]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - Documentation/virtual/kvm/api.txt
KVM: x86: pass the whole hflags field to emulator and back
[mirror_ubuntu-jammy-kernel.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
c9f3f2d8 56The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
7f05db6a 71 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
9c1b96e3 72 means availability needs to be checked with KVM_CHECK_EXTENSION
7f05db6a
MT
73 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
9c1b96e3
AK
77
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
414fa985 88
9c1b96e3
AK
894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
414fa985 104
9c1b96e3
AK
1054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
e08b9637 110Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
111Returns: a VM fd that can be used to control the new virtual machine.
112
113The new VM has no virtual cpus and no memory. An mmap() of a VM fd
114will access the virtual machine's physical address space; offset zero
115corresponds to guest physical address zero. Use of mmap() on a VM fd
116is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
117available.
e08b9637
CO
118You most certainly want to use 0 as machine type.
119
120In order to create user controlled virtual machines on S390, check
121KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
122privileged user (CAP_SYS_ADMIN).
9c1b96e3 123
414fa985 124
9c1b96e3
AK
1254.3 KVM_GET_MSR_INDEX_LIST
126
127Capability: basic
128Architectures: x86
129Type: system
130Parameters: struct kvm_msr_list (in/out)
131Returns: 0 on success; -1 on error
132Errors:
133 E2BIG: the msr index list is to be to fit in the array specified by
134 the user.
135
136struct kvm_msr_list {
137 __u32 nmsrs; /* number of msrs in entries */
138 __u32 indices[0];
139};
140
141This ioctl returns the guest msrs that are supported. The list varies
142by kvm version and host processor, but does not change otherwise. The
143user fills in the size of the indices array in nmsrs, and in return
144kvm adjusts nmsrs to reflect the actual number of msrs and fills in
145the indices array with their numbers.
146
2e2602ca
AK
147Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
148not returned in the MSR list, as different vcpus can have a different number
149of banks, as set via the KVM_X86_SETUP_MCE ioctl.
150
414fa985 151
9c1b96e3
AK
1524.4 KVM_CHECK_EXTENSION
153
92b591a4 154Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
9c1b96e3 155Architectures: all
92b591a4 156Type: system ioctl, vm ioctl
9c1b96e3
AK
157Parameters: extension identifier (KVM_CAP_*)
158Returns: 0 if unsupported; 1 (or some other positive integer) if supported
159
160The API allows the application to query about extensions to the core
161kvm API. Userspace passes an extension identifier (an integer) and
162receives an integer that describes the extension availability.
163Generally 0 means no and 1 means yes, but some extensions may report
164additional information in the integer return value.
165
92b591a4
AG
166Based on their initialization different VMs may have different capabilities.
167It is thus encouraged to use the vm ioctl to query for capabilities (available
168with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
414fa985 169
9c1b96e3
AK
1704.5 KVM_GET_VCPU_MMAP_SIZE
171
172Capability: basic
173Architectures: all
174Type: system ioctl
175Parameters: none
176Returns: size of vcpu mmap area, in bytes
177
178The KVM_RUN ioctl (cf.) communicates with userspace via a shared
179memory region. This ioctl returns the size of that region. See the
180KVM_RUN documentation for details.
181
414fa985 182
9c1b96e3
AK
1834.6 KVM_SET_MEMORY_REGION
184
185Capability: basic
186Architectures: all
187Type: vm ioctl
188Parameters: struct kvm_memory_region (in)
189Returns: 0 on success, -1 on error
190
b74a07be 191This ioctl is obsolete and has been removed.
9c1b96e3 192
414fa985 193
68ba6974 1944.7 KVM_CREATE_VCPU
9c1b96e3
AK
195
196Capability: basic
197Architectures: all
198Type: vm ioctl
199Parameters: vcpu id (apic id on x86)
200Returns: vcpu fd on success, -1 on error
201
202This API adds a vcpu to a virtual machine. The vcpu id is a small integer
8c3ba334
SL
203in the range [0, max_vcpus).
204
205The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
206the KVM_CHECK_EXTENSION ioctl() at run-time.
207The maximum possible value for max_vcpus can be retrieved using the
208KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
209
76d25402
PE
210If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
211cpus max.
8c3ba334
SL
212If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
213same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 214
371fefd6
PM
215On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
216threads in one or more virtual CPU cores. (This is because the
217hardware requires all the hardware threads in a CPU core to be in the
218same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
219of vcpus per virtual core (vcore). The vcore id is obtained by
220dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
221given vcore will always be in the same physical core as each other
222(though that might be a different physical core from time to time).
223Userspace can control the threading (SMT) mode of the guest by its
224allocation of vcpu ids. For example, if userspace wants
225single-threaded guest vcpus, it should make all vcpu ids be a multiple
226of the number of vcpus per vcore.
227
5b1c1493
CO
228For virtual cpus that have been created with S390 user controlled virtual
229machines, the resulting vcpu fd can be memory mapped at page offset
230KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
231cpu's hardware control block.
232
414fa985 233
68ba6974 2344.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
235
236Capability: basic
237Architectures: x86
238Type: vm ioctl
239Parameters: struct kvm_dirty_log (in/out)
240Returns: 0 on success, -1 on error
241
242/* for KVM_GET_DIRTY_LOG */
243struct kvm_dirty_log {
244 __u32 slot;
245 __u32 padding;
246 union {
247 void __user *dirty_bitmap; /* one bit per page */
248 __u64 padding;
249 };
250};
251
252Given a memory slot, return a bitmap containing any pages dirtied
253since the last call to this ioctl. Bit 0 is the first page in the
254memory slot. Ensure the entire structure is cleared to avoid padding
255issues.
256
414fa985 257
68ba6974 2584.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
259
260Capability: basic
261Architectures: x86
262Type: vm ioctl
263Parameters: struct kvm_memory_alias (in)
264Returns: 0 (success), -1 (error)
265
a1f4d395 266This ioctl is obsolete and has been removed.
9c1b96e3 267
414fa985 268
68ba6974 2694.10 KVM_RUN
9c1b96e3
AK
270
271Capability: basic
272Architectures: all
273Type: vcpu ioctl
274Parameters: none
275Returns: 0 on success, -1 on error
276Errors:
277 EINTR: an unmasked signal is pending
278
279This ioctl is used to run a guest virtual cpu. While there are no
280explicit parameters, there is an implicit parameter block that can be
281obtained by mmap()ing the vcpu fd at offset 0, with the size given by
282KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
283kvm_run' (see below).
284
414fa985 285
68ba6974 2864.11 KVM_GET_REGS
9c1b96e3
AK
287
288Capability: basic
379e04c7 289Architectures: all except ARM, arm64
9c1b96e3
AK
290Type: vcpu ioctl
291Parameters: struct kvm_regs (out)
292Returns: 0 on success, -1 on error
293
294Reads the general purpose registers from the vcpu.
295
296/* x86 */
297struct kvm_regs {
298 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
299 __u64 rax, rbx, rcx, rdx;
300 __u64 rsi, rdi, rsp, rbp;
301 __u64 r8, r9, r10, r11;
302 __u64 r12, r13, r14, r15;
303 __u64 rip, rflags;
304};
305
c2d2c21b
JH
306/* mips */
307struct kvm_regs {
308 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
309 __u64 gpr[32];
310 __u64 hi;
311 __u64 lo;
312 __u64 pc;
313};
314
414fa985 315
68ba6974 3164.12 KVM_SET_REGS
9c1b96e3
AK
317
318Capability: basic
379e04c7 319Architectures: all except ARM, arm64
9c1b96e3
AK
320Type: vcpu ioctl
321Parameters: struct kvm_regs (in)
322Returns: 0 on success, -1 on error
323
324Writes the general purpose registers into the vcpu.
325
326See KVM_GET_REGS for the data structure.
327
414fa985 328
68ba6974 3294.13 KVM_GET_SREGS
9c1b96e3
AK
330
331Capability: basic
5ce941ee 332Architectures: x86, ppc
9c1b96e3
AK
333Type: vcpu ioctl
334Parameters: struct kvm_sregs (out)
335Returns: 0 on success, -1 on error
336
337Reads special registers from the vcpu.
338
339/* x86 */
340struct kvm_sregs {
341 struct kvm_segment cs, ds, es, fs, gs, ss;
342 struct kvm_segment tr, ldt;
343 struct kvm_dtable gdt, idt;
344 __u64 cr0, cr2, cr3, cr4, cr8;
345 __u64 efer;
346 __u64 apic_base;
347 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
348};
349
68e2ffed 350/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 351
9c1b96e3
AK
352interrupt_bitmap is a bitmap of pending external interrupts. At most
353one bit may be set. This interrupt has been acknowledged by the APIC
354but not yet injected into the cpu core.
355
414fa985 356
68ba6974 3574.14 KVM_SET_SREGS
9c1b96e3
AK
358
359Capability: basic
5ce941ee 360Architectures: x86, ppc
9c1b96e3
AK
361Type: vcpu ioctl
362Parameters: struct kvm_sregs (in)
363Returns: 0 on success, -1 on error
364
365Writes special registers into the vcpu. See KVM_GET_SREGS for the
366data structures.
367
414fa985 368
68ba6974 3694.15 KVM_TRANSLATE
9c1b96e3
AK
370
371Capability: basic
372Architectures: x86
373Type: vcpu ioctl
374Parameters: struct kvm_translation (in/out)
375Returns: 0 on success, -1 on error
376
377Translates a virtual address according to the vcpu's current address
378translation mode.
379
380struct kvm_translation {
381 /* in */
382 __u64 linear_address;
383
384 /* out */
385 __u64 physical_address;
386 __u8 valid;
387 __u8 writeable;
388 __u8 usermode;
389 __u8 pad[5];
390};
391
414fa985 392
68ba6974 3934.16 KVM_INTERRUPT
9c1b96e3
AK
394
395Capability: basic
c2d2c21b 396Architectures: x86, ppc, mips
9c1b96e3
AK
397Type: vcpu ioctl
398Parameters: struct kvm_interrupt (in)
399Returns: 0 on success, -1 on error
400
401Queues a hardware interrupt vector to be injected. This is only
6f7a2bd4 402useful if in-kernel local APIC or equivalent is not used.
9c1b96e3
AK
403
404/* for KVM_INTERRUPT */
405struct kvm_interrupt {
406 /* in */
407 __u32 irq;
408};
409
6f7a2bd4
AG
410X86:
411
9c1b96e3
AK
412Note 'irq' is an interrupt vector, not an interrupt pin or line.
413
6f7a2bd4
AG
414PPC:
415
416Queues an external interrupt to be injected. This ioctl is overleaded
417with 3 different irq values:
418
419a) KVM_INTERRUPT_SET
420
421 This injects an edge type external interrupt into the guest once it's ready
422 to receive interrupts. When injected, the interrupt is done.
423
424b) KVM_INTERRUPT_UNSET
425
426 This unsets any pending interrupt.
427
428 Only available with KVM_CAP_PPC_UNSET_IRQ.
429
430c) KVM_INTERRUPT_SET_LEVEL
431
432 This injects a level type external interrupt into the guest context. The
433 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
434 is triggered.
435
436 Only available with KVM_CAP_PPC_IRQ_LEVEL.
437
438Note that any value for 'irq' other than the ones stated above is invalid
439and incurs unexpected behavior.
440
c2d2c21b
JH
441MIPS:
442
443Queues an external interrupt to be injected into the virtual CPU. A negative
444interrupt number dequeues the interrupt.
445
414fa985 446
68ba6974 4474.17 KVM_DEBUG_GUEST
9c1b96e3
AK
448
449Capability: basic
450Architectures: none
451Type: vcpu ioctl
452Parameters: none)
453Returns: -1 on error
454
455Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
456
414fa985 457
68ba6974 4584.18 KVM_GET_MSRS
9c1b96e3
AK
459
460Capability: basic
461Architectures: x86
462Type: vcpu ioctl
463Parameters: struct kvm_msrs (in/out)
464Returns: 0 on success, -1 on error
465
466Reads model-specific registers from the vcpu. Supported msr indices can
467be obtained using KVM_GET_MSR_INDEX_LIST.
468
469struct kvm_msrs {
470 __u32 nmsrs; /* number of msrs in entries */
471 __u32 pad;
472
473 struct kvm_msr_entry entries[0];
474};
475
476struct kvm_msr_entry {
477 __u32 index;
478 __u32 reserved;
479 __u64 data;
480};
481
482Application code should set the 'nmsrs' member (which indicates the
483size of the entries array) and the 'index' member of each array entry.
484kvm will fill in the 'data' member.
485
414fa985 486
68ba6974 4874.19 KVM_SET_MSRS
9c1b96e3
AK
488
489Capability: basic
490Architectures: x86
491Type: vcpu ioctl
492Parameters: struct kvm_msrs (in)
493Returns: 0 on success, -1 on error
494
495Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
496data structures.
497
498Application code should set the 'nmsrs' member (which indicates the
499size of the entries array), and the 'index' and 'data' members of each
500array entry.
501
414fa985 502
68ba6974 5034.20 KVM_SET_CPUID
9c1b96e3
AK
504
505Capability: basic
506Architectures: x86
507Type: vcpu ioctl
508Parameters: struct kvm_cpuid (in)
509Returns: 0 on success, -1 on error
510
511Defines the vcpu responses to the cpuid instruction. Applications
512should use the KVM_SET_CPUID2 ioctl if available.
513
514
515struct kvm_cpuid_entry {
516 __u32 function;
517 __u32 eax;
518 __u32 ebx;
519 __u32 ecx;
520 __u32 edx;
521 __u32 padding;
522};
523
524/* for KVM_SET_CPUID */
525struct kvm_cpuid {
526 __u32 nent;
527 __u32 padding;
528 struct kvm_cpuid_entry entries[0];
529};
530
414fa985 531
68ba6974 5324.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
533
534Capability: basic
572e0929 535Architectures: all
9c1b96e3
AK
536Type: vcpu ioctl
537Parameters: struct kvm_signal_mask (in)
538Returns: 0 on success, -1 on error
539
540Defines which signals are blocked during execution of KVM_RUN. This
541signal mask temporarily overrides the threads signal mask. Any
542unblocked signal received (except SIGKILL and SIGSTOP, which retain
543their traditional behaviour) will cause KVM_RUN to return with -EINTR.
544
545Note the signal will only be delivered if not blocked by the original
546signal mask.
547
548/* for KVM_SET_SIGNAL_MASK */
549struct kvm_signal_mask {
550 __u32 len;
551 __u8 sigset[0];
552};
553
414fa985 554
68ba6974 5554.22 KVM_GET_FPU
9c1b96e3
AK
556
557Capability: basic
558Architectures: x86
559Type: vcpu ioctl
560Parameters: struct kvm_fpu (out)
561Returns: 0 on success, -1 on error
562
563Reads the floating point state from the vcpu.
564
565/* for KVM_GET_FPU and KVM_SET_FPU */
566struct kvm_fpu {
567 __u8 fpr[8][16];
568 __u16 fcw;
569 __u16 fsw;
570 __u8 ftwx; /* in fxsave format */
571 __u8 pad1;
572 __u16 last_opcode;
573 __u64 last_ip;
574 __u64 last_dp;
575 __u8 xmm[16][16];
576 __u32 mxcsr;
577 __u32 pad2;
578};
579
414fa985 580
68ba6974 5814.23 KVM_SET_FPU
9c1b96e3
AK
582
583Capability: basic
584Architectures: x86
585Type: vcpu ioctl
586Parameters: struct kvm_fpu (in)
587Returns: 0 on success, -1 on error
588
589Writes the floating point state to the vcpu.
590
591/* for KVM_GET_FPU and KVM_SET_FPU */
592struct kvm_fpu {
593 __u8 fpr[8][16];
594 __u16 fcw;
595 __u16 fsw;
596 __u8 ftwx; /* in fxsave format */
597 __u8 pad1;
598 __u16 last_opcode;
599 __u64 last_ip;
600 __u64 last_dp;
601 __u8 xmm[16][16];
602 __u32 mxcsr;
603 __u32 pad2;
604};
605
414fa985 606
68ba6974 6074.24 KVM_CREATE_IRQCHIP
5dadbfd6 608
84223598 609Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
c32a4272 610Architectures: x86, ARM, arm64, s390
5dadbfd6
AK
611Type: vm ioctl
612Parameters: none
613Returns: 0 on success, -1 on error
614
ac3d3735
AP
615Creates an interrupt controller model in the kernel.
616On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
617future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
618PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
619On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
620KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
621KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
622On s390, a dummy irq routing table is created.
84223598
CH
623
624Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
625before KVM_CREATE_IRQCHIP can be used.
5dadbfd6 626
414fa985 627
68ba6974 6284.25 KVM_IRQ_LINE
5dadbfd6
AK
629
630Capability: KVM_CAP_IRQCHIP
c32a4272 631Architectures: x86, arm, arm64
5dadbfd6
AK
632Type: vm ioctl
633Parameters: struct kvm_irq_level
634Returns: 0 on success, -1 on error
635
636Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
637On some architectures it is required that an interrupt controller model has
638been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
639interrupts require the level to be set to 1 and then back to 0.
640
100943c5
GS
641On real hardware, interrupt pins can be active-low or active-high. This
642does not matter for the level field of struct kvm_irq_level: 1 always
643means active (asserted), 0 means inactive (deasserted).
644
645x86 allows the operating system to program the interrupt polarity
646(active-low/active-high) for level-triggered interrupts, and KVM used
647to consider the polarity. However, due to bitrot in the handling of
648active-low interrupts, the above convention is now valid on x86 too.
649This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
650should not present interrupts to the guest as active-low unless this
651capability is present (or unless it is not using the in-kernel irqchip,
652of course).
653
654
379e04c7
MZ
655ARM/arm64 can signal an interrupt either at the CPU level, or at the
656in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
657use PPIs designated for specific cpus. The irq field is interpreted
658like this:
86ce8535
CD
659
660  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
661 field: | irq_type | vcpu_index | irq_id |
662
663The irq_type field has the following values:
664- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
665- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
666 (the vcpu_index field is ignored)
667- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
668
669(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
670
100943c5 671In both cases, level is used to assert/deassert the line.
5dadbfd6
AK
672
673struct kvm_irq_level {
674 union {
675 __u32 irq; /* GSI */
676 __s32 status; /* not used for KVM_IRQ_LEVEL */
677 };
678 __u32 level; /* 0 or 1 */
679};
680
414fa985 681
68ba6974 6824.26 KVM_GET_IRQCHIP
5dadbfd6
AK
683
684Capability: KVM_CAP_IRQCHIP
c32a4272 685Architectures: x86
5dadbfd6
AK
686Type: vm ioctl
687Parameters: struct kvm_irqchip (in/out)
688Returns: 0 on success, -1 on error
689
690Reads the state of a kernel interrupt controller created with
691KVM_CREATE_IRQCHIP into a buffer provided by the caller.
692
693struct kvm_irqchip {
694 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
695 __u32 pad;
696 union {
697 char dummy[512]; /* reserving space */
698 struct kvm_pic_state pic;
699 struct kvm_ioapic_state ioapic;
700 } chip;
701};
702
414fa985 703
68ba6974 7044.27 KVM_SET_IRQCHIP
5dadbfd6
AK
705
706Capability: KVM_CAP_IRQCHIP
c32a4272 707Architectures: x86
5dadbfd6
AK
708Type: vm ioctl
709Parameters: struct kvm_irqchip (in)
710Returns: 0 on success, -1 on error
711
712Sets the state of a kernel interrupt controller created with
713KVM_CREATE_IRQCHIP from a buffer provided by the caller.
714
715struct kvm_irqchip {
716 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
717 __u32 pad;
718 union {
719 char dummy[512]; /* reserving space */
720 struct kvm_pic_state pic;
721 struct kvm_ioapic_state ioapic;
722 } chip;
723};
724
414fa985 725
68ba6974 7264.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
727
728Capability: KVM_CAP_XEN_HVM
729Architectures: x86
730Type: vm ioctl
731Parameters: struct kvm_xen_hvm_config (in)
732Returns: 0 on success, -1 on error
733
734Sets the MSR that the Xen HVM guest uses to initialize its hypercall
735page, and provides the starting address and size of the hypercall
736blobs in userspace. When the guest writes the MSR, kvm copies one
737page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
738memory.
739
740struct kvm_xen_hvm_config {
741 __u32 flags;
742 __u32 msr;
743 __u64 blob_addr_32;
744 __u64 blob_addr_64;
745 __u8 blob_size_32;
746 __u8 blob_size_64;
747 __u8 pad2[30];
748};
749
414fa985 750
68ba6974 7514.29 KVM_GET_CLOCK
afbcf7ab
GC
752
753Capability: KVM_CAP_ADJUST_CLOCK
754Architectures: x86
755Type: vm ioctl
756Parameters: struct kvm_clock_data (out)
757Returns: 0 on success, -1 on error
758
759Gets the current timestamp of kvmclock as seen by the current guest. In
760conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
761such as migration.
762
763struct kvm_clock_data {
764 __u64 clock; /* kvmclock current value */
765 __u32 flags;
766 __u32 pad[9];
767};
768
414fa985 769
68ba6974 7704.30 KVM_SET_CLOCK
afbcf7ab
GC
771
772Capability: KVM_CAP_ADJUST_CLOCK
773Architectures: x86
774Type: vm ioctl
775Parameters: struct kvm_clock_data (in)
776Returns: 0 on success, -1 on error
777
2044892d 778Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
779In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
780such as migration.
781
782struct kvm_clock_data {
783 __u64 clock; /* kvmclock current value */
784 __u32 flags;
785 __u32 pad[9];
786};
787
414fa985 788
68ba6974 7894.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
790
791Capability: KVM_CAP_VCPU_EVENTS
48005f64 792Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
793Architectures: x86
794Type: vm ioctl
795Parameters: struct kvm_vcpu_event (out)
796Returns: 0 on success, -1 on error
797
798Gets currently pending exceptions, interrupts, and NMIs as well as related
799states of the vcpu.
800
801struct kvm_vcpu_events {
802 struct {
803 __u8 injected;
804 __u8 nr;
805 __u8 has_error_code;
806 __u8 pad;
807 __u32 error_code;
808 } exception;
809 struct {
810 __u8 injected;
811 __u8 nr;
812 __u8 soft;
48005f64 813 __u8 shadow;
3cfc3092
JK
814 } interrupt;
815 struct {
816 __u8 injected;
817 __u8 pending;
818 __u8 masked;
819 __u8 pad;
820 } nmi;
821 __u32 sipi_vector;
dab4b911 822 __u32 flags;
3cfc3092
JK
823};
824
48005f64
JK
825KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
826interrupt.shadow contains a valid state. Otherwise, this field is undefined.
827
414fa985 828
68ba6974 8294.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
830
831Capability: KVM_CAP_VCPU_EVENTS
48005f64 832Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
833Architectures: x86
834Type: vm ioctl
835Parameters: struct kvm_vcpu_event (in)
836Returns: 0 on success, -1 on error
837
838Set pending exceptions, interrupts, and NMIs as well as related states of the
839vcpu.
840
841See KVM_GET_VCPU_EVENTS for the data structure.
842
dab4b911
JK
843Fields that may be modified asynchronously by running VCPUs can be excluded
844from the update. These fields are nmi.pending and sipi_vector. Keep the
845corresponding bits in the flags field cleared to suppress overwriting the
846current in-kernel state. The bits are:
847
848KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
849KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
850
48005f64
JK
851If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
852the flags field to signal that interrupt.shadow contains a valid state and
853shall be written into the VCPU.
854
414fa985 855
68ba6974 8564.33 KVM_GET_DEBUGREGS
a1efbe77
JK
857
858Capability: KVM_CAP_DEBUGREGS
859Architectures: x86
860Type: vm ioctl
861Parameters: struct kvm_debugregs (out)
862Returns: 0 on success, -1 on error
863
864Reads debug registers from the vcpu.
865
866struct kvm_debugregs {
867 __u64 db[4];
868 __u64 dr6;
869 __u64 dr7;
870 __u64 flags;
871 __u64 reserved[9];
872};
873
414fa985 874
68ba6974 8754.34 KVM_SET_DEBUGREGS
a1efbe77
JK
876
877Capability: KVM_CAP_DEBUGREGS
878Architectures: x86
879Type: vm ioctl
880Parameters: struct kvm_debugregs (in)
881Returns: 0 on success, -1 on error
882
883Writes debug registers into the vcpu.
884
885See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
886yet and must be cleared on entry.
887
414fa985 888
68ba6974 8894.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
890
891Capability: KVM_CAP_USER_MEM
892Architectures: all
893Type: vm ioctl
894Parameters: struct kvm_userspace_memory_region (in)
895Returns: 0 on success, -1 on error
896
897struct kvm_userspace_memory_region {
898 __u32 slot;
899 __u32 flags;
900 __u64 guest_phys_addr;
901 __u64 memory_size; /* bytes */
902 __u64 userspace_addr; /* start of the userspace allocated memory */
903};
904
905/* for kvm_memory_region::flags */
4d8b81ab
XG
906#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
907#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
908
909This ioctl allows the user to create or modify a guest physical memory
910slot. When changing an existing slot, it may be moved in the guest
911physical memory space, or its flags may be modified. It may not be
912resized. Slots may not overlap in guest physical address space.
913
914Memory for the region is taken starting at the address denoted by the
915field userspace_addr, which must point at user addressable memory for
916the entire memory slot size. Any object may back this memory, including
917anonymous memory, ordinary files, and hugetlbfs.
918
919It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
920be identical. This allows large pages in the guest to be backed by large
921pages in the host.
922
75d61fbc
TY
923The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
924KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
925writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
926use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
927to make a new slot read-only. In this case, writes to this memory will be
928posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
929
930When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
931the memory region are automatically reflected into the guest. For example, an
932mmap() that affects the region will be made visible immediately. Another
933example is madvise(MADV_DROP).
0f2d8f4d
AK
934
935It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
936The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
937allocation and is deprecated.
3cfc3092 938
414fa985 939
68ba6974 9404.36 KVM_SET_TSS_ADDR
8a5416db
AK
941
942Capability: KVM_CAP_SET_TSS_ADDR
943Architectures: x86
944Type: vm ioctl
945Parameters: unsigned long tss_address (in)
946Returns: 0 on success, -1 on error
947
948This ioctl defines the physical address of a three-page region in the guest
949physical address space. The region must be within the first 4GB of the
950guest physical address space and must not conflict with any memory slot
951or any mmio address. The guest may malfunction if it accesses this memory
952region.
953
954This ioctl is required on Intel-based hosts. This is needed on Intel hardware
955because of a quirk in the virtualization implementation (see the internals
956documentation when it pops into existence).
957
414fa985 958
68ba6974 9594.37 KVM_ENABLE_CAP
71fbfd5f 960
d938dc55 961Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
90de4a18
NA
962Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM),
963 mips (only KVM_CAP_ENABLE_CAP), ppc, s390
d938dc55 964Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
71fbfd5f
AG
965Parameters: struct kvm_enable_cap (in)
966Returns: 0 on success; -1 on error
967
968+Not all extensions are enabled by default. Using this ioctl the application
969can enable an extension, making it available to the guest.
970
971On systems that do not support this ioctl, it always fails. On systems that
972do support it, it only works for extensions that are supported for enablement.
973
974To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
975be used.
976
977struct kvm_enable_cap {
978 /* in */
979 __u32 cap;
980
981The capability that is supposed to get enabled.
982
983 __u32 flags;
984
985A bitfield indicating future enhancements. Has to be 0 for now.
986
987 __u64 args[4];
988
989Arguments for enabling a feature. If a feature needs initial values to
990function properly, this is the place to put them.
991
992 __u8 pad[64];
993};
994
d938dc55
CH
995The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
996for vm-wide capabilities.
414fa985 997
68ba6974 9984.38 KVM_GET_MP_STATE
b843f065
AK
999
1000Capability: KVM_CAP_MP_STATE
ecccf0cc 1001Architectures: x86, s390, arm, arm64
b843f065
AK
1002Type: vcpu ioctl
1003Parameters: struct kvm_mp_state (out)
1004Returns: 0 on success; -1 on error
1005
1006struct kvm_mp_state {
1007 __u32 mp_state;
1008};
1009
1010Returns the vcpu's current "multiprocessing state" (though also valid on
1011uniprocessor guests).
1012
1013Possible values are:
1014
ecccf0cc 1015 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64]
b843f065 1016 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
c32a4272 1017 which has not yet received an INIT signal [x86]
b843f065 1018 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
c32a4272 1019 now ready for a SIPI [x86]
b843f065 1020 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
c32a4272 1021 is waiting for an interrupt [x86]
b843f065 1022 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
c32a4272 1023 accessible via KVM_GET_VCPU_EVENTS) [x86]
ecccf0cc 1024 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64]
6352e4d2
DH
1025 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1026 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1027 [s390]
1028 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1029 [s390]
b843f065 1030
c32a4272 1031On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1032in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1033these architectures.
b843f065 1034
ecccf0cc
AB
1035For arm/arm64:
1036
1037The only states that are valid are KVM_MP_STATE_STOPPED and
1038KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
414fa985 1039
68ba6974 10404.39 KVM_SET_MP_STATE
b843f065
AK
1041
1042Capability: KVM_CAP_MP_STATE
ecccf0cc 1043Architectures: x86, s390, arm, arm64
b843f065
AK
1044Type: vcpu ioctl
1045Parameters: struct kvm_mp_state (in)
1046Returns: 0 on success; -1 on error
1047
1048Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1049arguments.
1050
c32a4272 1051On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1052in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1053these architectures.
b843f065 1054
ecccf0cc
AB
1055For arm/arm64:
1056
1057The only states that are valid are KVM_MP_STATE_STOPPED and
1058KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
414fa985 1059
68ba6974 10604.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1061
1062Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1063Architectures: x86
1064Type: vm ioctl
1065Parameters: unsigned long identity (in)
1066Returns: 0 on success, -1 on error
1067
1068This ioctl defines the physical address of a one-page region in the guest
1069physical address space. The region must be within the first 4GB of the
1070guest physical address space and must not conflict with any memory slot
1071or any mmio address. The guest may malfunction if it accesses this memory
1072region.
1073
1074This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1075because of a quirk in the virtualization implementation (see the internals
1076documentation when it pops into existence).
1077
414fa985 1078
68ba6974 10794.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1080
1081Capability: KVM_CAP_SET_BOOT_CPU_ID
c32a4272 1082Architectures: x86
57bc24cf
AK
1083Type: vm ioctl
1084Parameters: unsigned long vcpu_id
1085Returns: 0 on success, -1 on error
1086
1087Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1088as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1089is vcpu 0.
1090
414fa985 1091
68ba6974 10924.42 KVM_GET_XSAVE
2d5b5a66
SY
1093
1094Capability: KVM_CAP_XSAVE
1095Architectures: x86
1096Type: vcpu ioctl
1097Parameters: struct kvm_xsave (out)
1098Returns: 0 on success, -1 on error
1099
1100struct kvm_xsave {
1101 __u32 region[1024];
1102};
1103
1104This ioctl would copy current vcpu's xsave struct to the userspace.
1105
414fa985 1106
68ba6974 11074.43 KVM_SET_XSAVE
2d5b5a66
SY
1108
1109Capability: KVM_CAP_XSAVE
1110Architectures: x86
1111Type: vcpu ioctl
1112Parameters: struct kvm_xsave (in)
1113Returns: 0 on success, -1 on error
1114
1115struct kvm_xsave {
1116 __u32 region[1024];
1117};
1118
1119This ioctl would copy userspace's xsave struct to the kernel.
1120
414fa985 1121
68ba6974 11224.44 KVM_GET_XCRS
2d5b5a66
SY
1123
1124Capability: KVM_CAP_XCRS
1125Architectures: x86
1126Type: vcpu ioctl
1127Parameters: struct kvm_xcrs (out)
1128Returns: 0 on success, -1 on error
1129
1130struct kvm_xcr {
1131 __u32 xcr;
1132 __u32 reserved;
1133 __u64 value;
1134};
1135
1136struct kvm_xcrs {
1137 __u32 nr_xcrs;
1138 __u32 flags;
1139 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1140 __u64 padding[16];
1141};
1142
1143This ioctl would copy current vcpu's xcrs to the userspace.
1144
414fa985 1145
68ba6974 11464.45 KVM_SET_XCRS
2d5b5a66
SY
1147
1148Capability: KVM_CAP_XCRS
1149Architectures: x86
1150Type: vcpu ioctl
1151Parameters: struct kvm_xcrs (in)
1152Returns: 0 on success, -1 on error
1153
1154struct kvm_xcr {
1155 __u32 xcr;
1156 __u32 reserved;
1157 __u64 value;
1158};
1159
1160struct kvm_xcrs {
1161 __u32 nr_xcrs;
1162 __u32 flags;
1163 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1164 __u64 padding[16];
1165};
1166
1167This ioctl would set vcpu's xcr to the value userspace specified.
1168
414fa985 1169
68ba6974 11704.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1171
1172Capability: KVM_CAP_EXT_CPUID
1173Architectures: x86
1174Type: system ioctl
1175Parameters: struct kvm_cpuid2 (in/out)
1176Returns: 0 on success, -1 on error
1177
1178struct kvm_cpuid2 {
1179 __u32 nent;
1180 __u32 padding;
1181 struct kvm_cpuid_entry2 entries[0];
1182};
1183
9c15bb1d
BP
1184#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1185#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1186#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
d153513d
AK
1187
1188struct kvm_cpuid_entry2 {
1189 __u32 function;
1190 __u32 index;
1191 __u32 flags;
1192 __u32 eax;
1193 __u32 ebx;
1194 __u32 ecx;
1195 __u32 edx;
1196 __u32 padding[3];
1197};
1198
1199This ioctl returns x86 cpuid features which are supported by both the hardware
1200and kvm. Userspace can use the information returned by this ioctl to
1201construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1202hardware, kernel, and userspace capabilities, and with user requirements (for
1203example, the user may wish to constrain cpuid to emulate older hardware,
1204or for feature consistency across a cluster).
1205
1206Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1207with the 'nent' field indicating the number of entries in the variable-size
1208array 'entries'. If the number of entries is too low to describe the cpu
1209capabilities, an error (E2BIG) is returned. If the number is too high,
1210the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1211number is just right, the 'nent' field is adjusted to the number of valid
1212entries in the 'entries' array, which is then filled.
1213
1214The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1215with unknown or unsupported features masked out. Some features (for example,
1216x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1217emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1218
1219 function: the eax value used to obtain the entry
1220 index: the ecx value used to obtain the entry (for entries that are
1221 affected by ecx)
1222 flags: an OR of zero or more of the following:
1223 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1224 if the index field is valid
1225 KVM_CPUID_FLAG_STATEFUL_FUNC:
1226 if cpuid for this function returns different values for successive
1227 invocations; there will be several entries with the same function,
1228 all with this flag set
1229 KVM_CPUID_FLAG_STATE_READ_NEXT:
1230 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1231 the first entry to be read by a cpu
1232 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1233 this function/index combination
1234
4d25a066
JK
1235The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1236as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1237support. Instead it is reported via
1238
1239 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1240
1241if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1242feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1243
414fa985 1244
68ba6974 12454.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1246
1247Capability: KVM_CAP_PPC_GET_PVINFO
1248Architectures: ppc
1249Type: vm ioctl
1250Parameters: struct kvm_ppc_pvinfo (out)
1251Returns: 0 on success, !0 on error
1252
1253struct kvm_ppc_pvinfo {
1254 __u32 flags;
1255 __u32 hcall[4];
1256 __u8 pad[108];
1257};
1258
1259This ioctl fetches PV specific information that need to be passed to the guest
1260using the device tree or other means from vm context.
1261
9202e076 1262The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1263
1264If any additional field gets added to this structure later on, a bit for that
1265additional piece of information will be set in the flags bitmap.
1266
9202e076
LYB
1267The flags bitmap is defined as:
1268
1269 /* the host supports the ePAPR idle hcall
1270 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1271
68ba6974 12724.48 KVM_ASSIGN_PCI_DEVICE
49f48172 1273
7f05db6a 1274Capability: none
c32a4272 1275Architectures: x86
49f48172
JK
1276Type: vm ioctl
1277Parameters: struct kvm_assigned_pci_dev (in)
1278Returns: 0 on success, -1 on error
1279
1280Assigns a host PCI device to the VM.
1281
1282struct kvm_assigned_pci_dev {
1283 __u32 assigned_dev_id;
1284 __u32 busnr;
1285 __u32 devfn;
1286 __u32 flags;
1287 __u32 segnr;
1288 union {
1289 __u32 reserved[11];
1290 };
1291};
1292
1293The PCI device is specified by the triple segnr, busnr, and devfn.
1294Identification in succeeding service requests is done via assigned_dev_id. The
1295following flags are specified:
1296
1297/* Depends on KVM_CAP_IOMMU */
1298#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1299/* The following two depend on KVM_CAP_PCI_2_3 */
1300#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1301#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1302
1303If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1304via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1305assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1306guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1307
42387373
AW
1308The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1309isolation of the device. Usages not specifying this flag are deprecated.
1310
3d27e23b
AW
1311Only PCI header type 0 devices with PCI BAR resources are supported by
1312device assignment. The user requesting this ioctl must have read/write
1313access to the PCI sysfs resource files associated with the device.
1314
7f05db6a
MT
1315Errors:
1316 ENOTTY: kernel does not support this ioctl
1317
1318 Other error conditions may be defined by individual device types or
1319 have their standard meanings.
1320
414fa985 1321
68ba6974 13224.49 KVM_DEASSIGN_PCI_DEVICE
49f48172 1323
7f05db6a 1324Capability: none
c32a4272 1325Architectures: x86
49f48172
JK
1326Type: vm ioctl
1327Parameters: struct kvm_assigned_pci_dev (in)
1328Returns: 0 on success, -1 on error
1329
1330Ends PCI device assignment, releasing all associated resources.
1331
7f05db6a 1332See KVM_ASSIGN_PCI_DEVICE for the data structure. Only assigned_dev_id is
49f48172
JK
1333used in kvm_assigned_pci_dev to identify the device.
1334
7f05db6a
MT
1335Errors:
1336 ENOTTY: kernel does not support this ioctl
1337
1338 Other error conditions may be defined by individual device types or
1339 have their standard meanings.
414fa985 1340
68ba6974 13414.50 KVM_ASSIGN_DEV_IRQ
49f48172
JK
1342
1343Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1344Architectures: x86
49f48172
JK
1345Type: vm ioctl
1346Parameters: struct kvm_assigned_irq (in)
1347Returns: 0 on success, -1 on error
1348
1349Assigns an IRQ to a passed-through device.
1350
1351struct kvm_assigned_irq {
1352 __u32 assigned_dev_id;
91e3d71d 1353 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1354 __u32 guest_irq;
1355 __u32 flags;
1356 union {
49f48172
JK
1357 __u32 reserved[12];
1358 };
1359};
1360
1361The following flags are defined:
1362
1363#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1364#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1365#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1366
1367#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1368#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1369#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1370
1371It is not valid to specify multiple types per host or guest IRQ. However, the
1372IRQ type of host and guest can differ or can even be null.
1373
7f05db6a
MT
1374Errors:
1375 ENOTTY: kernel does not support this ioctl
1376
1377 Other error conditions may be defined by individual device types or
1378 have their standard meanings.
1379
414fa985 1380
68ba6974 13814.51 KVM_DEASSIGN_DEV_IRQ
49f48172
JK
1382
1383Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1384Architectures: x86
49f48172
JK
1385Type: vm ioctl
1386Parameters: struct kvm_assigned_irq (in)
1387Returns: 0 on success, -1 on error
1388
1389Ends an IRQ assignment to a passed-through device.
1390
1391See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1392by assigned_dev_id, flags must correspond to the IRQ type specified on
1393KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1394
414fa985 1395
68ba6974 13964.52 KVM_SET_GSI_ROUTING
49f48172
JK
1397
1398Capability: KVM_CAP_IRQ_ROUTING
c32a4272 1399Architectures: x86 s390
49f48172
JK
1400Type: vm ioctl
1401Parameters: struct kvm_irq_routing (in)
1402Returns: 0 on success, -1 on error
1403
1404Sets the GSI routing table entries, overwriting any previously set entries.
1405
1406struct kvm_irq_routing {
1407 __u32 nr;
1408 __u32 flags;
1409 struct kvm_irq_routing_entry entries[0];
1410};
1411
1412No flags are specified so far, the corresponding field must be set to zero.
1413
1414struct kvm_irq_routing_entry {
1415 __u32 gsi;
1416 __u32 type;
1417 __u32 flags;
1418 __u32 pad;
1419 union {
1420 struct kvm_irq_routing_irqchip irqchip;
1421 struct kvm_irq_routing_msi msi;
84223598 1422 struct kvm_irq_routing_s390_adapter adapter;
49f48172
JK
1423 __u32 pad[8];
1424 } u;
1425};
1426
1427/* gsi routing entry types */
1428#define KVM_IRQ_ROUTING_IRQCHIP 1
1429#define KVM_IRQ_ROUTING_MSI 2
84223598 1430#define KVM_IRQ_ROUTING_S390_ADAPTER 3
49f48172
JK
1431
1432No flags are specified so far, the corresponding field must be set to zero.
1433
1434struct kvm_irq_routing_irqchip {
1435 __u32 irqchip;
1436 __u32 pin;
1437};
1438
1439struct kvm_irq_routing_msi {
1440 __u32 address_lo;
1441 __u32 address_hi;
1442 __u32 data;
1443 __u32 pad;
1444};
1445
84223598
CH
1446struct kvm_irq_routing_s390_adapter {
1447 __u64 ind_addr;
1448 __u64 summary_addr;
1449 __u64 ind_offset;
1450 __u32 summary_offset;
1451 __u32 adapter_id;
1452};
1453
414fa985 1454
68ba6974 14554.53 KVM_ASSIGN_SET_MSIX_NR
49f48172 1456
7f05db6a 1457Capability: none
c32a4272 1458Architectures: x86
49f48172
JK
1459Type: vm ioctl
1460Parameters: struct kvm_assigned_msix_nr (in)
1461Returns: 0 on success, -1 on error
1462
58f0964e
JK
1463Set the number of MSI-X interrupts for an assigned device. The number is
1464reset again by terminating the MSI-X assignment of the device via
1465KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1466point will fail.
49f48172
JK
1467
1468struct kvm_assigned_msix_nr {
1469 __u32 assigned_dev_id;
1470 __u16 entry_nr;
1471 __u16 padding;
1472};
1473
1474#define KVM_MAX_MSIX_PER_DEV 256
1475
414fa985 1476
68ba6974 14774.54 KVM_ASSIGN_SET_MSIX_ENTRY
49f48172 1478
7f05db6a 1479Capability: none
c32a4272 1480Architectures: x86
49f48172
JK
1481Type: vm ioctl
1482Parameters: struct kvm_assigned_msix_entry (in)
1483Returns: 0 on success, -1 on error
1484
1485Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1486the GSI vector to zero means disabling the interrupt.
1487
1488struct kvm_assigned_msix_entry {
1489 __u32 assigned_dev_id;
1490 __u32 gsi;
1491 __u16 entry; /* The index of entry in the MSI-X table */
1492 __u16 padding[3];
1493};
1494
7f05db6a
MT
1495Errors:
1496 ENOTTY: kernel does not support this ioctl
1497
1498 Other error conditions may be defined by individual device types or
1499 have their standard meanings.
1500
414fa985
JK
1501
15024.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1503
1504Capability: KVM_CAP_TSC_CONTROL
1505Architectures: x86
1506Type: vcpu ioctl
1507Parameters: virtual tsc_khz
1508Returns: 0 on success, -1 on error
1509
1510Specifies the tsc frequency for the virtual machine. The unit of the
1511frequency is KHz.
1512
414fa985
JK
1513
15144.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1515
1516Capability: KVM_CAP_GET_TSC_KHZ
1517Architectures: x86
1518Type: vcpu ioctl
1519Parameters: none
1520Returns: virtual tsc-khz on success, negative value on error
1521
1522Returns the tsc frequency of the guest. The unit of the return value is
1523KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1524error.
1525
414fa985
JK
1526
15274.57 KVM_GET_LAPIC
e7677933
AK
1528
1529Capability: KVM_CAP_IRQCHIP
1530Architectures: x86
1531Type: vcpu ioctl
1532Parameters: struct kvm_lapic_state (out)
1533Returns: 0 on success, -1 on error
1534
1535#define KVM_APIC_REG_SIZE 0x400
1536struct kvm_lapic_state {
1537 char regs[KVM_APIC_REG_SIZE];
1538};
1539
1540Reads the Local APIC registers and copies them into the input argument. The
1541data format and layout are the same as documented in the architecture manual.
1542
414fa985
JK
1543
15444.58 KVM_SET_LAPIC
e7677933
AK
1545
1546Capability: KVM_CAP_IRQCHIP
1547Architectures: x86
1548Type: vcpu ioctl
1549Parameters: struct kvm_lapic_state (in)
1550Returns: 0 on success, -1 on error
1551
1552#define KVM_APIC_REG_SIZE 0x400
1553struct kvm_lapic_state {
1554 char regs[KVM_APIC_REG_SIZE];
1555};
1556
df5cbb27 1557Copies the input argument into the Local APIC registers. The data format
e7677933
AK
1558and layout are the same as documented in the architecture manual.
1559
414fa985
JK
1560
15614.59 KVM_IOEVENTFD
55399a02
SL
1562
1563Capability: KVM_CAP_IOEVENTFD
1564Architectures: all
1565Type: vm ioctl
1566Parameters: struct kvm_ioeventfd (in)
1567Returns: 0 on success, !0 on error
1568
1569This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1570within the guest. A guest write in the registered address will signal the
1571provided event instead of triggering an exit.
1572
1573struct kvm_ioeventfd {
1574 __u64 datamatch;
1575 __u64 addr; /* legal pio/mmio address */
1576 __u32 len; /* 1, 2, 4, or 8 bytes */
1577 __s32 fd;
1578 __u32 flags;
1579 __u8 pad[36];
1580};
1581
2b83451b
CH
1582For the special case of virtio-ccw devices on s390, the ioevent is matched
1583to a subchannel/virtqueue tuple instead.
1584
55399a02
SL
1585The following flags are defined:
1586
1587#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1588#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1589#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
2b83451b
CH
1590#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1591 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1592
1593If datamatch flag is set, the event will be signaled only if the written value
1594to the registered address is equal to datamatch in struct kvm_ioeventfd.
1595
2b83451b
CH
1596For virtio-ccw devices, addr contains the subchannel id and datamatch the
1597virtqueue index.
1598
414fa985
JK
1599
16004.60 KVM_DIRTY_TLB
dc83b8bc
SW
1601
1602Capability: KVM_CAP_SW_TLB
1603Architectures: ppc
1604Type: vcpu ioctl
1605Parameters: struct kvm_dirty_tlb (in)
1606Returns: 0 on success, -1 on error
1607
1608struct kvm_dirty_tlb {
1609 __u64 bitmap;
1610 __u32 num_dirty;
1611};
1612
1613This must be called whenever userspace has changed an entry in the shared
1614TLB, prior to calling KVM_RUN on the associated vcpu.
1615
1616The "bitmap" field is the userspace address of an array. This array
1617consists of a number of bits, equal to the total number of TLB entries as
1618determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1619nearest multiple of 64.
1620
1621Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1622array.
1623
1624The array is little-endian: the bit 0 is the least significant bit of the
1625first byte, bit 8 is the least significant bit of the second byte, etc.
1626This avoids any complications with differing word sizes.
1627
1628The "num_dirty" field is a performance hint for KVM to determine whether it
1629should skip processing the bitmap and just invalidate everything. It must
1630be set to the number of set bits in the bitmap.
1631
414fa985
JK
1632
16334.61 KVM_ASSIGN_SET_INTX_MASK
07700a94
JK
1634
1635Capability: KVM_CAP_PCI_2_3
1636Architectures: x86
1637Type: vm ioctl
1638Parameters: struct kvm_assigned_pci_dev (in)
1639Returns: 0 on success, -1 on error
1640
1641Allows userspace to mask PCI INTx interrupts from the assigned device. The
1642kernel will not deliver INTx interrupts to the guest between setting and
1643clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1644and emulation of PCI 2.3 INTx disable command register behavior.
1645
1646This may be used for both PCI 2.3 devices supporting INTx disable natively and
1647older devices lacking this support. Userspace is responsible for emulating the
1648read value of the INTx disable bit in the guest visible PCI command register.
1649When modifying the INTx disable state, userspace should precede updating the
1650physical device command register by calling this ioctl to inform the kernel of
1651the new intended INTx mask state.
1652
1653Note that the kernel uses the device INTx disable bit to internally manage the
1654device interrupt state for PCI 2.3 devices. Reads of this register may
1655therefore not match the expected value. Writes should always use the guest
1656intended INTx disable value rather than attempting to read-copy-update the
1657current physical device state. Races between user and kernel updates to the
1658INTx disable bit are handled lazily in the kernel. It's possible the device
1659may generate unintended interrupts, but they will not be injected into the
1660guest.
1661
1662See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1663by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1664evaluated.
1665
414fa985 1666
54738c09
DG
16674.62 KVM_CREATE_SPAPR_TCE
1668
1669Capability: KVM_CAP_SPAPR_TCE
1670Architectures: powerpc
1671Type: vm ioctl
1672Parameters: struct kvm_create_spapr_tce (in)
1673Returns: file descriptor for manipulating the created TCE table
1674
1675This creates a virtual TCE (translation control entry) table, which
1676is an IOMMU for PAPR-style virtual I/O. It is used to translate
1677logical addresses used in virtual I/O into guest physical addresses,
1678and provides a scatter/gather capability for PAPR virtual I/O.
1679
1680/* for KVM_CAP_SPAPR_TCE */
1681struct kvm_create_spapr_tce {
1682 __u64 liobn;
1683 __u32 window_size;
1684};
1685
1686The liobn field gives the logical IO bus number for which to create a
1687TCE table. The window_size field specifies the size of the DMA window
1688which this TCE table will translate - the table will contain one 64
1689bit TCE entry for every 4kiB of the DMA window.
1690
1691When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1692table has been created using this ioctl(), the kernel will handle it
1693in real mode, updating the TCE table. H_PUT_TCE calls for other
1694liobns will cause a vm exit and must be handled by userspace.
1695
1696The return value is a file descriptor which can be passed to mmap(2)
1697to map the created TCE table into userspace. This lets userspace read
1698the entries written by kernel-handled H_PUT_TCE calls, and also lets
1699userspace update the TCE table directly which is useful in some
1700circumstances.
1701
414fa985 1702
aa04b4cc
PM
17034.63 KVM_ALLOCATE_RMA
1704
1705Capability: KVM_CAP_PPC_RMA
1706Architectures: powerpc
1707Type: vm ioctl
1708Parameters: struct kvm_allocate_rma (out)
1709Returns: file descriptor for mapping the allocated RMA
1710
1711This allocates a Real Mode Area (RMA) from the pool allocated at boot
1712time by the kernel. An RMA is a physically-contiguous, aligned region
1713of memory used on older POWER processors to provide the memory which
1714will be accessed by real-mode (MMU off) accesses in a KVM guest.
1715POWER processors support a set of sizes for the RMA that usually
1716includes 64MB, 128MB, 256MB and some larger powers of two.
1717
1718/* for KVM_ALLOCATE_RMA */
1719struct kvm_allocate_rma {
1720 __u64 rma_size;
1721};
1722
1723The return value is a file descriptor which can be passed to mmap(2)
1724to map the allocated RMA into userspace. The mapped area can then be
1725passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1726RMA for a virtual machine. The size of the RMA in bytes (which is
1727fixed at host kernel boot time) is returned in the rma_size field of
1728the argument structure.
1729
1730The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1731is supported; 2 if the processor requires all virtual machines to have
1732an RMA, or 1 if the processor can use an RMA but doesn't require it,
1733because it supports the Virtual RMA (VRMA) facility.
1734
414fa985 1735
3f745f1e
AK
17364.64 KVM_NMI
1737
1738Capability: KVM_CAP_USER_NMI
1739Architectures: x86
1740Type: vcpu ioctl
1741Parameters: none
1742Returns: 0 on success, -1 on error
1743
1744Queues an NMI on the thread's vcpu. Note this is well defined only
1745when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1746between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1747has been called, this interface is completely emulated within the kernel.
1748
1749To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1750following algorithm:
1751
1752 - pause the vpcu
1753 - read the local APIC's state (KVM_GET_LAPIC)
1754 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1755 - if so, issue KVM_NMI
1756 - resume the vcpu
1757
1758Some guests configure the LINT1 NMI input to cause a panic, aiding in
1759debugging.
1760
414fa985 1761
e24ed81f 17624.65 KVM_S390_UCAS_MAP
27e0393f
CO
1763
1764Capability: KVM_CAP_S390_UCONTROL
1765Architectures: s390
1766Type: vcpu ioctl
1767Parameters: struct kvm_s390_ucas_mapping (in)
1768Returns: 0 in case of success
1769
1770The parameter is defined like this:
1771 struct kvm_s390_ucas_mapping {
1772 __u64 user_addr;
1773 __u64 vcpu_addr;
1774 __u64 length;
1775 };
1776
1777This ioctl maps the memory at "user_addr" with the length "length" to
1778the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 1779be aligned by 1 megabyte.
27e0393f 1780
414fa985 1781
e24ed81f 17824.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1783
1784Capability: KVM_CAP_S390_UCONTROL
1785Architectures: s390
1786Type: vcpu ioctl
1787Parameters: struct kvm_s390_ucas_mapping (in)
1788Returns: 0 in case of success
1789
1790The parameter is defined like this:
1791 struct kvm_s390_ucas_mapping {
1792 __u64 user_addr;
1793 __u64 vcpu_addr;
1794 __u64 length;
1795 };
1796
1797This ioctl unmaps the memory in the vcpu's address space starting at
1798"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 1799All parameters need to be aligned by 1 megabyte.
27e0393f 1800
414fa985 1801
e24ed81f 18024.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1803
1804Capability: KVM_CAP_S390_UCONTROL
1805Architectures: s390
1806Type: vcpu ioctl
1807Parameters: vcpu absolute address (in)
1808Returns: 0 in case of success
1809
1810This call creates a page table entry on the virtual cpu's address space
1811(for user controlled virtual machines) or the virtual machine's address
1812space (for regular virtual machines). This only works for minor faults,
1813thus it's recommended to access subject memory page via the user page
1814table upfront. This is useful to handle validity intercepts for user
1815controlled virtual machines to fault in the virtual cpu's lowcore pages
1816prior to calling the KVM_RUN ioctl.
1817
414fa985 1818
e24ed81f
AG
18194.68 KVM_SET_ONE_REG
1820
1821Capability: KVM_CAP_ONE_REG
1822Architectures: all
1823Type: vcpu ioctl
1824Parameters: struct kvm_one_reg (in)
1825Returns: 0 on success, negative value on failure
1826
1827struct kvm_one_reg {
1828 __u64 id;
1829 __u64 addr;
1830};
1831
1832Using this ioctl, a single vcpu register can be set to a specific value
1833defined by user space with the passed in struct kvm_one_reg, where id
1834refers to the register identifier as described below and addr is a pointer
1835to a variable with the respective size. There can be architecture agnostic
1836and architecture specific registers. Each have their own range of operation
1837and their own constants and width. To keep track of the implemented
1838registers, find a list below:
1839
bf5590f3
JH
1840 Arch | Register | Width (bits)
1841 | |
1842 PPC | KVM_REG_PPC_HIOR | 64
1843 PPC | KVM_REG_PPC_IAC1 | 64
1844 PPC | KVM_REG_PPC_IAC2 | 64
1845 PPC | KVM_REG_PPC_IAC3 | 64
1846 PPC | KVM_REG_PPC_IAC4 | 64
1847 PPC | KVM_REG_PPC_DAC1 | 64
1848 PPC | KVM_REG_PPC_DAC2 | 64
1849 PPC | KVM_REG_PPC_DABR | 64
1850 PPC | KVM_REG_PPC_DSCR | 64
1851 PPC | KVM_REG_PPC_PURR | 64
1852 PPC | KVM_REG_PPC_SPURR | 64
1853 PPC | KVM_REG_PPC_DAR | 64
1854 PPC | KVM_REG_PPC_DSISR | 32
1855 PPC | KVM_REG_PPC_AMR | 64
1856 PPC | KVM_REG_PPC_UAMOR | 64
1857 PPC | KVM_REG_PPC_MMCR0 | 64
1858 PPC | KVM_REG_PPC_MMCR1 | 64
1859 PPC | KVM_REG_PPC_MMCRA | 64
1860 PPC | KVM_REG_PPC_MMCR2 | 64
1861 PPC | KVM_REG_PPC_MMCRS | 64
1862 PPC | KVM_REG_PPC_SIAR | 64
1863 PPC | KVM_REG_PPC_SDAR | 64
1864 PPC | KVM_REG_PPC_SIER | 64
1865 PPC | KVM_REG_PPC_PMC1 | 32
1866 PPC | KVM_REG_PPC_PMC2 | 32
1867 PPC | KVM_REG_PPC_PMC3 | 32
1868 PPC | KVM_REG_PPC_PMC4 | 32
1869 PPC | KVM_REG_PPC_PMC5 | 32
1870 PPC | KVM_REG_PPC_PMC6 | 32
1871 PPC | KVM_REG_PPC_PMC7 | 32
1872 PPC | KVM_REG_PPC_PMC8 | 32
1873 PPC | KVM_REG_PPC_FPR0 | 64
a8bd19ef 1874 ...
bf5590f3
JH
1875 PPC | KVM_REG_PPC_FPR31 | 64
1876 PPC | KVM_REG_PPC_VR0 | 128
a8bd19ef 1877 ...
bf5590f3
JH
1878 PPC | KVM_REG_PPC_VR31 | 128
1879 PPC | KVM_REG_PPC_VSR0 | 128
a8bd19ef 1880 ...
bf5590f3
JH
1881 PPC | KVM_REG_PPC_VSR31 | 128
1882 PPC | KVM_REG_PPC_FPSCR | 64
1883 PPC | KVM_REG_PPC_VSCR | 32
1884 PPC | KVM_REG_PPC_VPA_ADDR | 64
1885 PPC | KVM_REG_PPC_VPA_SLB | 128
1886 PPC | KVM_REG_PPC_VPA_DTL | 128
1887 PPC | KVM_REG_PPC_EPCR | 32
1888 PPC | KVM_REG_PPC_EPR | 32
1889 PPC | KVM_REG_PPC_TCR | 32
1890 PPC | KVM_REG_PPC_TSR | 32
1891 PPC | KVM_REG_PPC_OR_TSR | 32
1892 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1893 PPC | KVM_REG_PPC_MAS0 | 32
1894 PPC | KVM_REG_PPC_MAS1 | 32
1895 PPC | KVM_REG_PPC_MAS2 | 64
1896 PPC | KVM_REG_PPC_MAS7_3 | 64
1897 PPC | KVM_REG_PPC_MAS4 | 32
1898 PPC | KVM_REG_PPC_MAS6 | 32
1899 PPC | KVM_REG_PPC_MMUCFG | 32
1900 PPC | KVM_REG_PPC_TLB0CFG | 32
1901 PPC | KVM_REG_PPC_TLB1CFG | 32
1902 PPC | KVM_REG_PPC_TLB2CFG | 32
1903 PPC | KVM_REG_PPC_TLB3CFG | 32
1904 PPC | KVM_REG_PPC_TLB0PS | 32
1905 PPC | KVM_REG_PPC_TLB1PS | 32
1906 PPC | KVM_REG_PPC_TLB2PS | 32
1907 PPC | KVM_REG_PPC_TLB3PS | 32
1908 PPC | KVM_REG_PPC_EPTCFG | 32
1909 PPC | KVM_REG_PPC_ICP_STATE | 64
1910 PPC | KVM_REG_PPC_TB_OFFSET | 64
1911 PPC | KVM_REG_PPC_SPMC1 | 32
1912 PPC | KVM_REG_PPC_SPMC2 | 32
1913 PPC | KVM_REG_PPC_IAMR | 64
1914 PPC | KVM_REG_PPC_TFHAR | 64
1915 PPC | KVM_REG_PPC_TFIAR | 64
1916 PPC | KVM_REG_PPC_TEXASR | 64
1917 PPC | KVM_REG_PPC_FSCR | 64
1918 PPC | KVM_REG_PPC_PSPB | 32
1919 PPC | KVM_REG_PPC_EBBHR | 64
1920 PPC | KVM_REG_PPC_EBBRR | 64
1921 PPC | KVM_REG_PPC_BESCR | 64
1922 PPC | KVM_REG_PPC_TAR | 64
1923 PPC | KVM_REG_PPC_DPDES | 64
1924 PPC | KVM_REG_PPC_DAWR | 64
1925 PPC | KVM_REG_PPC_DAWRX | 64
1926 PPC | KVM_REG_PPC_CIABR | 64
1927 PPC | KVM_REG_PPC_IC | 64
1928 PPC | KVM_REG_PPC_VTB | 64
1929 PPC | KVM_REG_PPC_CSIGR | 64
1930 PPC | KVM_REG_PPC_TACR | 64
1931 PPC | KVM_REG_PPC_TCSCR | 64
1932 PPC | KVM_REG_PPC_PID | 64
1933 PPC | KVM_REG_PPC_ACOP | 64
1934 PPC | KVM_REG_PPC_VRSAVE | 32
cc568ead
PB
1935 PPC | KVM_REG_PPC_LPCR | 32
1936 PPC | KVM_REG_PPC_LPCR_64 | 64
bf5590f3
JH
1937 PPC | KVM_REG_PPC_PPR | 64
1938 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
1939 PPC | KVM_REG_PPC_DABRX | 32
1940 PPC | KVM_REG_PPC_WORT | 64
bc8a4e5c
BB
1941 PPC | KVM_REG_PPC_SPRG9 | 64
1942 PPC | KVM_REG_PPC_DBSR | 32
bf5590f3 1943 PPC | KVM_REG_PPC_TM_GPR0 | 64
3b783474 1944 ...
bf5590f3
JH
1945 PPC | KVM_REG_PPC_TM_GPR31 | 64
1946 PPC | KVM_REG_PPC_TM_VSR0 | 128
3b783474 1947 ...
bf5590f3
JH
1948 PPC | KVM_REG_PPC_TM_VSR63 | 128
1949 PPC | KVM_REG_PPC_TM_CR | 64
1950 PPC | KVM_REG_PPC_TM_LR | 64
1951 PPC | KVM_REG_PPC_TM_CTR | 64
1952 PPC | KVM_REG_PPC_TM_FPSCR | 64
1953 PPC | KVM_REG_PPC_TM_AMR | 64
1954 PPC | KVM_REG_PPC_TM_PPR | 64
1955 PPC | KVM_REG_PPC_TM_VRSAVE | 64
1956 PPC | KVM_REG_PPC_TM_VSCR | 32
1957 PPC | KVM_REG_PPC_TM_DSCR | 64
1958 PPC | KVM_REG_PPC_TM_TAR | 64
c2d2c21b
JH
1959 | |
1960 MIPS | KVM_REG_MIPS_R0 | 64
1961 ...
1962 MIPS | KVM_REG_MIPS_R31 | 64
1963 MIPS | KVM_REG_MIPS_HI | 64
1964 MIPS | KVM_REG_MIPS_LO | 64
1965 MIPS | KVM_REG_MIPS_PC | 64
1966 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
1967 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
1968 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
1969 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
1970 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
1971 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
1972 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
1973 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
1974 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
1975 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
1976 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
1977 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
1978 MIPS | KVM_REG_MIPS_CP0_EPC | 64
1068eaaf 1979 MIPS | KVM_REG_MIPS_CP0_PRID | 32
c2d2c21b
JH
1980 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
1981 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
1982 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
1983 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
c771607a
JH
1984 MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32
1985 MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32
c2d2c21b
JH
1986 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
1987 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
1988 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
1989 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
1990 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
379245cd
JH
1991 MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32
1992 MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64
ab86bd60 1993 MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128
379245cd
JH
1994 MIPS | KVM_REG_MIPS_FCR_IR | 32
1995 MIPS | KVM_REG_MIPS_FCR_CSR | 32
ab86bd60
JH
1996 MIPS | KVM_REG_MIPS_MSA_IR | 32
1997 MIPS | KVM_REG_MIPS_MSA_CSR | 32
414fa985 1998
749cf76c
CD
1999ARM registers are mapped using the lower 32 bits. The upper 16 of that
2000is the register group type, or coprocessor number:
2001
2002ARM core registers have the following id bit patterns:
aa404ddf 2003 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 2004
1138245c 2005ARM 32-bit CP15 registers have the following id bit patterns:
aa404ddf 2006 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c
CD
2007
2008ARM 64-bit CP15 registers have the following id bit patterns:
aa404ddf 2009 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 2010
c27581ed 2011ARM CCSIDR registers are demultiplexed by CSSELR value:
aa404ddf 2012 0x4020 0000 0011 00 <csselr:8>
749cf76c 2013
4fe21e4c 2014ARM 32-bit VFP control registers have the following id bit patterns:
aa404ddf 2015 0x4020 0000 0012 1 <regno:12>
4fe21e4c
RR
2016
2017ARM 64-bit FP registers have the following id bit patterns:
aa404ddf 2018 0x4030 0000 0012 0 <regno:12>
4fe21e4c 2019
379e04c7
MZ
2020
2021arm64 registers are mapped using the lower 32 bits. The upper 16 of
2022that is the register group type, or coprocessor number:
2023
2024arm64 core/FP-SIMD registers have the following id bit patterns. Note
2025that the size of the access is variable, as the kvm_regs structure
2026contains elements ranging from 32 to 128 bits. The index is a 32bit
2027value in the kvm_regs structure seen as a 32bit array.
2028 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2029
2030arm64 CCSIDR registers are demultiplexed by CSSELR value:
2031 0x6020 0000 0011 00 <csselr:8>
2032
2033arm64 system registers have the following id bit patterns:
2034 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2035
c2d2c21b
JH
2036
2037MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2038the register group type:
2039
2040MIPS core registers (see above) have the following id bit patterns:
2041 0x7030 0000 0000 <reg:16>
2042
2043MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
2044patterns depending on whether they're 32-bit or 64-bit registers:
2045 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2046 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2047
2048MIPS KVM control registers (see above) have the following id bit patterns:
2049 0x7030 0000 0002 <reg:16>
2050
379245cd
JH
2051MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
2052id bit patterns depending on the size of the register being accessed. They are
2053always accessed according to the current guest FPU mode (Status.FR and
2054Config5.FRE), i.e. as the guest would see them, and they become unpredictable
ab86bd60
JH
2055if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
2056registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
2057overlap the FPU registers:
379245cd
JH
2058 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
2059 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
ab86bd60 2060 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
379245cd
JH
2061
2062MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
2063following id bit patterns:
2064 0x7020 0000 0003 01 <0:3> <reg:5>
2065
ab86bd60
JH
2066MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
2067following id bit patterns:
2068 0x7020 0000 0003 02 <0:3> <reg:5>
2069
c2d2c21b 2070
e24ed81f
AG
20714.69 KVM_GET_ONE_REG
2072
2073Capability: KVM_CAP_ONE_REG
2074Architectures: all
2075Type: vcpu ioctl
2076Parameters: struct kvm_one_reg (in and out)
2077Returns: 0 on success, negative value on failure
2078
2079This ioctl allows to receive the value of a single register implemented
2080in a vcpu. The register to read is indicated by the "id" field of the
2081kvm_one_reg struct passed in. On success, the register value can be found
2082at the memory location pointed to by "addr".
2083
2084The list of registers accessible using this interface is identical to the
2e232702 2085list in 4.68.
e24ed81f 2086
414fa985 2087
1c0b28c2
EM
20884.70 KVM_KVMCLOCK_CTRL
2089
2090Capability: KVM_CAP_KVMCLOCK_CTRL
2091Architectures: Any that implement pvclocks (currently x86 only)
2092Type: vcpu ioctl
2093Parameters: None
2094Returns: 0 on success, -1 on error
2095
2096This signals to the host kernel that the specified guest is being paused by
2097userspace. The host will set a flag in the pvclock structure that is checked
2098from the soft lockup watchdog. The flag is part of the pvclock structure that
2099is shared between guest and host, specifically the second bit of the flags
2100field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2101the host and read/cleared exclusively by the guest. The guest operation of
2102checking and clearing the flag must an atomic operation so
2103load-link/store-conditional, or equivalent must be used. There are two cases
2104where the guest will clear the flag: when the soft lockup watchdog timer resets
2105itself or when a soft lockup is detected. This ioctl can be called any time
2106after pausing the vcpu, but before it is resumed.
2107
414fa985 2108
07975ad3
JK
21094.71 KVM_SIGNAL_MSI
2110
2111Capability: KVM_CAP_SIGNAL_MSI
2112Architectures: x86
2113Type: vm ioctl
2114Parameters: struct kvm_msi (in)
2115Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2116
2117Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2118MSI messages.
2119
2120struct kvm_msi {
2121 __u32 address_lo;
2122 __u32 address_hi;
2123 __u32 data;
2124 __u32 flags;
2125 __u8 pad[16];
2126};
2127
2128No flags are defined so far. The corresponding field must be 0.
2129
414fa985 2130
0589ff6c
JK
21314.71 KVM_CREATE_PIT2
2132
2133Capability: KVM_CAP_PIT2
2134Architectures: x86
2135Type: vm ioctl
2136Parameters: struct kvm_pit_config (in)
2137Returns: 0 on success, -1 on error
2138
2139Creates an in-kernel device model for the i8254 PIT. This call is only valid
2140after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2141parameters have to be passed:
2142
2143struct kvm_pit_config {
2144 __u32 flags;
2145 __u32 pad[15];
2146};
2147
2148Valid flags are:
2149
2150#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2151
b6ddf05f
JK
2152PIT timer interrupts may use a per-VM kernel thread for injection. If it
2153exists, this thread will have a name of the following pattern:
2154
2155kvm-pit/<owner-process-pid>
2156
2157When running a guest with elevated priorities, the scheduling parameters of
2158this thread may have to be adjusted accordingly.
2159
0589ff6c
JK
2160This IOCTL replaces the obsolete KVM_CREATE_PIT.
2161
2162
21634.72 KVM_GET_PIT2
2164
2165Capability: KVM_CAP_PIT_STATE2
2166Architectures: x86
2167Type: vm ioctl
2168Parameters: struct kvm_pit_state2 (out)
2169Returns: 0 on success, -1 on error
2170
2171Retrieves the state of the in-kernel PIT model. Only valid after
2172KVM_CREATE_PIT2. The state is returned in the following structure:
2173
2174struct kvm_pit_state2 {
2175 struct kvm_pit_channel_state channels[3];
2176 __u32 flags;
2177 __u32 reserved[9];
2178};
2179
2180Valid flags are:
2181
2182/* disable PIT in HPET legacy mode */
2183#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2184
2185This IOCTL replaces the obsolete KVM_GET_PIT.
2186
2187
21884.73 KVM_SET_PIT2
2189
2190Capability: KVM_CAP_PIT_STATE2
2191Architectures: x86
2192Type: vm ioctl
2193Parameters: struct kvm_pit_state2 (in)
2194Returns: 0 on success, -1 on error
2195
2196Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2197See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2198
2199This IOCTL replaces the obsolete KVM_SET_PIT.
2200
2201
5b74716e
BH
22024.74 KVM_PPC_GET_SMMU_INFO
2203
2204Capability: KVM_CAP_PPC_GET_SMMU_INFO
2205Architectures: powerpc
2206Type: vm ioctl
2207Parameters: None
2208Returns: 0 on success, -1 on error
2209
2210This populates and returns a structure describing the features of
2211the "Server" class MMU emulation supported by KVM.
cc22c354 2212This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2213device-tree properties for the guest operating system.
2214
c98be0c9 2215The structure contains some global information, followed by an
5b74716e
BH
2216array of supported segment page sizes:
2217
2218 struct kvm_ppc_smmu_info {
2219 __u64 flags;
2220 __u32 slb_size;
2221 __u32 pad;
2222 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2223 };
2224
2225The supported flags are:
2226
2227 - KVM_PPC_PAGE_SIZES_REAL:
2228 When that flag is set, guest page sizes must "fit" the backing
2229 store page sizes. When not set, any page size in the list can
2230 be used regardless of how they are backed by userspace.
2231
2232 - KVM_PPC_1T_SEGMENTS
2233 The emulated MMU supports 1T segments in addition to the
2234 standard 256M ones.
2235
2236The "slb_size" field indicates how many SLB entries are supported
2237
2238The "sps" array contains 8 entries indicating the supported base
2239page sizes for a segment in increasing order. Each entry is defined
2240as follow:
2241
2242 struct kvm_ppc_one_seg_page_size {
2243 __u32 page_shift; /* Base page shift of segment (or 0) */
2244 __u32 slb_enc; /* SLB encoding for BookS */
2245 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2246 };
2247
2248An entry with a "page_shift" of 0 is unused. Because the array is
2249organized in increasing order, a lookup can stop when encoutering
2250such an entry.
2251
2252The "slb_enc" field provides the encoding to use in the SLB for the
2253page size. The bits are in positions such as the value can directly
2254be OR'ed into the "vsid" argument of the slbmte instruction.
2255
2256The "enc" array is a list which for each of those segment base page
2257size provides the list of supported actual page sizes (which can be
2258only larger or equal to the base page size), along with the
f884ab15 2259corresponding encoding in the hash PTE. Similarly, the array is
5b74716e
BH
22608 entries sorted by increasing sizes and an entry with a "0" shift
2261is an empty entry and a terminator:
2262
2263 struct kvm_ppc_one_page_size {
2264 __u32 page_shift; /* Page shift (or 0) */
2265 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2266 };
2267
2268The "pte_enc" field provides a value that can OR'ed into the hash
2269PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2270into the hash PTE second double word).
2271
f36992e3
AW
22724.75 KVM_IRQFD
2273
2274Capability: KVM_CAP_IRQFD
174178fe 2275Architectures: x86 s390 arm arm64
f36992e3
AW
2276Type: vm ioctl
2277Parameters: struct kvm_irqfd (in)
2278Returns: 0 on success, -1 on error
2279
2280Allows setting an eventfd to directly trigger a guest interrupt.
2281kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2282kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
17180032 2283an event is triggered on the eventfd, an interrupt is injected into
f36992e3
AW
2284the guest using the specified gsi pin. The irqfd is removed using
2285the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2286and kvm_irqfd.gsi.
2287
7a84428a
AW
2288With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2289mechanism allowing emulation of level-triggered, irqfd-based
2290interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2291additional eventfd in the kvm_irqfd.resamplefd field. When operating
2292in resample mode, posting of an interrupt through kvm_irq.fd asserts
2293the specified gsi in the irqchip. When the irqchip is resampled, such
17180032 2294as from an EOI, the gsi is de-asserted and the user is notified via
7a84428a
AW
2295kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2296the interrupt if the device making use of it still requires service.
2297Note that closing the resamplefd is not sufficient to disable the
2298irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2299and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2300
174178fe
EA
2301On ARM/ARM64, the gsi field in the kvm_irqfd struct specifies the Shared
2302Peripheral Interrupt (SPI) index, such that the GIC interrupt ID is
2303given by gsi + 32.
2304
5fecc9d8 23054.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2306
2307Capability: KVM_CAP_PPC_ALLOC_HTAB
2308Architectures: powerpc
2309Type: vm ioctl
2310Parameters: Pointer to u32 containing hash table order (in/out)
2311Returns: 0 on success, -1 on error
2312
2313This requests the host kernel to allocate an MMU hash table for a
2314guest using the PAPR paravirtualization interface. This only does
2315anything if the kernel is configured to use the Book 3S HV style of
2316virtualization. Otherwise the capability doesn't exist and the ioctl
2317returns an ENOTTY error. The rest of this description assumes Book 3S
2318HV.
2319
2320There must be no vcpus running when this ioctl is called; if there
2321are, it will do nothing and return an EBUSY error.
2322
2323The parameter is a pointer to a 32-bit unsigned integer variable
2324containing the order (log base 2) of the desired size of the hash
2325table, which must be between 18 and 46. On successful return from the
2326ioctl, it will have been updated with the order of the hash table that
2327was allocated.
2328
2329If no hash table has been allocated when any vcpu is asked to run
2330(with the KVM_RUN ioctl), the host kernel will allocate a
2331default-sized hash table (16 MB).
2332
2333If this ioctl is called when a hash table has already been allocated,
2334the kernel will clear out the existing hash table (zero all HPTEs) and
2335return the hash table order in the parameter. (If the guest is using
2336the virtualized real-mode area (VRMA) facility, the kernel will
2337re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2338
416ad65f
CH
23394.77 KVM_S390_INTERRUPT
2340
2341Capability: basic
2342Architectures: s390
2343Type: vm ioctl, vcpu ioctl
2344Parameters: struct kvm_s390_interrupt (in)
2345Returns: 0 on success, -1 on error
2346
2347Allows to inject an interrupt to the guest. Interrupts can be floating
2348(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2349
2350Interrupt parameters are passed via kvm_s390_interrupt:
2351
2352struct kvm_s390_interrupt {
2353 __u32 type;
2354 __u32 parm;
2355 __u64 parm64;
2356};
2357
2358type can be one of the following:
2359
2822545f 2360KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
416ad65f
CH
2361KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2362KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2363KVM_S390_RESTART (vcpu) - restart
e029ae5b
TH
2364KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2365KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
416ad65f
CH
2366KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2367 parameters in parm and parm64
2368KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2369KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2370KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2371KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2372 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2373 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2374 interruption subclass)
48a3e950
CH
2375KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2376 machine check interrupt code in parm64 (note that
2377 machine checks needing further payload are not
2378 supported by this ioctl)
416ad65f
CH
2379
2380Note that the vcpu ioctl is asynchronous to vcpu execution.
2381
a2932923
PM
23824.78 KVM_PPC_GET_HTAB_FD
2383
2384Capability: KVM_CAP_PPC_HTAB_FD
2385Architectures: powerpc
2386Type: vm ioctl
2387Parameters: Pointer to struct kvm_get_htab_fd (in)
2388Returns: file descriptor number (>= 0) on success, -1 on error
2389
2390This returns a file descriptor that can be used either to read out the
2391entries in the guest's hashed page table (HPT), or to write entries to
2392initialize the HPT. The returned fd can only be written to if the
2393KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2394can only be read if that bit is clear. The argument struct looks like
2395this:
2396
2397/* For KVM_PPC_GET_HTAB_FD */
2398struct kvm_get_htab_fd {
2399 __u64 flags;
2400 __u64 start_index;
2401 __u64 reserved[2];
2402};
2403
2404/* Values for kvm_get_htab_fd.flags */
2405#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2406#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2407
2408The `start_index' field gives the index in the HPT of the entry at
2409which to start reading. It is ignored when writing.
2410
2411Reads on the fd will initially supply information about all
2412"interesting" HPT entries. Interesting entries are those with the
2413bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2414all entries. When the end of the HPT is reached, the read() will
2415return. If read() is called again on the fd, it will start again from
2416the beginning of the HPT, but will only return HPT entries that have
2417changed since they were last read.
2418
2419Data read or written is structured as a header (8 bytes) followed by a
2420series of valid HPT entries (16 bytes) each. The header indicates how
2421many valid HPT entries there are and how many invalid entries follow
2422the valid entries. The invalid entries are not represented explicitly
2423in the stream. The header format is:
2424
2425struct kvm_get_htab_header {
2426 __u32 index;
2427 __u16 n_valid;
2428 __u16 n_invalid;
2429};
2430
2431Writes to the fd create HPT entries starting at the index given in the
2432header; first `n_valid' valid entries with contents from the data
2433written, then `n_invalid' invalid entries, invalidating any previously
2434valid entries found.
2435
852b6d57
SW
24364.79 KVM_CREATE_DEVICE
2437
2438Capability: KVM_CAP_DEVICE_CTRL
2439Type: vm ioctl
2440Parameters: struct kvm_create_device (in/out)
2441Returns: 0 on success, -1 on error
2442Errors:
2443 ENODEV: The device type is unknown or unsupported
2444 EEXIST: Device already created, and this type of device may not
2445 be instantiated multiple times
2446
2447 Other error conditions may be defined by individual device types or
2448 have their standard meanings.
2449
2450Creates an emulated device in the kernel. The file descriptor returned
2451in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2452
2453If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2454device type is supported (not necessarily whether it can be created
2455in the current vm).
2456
2457Individual devices should not define flags. Attributes should be used
2458for specifying any behavior that is not implied by the device type
2459number.
2460
2461struct kvm_create_device {
2462 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2463 __u32 fd; /* out: device handle */
2464 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2465};
2466
24674.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2468
f2061656
DD
2469Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2470Type: device ioctl, vm ioctl
852b6d57
SW
2471Parameters: struct kvm_device_attr
2472Returns: 0 on success, -1 on error
2473Errors:
2474 ENXIO: The group or attribute is unknown/unsupported for this device
2475 EPERM: The attribute cannot (currently) be accessed this way
2476 (e.g. read-only attribute, or attribute that only makes
2477 sense when the device is in a different state)
2478
2479 Other error conditions may be defined by individual device types.
2480
2481Gets/sets a specified piece of device configuration and/or state. The
2482semantics are device-specific. See individual device documentation in
2483the "devices" directory. As with ONE_REG, the size of the data
2484transferred is defined by the particular attribute.
2485
2486struct kvm_device_attr {
2487 __u32 flags; /* no flags currently defined */
2488 __u32 group; /* device-defined */
2489 __u64 attr; /* group-defined */
2490 __u64 addr; /* userspace address of attr data */
2491};
2492
24934.81 KVM_HAS_DEVICE_ATTR
2494
f2061656
DD
2495Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2496Type: device ioctl, vm ioctl
852b6d57
SW
2497Parameters: struct kvm_device_attr
2498Returns: 0 on success, -1 on error
2499Errors:
2500 ENXIO: The group or attribute is unknown/unsupported for this device
2501
2502Tests whether a device supports a particular attribute. A successful
2503return indicates the attribute is implemented. It does not necessarily
2504indicate that the attribute can be read or written in the device's
2505current state. "addr" is ignored.
f36992e3 2506
d8968f1f 25074.82 KVM_ARM_VCPU_INIT
749cf76c
CD
2508
2509Capability: basic
379e04c7 2510Architectures: arm, arm64
749cf76c 2511Type: vcpu ioctl
beb11fc7 2512Parameters: struct kvm_vcpu_init (in)
749cf76c
CD
2513Returns: 0 on success; -1 on error
2514Errors:
2515  EINVAL:    the target is unknown, or the combination of features is invalid.
2516  ENOENT:    a features bit specified is unknown.
2517
2518This tells KVM what type of CPU to present to the guest, and what
2519optional features it should have.  This will cause a reset of the cpu
2520registers to their initial values.  If this is not called, KVM_RUN will
2521return ENOEXEC for that vcpu.
2522
2523Note that because some registers reflect machine topology, all vcpus
2524should be created before this ioctl is invoked.
2525
f7fa034d
CD
2526Userspace can call this function multiple times for a given vcpu, including
2527after the vcpu has been run. This will reset the vcpu to its initial
2528state. All calls to this function after the initial call must use the same
2529target and same set of feature flags, otherwise EINVAL will be returned.
2530
aa024c2f
MZ
2531Possible features:
2532 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
3ad8b3de
CD
2533 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2534 and execute guest code when KVM_RUN is called.
379e04c7
MZ
2535 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2536 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
50bb0c94
AP
2537 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2538 Depends on KVM_CAP_ARM_PSCI_0_2.
aa024c2f 2539
749cf76c 2540
740edfc0
AP
25414.83 KVM_ARM_PREFERRED_TARGET
2542
2543Capability: basic
2544Architectures: arm, arm64
2545Type: vm ioctl
2546Parameters: struct struct kvm_vcpu_init (out)
2547Returns: 0 on success; -1 on error
2548Errors:
a7265fb1 2549 ENODEV: no preferred target available for the host
740edfc0
AP
2550
2551This queries KVM for preferred CPU target type which can be emulated
2552by KVM on underlying host.
2553
2554The ioctl returns struct kvm_vcpu_init instance containing information
2555about preferred CPU target type and recommended features for it. The
2556kvm_vcpu_init->features bitmap returned will have feature bits set if
2557the preferred target recommends setting these features, but this is
2558not mandatory.
2559
2560The information returned by this ioctl can be used to prepare an instance
2561of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2562in VCPU matching underlying host.
2563
2564
25654.84 KVM_GET_REG_LIST
749cf76c
CD
2566
2567Capability: basic
c2d2c21b 2568Architectures: arm, arm64, mips
749cf76c
CD
2569Type: vcpu ioctl
2570Parameters: struct kvm_reg_list (in/out)
2571Returns: 0 on success; -1 on error
2572Errors:
2573  E2BIG:     the reg index list is too big to fit in the array specified by
2574             the user (the number required will be written into n).
2575
2576struct kvm_reg_list {
2577 __u64 n; /* number of registers in reg[] */
2578 __u64 reg[0];
2579};
2580
2581This ioctl returns the guest registers that are supported for the
2582KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2583
ce01e4e8
CD
2584
25854.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
3401d546
CD
2586
2587Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
379e04c7 2588Architectures: arm, arm64
3401d546
CD
2589Type: vm ioctl
2590Parameters: struct kvm_arm_device_address (in)
2591Returns: 0 on success, -1 on error
2592Errors:
2593 ENODEV: The device id is unknown
2594 ENXIO: Device not supported on current system
2595 EEXIST: Address already set
2596 E2BIG: Address outside guest physical address space
330690cd 2597 EBUSY: Address overlaps with other device range
3401d546
CD
2598
2599struct kvm_arm_device_addr {
2600 __u64 id;
2601 __u64 addr;
2602};
2603
2604Specify a device address in the guest's physical address space where guests
2605can access emulated or directly exposed devices, which the host kernel needs
2606to know about. The id field is an architecture specific identifier for a
2607specific device.
2608
379e04c7
MZ
2609ARM/arm64 divides the id field into two parts, a device id and an
2610address type id specific to the individual device.
3401d546
CD
2611
2612  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2613 field: | 0x00000000 | device id | addr type id |
2614
379e04c7
MZ
2615ARM/arm64 currently only require this when using the in-kernel GIC
2616support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2617as the device id. When setting the base address for the guest's
2618mapping of the VGIC virtual CPU and distributor interface, the ioctl
2619must be called after calling KVM_CREATE_IRQCHIP, but before calling
2620KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2621base addresses will return -EEXIST.
3401d546 2622
ce01e4e8
CD
2623Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2624should be used instead.
2625
2626
740edfc0 26274.86 KVM_PPC_RTAS_DEFINE_TOKEN
8e591cb7
ME
2628
2629Capability: KVM_CAP_PPC_RTAS
2630Architectures: ppc
2631Type: vm ioctl
2632Parameters: struct kvm_rtas_token_args
2633Returns: 0 on success, -1 on error
2634
2635Defines a token value for a RTAS (Run Time Abstraction Services)
2636service in order to allow it to be handled in the kernel. The
2637argument struct gives the name of the service, which must be the name
2638of a service that has a kernel-side implementation. If the token
2639value is non-zero, it will be associated with that service, and
2640subsequent RTAS calls by the guest specifying that token will be
2641handled by the kernel. If the token value is 0, then any token
2642associated with the service will be forgotten, and subsequent RTAS
2643calls by the guest for that service will be passed to userspace to be
2644handled.
2645
4bd9d344
AB
26464.87 KVM_SET_GUEST_DEBUG
2647
2648Capability: KVM_CAP_SET_GUEST_DEBUG
2649Architectures: x86, s390, ppc
2650Type: vcpu ioctl
2651Parameters: struct kvm_guest_debug (in)
2652Returns: 0 on success; -1 on error
2653
2654struct kvm_guest_debug {
2655 __u32 control;
2656 __u32 pad;
2657 struct kvm_guest_debug_arch arch;
2658};
2659
2660Set up the processor specific debug registers and configure vcpu for
2661handling guest debug events. There are two parts to the structure, the
2662first a control bitfield indicates the type of debug events to handle
2663when running. Common control bits are:
2664
2665 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2666 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2667
2668The top 16 bits of the control field are architecture specific control
2669flags which can include the following:
2670
2671 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86]
2672 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390]
2673 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2674 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2675 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2676
2677For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2678are enabled in memory so we need to ensure breakpoint exceptions are
2679correctly trapped and the KVM run loop exits at the breakpoint and not
2680running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2681we need to ensure the guest vCPUs architecture specific registers are
2682updated to the correct (supplied) values.
2683
2684The second part of the structure is architecture specific and
2685typically contains a set of debug registers.
2686
2687When debug events exit the main run loop with the reason
2688KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2689structure containing architecture specific debug information.
3401d546 2690
209cf19f
AB
26914.88 KVM_GET_EMULATED_CPUID
2692
2693Capability: KVM_CAP_EXT_EMUL_CPUID
2694Architectures: x86
2695Type: system ioctl
2696Parameters: struct kvm_cpuid2 (in/out)
2697Returns: 0 on success, -1 on error
2698
2699struct kvm_cpuid2 {
2700 __u32 nent;
2701 __u32 flags;
2702 struct kvm_cpuid_entry2 entries[0];
2703};
2704
2705The member 'flags' is used for passing flags from userspace.
2706
2707#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2708#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2709#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2710
2711struct kvm_cpuid_entry2 {
2712 __u32 function;
2713 __u32 index;
2714 __u32 flags;
2715 __u32 eax;
2716 __u32 ebx;
2717 __u32 ecx;
2718 __u32 edx;
2719 __u32 padding[3];
2720};
2721
2722This ioctl returns x86 cpuid features which are emulated by
2723kvm.Userspace can use the information returned by this ioctl to query
2724which features are emulated by kvm instead of being present natively.
2725
2726Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2727structure with the 'nent' field indicating the number of entries in
2728the variable-size array 'entries'. If the number of entries is too low
2729to describe the cpu capabilities, an error (E2BIG) is returned. If the
2730number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2731is returned. If the number is just right, the 'nent' field is adjusted
2732to the number of valid entries in the 'entries' array, which is then
2733filled.
2734
2735The entries returned are the set CPUID bits of the respective features
2736which kvm emulates, as returned by the CPUID instruction, with unknown
2737or unsupported feature bits cleared.
2738
2739Features like x2apic, for example, may not be present in the host cpu
2740but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2741emulated efficiently and thus not included here.
2742
2743The fields in each entry are defined as follows:
2744
2745 function: the eax value used to obtain the entry
2746 index: the ecx value used to obtain the entry (for entries that are
2747 affected by ecx)
2748 flags: an OR of zero or more of the following:
2749 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2750 if the index field is valid
2751 KVM_CPUID_FLAG_STATEFUL_FUNC:
2752 if cpuid for this function returns different values for successive
2753 invocations; there will be several entries with the same function,
2754 all with this flag set
2755 KVM_CPUID_FLAG_STATE_READ_NEXT:
2756 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2757 the first entry to be read by a cpu
2758 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2759 this function/index combination
2760
41408c28
TH
27614.89 KVM_S390_MEM_OP
2762
2763Capability: KVM_CAP_S390_MEM_OP
2764Architectures: s390
2765Type: vcpu ioctl
2766Parameters: struct kvm_s390_mem_op (in)
2767Returns: = 0 on success,
2768 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2769 > 0 if an exception occurred while walking the page tables
2770
2771Read or write data from/to the logical (virtual) memory of a VPCU.
2772
2773Parameters are specified via the following structure:
2774
2775struct kvm_s390_mem_op {
2776 __u64 gaddr; /* the guest address */
2777 __u64 flags; /* flags */
2778 __u32 size; /* amount of bytes */
2779 __u32 op; /* type of operation */
2780 __u64 buf; /* buffer in userspace */
2781 __u8 ar; /* the access register number */
2782 __u8 reserved[31]; /* should be set to 0 */
2783};
2784
2785The type of operation is specified in the "op" field. It is either
2786KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2787KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2788KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2789whether the corresponding memory access would create an access exception
2790(without touching the data in the memory at the destination). In case an
2791access exception occurred while walking the MMU tables of the guest, the
2792ioctl returns a positive error number to indicate the type of exception.
2793This exception is also raised directly at the corresponding VCPU if the
2794flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2795
2796The start address of the memory region has to be specified in the "gaddr"
2797field, and the length of the region in the "size" field. "buf" is the buffer
2798supplied by the userspace application where the read data should be written
2799to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2800is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2801when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2802register number to be used.
2803
2804The "reserved" field is meant for future extensions. It is not used by
2805KVM with the currently defined set of flags.
2806
30ee2a98
JH
28074.90 KVM_S390_GET_SKEYS
2808
2809Capability: KVM_CAP_S390_SKEYS
2810Architectures: s390
2811Type: vm ioctl
2812Parameters: struct kvm_s390_skeys
2813Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2814 keys, negative value on error
2815
2816This ioctl is used to get guest storage key values on the s390
2817architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2818
2819struct kvm_s390_skeys {
2820 __u64 start_gfn;
2821 __u64 count;
2822 __u64 skeydata_addr;
2823 __u32 flags;
2824 __u32 reserved[9];
2825};
2826
2827The start_gfn field is the number of the first guest frame whose storage keys
2828you want to get.
2829
2830The count field is the number of consecutive frames (starting from start_gfn)
2831whose storage keys to get. The count field must be at least 1 and the maximum
2832allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2833will cause the ioctl to return -EINVAL.
2834
2835The skeydata_addr field is the address to a buffer large enough to hold count
2836bytes. This buffer will be filled with storage key data by the ioctl.
2837
28384.91 KVM_S390_SET_SKEYS
2839
2840Capability: KVM_CAP_S390_SKEYS
2841Architectures: s390
2842Type: vm ioctl
2843Parameters: struct kvm_s390_skeys
2844Returns: 0 on success, negative value on error
2845
2846This ioctl is used to set guest storage key values on the s390
2847architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2848See section on KVM_S390_GET_SKEYS for struct definition.
2849
2850The start_gfn field is the number of the first guest frame whose storage keys
2851you want to set.
2852
2853The count field is the number of consecutive frames (starting from start_gfn)
2854whose storage keys to get. The count field must be at least 1 and the maximum
2855allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2856will cause the ioctl to return -EINVAL.
2857
2858The skeydata_addr field is the address to a buffer containing count bytes of
2859storage keys. Each byte in the buffer will be set as the storage key for a
2860single frame starting at start_gfn for count frames.
2861
2862Note: If any architecturally invalid key value is found in the given data then
2863the ioctl will return -EINVAL.
2864
47b43c52
JF
28654.92 KVM_S390_IRQ
2866
2867Capability: KVM_CAP_S390_INJECT_IRQ
2868Architectures: s390
2869Type: vcpu ioctl
2870Parameters: struct kvm_s390_irq (in)
2871Returns: 0 on success, -1 on error
2872Errors:
2873 EINVAL: interrupt type is invalid
2874 type is KVM_S390_SIGP_STOP and flag parameter is invalid value
2875 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
2876 than the maximum of VCPUs
2877 EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
2878 type is KVM_S390_SIGP_STOP and a stop irq is already pending
2879 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
2880 is already pending
2881
2882Allows to inject an interrupt to the guest.
2883
2884Using struct kvm_s390_irq as a parameter allows
2885to inject additional payload which is not
2886possible via KVM_S390_INTERRUPT.
2887
2888Interrupt parameters are passed via kvm_s390_irq:
2889
2890struct kvm_s390_irq {
2891 __u64 type;
2892 union {
2893 struct kvm_s390_io_info io;
2894 struct kvm_s390_ext_info ext;
2895 struct kvm_s390_pgm_info pgm;
2896 struct kvm_s390_emerg_info emerg;
2897 struct kvm_s390_extcall_info extcall;
2898 struct kvm_s390_prefix_info prefix;
2899 struct kvm_s390_stop_info stop;
2900 struct kvm_s390_mchk_info mchk;
2901 char reserved[64];
2902 } u;
2903};
2904
2905type can be one of the following:
2906
2907KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
2908KVM_S390_PROGRAM_INT - program check; parameters in .pgm
2909KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
2910KVM_S390_RESTART - restart; no parameters
2911KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
2912KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
2913KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
2914KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
2915KVM_S390_MCHK - machine check interrupt; parameters in .mchk
2916
2917
2918Note that the vcpu ioctl is asynchronous to vcpu execution.
2919
816c7667
JF
29204.94 KVM_S390_GET_IRQ_STATE
2921
2922Capability: KVM_CAP_S390_IRQ_STATE
2923Architectures: s390
2924Type: vcpu ioctl
2925Parameters: struct kvm_s390_irq_state (out)
2926Returns: >= number of bytes copied into buffer,
2927 -EINVAL if buffer size is 0,
2928 -ENOBUFS if buffer size is too small to fit all pending interrupts,
2929 -EFAULT if the buffer address was invalid
2930
2931This ioctl allows userspace to retrieve the complete state of all currently
2932pending interrupts in a single buffer. Use cases include migration
2933and introspection. The parameter structure contains the address of a
2934userspace buffer and its length:
2935
2936struct kvm_s390_irq_state {
2937 __u64 buf;
2938 __u32 flags;
2939 __u32 len;
2940 __u32 reserved[4];
2941};
2942
2943Userspace passes in the above struct and for each pending interrupt a
2944struct kvm_s390_irq is copied to the provided buffer.
2945
2946If -ENOBUFS is returned the buffer provided was too small and userspace
2947may retry with a bigger buffer.
2948
29494.95 KVM_S390_SET_IRQ_STATE
2950
2951Capability: KVM_CAP_S390_IRQ_STATE
2952Architectures: s390
2953Type: vcpu ioctl
2954Parameters: struct kvm_s390_irq_state (in)
2955Returns: 0 on success,
2956 -EFAULT if the buffer address was invalid,
2957 -EINVAL for an invalid buffer length (see below),
2958 -EBUSY if there were already interrupts pending,
2959 errors occurring when actually injecting the
2960 interrupt. See KVM_S390_IRQ.
2961
2962This ioctl allows userspace to set the complete state of all cpu-local
2963interrupts currently pending for the vcpu. It is intended for restoring
2964interrupt state after a migration. The input parameter is a userspace buffer
2965containing a struct kvm_s390_irq_state:
2966
2967struct kvm_s390_irq_state {
2968 __u64 buf;
2969 __u32 len;
2970 __u32 pad;
2971};
2972
2973The userspace memory referenced by buf contains a struct kvm_s390_irq
2974for each interrupt to be injected into the guest.
2975If one of the interrupts could not be injected for some reason the
2976ioctl aborts.
2977
2978len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
2979and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
2980which is the maximum number of possibly pending cpu-local interrupts.
47b43c52 2981
9c1b96e3 29825. The kvm_run structure
414fa985 2983------------------------
9c1b96e3
AK
2984
2985Application code obtains a pointer to the kvm_run structure by
2986mmap()ing a vcpu fd. From that point, application code can control
2987execution by changing fields in kvm_run prior to calling the KVM_RUN
2988ioctl, and obtain information about the reason KVM_RUN returned by
2989looking up structure members.
2990
2991struct kvm_run {
2992 /* in */
2993 __u8 request_interrupt_window;
2994
2995Request that KVM_RUN return when it becomes possible to inject external
2996interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
2997
2998 __u8 padding1[7];
2999
3000 /* out */
3001 __u32 exit_reason;
3002
3003When KVM_RUN has returned successfully (return value 0), this informs
3004application code why KVM_RUN has returned. Allowable values for this
3005field are detailed below.
3006
3007 __u8 ready_for_interrupt_injection;
3008
3009If request_interrupt_window has been specified, this field indicates
3010an interrupt can be injected now with KVM_INTERRUPT.
3011
3012 __u8 if_flag;
3013
3014The value of the current interrupt flag. Only valid if in-kernel
3015local APIC is not used.
3016
3017 __u8 padding2[2];
3018
3019 /* in (pre_kvm_run), out (post_kvm_run) */
3020 __u64 cr8;
3021
3022The value of the cr8 register. Only valid if in-kernel local APIC is
3023not used. Both input and output.
3024
3025 __u64 apic_base;
3026
3027The value of the APIC BASE msr. Only valid if in-kernel local
3028APIC is not used. Both input and output.
3029
3030 union {
3031 /* KVM_EXIT_UNKNOWN */
3032 struct {
3033 __u64 hardware_exit_reason;
3034 } hw;
3035
3036If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
3037reasons. Further architecture-specific information is available in
3038hardware_exit_reason.
3039
3040 /* KVM_EXIT_FAIL_ENTRY */
3041 struct {
3042 __u64 hardware_entry_failure_reason;
3043 } fail_entry;
3044
3045If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
3046to unknown reasons. Further architecture-specific information is
3047available in hardware_entry_failure_reason.
3048
3049 /* KVM_EXIT_EXCEPTION */
3050 struct {
3051 __u32 exception;
3052 __u32 error_code;
3053 } ex;
3054
3055Unused.
3056
3057 /* KVM_EXIT_IO */
3058 struct {
3059#define KVM_EXIT_IO_IN 0
3060#define KVM_EXIT_IO_OUT 1
3061 __u8 direction;
3062 __u8 size; /* bytes */
3063 __u16 port;
3064 __u32 count;
3065 __u64 data_offset; /* relative to kvm_run start */
3066 } io;
3067
2044892d 3068If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
3069executed a port I/O instruction which could not be satisfied by kvm.
3070data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
3071where kvm expects application code to place the data for the next
2044892d 3072KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3
AK
3073
3074 struct {
3075 struct kvm_debug_exit_arch arch;
3076 } debug;
3077
3078Unused.
3079
3080 /* KVM_EXIT_MMIO */
3081 struct {
3082 __u64 phys_addr;
3083 __u8 data[8];
3084 __u32 len;
3085 __u8 is_write;
3086 } mmio;
3087
2044892d 3088If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
3089executed a memory-mapped I/O instruction which could not be satisfied
3090by kvm. The 'data' member contains the written data if 'is_write' is
3091true, and should be filled by application code otherwise.
3092
6acdb160
CD
3093The 'data' member contains, in its first 'len' bytes, the value as it would
3094appear if the VCPU performed a load or store of the appropriate width directly
3095to the byte array.
3096
cc568ead 3097NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
ce91ddc4 3098 KVM_EXIT_EPR the corresponding
ad0a048b
AG
3099operations are complete (and guest state is consistent) only after userspace
3100has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
3101incomplete operations and then check for pending signals. Userspace
3102can re-enter the guest with an unmasked signal pending to complete
3103pending operations.
3104
9c1b96e3
AK
3105 /* KVM_EXIT_HYPERCALL */
3106 struct {
3107 __u64 nr;
3108 __u64 args[6];
3109 __u64 ret;
3110 __u32 longmode;
3111 __u32 pad;
3112 } hypercall;
3113
647dc49e
AK
3114Unused. This was once used for 'hypercall to userspace'. To implement
3115such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
3116Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
3117
3118 /* KVM_EXIT_TPR_ACCESS */
3119 struct {
3120 __u64 rip;
3121 __u32 is_write;
3122 __u32 pad;
3123 } tpr_access;
3124
3125To be documented (KVM_TPR_ACCESS_REPORTING).
3126
3127 /* KVM_EXIT_S390_SIEIC */
3128 struct {
3129 __u8 icptcode;
3130 __u64 mask; /* psw upper half */
3131 __u64 addr; /* psw lower half */
3132 __u16 ipa;
3133 __u32 ipb;
3134 } s390_sieic;
3135
3136s390 specific.
3137
3138 /* KVM_EXIT_S390_RESET */
3139#define KVM_S390_RESET_POR 1
3140#define KVM_S390_RESET_CLEAR 2
3141#define KVM_S390_RESET_SUBSYSTEM 4
3142#define KVM_S390_RESET_CPU_INIT 8
3143#define KVM_S390_RESET_IPL 16
3144 __u64 s390_reset_flags;
3145
3146s390 specific.
3147
e168bf8d
CO
3148 /* KVM_EXIT_S390_UCONTROL */
3149 struct {
3150 __u64 trans_exc_code;
3151 __u32 pgm_code;
3152 } s390_ucontrol;
3153
3154s390 specific. A page fault has occurred for a user controlled virtual
3155machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
3156resolved by the kernel.
3157The program code and the translation exception code that were placed
3158in the cpu's lowcore are presented here as defined by the z Architecture
3159Principles of Operation Book in the Chapter for Dynamic Address Translation
3160(DAT)
3161
9c1b96e3
AK
3162 /* KVM_EXIT_DCR */
3163 struct {
3164 __u32 dcrn;
3165 __u32 data;
3166 __u8 is_write;
3167 } dcr;
3168
ce91ddc4 3169Deprecated - was used for 440 KVM.
9c1b96e3 3170
ad0a048b
AG
3171 /* KVM_EXIT_OSI */
3172 struct {
3173 __u64 gprs[32];
3174 } osi;
3175
3176MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3177hypercalls and exit with this exit struct that contains all the guest gprs.
3178
3179If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3180Userspace can now handle the hypercall and when it's done modify the gprs as
3181necessary. Upon guest entry all guest GPRs will then be replaced by the values
3182in this struct.
3183
de56a948
PM
3184 /* KVM_EXIT_PAPR_HCALL */
3185 struct {
3186 __u64 nr;
3187 __u64 ret;
3188 __u64 args[9];
3189 } papr_hcall;
3190
3191This is used on 64-bit PowerPC when emulating a pSeries partition,
3192e.g. with the 'pseries' machine type in qemu. It occurs when the
3193guest does a hypercall using the 'sc 1' instruction. The 'nr' field
3194contains the hypercall number (from the guest R3), and 'args' contains
3195the arguments (from the guest R4 - R12). Userspace should put the
3196return code in 'ret' and any extra returned values in args[].
3197The possible hypercalls are defined in the Power Architecture Platform
3198Requirements (PAPR) document available from www.power.org (free
3199developer registration required to access it).
3200
fa6b7fe9
CH
3201 /* KVM_EXIT_S390_TSCH */
3202 struct {
3203 __u16 subchannel_id;
3204 __u16 subchannel_nr;
3205 __u32 io_int_parm;
3206 __u32 io_int_word;
3207 __u32 ipb;
3208 __u8 dequeued;
3209 } s390_tsch;
3210
3211s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
3212and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
3213interrupt for the target subchannel has been dequeued and subchannel_id,
3214subchannel_nr, io_int_parm and io_int_word contain the parameters for that
3215interrupt. ipb is needed for instruction parameter decoding.
3216
1c810636
AG
3217 /* KVM_EXIT_EPR */
3218 struct {
3219 __u32 epr;
3220 } epr;
3221
3222On FSL BookE PowerPC chips, the interrupt controller has a fast patch
3223interrupt acknowledge path to the core. When the core successfully
3224delivers an interrupt, it automatically populates the EPR register with
3225the interrupt vector number and acknowledges the interrupt inside
3226the interrupt controller.
3227
3228In case the interrupt controller lives in user space, we need to do
3229the interrupt acknowledge cycle through it to fetch the next to be
3230delivered interrupt vector using this exit.
3231
3232It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
3233external interrupt has just been delivered into the guest. User space
3234should put the acknowledged interrupt vector into the 'epr' field.
3235
8ad6b634
AP
3236 /* KVM_EXIT_SYSTEM_EVENT */
3237 struct {
3238#define KVM_SYSTEM_EVENT_SHUTDOWN 1
3239#define KVM_SYSTEM_EVENT_RESET 2
3240 __u32 type;
3241 __u64 flags;
3242 } system_event;
3243
3244If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
3245a system-level event using some architecture specific mechanism (hypercall
3246or some special instruction). In case of ARM/ARM64, this is triggered using
3247HVC instruction based PSCI call from the vcpu. The 'type' field describes
3248the system-level event type. The 'flags' field describes architecture
3249specific flags for the system-level event.
3250
cf5d3188
CD
3251Valid values for 'type' are:
3252 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
3253 VM. Userspace is not obliged to honour this, and if it does honour
3254 this does not need to destroy the VM synchronously (ie it may call
3255 KVM_RUN again before shutdown finally occurs).
3256 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
3257 As with SHUTDOWN, userspace can choose to ignore the request, or
3258 to schedule the reset to occur in the future and may call KVM_RUN again.
3259
9c1b96e3
AK
3260 /* Fix the size of the union. */
3261 char padding[256];
3262 };
b9e5dc8d
CB
3263
3264 /*
3265 * shared registers between kvm and userspace.
3266 * kvm_valid_regs specifies the register classes set by the host
3267 * kvm_dirty_regs specified the register classes dirtied by userspace
3268 * struct kvm_sync_regs is architecture specific, as well as the
3269 * bits for kvm_valid_regs and kvm_dirty_regs
3270 */
3271 __u64 kvm_valid_regs;
3272 __u64 kvm_dirty_regs;
3273 union {
3274 struct kvm_sync_regs regs;
3275 char padding[1024];
3276 } s;
3277
3278If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3279certain guest registers without having to call SET/GET_*REGS. Thus we can
3280avoid some system call overhead if userspace has to handle the exit.
3281Userspace can query the validity of the structure by checking
3282kvm_valid_regs for specific bits. These bits are architecture specific
3283and usually define the validity of a groups of registers. (e.g. one bit
3284 for general purpose registers)
3285
d8482c0d
DH
3286Please note that the kernel is allowed to use the kvm_run structure as the
3287primary storage for certain register types. Therefore, the kernel may use the
3288values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3289
9c1b96e3 3290};
821246a5 3291
414fa985 3292
9c15bb1d 3293
699a0ea0
PM
32946. Capabilities that can be enabled on vCPUs
3295--------------------------------------------
821246a5 3296
0907c855
CH
3297There are certain capabilities that change the behavior of the virtual CPU or
3298the virtual machine when enabled. To enable them, please see section 4.37.
3299Below you can find a list of capabilities and what their effect on the vCPU or
3300the virtual machine is when enabling them.
821246a5
AG
3301
3302The following information is provided along with the description:
3303
3304 Architectures: which instruction set architectures provide this ioctl.
3305 x86 includes both i386 and x86_64.
3306
0907c855
CH
3307 Target: whether this is a per-vcpu or per-vm capability.
3308
821246a5
AG
3309 Parameters: what parameters are accepted by the capability.
3310
3311 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3312 are not detailed, but errors with specific meanings are.
3313
414fa985 3314
821246a5
AG
33156.1 KVM_CAP_PPC_OSI
3316
3317Architectures: ppc
0907c855 3318Target: vcpu
821246a5
AG
3319Parameters: none
3320Returns: 0 on success; -1 on error
3321
3322This capability enables interception of OSI hypercalls that otherwise would
3323be treated as normal system calls to be injected into the guest. OSI hypercalls
3324were invented by Mac-on-Linux to have a standardized communication mechanism
3325between the guest and the host.
3326
3327When this capability is enabled, KVM_EXIT_OSI can occur.
3328
414fa985 3329
821246a5
AG
33306.2 KVM_CAP_PPC_PAPR
3331
3332Architectures: ppc
0907c855 3333Target: vcpu
821246a5
AG
3334Parameters: none
3335Returns: 0 on success; -1 on error
3336
3337This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3338done using the hypercall instruction "sc 1".
3339
3340It also sets the guest privilege level to "supervisor" mode. Usually the guest
3341runs in "hypervisor" privilege mode with a few missing features.
3342
3343In addition to the above, it changes the semantics of SDR1. In this mode, the
3344HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3345HTAB invisible to the guest.
3346
3347When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 3348
414fa985 3349
dc83b8bc
SW
33506.3 KVM_CAP_SW_TLB
3351
3352Architectures: ppc
0907c855 3353Target: vcpu
dc83b8bc
SW
3354Parameters: args[0] is the address of a struct kvm_config_tlb
3355Returns: 0 on success; -1 on error
3356
3357struct kvm_config_tlb {
3358 __u64 params;
3359 __u64 array;
3360 __u32 mmu_type;
3361 __u32 array_len;
3362};
3363
3364Configures the virtual CPU's TLB array, establishing a shared memory area
3365between userspace and KVM. The "params" and "array" fields are userspace
3366addresses of mmu-type-specific data structures. The "array_len" field is an
3367safety mechanism, and should be set to the size in bytes of the memory that
3368userspace has reserved for the array. It must be at least the size dictated
3369by "mmu_type" and "params".
3370
3371While KVM_RUN is active, the shared region is under control of KVM. Its
3372contents are undefined, and any modification by userspace results in
3373boundedly undefined behavior.
3374
3375On return from KVM_RUN, the shared region will reflect the current state of
3376the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3377to tell KVM which entries have been changed, prior to calling KVM_RUN again
3378on this vcpu.
3379
3380For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3381 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3382 - The "array" field points to an array of type "struct
3383 kvm_book3e_206_tlb_entry".
3384 - The array consists of all entries in the first TLB, followed by all
3385 entries in the second TLB.
3386 - Within a TLB, entries are ordered first by increasing set number. Within a
3387 set, entries are ordered by way (increasing ESEL).
3388 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3389 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3390 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3391 hardware ignores this value for TLB0.
fa6b7fe9
CH
3392
33936.4 KVM_CAP_S390_CSS_SUPPORT
3394
3395Architectures: s390
0907c855 3396Target: vcpu
fa6b7fe9
CH
3397Parameters: none
3398Returns: 0 on success; -1 on error
3399
3400This capability enables support for handling of channel I/O instructions.
3401
3402TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3403handled in-kernel, while the other I/O instructions are passed to userspace.
3404
3405When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3406SUBCHANNEL intercepts.
1c810636 3407
0907c855
CH
3408Note that even though this capability is enabled per-vcpu, the complete
3409virtual machine is affected.
3410
1c810636
AG
34116.5 KVM_CAP_PPC_EPR
3412
3413Architectures: ppc
0907c855 3414Target: vcpu
1c810636
AG
3415Parameters: args[0] defines whether the proxy facility is active
3416Returns: 0 on success; -1 on error
3417
3418This capability enables or disables the delivery of interrupts through the
3419external proxy facility.
3420
3421When enabled (args[0] != 0), every time the guest gets an external interrupt
3422delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3423to receive the topmost interrupt vector.
3424
3425When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3426
3427When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
3428
34296.6 KVM_CAP_IRQ_MPIC
3430
3431Architectures: ppc
3432Parameters: args[0] is the MPIC device fd
3433 args[1] is the MPIC CPU number for this vcpu
3434
3435This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
3436
34376.7 KVM_CAP_IRQ_XICS
3438
3439Architectures: ppc
0907c855 3440Target: vcpu
5975a2e0
PM
3441Parameters: args[0] is the XICS device fd
3442 args[1] is the XICS CPU number (server ID) for this vcpu
3443
3444This capability connects the vcpu to an in-kernel XICS device.
8a366a4b
CH
3445
34466.8 KVM_CAP_S390_IRQCHIP
3447
3448Architectures: s390
3449Target: vm
3450Parameters: none
3451
3452This capability enables the in-kernel irqchip for s390. Please refer to
3453"4.24 KVM_CREATE_IRQCHIP" for details.
699a0ea0 3454
5fafd874
JH
34556.9 KVM_CAP_MIPS_FPU
3456
3457Architectures: mips
3458Target: vcpu
3459Parameters: args[0] is reserved for future use (should be 0).
3460
3461This capability allows the use of the host Floating Point Unit by the guest. It
3462allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
3463done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
3464(depending on the current guest FPU register mode), and the Status.FR,
3465Config5.FRE bits are accessible via the KVM API and also from the guest,
3466depending on them being supported by the FPU.
3467
d952bd07
JH
34686.10 KVM_CAP_MIPS_MSA
3469
3470Architectures: mips
3471Target: vcpu
3472Parameters: args[0] is reserved for future use (should be 0).
3473
3474This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
3475It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
3476Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
3477accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
3478the guest.
3479
699a0ea0
PM
34807. Capabilities that can be enabled on VMs
3481------------------------------------------
3482
3483There are certain capabilities that change the behavior of the virtual
3484machine when enabled. To enable them, please see section 4.37. Below
3485you can find a list of capabilities and what their effect on the VM
3486is when enabling them.
3487
3488The following information is provided along with the description:
3489
3490 Architectures: which instruction set architectures provide this ioctl.
3491 x86 includes both i386 and x86_64.
3492
3493 Parameters: what parameters are accepted by the capability.
3494
3495 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3496 are not detailed, but errors with specific meanings are.
3497
3498
34997.1 KVM_CAP_PPC_ENABLE_HCALL
3500
3501Architectures: ppc
3502Parameters: args[0] is the sPAPR hcall number
3503 args[1] is 0 to disable, 1 to enable in-kernel handling
3504
3505This capability controls whether individual sPAPR hypercalls (hcalls)
3506get handled by the kernel or not. Enabling or disabling in-kernel
3507handling of an hcall is effective across the VM. On creation, an
3508initial set of hcalls are enabled for in-kernel handling, which
3509consists of those hcalls for which in-kernel handlers were implemented
3510before this capability was implemented. If disabled, the kernel will
3511not to attempt to handle the hcall, but will always exit to userspace
3512to handle it. Note that it may not make sense to enable some and
3513disable others of a group of related hcalls, but KVM does not prevent
3514userspace from doing that.
ae2113a4
PM
3515
3516If the hcall number specified is not one that has an in-kernel
3517implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3518error.
2444b352
DH
3519
35207.2 KVM_CAP_S390_USER_SIGP
3521
3522Architectures: s390
3523Parameters: none
3524
3525This capability controls which SIGP orders will be handled completely in user
3526space. With this capability enabled, all fast orders will be handled completely
3527in the kernel:
3528- SENSE
3529- SENSE RUNNING
3530- EXTERNAL CALL
3531- EMERGENCY SIGNAL
3532- CONDITIONAL EMERGENCY SIGNAL
3533
3534All other orders will be handled completely in user space.
3535
3536Only privileged operation exceptions will be checked for in the kernel (or even
3537in the hardware prior to interception). If this capability is not enabled, the
3538old way of handling SIGP orders is used (partially in kernel and user space).
68c55750
EF
3539
35407.3 KVM_CAP_S390_VECTOR_REGISTERS
3541
3542Architectures: s390
3543Parameters: none
3544Returns: 0 on success, negative value on error
3545
3546Allows use of the vector registers introduced with z13 processor, and
3547provides for the synchronization between host and user space. Will
3548return -EINVAL if the machine does not support vectors.
e44fc8c9
ET
3549
35507.4 KVM_CAP_S390_USER_STSI
3551
3552Architectures: s390
3553Parameters: none
3554
3555This capability allows post-handlers for the STSI instruction. After
3556initial handling in the kernel, KVM exits to user space with
3557KVM_EXIT_S390_STSI to allow user space to insert further data.
3558
3559Before exiting to userspace, kvm handlers should fill in s390_stsi field of
3560vcpu->run:
3561struct {
3562 __u64 addr;
3563 __u8 ar;
3564 __u8 reserved;
3565 __u8 fc;
3566 __u8 sel1;
3567 __u16 sel2;
3568} s390_stsi;
3569
3570@addr - guest address of STSI SYSIB
3571@fc - function code
3572@sel1 - selector 1
3573@sel2 - selector 2
3574@ar - access register number
3575
3576KVM handlers should exit to userspace with rc = -EREMOTE.
e928e9cb
ME
3577
3578
35798. Other capabilities.
3580----------------------
3581
3582This section lists capabilities that give information about other
3583features of the KVM implementation.
3584
35858.1 KVM_CAP_PPC_HWRNG
3586
3587Architectures: ppc
3588
3589This capability, if KVM_CHECK_EXTENSION indicates that it is
3590available, means that that the kernel has an implementation of the
3591H_RANDOM hypercall backed by a hardware random-number generator.
3592If present, the kernel H_RANDOM handler can be enabled for guest use
3593with the KVM_CAP_PPC_ENABLE_HCALL capability.