u32 parm;
2380 __u64 parm64;
2381};
2382
2383type can be one of the following:
2384
2822545f 2385KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
416ad65f
CH
2386KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2387KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2388KVM_S390_RESTART (vcpu) - restart
e029ae5b
TH
2389KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2390KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
416ad65f
CH
2391KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2392 parameters in parm and parm64
2393KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2394KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2395KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2396KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2397 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2398 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2399 interruption subclass)
48a3e950
CH
2400KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2401 machine check interrupt code in parm64 (note that
2402 machine checks needing further payload are not
2403 supported by this ioctl)
416ad65f
CH
2404
2405Note that the vcpu ioctl is asynchronous to vcpu execution.
2406
a2932923
PM
24074.78 KVM_PPC_GET_HTAB_FD
2408
2409Capability: KVM_CAP_PPC_HTAB_FD
2410Architectures: powerpc
2411Type: vm ioctl
2412Parameters: Pointer to struct kvm_get_htab_fd (in)
2413Returns: file descriptor number (>= 0) on success, -1 on error
2414
2415This returns a file descriptor that can be used either to read out the
2416entries in the guest's hashed page table (HPT), or to write entries to
2417initialize the HPT. The returned fd can only be written to if the
2418KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2419can only be read if that bit is clear. The argument struct looks like
2420this:
2421
2422/* For KVM_PPC_GET_HTAB_FD */
2423struct kvm_get_htab_fd {
2424 __u64 flags;
2425 __u64 start_index;
2426 __u64 reserved[2];
2427};
2428
2429/* Values for kvm_get_htab_fd.flags */
2430#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2431#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2432
2433The `start_index' field gives the index in the HPT of the entry at
2434which to start reading. It is ignored when writing.
2435
2436Reads on the fd will initially supply information about all
2437"interesting" HPT entries. Interesting entries are those with the
2438bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2439all entries. When the end of the HPT is reached, the read() will
2440return. If read() is called again on the fd, it will start again from
2441the beginning of the HPT, but will only return HPT entries that have
2442changed since they were last read.
2443
2444Data read or written is structured as a header (8 bytes) followed by a
2445series of valid HPT entries (16 bytes) each. The header indicates how
2446many valid HPT entries there are and how many invalid entries follow
2447the valid entries. The invalid entries are not represented explicitly
2448in the stream. The header format is:
2449
2450struct kvm_get_htab_header {
2451 __u32 index;
2452 __u16 n_valid;
2453 __u16 n_invalid;
2454};
2455
2456Writes to the fd create HPT entries starting at the index given in the
2457header; first `n_valid' valid entries with contents from the data
2458written, then `n_invalid' invalid entries, invalidating any previously
2459valid entries found.
2460
852b6d57
SW
24614.79 KVM_CREATE_DEVICE
2462
2463Capability: KVM_CAP_DEVICE_CTRL
2464Type: vm ioctl
2465Parameters: struct kvm_create_device (in/out)
2466Returns: 0 on success, -1 on error
2467Errors:
2468 ENODEV: The device type is unknown or unsupported
2469 EEXIST: Device already created, and this type of device may not
2470 be instantiated multiple times
2471
2472 Other error conditions may be defined by individual device types or
2473 have their standard meanings.
2474
2475Creates an emulated device in the kernel. The file descriptor returned
2476in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2477
2478If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2479device type is supported (not necessarily whether it can be created
2480in the current vm).
2481
2482Individual devices should not define flags. Attributes should be used
2483for specifying any behavior that is not implied by the device type
2484number.
2485
2486struct kvm_create_device {
2487 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2488 __u32 fd; /* out: device handle */
2489 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2490};
2491
24924.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2493
f2061656
DD
2494Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2495Type: device ioctl, vm ioctl
852b6d57
SW
2496Parameters: struct kvm_device_attr
2497Returns: 0 on success, -1 on error
2498Errors:
2499 ENXIO: The group or attribute is unknown/unsupported for this device
2500 EPERM: The attribute cannot (currently) be accessed this way
2501 (e.g. read-only attribute, or attribute that only makes
2502 sense when the device is in a different state)
2503
2504 Other error conditions may be defined by individual device types.
2505
2506Gets/sets a specified piece of device configuration and/or state. The
2507semantics are device-specific. See individual device documentation in
2508the "devices" directory. As with ONE_REG, the size of the data
2509transferred is defined by the particular attribute.
2510
2511struct kvm_device_attr {
2512 __u32 flags; /* no flags currently defined */
2513 __u32 group; /* device-defined */
2514 __u64 attr; /* group-defined */
2515 __u64 addr; /* userspace address of attr data */
2516};
2517
25184.81 KVM_HAS_DEVICE_ATTR
2519
f2061656
DD
2520Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2521Type: device ioctl, vm ioctl
852b6d57
SW
2522Parameters: struct kvm_device_attr
2523Returns: 0 on success, -1 on error
2524Errors:
2525 ENXIO: The group or attribute is unknown/unsupported for this device
2526
2527Tests whether a device supports a particular attribute. A successful
2528return indicates the attribute is implemented. It does not necessarily
2529indicate that the attribute can be read or written in the device's
2530current state. "addr" is ignored.
f36992e3 2531
d8968f1f 25324.82 KVM_ARM_VCPU_INIT
749cf76c
CD
2533
2534Capability: basic
379e04c7 2535Architectures: arm, arm64
749cf76c 2536Type: vcpu ioctl
beb11fc7 2537Parameters: struct kvm_vcpu_init (in)
749cf76c
CD
2538Returns: 0 on success; -1 on error
2539Errors:
2540  EINVAL:    the target is unknown, or the combination of features is invalid.
2541  ENOENT:    a features bit specified is unknown.
2542
2543This tells KVM what type of CPU to present to the guest, and what
2544optional features it should have.  This will cause a reset of the cpu
2545registers to their initial values.  If this is not called, KVM_RUN will
2546return ENOEXEC for that vcpu.
2547
2548Note that because some registers reflect machine topology, all vcpus
2549should be created before this ioctl is invoked.
2550
f7fa034d
CD
2551Userspace can call this function multiple times for a given vcpu, including
2552after the vcpu has been run. This will reset the vcpu to its initial
2553state. All calls to this function after the initial call must use the same
2554target and same set of feature flags, otherwise EINVAL will be returned.
2555
aa024c2f
MZ
2556Possible features:
2557 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
3ad8b3de
CD
2558 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2559 and execute guest code when KVM_RUN is called.
379e04c7
MZ
2560 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2561 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
50bb0c94
AP
2562 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2563 Depends on KVM_CAP_ARM_PSCI_0_2.
aa024c2f 2564
749cf76c 2565
740edfc0
AP
25664.83 KVM_ARM_PREFERRED_TARGET
2567
2568Capability: basic
2569Architectures: arm, arm64
2570Type: vm ioctl
2571Parameters: struct struct kvm_vcpu_init (out)
2572Returns: 0 on success; -1 on error
2573Errors:
a7265fb1 2574 ENODEV: no preferred target available for the host
740edfc0
AP
2575
2576This queries KVM for preferred CPU target type which can be emulated
2577by KVM on underlying host.
2578
2579The ioctl returns struct kvm_vcpu_init instance containing information
2580about preferred CPU target type and recommended features for it. The
2581kvm_vcpu_init->features bitmap returned will have feature bits set if
2582the preferred target recommends setting these features, but this is
2583not mandatory.
2584
2585The information returned by this ioctl can be used to prepare an instance
2586of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2587in VCPU matching underlying host.
2588
2589
25904.84 KVM_GET_REG_LIST
749cf76c
CD
2591
2592Capability: basic
c2d2c21b 2593Architectures: arm, arm64, mips
749cf76c
CD
2594Type: vcpu ioctl
2595Parameters: struct kvm_reg_list (in/out)
2596Returns: 0 on success; -1 on error
2597Errors:
2598  E2BIG:     the reg index list is too big to fit in the array specified by
2599             the user (the number required will be written into n).
2600
2601struct kvm_reg_list {
2602 __u64 n; /* number of registers in reg[] */
2603 __u64 reg[0];
2604};
2605
2606This ioctl returns the guest registers that are supported for the
2607KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2608
ce01e4e8
CD
2609
26104.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
3401d546
CD
2611
2612Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
379e04c7 2613Architectures: arm, arm64
3401d546
CD
2614Type: vm ioctl
2615Parameters: struct kvm_arm_device_address (in)
2616Returns: 0 on success, -1 on error
2617Errors:
2618 ENODEV: The device id is unknown
2619 ENXIO: Device not supported on current system
2620 EEXIST: Address already set
2621 E2BIG: Address outside guest physical address space
330690cd 2622 EBUSY: Address overlaps with other device range
3401d546
CD
2623
2624struct kvm_arm_device_addr {
2625 __u64 id;
2626 __u64 addr;
2627};
2628
2629Specify a device address in the guest's physical address space where guests
2630can access emulated or directly exposed devices, which the host kernel needs
2631to know about. The id field is an architecture specific identifier for a
2632specific device.
2633
379e04c7
MZ
2634ARM/arm64 divides the id field into two parts, a device id and an
2635address type id specific to the individual device.
3401d546
CD
2636
2637  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2638 field: | 0x00000000 | device id | addr type id |
2639
379e04c7
MZ
2640ARM/arm64 currently only require this when using the in-kernel GIC
2641support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2642as the device id. When setting the base address for the guest's
2643mapping of the VGIC virtual CPU and distributor interface, the ioctl
2644must be called after calling KVM_CREATE_IRQCHIP, but before calling
2645KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2646base addresses will return -EEXIST.
3401d546 2647
ce01e4e8
CD
2648Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2649should be used instead.
2650
2651
740edfc0 26524.86 KVM_PPC_RTAS_DEFINE_TOKEN
8e591cb7
ME
2653
2654Capability: KVM_CAP_PPC_RTAS
2655Architectures: ppc
2656Type: vm ioctl
2657Parameters: struct kvm_rtas_token_args
2658Returns: 0 on success, -1 on error
2659
2660Defines a token value for a RTAS (Run Time Abstraction Services)
2661service in order to allow it to be handled in the kernel. The
2662argument struct gives the name of the service, which must be the name
2663of a service that has a kernel-side implementation. If the token
2664value is non-zero, it will be associated with that service, and
2665subsequent RTAS calls by the guest specifying that token will be
2666handled by the kernel. If the token value is 0, then any token
2667associated with the service will be forgotten, and subsequent RTAS
2668calls by the guest for that service will be passed to userspace to be
2669handled.
2670
4bd9d344
AB
26714.87 KVM_SET_GUEST_DEBUG
2672
2673Capability: KVM_CAP_SET_GUEST_DEBUG
0e6f07f2 2674Architectures: x86, s390, ppc, arm64
4bd9d344
AB
2675Type: vcpu ioctl
2676Parameters: struct kvm_guest_debug (in)
2677Returns: 0 on success; -1 on error
2678
2679struct kvm_guest_debug {
2680 __u32 control;
2681 __u32 pad;
2682 struct kvm_guest_debug_arch arch;
2683};
2684
2685Set up the processor specific debug registers and configure vcpu for
2686handling guest debug events. There are two parts to the structure, the
2687first a control bitfield indicates the type of debug events to handle
2688when running. Common control bits are:
2689
2690 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2691 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2692
2693The top 16 bits of the control field are architecture specific control
2694flags which can include the following:
2695
2696 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86]
2697 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390]
2698 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2699 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2700 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2701
2702For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2703are enabled in memory so we need to ensure breakpoint exceptions are
2704correctly trapped and the KVM run loop exits at the breakpoint and not
2705running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2706we need to ensure the guest vCPUs architecture specific registers are
2707updated to the correct (supplied) values.
2708
2709The second part of the structure is architecture specific and
2710typically contains a set of debug registers.
2711
2712When debug events exit the main run loop with the reason
2713KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2714structure containing architecture specific debug information.
3401d546 2715
209cf19f
AB
27164.88 KVM_GET_EMULATED_CPUID
2717
2718Capability: KVM_CAP_EXT_EMUL_CPUID
2719Architectures: x86
2720Type: system ioctl
2721Parameters: struct kvm_cpuid2 (in/out)
2722Returns: 0 on success, -1 on error
2723
2724struct kvm_cpuid2 {
2725 __u32 nent;
2726 __u32 flags;
2727 struct kvm_cpuid_entry2 entries[0];
2728};
2729
2730The member 'flags' is used for passing flags from userspace.
2731
2732#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2733#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2734#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2735
2736struct kvm_cpuid_entry2 {
2737 __u32 function;
2738 __u32 index;
2739 __u32 flags;
2740 __u32 eax;
2741 __u32 ebx;
2742 __u32 ecx;
2743 __u32 edx;
2744 __u32 padding[3];
2745};
2746
2747This ioctl returns x86 cpuid features which are emulated by
2748kvm.Userspace can use the information returned by this ioctl to query
2749which features are emulated by kvm instead of being present natively.
2750
2751Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2752structure with the 'nent' field indicating the number of entries in
2753the variable-size array 'entries'. If the number of entries is too low
2754to describe the cpu capabilities, an error (E2BIG) is returned. If the
2755number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2756is returned. If the number is just right, the 'nent' field is adjusted
2757to the number of valid entries in the 'entries' array, which is then
2758filled.
2759
2760The entries returned are the set CPUID bits of the respective features
2761which kvm emulates, as returned by the CPUID instruction, with unknown
2762or unsupported feature bits cleared.
2763
2764Features like x2apic, for example, may not be present in the host cpu
2765but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2766emulated efficiently and thus not included here.
2767
2768The fields in each entry are defined as follows:
2769
2770 function: the eax value used to obtain the entry
2771 index: the ecx value used to obtain the entry (for entries that are
2772 affected by ecx)
2773 flags: an OR of zero or more of the following:
2774 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2775 if the index field is valid
2776 KVM_CPUID_FLAG_STATEFUL_FUNC:
2777 if cpuid for this function returns different values for successive
2778 invocations; there will be several entries with the same function,
2779 all with this flag set
2780 KVM_CPUID_FLAG_STATE_READ_NEXT:
2781 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2782 the first entry to be read by a cpu
2783 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2784 this function/index combination
2785
41408c28
TH
27864.89 KVM_S390_MEM_OP
2787
2788Capability: KVM_CAP_S390_MEM_OP
2789Architectures: s390
2790Type: vcpu ioctl
2791Parameters: struct kvm_s390_mem_op (in)
2792Returns: = 0 on success,
2793 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2794 > 0 if an exception occurred while walking the page tables
2795
2796Read or write data from/to the logical (virtual) memory of a VPCU.
2797
2798Parameters are specified via the following structure:
2799
2800struct kvm_s390_mem_op {
2801 __u64 gaddr; /* the guest address */
2802 __u64 flags; /* flags */
2803 __u32 size; /* amount of bytes */
2804 __u32 op; /* type of operation */
2805 __u64 buf; /* buffer in userspace */
2806 __u8 ar; /* the access register number */
2807 __u8 reserved[31]; /* should be set to 0 */
2808};
2809
2810The type of operation is specified in the "op" field. It is either
2811KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2812KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2813KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2814whether the corresponding memory access would create an access exception
2815(without touching the data in the memory at the destination). In case an
2816access exception occurred while walking the MMU tables of the guest, the
2817ioctl returns a positive error number to indicate the type of exception.
2818This exception is also raised directly at the corresponding VCPU if the
2819flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2820
2821The start address of the memory region has to be specified in the "gaddr"
2822field, and the length of the region in the "size" field. "buf" is the buffer
2823supplied by the userspace application where the read data should be written
2824to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2825is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2826when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2827register number to be used.
2828
2829The "reserved" field is meant for future extensions. It is not used by
2830KVM with the currently defined set of flags.
2831
30ee2a98
JH
28324.90 KVM_S390_GET_SKEYS
2833
2834Capability: KVM_CAP_S390_SKEYS
2835Architectures: s390
2836Type: vm ioctl
2837Parameters: struct kvm_s390_skeys
2838Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2839 keys, negative value on error
2840
2841This ioctl is used to get guest storage key values on the s390
2842architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2843
2844struct kvm_s390_skeys {
2845 __u64 start_gfn;
2846 __u64 count;
2847 __u64 skeydata_addr;
2848 __u32 flags;
2849 __u32 reserved[9];
2850};
2851
2852The start_gfn field is the number of the first guest frame whose storage keys
2853you want to get.
2854
2855The count field is the number of consecutive frames (starting from start_gfn)
2856whose storage keys to get. The count field must be at least 1 and the maximum
2857allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2858will cause the ioctl to return -EINVAL.
2859
2860The skeydata_addr field is the address to a buffer large enough to hold count
2861bytes. This buffer will be filled with storage key data by the ioctl.
2862
28634.91 KVM_S390_SET_SKEYS
2864
2865Capability: KVM_CAP_S390_SKEYS
2866Architectures: s390
2867Type: vm ioctl
2868Parameters: struct kvm_s390_skeys
2869Returns: 0 on success, negative value on error
2870
2871This ioctl is used to set guest storage key values on the s390
2872architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2873See section on KVM_S390_GET_SKEYS for struct definition.
2874
2875The start_gfn field is the number of the first guest frame whose storage keys
2876you want to set.
2877
2878The count field is the number of consecutive frames (starting from start_gfn)
2879whose storage keys to get. The count field must be at least 1 and the maximum
2880allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2881will cause the ioctl to return -EINVAL.
2882
2883The skeydata_addr field is the address to a buffer containing count bytes of
2884storage keys. Each byte in the buffer will be set as the storage key for a
2885single frame starting at start_gfn for count frames.
2886
2887Note: If any architecturally invalid key value is found in the given data then
2888the ioctl will return -EINVAL.
2889
47b43c52
JF
28904.92 KVM_S390_IRQ
2891
2892Capability: KVM_CAP_S390_INJECT_IRQ
2893Architectures: s390
2894Type: vcpu ioctl
2895Parameters: struct kvm_s390_irq (in)
2896Returns: 0 on success, -1 on error
2897Errors:
2898 EINVAL: interrupt type is invalid
2899 type is KVM_S390_SIGP_STOP and flag parameter is invalid value
2900 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
2901 than the maximum of VCPUs
2902 EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
2903 type is KVM_S390_SIGP_STOP and a stop irq is already pending
2904 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
2905 is already pending
2906
2907Allows to inject an interrupt to the guest.
2908
2909Using struct kvm_s390_irq as a parameter allows
2910to inject additional payload which is not
2911possible via KVM_S390_INTERRUPT.
2912
2913Interrupt parameters are passed via kvm_s390_irq:
2914
2915struct kvm_s390_irq {
2916 __u64 type;
2917 union {
2918 struct kvm_s390_io_info io;
2919 struct kvm_s390_ext_info ext;
2920 struct kvm_s390_pgm_info pgm;
2921 struct kvm_s390_emerg_info emerg;
2922 struct kvm_s390_extcall_info extcall;
2923 struct kvm_s390_prefix_info prefix;
2924 struct kvm_s390_stop_info stop;
2925 struct kvm_s390_mchk_info mchk;
2926 char reserved[64];
2927 } u;
2928};
2929
2930type can be one of the following:
2931
2932KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
2933KVM_S390_PROGRAM_INT - program check; parameters in .pgm
2934KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
2935KVM_S390_RESTART - restart; no parameters
2936KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
2937KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
2938KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
2939KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
2940KVM_S390_MCHK - machine check interrupt; parameters in .mchk
2941
2942
2943Note that the vcpu ioctl is asynchronous to vcpu execution.
2944
816c7667
JF
29454.94 KVM_S390_GET_IRQ_STATE
2946
2947Capability: KVM_CAP_S390_IRQ_STATE
2948Architectures: s390
2949Type: vcpu ioctl
2950Parameters: struct kvm_s390_irq_state (out)
2951Returns: >= number of bytes copied into buffer,
2952 -EINVAL if buffer size is 0,
2953 -ENOBUFS if buffer size is too small to fit all pending interrupts,
2954 -EFAULT if the buffer address was invalid
2955
2956This ioctl allows userspace to retrieve the complete state of all currently
2957pending interrupts in a single buffer. Use cases include migration
2958and introspection. The parameter structure contains the address of a
2959userspace buffer and its length:
2960
2961struct kvm_s390_irq_state {
2962 __u64 buf;
2963 __u32 flags;
2964 __u32 len;
2965 __u32 reserved[4];
2966};
2967
2968Userspace passes in the above struct and for each pending interrupt a
2969struct kvm_s390_irq is copied to the provided buffer.
2970
2971If -ENOBUFS is returned the buffer provided was too small and userspace
2972may retry with a bigger buffer.
2973
29744.95 KVM_S390_SET_IRQ_STATE
2975
2976Capability: KVM_CAP_S390_IRQ_STATE
2977Architectures: s390
2978Type: vcpu ioctl
2979Parameters: struct kvm_s390_irq_state (in)
2980Returns: 0 on success,
2981 -EFAULT if the buffer address was invalid,
2982 -EINVAL for an invalid buffer length (see below),
2983 -EBUSY if there were already interrupts pending,
2984 errors occurring when actually injecting the
2985 interrupt. See KVM_S390_IRQ.
2986
2987This ioctl allows userspace to set the complete state of all cpu-local
2988interrupts currently pending for the vcpu. It is intended for restoring
2989interrupt state after a migration. The input parameter is a userspace buffer
2990containing a struct kvm_s390_irq_state:
2991
2992struct kvm_s390_irq_state {
2993 __u64 buf;
2994 __u32 len;
2995 __u32 pad;
2996};
2997
2998The userspace memory referenced by buf contains a struct kvm_s390_irq
2999for each interrupt to be injected into the guest.
3000If one of the interrupts could not be injected for some reason the
3001ioctl aborts.
3002
3003len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
3004and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
3005which is the maximum number of possibly pending cpu-local interrupts.
47b43c52 3006
f077825a
PB
30074.90 KVM_SMI
3008
3009Capability: KVM_CAP_X86_SMM
3010Architectures: x86
3011Type: vcpu ioctl
3012Parameters: none
3013Returns: 0 on success, -1 on error
3014
3015Queues an SMI on the thread's vcpu.
3016
9c1b96e3 30175. The kvm_run structure
414fa985 3018------------------------
9c1b96e3
AK
3019
3020Application code obtains a pointer to the kvm_run structure by
3021mmap()ing a vcpu fd. From that point, application code can control
3022execution by changing fields in kvm_run prior to calling the KVM_RUN
3023ioctl, and obtain information about the reason KVM_RUN returned by
3024looking up structure members.
3025
3026struct kvm_run {
3027 /* in */
3028 __u8 request_interrupt_window;
3029
3030Request that KVM_RUN return when it becomes possible to inject external
3031interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
3032
3033 __u8 padding1[7];
3034
3035 /* out */
3036 __u32 exit_reason;
3037
3038When KVM_RUN has returned successfully (return value 0), this informs
3039application code why KVM_RUN has returned. Allowable values for this
3040field are detailed below.
3041
3042 __u8 ready_for_interrupt_injection;
3043
3044If request_interrupt_window has been specified, this field indicates
3045an interrupt can be injected now with KVM_INTERRUPT.
3046
3047 __u8 if_flag;
3048
3049The value of the current interrupt flag. Only valid if in-kernel
3050local APIC is not used.
3051
f077825a
PB
3052 __u16 flags;
3053
3054More architecture-specific flags detailing state of the VCPU that may
3055affect the device's behavior. The only currently defined flag is
3056KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
3057VCPU is in system management mode.
9c1b96e3
AK
3058
3059 /* in (pre_kvm_run), out (post_kvm_run) */
3060 __u64 cr8;
3061
3062The value of the cr8 register. Only valid if in-kernel local APIC is
3063not used. Both input and output.
3064
3065 __u64 apic_base;
3066
3067The value of the APIC BASE msr. Only valid if in-kernel local
3068APIC is not used. Both input and output.
3069
3070 union {
3071 /* KVM_EXIT_UNKNOWN */
3072 struct {
3073 __u64 hardware_exit_reason;
3074 } hw;
3075
3076If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
3077reasons. Further architecture-specific information is available in
3078hardware_exit_reason.
3079
3080 /* KVM_EXIT_FAIL_ENTRY */
3081 struct {
3082 __u64 hardware_entry_failure_reason;
3083 } fail_entry;
3084
3085If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
3086to unknown reasons. Further architecture-specific information is
3087available in hardware_entry_failure_reason.
3088
3089 /* KVM_EXIT_EXCEPTION */
3090 struct {
3091 __u32 exception;
3092 __u32 error_code;
3093 } ex;
3094
3095Unused.
3096
3097 /* KVM_EXIT_IO */
3098 struct {
3099#define KVM_EXIT_IO_IN 0
3100#define KVM_EXIT_IO_OUT 1
3101 __u8 direction;
3102 __u8 size; /* bytes */
3103 __u16 port;
3104 __u32 count;
3105 __u64 data_offset; /* relative to kvm_run start */
3106 } io;
3107
2044892d 3108If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
3109executed a port I/O instruction which could not be satisfied by kvm.
3110data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
3111where kvm expects application code to place the data for the next
2044892d 3112KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3 3113
8ab30c15 3114 /* KVM_EXIT_DEBUG */
9c1b96e3
AK
3115 struct {
3116 struct kvm_debug_exit_arch arch;
3117 } debug;
3118
8ab30c15
AB
3119If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
3120for which architecture specific information is returned.
9c1b96e3
AK
3121
3122 /* KVM_EXIT_MMIO */
3123 struct {
3124 __u64 phys_addr;
3125 __u8 data[8];
3126 __u32 len;
3127 __u8 is_write;
3128 } mmio;
3129
2044892d 3130If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
3131executed a memory-mapped I/O instruction which could not be satisfied
3132by kvm. The 'data' member contains the written data if 'is_write' is
3133true, and should be filled by application code otherwise.
3134
6acdb160
CD
3135The 'data' member contains, in its first 'len' bytes, the value as it would
3136appear if the VCPU performed a load or store of the appropriate width directly
3137to the byte array.
3138
cc568ead 3139NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
ce91ddc4 3140 KVM_EXIT_EPR the corresponding
ad0a048b
AG
3141operations are complete (and guest state is consistent) only after userspace
3142has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
3143incomplete operations and then check for pending signals. Userspace
3144can re-enter the guest with an unmasked signal pending to complete
3145pending operations.
3146
9c1b96e3
AK
3147 /* KVM_EXIT_HYPERCALL */
3148 struct {
3149 __u64 nr;
3150 __u64 args[6];
3151 __u64 ret;
3152 __u32 longmode;
3153 __u32 pad;
3154 } hypercall;
3155
647dc49e
AK
3156Unused. This was once used for 'hypercall to userspace'. To implement
3157such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
3158Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
3159
3160 /* KVM_EXIT_TPR_ACCESS */
3161 struct {
3162 __u64 rip;
3163 __u32 is_write;
3164 __u32 pad;
3165 } tpr_access;
3166
3167To be documented (KVM_TPR_ACCESS_REPORTING).
3168
3169 /* KVM_EXIT_S390_SIEIC */
3170 struct {
3171 __u8 icptcode;
3172 __u64 mask; /* psw upper half */
3173 __u64 addr; /* psw lower half */
3174 __u16 ipa;
3175 __u32 ipb;
3176 } s390_sieic;
3177
3178s390 specific.
3179
3180 /* KVM_EXIT_S390_RESET */
3181#define KVM_S390_RESET_POR 1
3182#define KVM_S390_RESET_CLEAR 2
3183#define KVM_S390_RESET_SUBSYSTEM 4
3184#define KVM_S390_RESET_CPU_INIT 8
3185#define KVM_S390_RESET_IPL 16
3186 __u64 s390_reset_flags;
3187
3188s390 specific.
3189
e168bf8d
CO
3190 /* KVM_EXIT_S390_UCONTROL */
3191 struct {
3192 __u64 trans_exc_code;
3193 __u32 pgm_code;
3194 } s390_ucontrol;
3195
3196s390 specific. A page fault has occurred for a user controlled virtual
3197machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
3198resolved by the kernel.
3199The program code and the translation exception code that were placed
3200in the cpu's lowcore are presented here as defined by the z Architecture
3201Principles of Operation Book in the Chapter for Dynamic Address Translation
3202(DAT)
3203
9c1b96e3
AK
3204 /* KVM_EXIT_DCR */
3205 struct {
3206 __u32 dcrn;
3207 __u32 data;
3208 __u8 is_write;
3209 } dcr;
3210
ce91ddc4 3211Deprecated - was used for 440 KVM.
9c1b96e3 3212
ad0a048b
AG
3213 /* KVM_EXIT_OSI */
3214 struct {
3215 __u64 gprs[32];
3216 } osi;
3217
3218MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3219hypercalls and exit with this exit struct that contains all the guest gprs.
3220
3221If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3222Userspace can now handle the hypercall and when it's done modify the gprs as
3223necessary. Upon guest entry all guest GPRs will then be replaced by the values
3224in this struct.
3225
de56a948
PM
3226 /* KVM_EXIT_PAPR_HCALL */
3227 struct {
3228 __u64 nr;
3229 __u64 ret;
3230 __u64 args[9];
3231 } papr_hcall;
3232
3233This is used on 64-bit PowerPC when emulating a pSeries partition,
3234e.g. with the 'pseries' machine type in qemu. It occurs when the
3235guest does a hypercall using the 'sc 1' instruction. The 'nr' field
3236contains the hypercall number (from the guest R3), and 'args' contains
3237the arguments (from the guest R4 - R12). Userspace should put the
3238return code in 'ret' and any extra returned values in args[].
3239The possible hypercalls are defined in the Power Architecture Platform
3240Requirements (PAPR) document available from www.power.org (free
3241developer registration required to access it).
3242
fa6b7fe9
CH
3243 /* KVM_EXIT_S390_TSCH */
3244 struct {
3245 __u16 subchannel_id;
3246 __u16 subchannel_nr;
3247 __u32 io_int_parm;
3248 __u32 io_int_word;
3249 __u32 ipb;
3250 __u8 dequeued;
3251 } s390_tsch;
3252
3253s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
3254and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
3255interrupt for the target subchannel has been dequeued and subchannel_id,
3256subchannel_nr, io_int_parm and io_int_word contain the parameters for that
3257interrupt. ipb is needed for instruction parameter decoding.
3258
1c810636
AG
3259 /* KVM_EXIT_EPR */
3260 struct {
3261 __u32 epr;
3262 } epr;
3263
3264On FSL BookE PowerPC chips, the interrupt controller has a fast patch
3265interrupt acknowledge path to the core. When the core successfully
3266delivers an interrupt, it automatically populates the EPR register with
3267the interrupt vector number and acknowledges the interrupt inside
3268the interrupt controller.
3269
3270In case the interrupt controller lives in user space, we need to do
3271the interrupt acknowledge cycle through it to fetch the next to be
3272delivered interrupt vector using this exit.
3273
3274It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
3275external interrupt has just been delivered into the guest. User space
3276should put the acknowledged interrupt vector into the 'epr' field.
3277
8ad6b634
AP
3278 /* KVM_EXIT_SYSTEM_EVENT */
3279 struct {
3280#define KVM_SYSTEM_EVENT_SHUTDOWN 1
3281#define KVM_SYSTEM_EVENT_RESET 2
3282 __u32 type;
3283 __u64 flags;
3284 } system_event;
3285
3286If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
3287a system-level event using some architecture specific mechanism (hypercall
3288or some special instruction). In case of ARM/ARM64, this is triggered using
3289HVC instruction based PSCI call from the vcpu. The 'type' field describes
3290the system-level event type. The 'flags' field describes architecture
3291specific flags for the system-level event.
3292
cf5d3188
CD
3293Valid values for 'type' are:
3294 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
3295 VM. Userspace is not obliged to honour this, and if it does honour
3296 this does not need to destroy the VM synchronously (ie it may call
3297 KVM_RUN again before shutdown finally occurs).
3298 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
3299 As with SHUTDOWN, userspace can choose to ignore the request, or
3300 to schedule the reset to occur in the future and may call KVM_RUN again.
3301
9c1b96e3
AK
3302 /* Fix the size of the union. */
3303 char padding[256];
3304 };
b9e5dc8d
CB
3305
3306 /*
3307 * shared registers between kvm and userspace.
3308 * kvm_valid_regs specifies the register classes set by the host
3309 * kvm_dirty_regs specified the register classes dirtied by userspace
3310 * struct kvm_sync_regs is architecture specific, as well as the
3311 * bits for kvm_valid_regs and kvm_dirty_regs
3312 */
3313 __u64 kvm_valid_regs;
3314 __u64 kvm_dirty_regs;
3315 union {
3316 struct kvm_sync_regs regs;
3317 char padding[1024];
3318 } s;
3319
3320If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3321certain guest registers without having to call SET/GET_*REGS. Thus we can
3322avoid some system call overhead if userspace has to handle the exit.
3323Userspace can query the validity of the structure by checking
3324kvm_valid_regs for specific bits. These bits are architecture specific
3325and usually define the validity of a groups of registers. (e.g. one bit
3326 for general purpose registers)
3327
d8482c0d
DH
3328Please note that the kernel is allowed to use the kvm_run structure as the
3329primary storage for certain register types. Therefore, the kernel may use the
3330values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3331
9c1b96e3 3332};
821246a5 3333
414fa985 3334
9c15bb1d 3335
699a0ea0
PM
33366. Capabilities that can be enabled on vCPUs
3337--------------------------------------------
821246a5 3338
0907c855
CH
3339There are certain capabilities that change the behavior of the virtual CPU or
3340the virtual machine when enabled. To enable them, please see section 4.37.
3341Below you can find a list of capabilities and what their effect on the vCPU or
3342the virtual machine is when enabling them.
821246a5
AG
3343
3344The following information is provided along with the description:
3345
3346 Architectures: which instruction set architectures provide this ioctl.
3347 x86 includes both i386 and x86_64.
3348
0907c855
CH
3349 Target: whether this is a per-vcpu or per-vm capability.
3350
821246a5
AG
3351 Parameters: what parameters are accepted by the capability.
3352
3353 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3354 are not detailed, but errors with specific meanings are.
3355
414fa985 3356
821246a5
AG
33576.1 KVM_CAP_PPC_OSI
3358
3359Architectures: ppc
0907c855 3360Target: vcpu
821246a5
AG
3361Parameters: none
3362Returns: 0 on success; -1 on error
3363
3364This capability enables interception of OSI hypercalls that otherwise would
3365be treated as normal system calls to be injected into the guest. OSI hypercalls
3366were invented by Mac-on-Linux to have a standardized communication mechanism
3367between the guest and the host.
3368
3369When this capability is enabled, KVM_EXIT_OSI can occur.
3370
414fa985 3371
821246a5
AG
33726.2 KVM_CAP_PPC_PAPR
3373
3374Architectures: ppc
0907c855 3375Target: vcpu
821246a5
AG
3376Parameters: none
3377Returns: 0 on success; -1 on error
3378
3379This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3380done using the hypercall instruction "sc 1".
3381
3382It also sets the guest privilege level to "supervisor" mode. Usually the guest
3383runs in "hypervisor" privilege mode with a few missing features.
3384
3385In addition to the above, it changes the semantics of SDR1. In this mode, the
3386HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3387HTAB invisible to the guest.
3388
3389When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 3390
414fa985 3391
dc83b8bc
SW
33926.3 KVM_CAP_SW_TLB
3393
3394Architectures: ppc
0907c855 3395Target: vcpu
dc83b8bc
SW
3396Parameters: args[0] is the address of a struct kvm_config_tlb
3397Returns: 0 on success; -1 on error
3398
3399struct kvm_config_tlb {
3400 __u64 params;
3401 __u64 array;
3402 __u32 mmu_type;
3403 __u32 array_len;
3404};
3405
3406Configures the virtual CPU's TLB array, establishing a shared memory area
3407between userspace and KVM. The "params" and "array" fields are userspace
3408addresses of mmu-type-specific data structures. The "array_len" field is an
3409safety mechanism, and should be set to the size in bytes of the memory that
3410userspace has reserved for the array. It must be at least the size dictated
3411by "mmu_type" and "params".
3412
3413While KVM_RUN is active, the shared region is under control of KVM. Its
3414contents are undefined, and any modification by userspace results in
3415boundedly undefined behavior.
3416
3417On return from KVM_RUN, the shared region will reflect the current state of
3418the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3419to tell KVM which entries have been changed, prior to calling KVM_RUN again
3420on this vcpu.
3421
3422For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3423 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3424 - The "array" field points to an array of type "struct
3425 kvm_book3e_206_tlb_entry".
3426 - The array consists of all entries in the first TLB, followed by all
3427 entries in the second TLB.
3428 - Within a TLB, entries are ordered first by increasing set number. Within a
3429 set, entries are ordered by way (increasing ESEL).
3430 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3431 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3432 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3433 hardware ignores this value for TLB0.
fa6b7fe9
CH
3434
34356.4 KVM_CAP_S390_CSS_SUPPORT
3436
3437Architectures: s390
0907c855 3438Target: vcpu
fa6b7fe9
CH
3439Parameters: none
3440Returns: 0 on success; -1 on error
3441
3442This capability enables support for handling of channel I/O instructions.
3443
3444TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3445handled in-kernel, while the other I/O instructions are passed to userspace.
3446
3447When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3448SUBCHANNEL intercepts.
1c810636 3449
0907c855
CH
3450Note that even though this capability is enabled per-vcpu, the complete
3451virtual machine is affected.
3452
1c810636
AG
34536.5 KVM_CAP_PPC_EPR
3454
3455Architectures: ppc
0907c855 3456Target: vcpu
1c810636
AG
3457Parameters: args[0] defines whether the proxy facility is active
3458Returns: 0 on success; -1 on error
3459
3460This capability enables or disables the delivery of interrupts through the
3461external proxy facility.
3462
3463When enabled (args[0] != 0), every time the guest gets an external interrupt
3464delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3465to receive the topmost interrupt vector.
3466
3467When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3468
3469When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
3470
34716.6 KVM_CAP_IRQ_MPIC
3472
3473Architectures: ppc
3474Parameters: args[0] is the MPIC device fd
3475 args[1] is the MPIC CPU number for this vcpu
3476
3477This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
3478
34796.7 KVM_CAP_IRQ_XICS
3480
3481Architectures: ppc
0907c855 3482Target: vcpu
5975a2e0
PM
3483Parameters: args[0] is the XICS device fd
3484 args[1] is the XICS CPU number (server ID) for this vcpu
3485
3486This capability connects the vcpu to an in-kernel XICS device.
8a366a4b
CH
3487
34886.8 KVM_CAP_S390_IRQCHIP
3489
3490Architectures: s390
3491Target: vm
3492Parameters: none
3493
3494This capability enables the in-kernel irqchip for s390. Please refer to
3495"4.24 KVM_CREATE_IRQCHIP" for details.
699a0ea0 3496
5fafd874
JH
34976.9 KVM_CAP_MIPS_FPU
3498
3499Architectures: mips
3500Target: vcpu
3501Parameters: args[0] is reserved for future use (should be 0).
3502
3503This capability allows the use of the host Floating Point Unit by the guest. It
3504allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
3505done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
3506(depending on the current guest FPU register mode), and the Status.FR,
3507Config5.FRE bits are accessible via the KVM API and also from the guest,
3508depending on them being supported by the FPU.
3509
d952bd07
JH
35106.10 KVM_CAP_MIPS_MSA
3511
3512Architectures: mips
3513Target: vcpu
3514Parameters: args[0] is reserved for future use (should be 0).
3515
3516This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
3517It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
3518Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
3519accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
3520the guest.
3521
699a0ea0
PM
35227. Capabilities that can be enabled on VMs
3523------------------------------------------
3524
3525There are certain capabilities that change the behavior of the virtual
3526machine when enabled. To enable them, please see section 4.37. Below
3527you can find a list of capabilities and what their effect on the VM
3528is when enabling them.
3529
3530The following information is provided along with the description:
3531
3532 Architectures: which instruction set architectures provide this ioctl.
3533 x86 includes both i386 and x86_64.
3534
3535 Parameters: what parameters are accepted by the capability.
3536
3537 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3538 are not detailed, but errors with specific meanings are.
3539
3540
35417.1 KVM_CAP_PPC_ENABLE_HCALL
3542
3543Architectures: ppc
3544Parameters: args[0] is the sPAPR hcall number
3545 args[1] is 0 to disable, 1 to enable in-kernel handling
3546
3547This capability controls whether individual sPAPR hypercalls (hcalls)
3548get handled by the kernel or not. Enabling or disabling in-kernel
3549handling of an hcall is effective across the VM. On creation, an
3550initial set of hcalls are enabled for in-kernel handling, which
3551consists of those hcalls for which in-kernel handlers were implemented
3552before this capability was implemented. If disabled, the kernel will
3553not to attempt to handle the hcall, but will always exit to userspace
3554to handle it. Note that it may not make sense to enable some and
3555disable others of a group of related hcalls, but KVM does not prevent
3556userspace from doing that.
ae2113a4
PM
3557
3558If the hcall number specified is not one that has an in-kernel
3559implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3560error.
2444b352
DH
3561
35627.2 KVM_CAP_S390_USER_SIGP
3563
3564Architectures: s390
3565Parameters: none
3566
3567This capability controls which SIGP orders will be handled completely in user
3568space. With this capability enabled, all fast orders will be handled completely
3569in the kernel:
3570- SENSE
3571- SENSE RUNNING
3572- EXTERNAL CALL
3573- EMERGENCY SIGNAL
3574- CONDITIONAL EMERGENCY SIGNAL
3575
3576All other orders will be handled completely in user space.
3577
3578Only privileged operation exceptions will be checked for in the kernel (or even
3579in the hardware prior to interception). If this capability is not enabled, the
3580old way of handling SIGP orders is used (partially in kernel and user space).
68c55750
EF
3581
35827.3 KVM_CAP_S390_VECTOR_REGISTERS
3583
3584Architectures: s390
3585Parameters: none
3586Returns: 0 on success, negative value on error
3587
3588Allows use of the vector registers introduced with z13 processor, and
3589provides for the synchronization between host and user space. Will
3590return -EINVAL if the machine does not support vectors.
e44fc8c9
ET
3591
35927.4 KVM_CAP_S390_USER_STSI
3593
3594Architectures: s390
3595Parameters: none
3596
3597This capability allows post-handlers for the STSI instruction. After
3598initial handling in the kernel, KVM exits to user space with
3599KVM_EXIT_S390_STSI to allow user space to insert further data.
3600
3601Before exiting to userspace, kvm handlers should fill in s390_stsi field of
3602vcpu->run:
3603struct {
3604 __u64 addr;
3605 __u8 ar;
3606 __u8 reserved;
3607 __u8 fc;
3608 __u8 sel1;
3609 __u16 sel2;
3610} s390_stsi;
3611
3612@addr - guest address of STSI SYSIB
3613@fc - function code
3614@sel1 - selector 1
3615@sel2 - selector 2
3616@ar - access register number
3617
3618KVM handlers should exit to userspace with rc = -EREMOTE.
e928e9cb
ME
3619
3620
36218. Other capabilities.
3622----------------------
3623
3624This section lists capabilities that give information about other
3625features of the KVM implementation.
3626
36278.1 KVM_CAP_PPC_HWRNG
3628
3629Architectures: ppc
3630
3631This capability, if KVM_CHECK_EXTENSION indicates that it is
3632available, means that that the kernel has an implementation of the
3633H_RANDOM hypercall backed by a hardware random-number generator.
3634If present, the kernel H_RANDOM handler can be enabled for guest use
3635with the KVM_CAP_PPC_ENABLE_HCALL capability.