]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - Documentation/virtual/kvm/api.txt
KVM: x86: add a flag to disable KVM x2apic broadcast quirk
[mirror_ubuntu-bionic-kernel.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
c9f3f2d8 56The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
7f05db6a 71 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
9c1b96e3 72 means availability needs to be checked with KVM_CHECK_EXTENSION
7f05db6a
MT
73 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
9c1b96e3
AK
77
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
414fa985 88
9c1b96e3
AK
894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
414fa985 104
9c1b96e3
AK
1054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
e08b9637 110Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
111Returns: a VM fd that can be used to control the new virtual machine.
112
113The new VM has no virtual cpus and no memory. An mmap() of a VM fd
114will access the virtual machine's physical address space; offset zero
115corresponds to guest physical address zero. Use of mmap() on a VM fd
116is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
117available.
e08b9637
CO
118You most certainly want to use 0 as machine type.
119
120In order to create user controlled virtual machines on S390, check
121KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
122privileged user (CAP_SYS_ADMIN).
9c1b96e3 123
414fa985 124
9c1b96e3
AK
1254.3 KVM_GET_MSR_INDEX_LIST
126
127Capability: basic
128Architectures: x86
129Type: system
130Parameters: struct kvm_msr_list (in/out)
131Returns: 0 on success; -1 on error
132Errors:
133 E2BIG: the msr index list is to be to fit in the array specified by
134 the user.
135
136struct kvm_msr_list {
137 __u32 nmsrs; /* number of msrs in entries */
138 __u32 indices[0];
139};
140
141This ioctl returns the guest msrs that are supported. The list varies
142by kvm version and host processor, but does not change otherwise. The
143user fills in the size of the indices array in nmsrs, and in return
144kvm adjusts nmsrs to reflect the actual number of msrs and fills in
145the indices array with their numbers.
146
2e2602ca
AK
147Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
148not returned in the MSR list, as different vcpus can have a different number
149of banks, as set via the KVM_X86_SETUP_MCE ioctl.
150
414fa985 151
9c1b96e3
AK
1524.4 KVM_CHECK_EXTENSION
153
92b591a4 154Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
9c1b96e3 155Architectures: all
92b591a4 156Type: system ioctl, vm ioctl
9c1b96e3
AK
157Parameters: extension identifier (KVM_CAP_*)
158Returns: 0 if unsupported; 1 (or some other positive integer) if supported
159
160The API allows the application to query about extensions to the core
161kvm API. Userspace passes an extension identifier (an integer) and
162receives an integer that describes the extension availability.
163Generally 0 means no and 1 means yes, but some extensions may report
164additional information in the integer return value.
165
92b591a4
AG
166Based on their initialization different VMs may have different capabilities.
167It is thus encouraged to use the vm ioctl to query for capabilities (available
168with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
414fa985 169
9c1b96e3
AK
1704.5 KVM_GET_VCPU_MMAP_SIZE
171
172Capability: basic
173Architectures: all
174Type: system ioctl
175Parameters: none
176Returns: size of vcpu mmap area, in bytes
177
178The KVM_RUN ioctl (cf.) communicates with userspace via a shared
179memory region. This ioctl returns the size of that region. See the
180KVM_RUN documentation for details.
181
414fa985 182
9c1b96e3
AK
1834.6 KVM_SET_MEMORY_REGION
184
185Capability: basic
186Architectures: all
187Type: vm ioctl
188Parameters: struct kvm_memory_region (in)
189Returns: 0 on success, -1 on error
190
b74a07be 191This ioctl is obsolete and has been removed.
9c1b96e3 192
414fa985 193
68ba6974 1944.7 KVM_CREATE_VCPU
9c1b96e3
AK
195
196Capability: basic
197Architectures: all
198Type: vm ioctl
199Parameters: vcpu id (apic id on x86)
200Returns: vcpu fd on success, -1 on error
201
0b1b1dfd
GK
202This API adds a vcpu to a virtual machine. No more than max_vcpus may be added.
203The vcpu id is an integer in the range [0, max_vcpu_id).
8c3ba334
SL
204
205The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
206the KVM_CHECK_EXTENSION ioctl() at run-time.
207The maximum possible value for max_vcpus can be retrieved using the
208KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
209
76d25402
PE
210If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
211cpus max.
8c3ba334
SL
212If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
213same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 214
0b1b1dfd
GK
215The maximum possible value for max_vcpu_id can be retrieved using the
216KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time.
217
218If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id
219is the same as the value returned from KVM_CAP_MAX_VCPUS.
220
371fefd6
PM
221On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
222threads in one or more virtual CPU cores. (This is because the
223hardware requires all the hardware threads in a CPU core to be in the
224same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
225of vcpus per virtual core (vcore). The vcore id is obtained by
226dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
227given vcore will always be in the same physical core as each other
228(though that might be a different physical core from time to time).
229Userspace can control the threading (SMT) mode of the guest by its
230allocation of vcpu ids. For example, if userspace wants
231single-threaded guest vcpus, it should make all vcpu ids be a multiple
232of the number of vcpus per vcore.
233
5b1c1493
CO
234For virtual cpus that have been created with S390 user controlled virtual
235machines, the resulting vcpu fd can be memory mapped at page offset
236KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
237cpu's hardware control block.
238
414fa985 239
68ba6974 2404.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
241
242Capability: basic
243Architectures: x86
244Type: vm ioctl
245Parameters: struct kvm_dirty_log (in/out)
246Returns: 0 on success, -1 on error
247
248/* for KVM_GET_DIRTY_LOG */
249struct kvm_dirty_log {
250 __u32 slot;
251 __u32 padding;
252 union {
253 void __user *dirty_bitmap; /* one bit per page */
254 __u64 padding;
255 };
256};
257
258Given a memory slot, return a bitmap containing any pages dirtied
259since the last call to this ioctl. Bit 0 is the first page in the
260memory slot. Ensure the entire structure is cleared to avoid padding
261issues.
262
f481b069
PB
263If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
264the address space for which you want to return the dirty bitmap.
265They must be less than the value that KVM_CHECK_EXTENSION returns for
266the KVM_CAP_MULTI_ADDRESS_SPACE capability.
267
414fa985 268
68ba6974 2694.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
270
271Capability: basic
272Architectures: x86
273Type: vm ioctl
274Parameters: struct kvm_memory_alias (in)
275Returns: 0 (success), -1 (error)
276
a1f4d395 277This ioctl is obsolete and has been removed.
9c1b96e3 278
414fa985 279
68ba6974 2804.10 KVM_RUN
9c1b96e3
AK
281
282Capability: basic
283Architectures: all
284Type: vcpu ioctl
285Parameters: none
286Returns: 0 on success, -1 on error
287Errors:
288 EINTR: an unmasked signal is pending
289
290This ioctl is used to run a guest virtual cpu. While there are no
291explicit parameters, there is an implicit parameter block that can be
292obtained by mmap()ing the vcpu fd at offset 0, with the size given by
293KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
294kvm_run' (see below).
295
414fa985 296
68ba6974 2974.11 KVM_GET_REGS
9c1b96e3
AK
298
299Capability: basic
379e04c7 300Architectures: all except ARM, arm64
9c1b96e3
AK
301Type: vcpu ioctl
302Parameters: struct kvm_regs (out)
303Returns: 0 on success, -1 on error
304
305Reads the general purpose registers from the vcpu.
306
307/* x86 */
308struct kvm_regs {
309 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
310 __u64 rax, rbx, rcx, rdx;
311 __u64 rsi, rdi, rsp, rbp;
312 __u64 r8, r9, r10, r11;
313 __u64 r12, r13, r14, r15;
314 __u64 rip, rflags;
315};
316
c2d2c21b
JH
317/* mips */
318struct kvm_regs {
319 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
320 __u64 gpr[32];
321 __u64 hi;
322 __u64 lo;
323 __u64 pc;
324};
325
414fa985 326
68ba6974 3274.12 KVM_SET_REGS
9c1b96e3
AK
328
329Capability: basic
379e04c7 330Architectures: all except ARM, arm64
9c1b96e3
AK
331Type: vcpu ioctl
332Parameters: struct kvm_regs (in)
333Returns: 0 on success, -1 on error
334
335Writes the general purpose registers into the vcpu.
336
337See KVM_GET_REGS for the data structure.
338
414fa985 339
68ba6974 3404.13 KVM_GET_SREGS
9c1b96e3
AK
341
342Capability: basic
5ce941ee 343Architectures: x86, ppc
9c1b96e3
AK
344Type: vcpu ioctl
345Parameters: struct kvm_sregs (out)
346Returns: 0 on success, -1 on error
347
348Reads special registers from the vcpu.
349
350/* x86 */
351struct kvm_sregs {
352 struct kvm_segment cs, ds, es, fs, gs, ss;
353 struct kvm_segment tr, ldt;
354 struct kvm_dtable gdt, idt;
355 __u64 cr0, cr2, cr3, cr4, cr8;
356 __u64 efer;
357 __u64 apic_base;
358 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
359};
360
68e2ffed 361/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 362
9c1b96e3
AK
363interrupt_bitmap is a bitmap of pending external interrupts. At most
364one bit may be set. This interrupt has been acknowledged by the APIC
365but not yet injected into the cpu core.
366
414fa985 367
68ba6974 3684.14 KVM_SET_SREGS
9c1b96e3
AK
369
370Capability: basic
5ce941ee 371Architectures: x86, ppc
9c1b96e3
AK
372Type: vcpu ioctl
373Parameters: struct kvm_sregs (in)
374Returns: 0 on success, -1 on error
375
376Writes special registers into the vcpu. See KVM_GET_SREGS for the
377data structures.
378
414fa985 379
68ba6974 3804.15 KVM_TRANSLATE
9c1b96e3
AK
381
382Capability: basic
383Architectures: x86
384Type: vcpu ioctl
385Parameters: struct kvm_translation (in/out)
386Returns: 0 on success, -1 on error
387
388Translates a virtual address according to the vcpu's current address
389translation mode.
390
391struct kvm_translation {
392 /* in */
393 __u64 linear_address;
394
395 /* out */
396 __u64 physical_address;
397 __u8 valid;
398 __u8 writeable;
399 __u8 usermode;
400 __u8 pad[5];
401};
402
414fa985 403
68ba6974 4044.16 KVM_INTERRUPT
9c1b96e3
AK
405
406Capability: basic
c2d2c21b 407Architectures: x86, ppc, mips
9c1b96e3
AK
408Type: vcpu ioctl
409Parameters: struct kvm_interrupt (in)
1c1a9ce9 410Returns: 0 on success, negative on failure.
9c1b96e3 411
1c1a9ce9 412Queues a hardware interrupt vector to be injected.
9c1b96e3
AK
413
414/* for KVM_INTERRUPT */
415struct kvm_interrupt {
416 /* in */
417 __u32 irq;
418};
419
6f7a2bd4
AG
420X86:
421
1c1a9ce9
SR
422Returns: 0 on success,
423 -EEXIST if an interrupt is already enqueued
424 -EINVAL the the irq number is invalid
425 -ENXIO if the PIC is in the kernel
426 -EFAULT if the pointer is invalid
427
428Note 'irq' is an interrupt vector, not an interrupt pin or line. This
429ioctl is useful if the in-kernel PIC is not used.
9c1b96e3 430
6f7a2bd4
AG
431PPC:
432
433Queues an external interrupt to be injected. This ioctl is overleaded
434with 3 different irq values:
435
436a) KVM_INTERRUPT_SET
437
438 This injects an edge type external interrupt into the guest once it's ready
439 to receive interrupts. When injected, the interrupt is done.
440
441b) KVM_INTERRUPT_UNSET
442
443 This unsets any pending interrupt.
444
445 Only available with KVM_CAP_PPC_UNSET_IRQ.
446
447c) KVM_INTERRUPT_SET_LEVEL
448
449 This injects a level type external interrupt into the guest context. The
450 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
451 is triggered.
452
453 Only available with KVM_CAP_PPC_IRQ_LEVEL.
454
455Note that any value for 'irq' other than the ones stated above is invalid
456and incurs unexpected behavior.
457
c2d2c21b
JH
458MIPS:
459
460Queues an external interrupt to be injected into the virtual CPU. A negative
461interrupt number dequeues the interrupt.
462
414fa985 463
68ba6974 4644.17 KVM_DEBUG_GUEST
9c1b96e3
AK
465
466Capability: basic
467Architectures: none
468Type: vcpu ioctl
469Parameters: none)
470Returns: -1 on error
471
472Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
473
414fa985 474
68ba6974 4754.18 KVM_GET_MSRS
9c1b96e3
AK
476
477Capability: basic
478Architectures: x86
479Type: vcpu ioctl
480Parameters: struct kvm_msrs (in/out)
481Returns: 0 on success, -1 on error
482
483Reads model-specific registers from the vcpu. Supported msr indices can
484be obtained using KVM_GET_MSR_INDEX_LIST.
485
486struct kvm_msrs {
487 __u32 nmsrs; /* number of msrs in entries */
488 __u32 pad;
489
490 struct kvm_msr_entry entries[0];
491};
492
493struct kvm_msr_entry {
494 __u32 index;
495 __u32 reserved;
496 __u64 data;
497};
498
499Application code should set the 'nmsrs' member (which indicates the
500size of the entries array) and the 'index' member of each array entry.
501kvm will fill in the 'data' member.
502
414fa985 503
68ba6974 5044.19 KVM_SET_MSRS
9c1b96e3
AK
505
506Capability: basic
507Architectures: x86
508Type: vcpu ioctl
509Parameters: struct kvm_msrs (in)
510Returns: 0 on success, -1 on error
511
512Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
513data structures.
514
515Application code should set the 'nmsrs' member (which indicates the
516size of the entries array), and the 'index' and 'data' members of each
517array entry.
518
414fa985 519
68ba6974 5204.20 KVM_SET_CPUID
9c1b96e3
AK
521
522Capability: basic
523Architectures: x86
524Type: vcpu ioctl
525Parameters: struct kvm_cpuid (in)
526Returns: 0 on success, -1 on error
527
528Defines the vcpu responses to the cpuid instruction. Applications
529should use the KVM_SET_CPUID2 ioctl if available.
530
531
532struct kvm_cpuid_entry {
533 __u32 function;
534 __u32 eax;
535 __u32 ebx;
536 __u32 ecx;
537 __u32 edx;
538 __u32 padding;
539};
540
541/* for KVM_SET_CPUID */
542struct kvm_cpuid {
543 __u32 nent;
544 __u32 padding;
545 struct kvm_cpuid_entry entries[0];
546};
547
414fa985 548
68ba6974 5494.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
550
551Capability: basic
572e0929 552Architectures: all
9c1b96e3
AK
553Type: vcpu ioctl
554Parameters: struct kvm_signal_mask (in)
555Returns: 0 on success, -1 on error
556
557Defines which signals are blocked during execution of KVM_RUN. This
558signal mask temporarily overrides the threads signal mask. Any
559unblocked signal received (except SIGKILL and SIGSTOP, which retain
560their traditional behaviour) will cause KVM_RUN to return with -EINTR.
561
562Note the signal will only be delivered if not blocked by the original
563signal mask.
564
565/* for KVM_SET_SIGNAL_MASK */
566struct kvm_signal_mask {
567 __u32 len;
568 __u8 sigset[0];
569};
570
414fa985 571
68ba6974 5724.22 KVM_GET_FPU
9c1b96e3
AK
573
574Capability: basic
575Architectures: x86
576Type: vcpu ioctl
577Parameters: struct kvm_fpu (out)
578Returns: 0 on success, -1 on error
579
580Reads the floating point state from the vcpu.
581
582/* for KVM_GET_FPU and KVM_SET_FPU */
583struct kvm_fpu {
584 __u8 fpr[8][16];
585 __u16 fcw;
586 __u16 fsw;
587 __u8 ftwx; /* in fxsave format */
588 __u8 pad1;
589 __u16 last_opcode;
590 __u64 last_ip;
591 __u64 last_dp;
592 __u8 xmm[16][16];
593 __u32 mxcsr;
594 __u32 pad2;
595};
596
414fa985 597
68ba6974 5984.23 KVM_SET_FPU
9c1b96e3
AK
599
600Capability: basic
601Architectures: x86
602Type: vcpu ioctl
603Parameters: struct kvm_fpu (in)
604Returns: 0 on success, -1 on error
605
606Writes the floating point state to the vcpu.
607
608/* for KVM_GET_FPU and KVM_SET_FPU */
609struct kvm_fpu {
610 __u8 fpr[8][16];
611 __u16 fcw;
612 __u16 fsw;
613 __u8 ftwx; /* in fxsave format */
614 __u8 pad1;
615 __u16 last_opcode;
616 __u64 last_ip;
617 __u64 last_dp;
618 __u8 xmm[16][16];
619 __u32 mxcsr;
620 __u32 pad2;
621};
622
414fa985 623
68ba6974 6244.24 KVM_CREATE_IRQCHIP
5dadbfd6 625
84223598 626Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
c32a4272 627Architectures: x86, ARM, arm64, s390
5dadbfd6
AK
628Type: vm ioctl
629Parameters: none
630Returns: 0 on success, -1 on error
631
ac3d3735
AP
632Creates an interrupt controller model in the kernel.
633On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
634future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
635PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
636On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
637KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
638KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
639On s390, a dummy irq routing table is created.
84223598
CH
640
641Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
642before KVM_CREATE_IRQCHIP can be used.
5dadbfd6 643
414fa985 644
68ba6974 6454.25 KVM_IRQ_LINE
5dadbfd6
AK
646
647Capability: KVM_CAP_IRQCHIP
c32a4272 648Architectures: x86, arm, arm64
5dadbfd6
AK
649Type: vm ioctl
650Parameters: struct kvm_irq_level
651Returns: 0 on success, -1 on error
652
653Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
654On some architectures it is required that an interrupt controller model has
655been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
656interrupts require the level to be set to 1 and then back to 0.
657
100943c5
GS
658On real hardware, interrupt pins can be active-low or active-high. This
659does not matter for the level field of struct kvm_irq_level: 1 always
660means active (asserted), 0 means inactive (deasserted).
661
662x86 allows the operating system to program the interrupt polarity
663(active-low/active-high) for level-triggered interrupts, and KVM used
664to consider the polarity. However, due to bitrot in the handling of
665active-low interrupts, the above convention is now valid on x86 too.
666This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
667should not present interrupts to the guest as active-low unless this
668capability is present (or unless it is not using the in-kernel irqchip,
669of course).
670
671
379e04c7
MZ
672ARM/arm64 can signal an interrupt either at the CPU level, or at the
673in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
674use PPIs designated for specific cpus. The irq field is interpreted
675like this:
86ce8535
CD
676
677  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
678 field: | irq_type | vcpu_index | irq_id |
679
680The irq_type field has the following values:
681- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
682- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
683 (the vcpu_index field is ignored)
684- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
685
686(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
687
100943c5 688In both cases, level is used to assert/deassert the line.
5dadbfd6
AK
689
690struct kvm_irq_level {
691 union {
692 __u32 irq; /* GSI */
693 __s32 status; /* not used for KVM_IRQ_LEVEL */
694 };
695 __u32 level; /* 0 or 1 */
696};
697
414fa985 698
68ba6974 6994.26 KVM_GET_IRQCHIP
5dadbfd6
AK
700
701Capability: KVM_CAP_IRQCHIP
c32a4272 702Architectures: x86
5dadbfd6
AK
703Type: vm ioctl
704Parameters: struct kvm_irqchip (in/out)
705Returns: 0 on success, -1 on error
706
707Reads the state of a kernel interrupt controller created with
708KVM_CREATE_IRQCHIP into a buffer provided by the caller.
709
710struct kvm_irqchip {
711 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
712 __u32 pad;
713 union {
714 char dummy[512]; /* reserving space */
715 struct kvm_pic_state pic;
716 struct kvm_ioapic_state ioapic;
717 } chip;
718};
719
414fa985 720
68ba6974 7214.27 KVM_SET_IRQCHIP
5dadbfd6
AK
722
723Capability: KVM_CAP_IRQCHIP
c32a4272 724Architectures: x86
5dadbfd6
AK
725Type: vm ioctl
726Parameters: struct kvm_irqchip (in)
727Returns: 0 on success, -1 on error
728
729Sets the state of a kernel interrupt controller created with
730KVM_CREATE_IRQCHIP from a buffer provided by the caller.
731
732struct kvm_irqchip {
733 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
734 __u32 pad;
735 union {
736 char dummy[512]; /* reserving space */
737 struct kvm_pic_state pic;
738 struct kvm_ioapic_state ioapic;
739 } chip;
740};
741
414fa985 742
68ba6974 7434.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
744
745Capability: KVM_CAP_XEN_HVM
746Architectures: x86
747Type: vm ioctl
748Parameters: struct kvm_xen_hvm_config (in)
749Returns: 0 on success, -1 on error
750
751Sets the MSR that the Xen HVM guest uses to initialize its hypercall
752page, and provides the starting address and size of the hypercall
753blobs in userspace. When the guest writes the MSR, kvm copies one
754page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
755memory.
756
757struct kvm_xen_hvm_config {
758 __u32 flags;
759 __u32 msr;
760 __u64 blob_addr_32;
761 __u64 blob_addr_64;
762 __u8 blob_size_32;
763 __u8 blob_size_64;
764 __u8 pad2[30];
765};
766
414fa985 767
68ba6974 7684.29 KVM_GET_CLOCK
afbcf7ab
GC
769
770Capability: KVM_CAP_ADJUST_CLOCK
771Architectures: x86
772Type: vm ioctl
773Parameters: struct kvm_clock_data (out)
774Returns: 0 on success, -1 on error
775
776Gets the current timestamp of kvmclock as seen by the current guest. In
777conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
778such as migration.
779
780struct kvm_clock_data {
781 __u64 clock; /* kvmclock current value */
782 __u32 flags;
783 __u32 pad[9];
784};
785
414fa985 786
68ba6974 7874.30 KVM_SET_CLOCK
afbcf7ab
GC
788
789Capability: KVM_CAP_ADJUST_CLOCK
790Architectures: x86
791Type: vm ioctl
792Parameters: struct kvm_clock_data (in)
793Returns: 0 on success, -1 on error
794
2044892d 795Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
796In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
797such as migration.
798
799struct kvm_clock_data {
800 __u64 clock; /* kvmclock current value */
801 __u32 flags;
802 __u32 pad[9];
803};
804
414fa985 805
68ba6974 8064.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
807
808Capability: KVM_CAP_VCPU_EVENTS
48005f64 809Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
810Architectures: x86
811Type: vm ioctl
812Parameters: struct kvm_vcpu_event (out)
813Returns: 0 on success, -1 on error
814
815Gets currently pending exceptions, interrupts, and NMIs as well as related
816states of the vcpu.
817
818struct kvm_vcpu_events {
819 struct {
820 __u8 injected;
821 __u8 nr;
822 __u8 has_error_code;
823 __u8 pad;
824 __u32 error_code;
825 } exception;
826 struct {
827 __u8 injected;
828 __u8 nr;
829 __u8 soft;
48005f64 830 __u8 shadow;
3cfc3092
JK
831 } interrupt;
832 struct {
833 __u8 injected;
834 __u8 pending;
835 __u8 masked;
836 __u8 pad;
837 } nmi;
838 __u32 sipi_vector;
dab4b911 839 __u32 flags;
f077825a
PB
840 struct {
841 __u8 smm;
842 __u8 pending;
843 __u8 smm_inside_nmi;
844 __u8 latched_init;
845 } smi;
3cfc3092
JK
846};
847
f077825a
PB
848Only two fields are defined in the flags field:
849
850- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
851 interrupt.shadow contains a valid state.
48005f64 852
f077825a
PB
853- KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that
854 smi contains a valid state.
414fa985 855
68ba6974 8564.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
857
858Capability: KVM_CAP_VCPU_EVENTS
48005f64 859Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
860Architectures: x86
861Type: vm ioctl
862Parameters: struct kvm_vcpu_event (in)
863Returns: 0 on success, -1 on error
864
865Set pending exceptions, interrupts, and NMIs as well as related states of the
866vcpu.
867
868See KVM_GET_VCPU_EVENTS for the data structure.
869
dab4b911 870Fields that may be modified asynchronously by running VCPUs can be excluded
f077825a
PB
871from the update. These fields are nmi.pending, sipi_vector, smi.smm,
872smi.pending. Keep the corresponding bits in the flags field cleared to
873suppress overwriting the current in-kernel state. The bits are:
dab4b911
JK
874
875KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
876KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
f077825a 877KVM_VCPUEVENT_VALID_SMM - transfer the smi sub-struct.
dab4b911 878
48005f64
JK
879If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
880the flags field to signal that interrupt.shadow contains a valid state and
881shall be written into the VCPU.
882
f077825a
PB
883KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
884
414fa985 885
68ba6974 8864.33 KVM_GET_DEBUGREGS
a1efbe77
JK
887
888Capability: KVM_CAP_DEBUGREGS
889Architectures: x86
890Type: vm ioctl
891Parameters: struct kvm_debugregs (out)
892Returns: 0 on success, -1 on error
893
894Reads debug registers from the vcpu.
895
896struct kvm_debugregs {
897 __u64 db[4];
898 __u64 dr6;
899 __u64 dr7;
900 __u64 flags;
901 __u64 reserved[9];
902};
903
414fa985 904
68ba6974 9054.34 KVM_SET_DEBUGREGS
a1efbe77
JK
906
907Capability: KVM_CAP_DEBUGREGS
908Architectures: x86
909Type: vm ioctl
910Parameters: struct kvm_debugregs (in)
911Returns: 0 on success, -1 on error
912
913Writes debug registers into the vcpu.
914
915See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
916yet and must be cleared on entry.
917
414fa985 918
68ba6974 9194.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
920
921Capability: KVM_CAP_USER_MEM
922Architectures: all
923Type: vm ioctl
924Parameters: struct kvm_userspace_memory_region (in)
925Returns: 0 on success, -1 on error
926
927struct kvm_userspace_memory_region {
928 __u32 slot;
929 __u32 flags;
930 __u64 guest_phys_addr;
931 __u64 memory_size; /* bytes */
932 __u64 userspace_addr; /* start of the userspace allocated memory */
933};
934
935/* for kvm_memory_region::flags */
4d8b81ab
XG
936#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
937#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
938
939This ioctl allows the user to create or modify a guest physical memory
940slot. When changing an existing slot, it may be moved in the guest
941physical memory space, or its flags may be modified. It may not be
942resized. Slots may not overlap in guest physical address space.
943
f481b069
PB
944If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot"
945specifies the address space which is being modified. They must be
946less than the value that KVM_CHECK_EXTENSION returns for the
947KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces
948are unrelated; the restriction on overlapping slots only applies within
949each address space.
950
0f2d8f4d
AK
951Memory for the region is taken starting at the address denoted by the
952field userspace_addr, which must point at user addressable memory for
953the entire memory slot size. Any object may back this memory, including
954anonymous memory, ordinary files, and hugetlbfs.
955
956It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
957be identical. This allows large pages in the guest to be backed by large
958pages in the host.
959
75d61fbc
TY
960The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
961KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
962writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
963use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
964to make a new slot read-only. In this case, writes to this memory will be
965posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
966
967When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
968the memory region are automatically reflected into the guest. For example, an
969mmap() that affects the region will be made visible immediately. Another
970example is madvise(MADV_DROP).
0f2d8f4d
AK
971
972It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
973The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
974allocation and is deprecated.
3cfc3092 975
414fa985 976
68ba6974 9774.36 KVM_SET_TSS_ADDR
8a5416db
AK
978
979Capability: KVM_CAP_SET_TSS_ADDR
980Architectures: x86
981Type: vm ioctl
982Parameters: unsigned long tss_address (in)
983Returns: 0 on success, -1 on error
984
985This ioctl defines the physical address of a three-page region in the guest
986physical address space. The region must be within the first 4GB of the
987guest physical address space and must not conflict with any memory slot
988or any mmio address. The guest may malfunction if it accesses this memory
989region.
990
991This ioctl is required on Intel-based hosts. This is needed on Intel hardware
992because of a quirk in the virtualization implementation (see the internals
993documentation when it pops into existence).
994
414fa985 995
68ba6974 9964.37 KVM_ENABLE_CAP
71fbfd5f 997
d938dc55 998Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
90de4a18
NA
999Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM),
1000 mips (only KVM_CAP_ENABLE_CAP), ppc, s390
d938dc55 1001Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
71fbfd5f
AG
1002Parameters: struct kvm_enable_cap (in)
1003Returns: 0 on success; -1 on error
1004
1005+Not all extensions are enabled by default. Using this ioctl the application
1006can enable an extension, making it available to the guest.
1007
1008On systems that do not support this ioctl, it always fails. On systems that
1009do support it, it only works for extensions that are supported for enablement.
1010
1011To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
1012be used.
1013
1014struct kvm_enable_cap {
1015 /* in */
1016 __u32 cap;
1017
1018The capability that is supposed to get enabled.
1019
1020 __u32 flags;
1021
1022A bitfield indicating future enhancements. Has to be 0 for now.
1023
1024 __u64 args[4];
1025
1026Arguments for enabling a feature. If a feature needs initial values to
1027function properly, this is the place to put them.
1028
1029 __u8 pad[64];
1030};
1031
d938dc55
CH
1032The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1033for vm-wide capabilities.
414fa985 1034
68ba6974 10354.38 KVM_GET_MP_STATE
b843f065
AK
1036
1037Capability: KVM_CAP_MP_STATE
ecccf0cc 1038Architectures: x86, s390, arm, arm64
b843f065
AK
1039Type: vcpu ioctl
1040Parameters: struct kvm_mp_state (out)
1041Returns: 0 on success; -1 on error
1042
1043struct kvm_mp_state {
1044 __u32 mp_state;
1045};
1046
1047Returns the vcpu's current "multiprocessing state" (though also valid on
1048uniprocessor guests).
1049
1050Possible values are:
1051
ecccf0cc 1052 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64]
b843f065 1053 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
c32a4272 1054 which has not yet received an INIT signal [x86]
b843f065 1055 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
c32a4272 1056 now ready for a SIPI [x86]
b843f065 1057 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
c32a4272 1058 is waiting for an interrupt [x86]
b843f065 1059 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
c32a4272 1060 accessible via KVM_GET_VCPU_EVENTS) [x86]
ecccf0cc 1061 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64]
6352e4d2
DH
1062 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1063 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1064 [s390]
1065 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1066 [s390]
b843f065 1067
c32a4272 1068On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1069in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1070these architectures.
b843f065 1071
ecccf0cc
AB
1072For arm/arm64:
1073
1074The only states that are valid are KVM_MP_STATE_STOPPED and
1075KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
414fa985 1076
68ba6974 10774.39 KVM_SET_MP_STATE
b843f065
AK
1078
1079Capability: KVM_CAP_MP_STATE
ecccf0cc 1080Architectures: x86, s390, arm, arm64
b843f065
AK
1081Type: vcpu ioctl
1082Parameters: struct kvm_mp_state (in)
1083Returns: 0 on success; -1 on error
1084
1085Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1086arguments.
1087
c32a4272 1088On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1089in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1090these architectures.
b843f065 1091
ecccf0cc
AB
1092For arm/arm64:
1093
1094The only states that are valid are KVM_MP_STATE_STOPPED and
1095KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
414fa985 1096
68ba6974 10974.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1098
1099Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1100Architectures: x86
1101Type: vm ioctl
1102Parameters: unsigned long identity (in)
1103Returns: 0 on success, -1 on error
1104
1105This ioctl defines the physical address of a one-page region in the guest
1106physical address space. The region must be within the first 4GB of the
1107guest physical address space and must not conflict with any memory slot
1108or any mmio address. The guest may malfunction if it accesses this memory
1109region.
1110
1111This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1112because of a quirk in the virtualization implementation (see the internals
1113documentation when it pops into existence).
1114
414fa985 1115
68ba6974 11164.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1117
1118Capability: KVM_CAP_SET_BOOT_CPU_ID
c32a4272 1119Architectures: x86
57bc24cf
AK
1120Type: vm ioctl
1121Parameters: unsigned long vcpu_id
1122Returns: 0 on success, -1 on error
1123
1124Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1125as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1126is vcpu 0.
1127
414fa985 1128
68ba6974 11294.42 KVM_GET_XSAVE
2d5b5a66
SY
1130
1131Capability: KVM_CAP_XSAVE
1132Architectures: x86
1133Type: vcpu ioctl
1134Parameters: struct kvm_xsave (out)
1135Returns: 0 on success, -1 on error
1136
1137struct kvm_xsave {
1138 __u32 region[1024];
1139};
1140
1141This ioctl would copy current vcpu's xsave struct to the userspace.
1142
414fa985 1143
68ba6974 11444.43 KVM_SET_XSAVE
2d5b5a66
SY
1145
1146Capability: KVM_CAP_XSAVE
1147Architectures: x86
1148Type: vcpu ioctl
1149Parameters: struct kvm_xsave (in)
1150Returns: 0 on success, -1 on error
1151
1152struct kvm_xsave {
1153 __u32 region[1024];
1154};
1155
1156This ioctl would copy userspace's xsave struct to the kernel.
1157
414fa985 1158
68ba6974 11594.44 KVM_GET_XCRS
2d5b5a66
SY
1160
1161Capability: KVM_CAP_XCRS
1162Architectures: x86
1163Type: vcpu ioctl
1164Parameters: struct kvm_xcrs (out)
1165Returns: 0 on success, -1 on error
1166
1167struct kvm_xcr {
1168 __u32 xcr;
1169 __u32 reserved;
1170 __u64 value;
1171};
1172
1173struct kvm_xcrs {
1174 __u32 nr_xcrs;
1175 __u32 flags;
1176 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1177 __u64 padding[16];
1178};
1179
1180This ioctl would copy current vcpu's xcrs to the userspace.
1181
414fa985 1182
68ba6974 11834.45 KVM_SET_XCRS
2d5b5a66
SY
1184
1185Capability: KVM_CAP_XCRS
1186Architectures: x86
1187Type: vcpu ioctl
1188Parameters: struct kvm_xcrs (in)
1189Returns: 0 on success, -1 on error
1190
1191struct kvm_xcr {
1192 __u32 xcr;
1193 __u32 reserved;
1194 __u64 value;
1195};
1196
1197struct kvm_xcrs {
1198 __u32 nr_xcrs;
1199 __u32 flags;
1200 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1201 __u64 padding[16];
1202};
1203
1204This ioctl would set vcpu's xcr to the value userspace specified.
1205
414fa985 1206
68ba6974 12074.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1208
1209Capability: KVM_CAP_EXT_CPUID
1210Architectures: x86
1211Type: system ioctl
1212Parameters: struct kvm_cpuid2 (in/out)
1213Returns: 0 on success, -1 on error
1214
1215struct kvm_cpuid2 {
1216 __u32 nent;
1217 __u32 padding;
1218 struct kvm_cpuid_entry2 entries[0];
1219};
1220
9c15bb1d
BP
1221#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1222#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1223#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
d153513d
AK
1224
1225struct kvm_cpuid_entry2 {
1226 __u32 function;
1227 __u32 index;
1228 __u32 flags;
1229 __u32 eax;
1230 __u32 ebx;
1231 __u32 ecx;
1232 __u32 edx;
1233 __u32 padding[3];
1234};
1235
1236This ioctl returns x86 cpuid features which are supported by both the hardware
1237and kvm. Userspace can use the information returned by this ioctl to
1238construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1239hardware, kernel, and userspace capabilities, and with user requirements (for
1240example, the user may wish to constrain cpuid to emulate older hardware,
1241or for feature consistency across a cluster).
1242
1243Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1244with the 'nent' field indicating the number of entries in the variable-size
1245array 'entries'. If the number of entries is too low to describe the cpu
1246capabilities, an error (E2BIG) is returned. If the number is too high,
1247the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1248number is just right, the 'nent' field is adjusted to the number of valid
1249entries in the 'entries' array, which is then filled.
1250
1251The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1252with unknown or unsupported features masked out. Some features (for example,
1253x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1254emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1255
1256 function: the eax value used to obtain the entry
1257 index: the ecx value used to obtain the entry (for entries that are
1258 affected by ecx)
1259 flags: an OR of zero or more of the following:
1260 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1261 if the index field is valid
1262 KVM_CPUID_FLAG_STATEFUL_FUNC:
1263 if cpuid for this function returns different values for successive
1264 invocations; there will be several entries with the same function,
1265 all with this flag set
1266 KVM_CPUID_FLAG_STATE_READ_NEXT:
1267 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1268 the first entry to be read by a cpu
1269 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1270 this function/index combination
1271
4d25a066
JK
1272The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1273as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1274support. Instead it is reported via
1275
1276 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1277
1278if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1279feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1280
414fa985 1281
68ba6974 12824.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1283
1284Capability: KVM_CAP_PPC_GET_PVINFO
1285Architectures: ppc
1286Type: vm ioctl
1287Parameters: struct kvm_ppc_pvinfo (out)
1288Returns: 0 on success, !0 on error
1289
1290struct kvm_ppc_pvinfo {
1291 __u32 flags;
1292 __u32 hcall[4];
1293 __u8 pad[108];
1294};
1295
1296This ioctl fetches PV specific information that need to be passed to the guest
1297using the device tree or other means from vm context.
1298
9202e076 1299The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1300
1301If any additional field gets added to this structure later on, a bit for that
1302additional piece of information will be set in the flags bitmap.
1303
9202e076
LYB
1304The flags bitmap is defined as:
1305
1306 /* the host supports the ePAPR idle hcall
1307 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1308
e80a4a94 13094.48 KVM_ASSIGN_PCI_DEVICE (deprecated)
49f48172 1310
7f05db6a 1311Capability: none
c32a4272 1312Architectures: x86
49f48172
JK
1313Type: vm ioctl
1314Parameters: struct kvm_assigned_pci_dev (in)
1315Returns: 0 on success, -1 on error
1316
1317Assigns a host PCI device to the VM.
1318
1319struct kvm_assigned_pci_dev {
1320 __u32 assigned_dev_id;
1321 __u32 busnr;
1322 __u32 devfn;
1323 __u32 flags;
1324 __u32 segnr;
1325 union {
1326 __u32 reserved[11];
1327 };
1328};
1329
1330The PCI device is specified by the triple segnr, busnr, and devfn.
1331Identification in succeeding service requests is done via assigned_dev_id. The
1332following flags are specified:
1333
1334/* Depends on KVM_CAP_IOMMU */
1335#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1336/* The following two depend on KVM_CAP_PCI_2_3 */
1337#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1338#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1339
1340If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1341via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1342assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1343guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1344
42387373
AW
1345The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1346isolation of the device. Usages not specifying this flag are deprecated.
1347
3d27e23b
AW
1348Only PCI header type 0 devices with PCI BAR resources are supported by
1349device assignment. The user requesting this ioctl must have read/write
1350access to the PCI sysfs resource files associated with the device.
1351
7f05db6a
MT
1352Errors:
1353 ENOTTY: kernel does not support this ioctl
1354
1355 Other error conditions may be defined by individual device types or
1356 have their standard meanings.
1357
414fa985 1358
e80a4a94 13594.49 KVM_DEASSIGN_PCI_DEVICE (deprecated)
49f48172 1360
7f05db6a 1361Capability: none
c32a4272 1362Architectures: x86
49f48172
JK
1363Type: vm ioctl
1364Parameters: struct kvm_assigned_pci_dev (in)
1365Returns: 0 on success, -1 on error
1366
1367Ends PCI device assignment, releasing all associated resources.
1368
7f05db6a 1369See KVM_ASSIGN_PCI_DEVICE for the data structure. Only assigned_dev_id is
49f48172
JK
1370used in kvm_assigned_pci_dev to identify the device.
1371
7f05db6a
MT
1372Errors:
1373 ENOTTY: kernel does not support this ioctl
1374
1375 Other error conditions may be defined by individual device types or
1376 have their standard meanings.
414fa985 1377
e80a4a94 13784.50 KVM_ASSIGN_DEV_IRQ (deprecated)
49f48172
JK
1379
1380Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1381Architectures: x86
49f48172
JK
1382Type: vm ioctl
1383Parameters: struct kvm_assigned_irq (in)
1384Returns: 0 on success, -1 on error
1385
1386Assigns an IRQ to a passed-through device.
1387
1388struct kvm_assigned_irq {
1389 __u32 assigned_dev_id;
91e3d71d 1390 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1391 __u32 guest_irq;
1392 __u32 flags;
1393 union {
49f48172
JK
1394 __u32 reserved[12];
1395 };
1396};
1397
1398The following flags are defined:
1399
1400#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1401#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1402#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1403
1404#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1405#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1406#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1407
1408It is not valid to specify multiple types per host or guest IRQ. However, the
1409IRQ type of host and guest can differ or can even be null.
1410
7f05db6a
MT
1411Errors:
1412 ENOTTY: kernel does not support this ioctl
1413
1414 Other error conditions may be defined by individual device types or
1415 have their standard meanings.
1416
414fa985 1417
e80a4a94 14184.51 KVM_DEASSIGN_DEV_IRQ (deprecated)
49f48172
JK
1419
1420Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1421Architectures: x86
49f48172
JK
1422Type: vm ioctl
1423Parameters: struct kvm_assigned_irq (in)
1424Returns: 0 on success, -1 on error
1425
1426Ends an IRQ assignment to a passed-through device.
1427
1428See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1429by assigned_dev_id, flags must correspond to the IRQ type specified on
1430KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1431
414fa985 1432
68ba6974 14334.52 KVM_SET_GSI_ROUTING
49f48172
JK
1434
1435Capability: KVM_CAP_IRQ_ROUTING
c32a4272 1436Architectures: x86 s390
49f48172
JK
1437Type: vm ioctl
1438Parameters: struct kvm_irq_routing (in)
1439Returns: 0 on success, -1 on error
1440
1441Sets the GSI routing table entries, overwriting any previously set entries.
1442
1443struct kvm_irq_routing {
1444 __u32 nr;
1445 __u32 flags;
1446 struct kvm_irq_routing_entry entries[0];
1447};
1448
1449No flags are specified so far, the corresponding field must be set to zero.
1450
1451struct kvm_irq_routing_entry {
1452 __u32 gsi;
1453 __u32 type;
1454 __u32 flags;
1455 __u32 pad;
1456 union {
1457 struct kvm_irq_routing_irqchip irqchip;
1458 struct kvm_irq_routing_msi msi;
84223598 1459 struct kvm_irq_routing_s390_adapter adapter;
5c919412 1460 struct kvm_irq_routing_hv_sint hv_sint;
49f48172
JK
1461 __u32 pad[8];
1462 } u;
1463};
1464
1465/* gsi routing entry types */
1466#define KVM_IRQ_ROUTING_IRQCHIP 1
1467#define KVM_IRQ_ROUTING_MSI 2
84223598 1468#define KVM_IRQ_ROUTING_S390_ADAPTER 3
5c919412 1469#define KVM_IRQ_ROUTING_HV_SINT 4
49f48172
JK
1470
1471No flags are specified so far, the corresponding field must be set to zero.
1472
1473struct kvm_irq_routing_irqchip {
1474 __u32 irqchip;
1475 __u32 pin;
1476};
1477
1478struct kvm_irq_routing_msi {
1479 __u32 address_lo;
1480 __u32 address_hi;
1481 __u32 data;
1482 __u32 pad;
1483};
1484
37131313
RK
1485On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
1486feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
1487address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
1488address_hi must be zero.
1489
84223598
CH
1490struct kvm_irq_routing_s390_adapter {
1491 __u64 ind_addr;
1492 __u64 summary_addr;
1493 __u64 ind_offset;
1494 __u32 summary_offset;
1495 __u32 adapter_id;
1496};
1497
5c919412
AS
1498struct kvm_irq_routing_hv_sint {
1499 __u32 vcpu;
1500 __u32 sint;
1501};
414fa985 1502
e80a4a94 15034.53 KVM_ASSIGN_SET_MSIX_NR (deprecated)
49f48172 1504
7f05db6a 1505Capability: none
c32a4272 1506Architectures: x86
49f48172
JK
1507Type: vm ioctl
1508Parameters: struct kvm_assigned_msix_nr (in)
1509Returns: 0 on success, -1 on error
1510
58f0964e
JK
1511Set the number of MSI-X interrupts for an assigned device. The number is
1512reset again by terminating the MSI-X assignment of the device via
1513KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1514point will fail.
49f48172
JK
1515
1516struct kvm_assigned_msix_nr {
1517 __u32 assigned_dev_id;
1518 __u16 entry_nr;
1519 __u16 padding;
1520};
1521
1522#define KVM_MAX_MSIX_PER_DEV 256
1523
414fa985 1524
e80a4a94 15254.54 KVM_ASSIGN_SET_MSIX_ENTRY (deprecated)
49f48172 1526
7f05db6a 1527Capability: none
c32a4272 1528Architectures: x86
49f48172
JK
1529Type: vm ioctl
1530Parameters: struct kvm_assigned_msix_entry (in)
1531Returns: 0 on success, -1 on error
1532
1533Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1534the GSI vector to zero means disabling the interrupt.
1535
1536struct kvm_assigned_msix_entry {
1537 __u32 assigned_dev_id;
1538 __u32 gsi;
1539 __u16 entry; /* The index of entry in the MSI-X table */
1540 __u16 padding[3];
1541};
1542
7f05db6a
MT
1543Errors:
1544 ENOTTY: kernel does not support this ioctl
1545
1546 Other error conditions may be defined by individual device types or
1547 have their standard meanings.
1548
414fa985
JK
1549
15504.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1551
1552Capability: KVM_CAP_TSC_CONTROL
1553Architectures: x86
1554Type: vcpu ioctl
1555Parameters: virtual tsc_khz
1556Returns: 0 on success, -1 on error
1557
1558Specifies the tsc frequency for the virtual machine. The unit of the
1559frequency is KHz.
1560
414fa985
JK
1561
15624.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1563
1564Capability: KVM_CAP_GET_TSC_KHZ
1565Architectures: x86
1566Type: vcpu ioctl
1567Parameters: none
1568Returns: virtual tsc-khz on success, negative value on error
1569
1570Returns the tsc frequency of the guest. The unit of the return value is
1571KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1572error.
1573
414fa985
JK
1574
15754.57 KVM_GET_LAPIC
e7677933
AK
1576
1577Capability: KVM_CAP_IRQCHIP
1578Architectures: x86
1579Type: vcpu ioctl
1580Parameters: struct kvm_lapic_state (out)
1581Returns: 0 on success, -1 on error
1582
1583#define KVM_APIC_REG_SIZE 0x400
1584struct kvm_lapic_state {
1585 char regs[KVM_APIC_REG_SIZE];
1586};
1587
1588Reads the Local APIC registers and copies them into the input argument. The
1589data format and layout are the same as documented in the architecture manual.
1590
37131313
RK
1591If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is
1592enabled, then the format of APIC_ID register depends on the APIC mode
1593(reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in
1594the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID
1595which is stored in bits 31-24 of the APIC register, or equivalently in
1596byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then
1597be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR.
1598
1599If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state
1600always uses xAPIC format.
1601
414fa985
JK
1602
16034.58 KVM_SET_LAPIC
e7677933
AK
1604
1605Capability: KVM_CAP_IRQCHIP
1606Architectures: x86
1607Type: vcpu ioctl
1608Parameters: struct kvm_lapic_state (in)
1609Returns: 0 on success, -1 on error
1610
1611#define KVM_APIC_REG_SIZE 0x400
1612struct kvm_lapic_state {
1613 char regs[KVM_APIC_REG_SIZE];
1614};
1615
df5cbb27 1616Copies the input argument into the Local APIC registers. The data format
e7677933
AK
1617and layout are the same as documented in the architecture manual.
1618
37131313
RK
1619The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's
1620regs field) depends on the state of the KVM_CAP_X2APIC_API capability.
1621See the note in KVM_GET_LAPIC.
1622
414fa985
JK
1623
16244.59 KVM_IOEVENTFD
55399a02
SL
1625
1626Capability: KVM_CAP_IOEVENTFD
1627Architectures: all
1628Type: vm ioctl
1629Parameters: struct kvm_ioeventfd (in)
1630Returns: 0 on success, !0 on error
1631
1632This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1633within the guest. A guest write in the registered address will signal the
1634provided event instead of triggering an exit.
1635
1636struct kvm_ioeventfd {
1637 __u64 datamatch;
1638 __u64 addr; /* legal pio/mmio address */
e9ea5069 1639 __u32 len; /* 0, 1, 2, 4, or 8 bytes */
55399a02
SL
1640 __s32 fd;
1641 __u32 flags;
1642 __u8 pad[36];
1643};
1644
2b83451b
CH
1645For the special case of virtio-ccw devices on s390, the ioevent is matched
1646to a subchannel/virtqueue tuple instead.
1647
55399a02
SL
1648The following flags are defined:
1649
1650#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1651#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1652#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
2b83451b
CH
1653#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1654 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1655
1656If datamatch flag is set, the event will be signaled only if the written value
1657to the registered address is equal to datamatch in struct kvm_ioeventfd.
1658
2b83451b
CH
1659For virtio-ccw devices, addr contains the subchannel id and datamatch the
1660virtqueue index.
1661
e9ea5069
JW
1662With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and
1663the kernel will ignore the length of guest write and may get a faster vmexit.
1664The speedup may only apply to specific architectures, but the ioeventfd will
1665work anyway.
414fa985
JK
1666
16674.60 KVM_DIRTY_TLB
dc83b8bc
SW
1668
1669Capability: KVM_CAP_SW_TLB
1670Architectures: ppc
1671Type: vcpu ioctl
1672Parameters: struct kvm_dirty_tlb (in)
1673Returns: 0 on success, -1 on error
1674
1675struct kvm_dirty_tlb {
1676 __u64 bitmap;
1677 __u32 num_dirty;
1678};
1679
1680This must be called whenever userspace has changed an entry in the shared
1681TLB, prior to calling KVM_RUN on the associated vcpu.
1682
1683The "bitmap" field is the userspace address of an array. This array
1684consists of a number of bits, equal to the total number of TLB entries as
1685determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1686nearest multiple of 64.
1687
1688Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1689array.
1690
1691The array is little-endian: the bit 0 is the least significant bit of the
1692first byte, bit 8 is the least significant bit of the second byte, etc.
1693This avoids any complications with differing word sizes.
1694
1695The "num_dirty" field is a performance hint for KVM to determine whether it
1696should skip processing the bitmap and just invalidate everything. It must
1697be set to the number of set bits in the bitmap.
1698
414fa985 1699
e80a4a94 17004.61 KVM_ASSIGN_SET_INTX_MASK (deprecated)
07700a94
JK
1701
1702Capability: KVM_CAP_PCI_2_3
1703Architectures: x86
1704Type: vm ioctl
1705Parameters: struct kvm_assigned_pci_dev (in)
1706Returns: 0 on success, -1 on error
1707
1708Allows userspace to mask PCI INTx interrupts from the assigned device. The
1709kernel will not deliver INTx interrupts to the guest between setting and
1710clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1711and emulation of PCI 2.3 INTx disable command register behavior.
1712
1713This may be used for both PCI 2.3 devices supporting INTx disable natively and
1714older devices lacking this support. Userspace is responsible for emulating the
1715read value of the INTx disable bit in the guest visible PCI command register.
1716When modifying the INTx disable state, userspace should precede updating the
1717physical device command register by calling this ioctl to inform the kernel of
1718the new intended INTx mask state.
1719
1720Note that the kernel uses the device INTx disable bit to internally manage the
1721device interrupt state for PCI 2.3 devices. Reads of this register may
1722therefore not match the expected value. Writes should always use the guest
1723intended INTx disable value rather than attempting to read-copy-update the
1724current physical device state. Races between user and kernel updates to the
1725INTx disable bit are handled lazily in the kernel. It's possible the device
1726may generate unintended interrupts, but they will not be injected into the
1727guest.
1728
1729See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1730by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1731evaluated.
1732
414fa985 1733
54738c09
DG
17344.62 KVM_CREATE_SPAPR_TCE
1735
1736Capability: KVM_CAP_SPAPR_TCE
1737Architectures: powerpc
1738Type: vm ioctl
1739Parameters: struct kvm_create_spapr_tce (in)
1740Returns: file descriptor for manipulating the created TCE table
1741
1742This creates a virtual TCE (translation control entry) table, which
1743is an IOMMU for PAPR-style virtual I/O. It is used to translate
1744logical addresses used in virtual I/O into guest physical addresses,
1745and provides a scatter/gather capability for PAPR virtual I/O.
1746
1747/* for KVM_CAP_SPAPR_TCE */
1748struct kvm_create_spapr_tce {
1749 __u64 liobn;
1750 __u32 window_size;
1751};
1752
1753The liobn field gives the logical IO bus number for which to create a
1754TCE table. The window_size field specifies the size of the DMA window
1755which this TCE table will translate - the table will contain one 64
1756bit TCE entry for every 4kiB of the DMA window.
1757
1758When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1759table has been created using this ioctl(), the kernel will handle it
1760in real mode, updating the TCE table. H_PUT_TCE calls for other
1761liobns will cause a vm exit and must be handled by userspace.
1762
1763The return value is a file descriptor which can be passed to mmap(2)
1764to map the created TCE table into userspace. This lets userspace read
1765the entries written by kernel-handled H_PUT_TCE calls, and also lets
1766userspace update the TCE table directly which is useful in some
1767circumstances.
1768
414fa985 1769
aa04b4cc
PM
17704.63 KVM_ALLOCATE_RMA
1771
1772Capability: KVM_CAP_PPC_RMA
1773Architectures: powerpc
1774Type: vm ioctl
1775Parameters: struct kvm_allocate_rma (out)
1776Returns: file descriptor for mapping the allocated RMA
1777
1778This allocates a Real Mode Area (RMA) from the pool allocated at boot
1779time by the kernel. An RMA is a physically-contiguous, aligned region
1780of memory used on older POWER processors to provide the memory which
1781will be accessed by real-mode (MMU off) accesses in a KVM guest.
1782POWER processors support a set of sizes for the RMA that usually
1783includes 64MB, 128MB, 256MB and some larger powers of two.
1784
1785/* for KVM_ALLOCATE_RMA */
1786struct kvm_allocate_rma {
1787 __u64 rma_size;
1788};
1789
1790The return value is a file descriptor which can be passed to mmap(2)
1791to map the allocated RMA into userspace. The mapped area can then be
1792passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1793RMA for a virtual machine. The size of the RMA in bytes (which is
1794fixed at host kernel boot time) is returned in the rma_size field of
1795the argument structure.
1796
1797The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1798is supported; 2 if the processor requires all virtual machines to have
1799an RMA, or 1 if the processor can use an RMA but doesn't require it,
1800because it supports the Virtual RMA (VRMA) facility.
1801
414fa985 1802
3f745f1e
AK
18034.64 KVM_NMI
1804
1805Capability: KVM_CAP_USER_NMI
1806Architectures: x86
1807Type: vcpu ioctl
1808Parameters: none
1809Returns: 0 on success, -1 on error
1810
1811Queues an NMI on the thread's vcpu. Note this is well defined only
1812when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1813between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1814has been called, this interface is completely emulated within the kernel.
1815
1816To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1817following algorithm:
1818
5d4f6f3d 1819 - pause the vcpu
3f745f1e
AK
1820 - read the local APIC's state (KVM_GET_LAPIC)
1821 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1822 - if so, issue KVM_NMI
1823 - resume the vcpu
1824
1825Some guests configure the LINT1 NMI input to cause a panic, aiding in
1826debugging.
1827
414fa985 1828
e24ed81f 18294.65 KVM_S390_UCAS_MAP
27e0393f
CO
1830
1831Capability: KVM_CAP_S390_UCONTROL
1832Architectures: s390
1833Type: vcpu ioctl
1834Parameters: struct kvm_s390_ucas_mapping (in)
1835Returns: 0 in case of success
1836
1837The parameter is defined like this:
1838 struct kvm_s390_ucas_mapping {
1839 __u64 user_addr;
1840 __u64 vcpu_addr;
1841 __u64 length;
1842 };
1843
1844This ioctl maps the memory at "user_addr" with the length "length" to
1845the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 1846be aligned by 1 megabyte.
27e0393f 1847
414fa985 1848
e24ed81f 18494.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1850
1851Capability: KVM_CAP_S390_UCONTROL
1852Architectures: s390
1853Type: vcpu ioctl
1854Parameters: struct kvm_s390_ucas_mapping (in)
1855Returns: 0 in case of success
1856
1857The parameter is defined like this:
1858 struct kvm_s390_ucas_mapping {
1859 __u64 user_addr;
1860 __u64 vcpu_addr;
1861 __u64 length;
1862 };
1863
1864This ioctl unmaps the memory in the vcpu's address space starting at
1865"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 1866All parameters need to be aligned by 1 megabyte.
27e0393f 1867
414fa985 1868
e24ed81f 18694.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1870
1871Capability: KVM_CAP_S390_UCONTROL
1872Architectures: s390
1873Type: vcpu ioctl
1874Parameters: vcpu absolute address (in)
1875Returns: 0 in case of success
1876
1877This call creates a page table entry on the virtual cpu's address space
1878(for user controlled virtual machines) or the virtual machine's address
1879space (for regular virtual machines). This only works for minor faults,
1880thus it's recommended to access subject memory page via the user page
1881table upfront. This is useful to handle validity intercepts for user
1882controlled virtual machines to fault in the virtual cpu's lowcore pages
1883prior to calling the KVM_RUN ioctl.
1884
414fa985 1885
e24ed81f
AG
18864.68 KVM_SET_ONE_REG
1887
1888Capability: KVM_CAP_ONE_REG
1889Architectures: all
1890Type: vcpu ioctl
1891Parameters: struct kvm_one_reg (in)
1892Returns: 0 on success, negative value on failure
1893
1894struct kvm_one_reg {
1895 __u64 id;
1896 __u64 addr;
1897};
1898
1899Using this ioctl, a single vcpu register can be set to a specific value
1900defined by user space with the passed in struct kvm_one_reg, where id
1901refers to the register identifier as described below and addr is a pointer
1902to a variable with the respective size. There can be architecture agnostic
1903and architecture specific registers. Each have their own range of operation
1904and their own constants and width. To keep track of the implemented
1905registers, find a list below:
1906
bf5590f3
JH
1907 Arch | Register | Width (bits)
1908 | |
1909 PPC | KVM_REG_PPC_HIOR | 64
1910 PPC | KVM_REG_PPC_IAC1 | 64
1911 PPC | KVM_REG_PPC_IAC2 | 64
1912 PPC | KVM_REG_PPC_IAC3 | 64
1913 PPC | KVM_REG_PPC_IAC4 | 64
1914 PPC | KVM_REG_PPC_DAC1 | 64
1915 PPC | KVM_REG_PPC_DAC2 | 64
1916 PPC | KVM_REG_PPC_DABR | 64
1917 PPC | KVM_REG_PPC_DSCR | 64
1918 PPC | KVM_REG_PPC_PURR | 64
1919 PPC | KVM_REG_PPC_SPURR | 64
1920 PPC | KVM_REG_PPC_DAR | 64
1921 PPC | KVM_REG_PPC_DSISR | 32
1922 PPC | KVM_REG_PPC_AMR | 64
1923 PPC | KVM_REG_PPC_UAMOR | 64
1924 PPC | KVM_REG_PPC_MMCR0 | 64
1925 PPC | KVM_REG_PPC_MMCR1 | 64
1926 PPC | KVM_REG_PPC_MMCRA | 64
1927 PPC | KVM_REG_PPC_MMCR2 | 64
1928 PPC | KVM_REG_PPC_MMCRS | 64
1929 PPC | KVM_REG_PPC_SIAR | 64
1930 PPC | KVM_REG_PPC_SDAR | 64
1931 PPC | KVM_REG_PPC_SIER | 64
1932 PPC | KVM_REG_PPC_PMC1 | 32
1933 PPC | KVM_REG_PPC_PMC2 | 32
1934 PPC | KVM_REG_PPC_PMC3 | 32
1935 PPC | KVM_REG_PPC_PMC4 | 32
1936 PPC | KVM_REG_PPC_PMC5 | 32
1937 PPC | KVM_REG_PPC_PMC6 | 32
1938 PPC | KVM_REG_PPC_PMC7 | 32
1939 PPC | KVM_REG_PPC_PMC8 | 32
1940 PPC | KVM_REG_PPC_FPR0 | 64
a8bd19ef 1941 ...
bf5590f3
JH
1942 PPC | KVM_REG_PPC_FPR31 | 64
1943 PPC | KVM_REG_PPC_VR0 | 128
a8bd19ef 1944 ...
bf5590f3
JH
1945 PPC | KVM_REG_PPC_VR31 | 128
1946 PPC | KVM_REG_PPC_VSR0 | 128
a8bd19ef 1947 ...
bf5590f3
JH
1948 PPC | KVM_REG_PPC_VSR31 | 128
1949 PPC | KVM_REG_PPC_FPSCR | 64
1950 PPC | KVM_REG_PPC_VSCR | 32
1951 PPC | KVM_REG_PPC_VPA_ADDR | 64
1952 PPC | KVM_REG_PPC_VPA_SLB | 128
1953 PPC | KVM_REG_PPC_VPA_DTL | 128
1954 PPC | KVM_REG_PPC_EPCR | 32
1955 PPC | KVM_REG_PPC_EPR | 32
1956 PPC | KVM_REG_PPC_TCR | 32
1957 PPC | KVM_REG_PPC_TSR | 32
1958 PPC | KVM_REG_PPC_OR_TSR | 32
1959 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1960 PPC | KVM_REG_PPC_MAS0 | 32
1961 PPC | KVM_REG_PPC_MAS1 | 32
1962 PPC | KVM_REG_PPC_MAS2 | 64
1963 PPC | KVM_REG_PPC_MAS7_3 | 64
1964 PPC | KVM_REG_PPC_MAS4 | 32
1965 PPC | KVM_REG_PPC_MAS6 | 32
1966 PPC | KVM_REG_PPC_MMUCFG | 32
1967 PPC | KVM_REG_PPC_TLB0CFG | 32
1968 PPC | KVM_REG_PPC_TLB1CFG | 32
1969 PPC | KVM_REG_PPC_TLB2CFG | 32
1970 PPC | KVM_REG_PPC_TLB3CFG | 32
1971 PPC | KVM_REG_PPC_TLB0PS | 32
1972 PPC | KVM_REG_PPC_TLB1PS | 32
1973 PPC | KVM_REG_PPC_TLB2PS | 32
1974 PPC | KVM_REG_PPC_TLB3PS | 32
1975 PPC | KVM_REG_PPC_EPTCFG | 32
1976 PPC | KVM_REG_PPC_ICP_STATE | 64
1977 PPC | KVM_REG_PPC_TB_OFFSET | 64
1978 PPC | KVM_REG_PPC_SPMC1 | 32
1979 PPC | KVM_REG_PPC_SPMC2 | 32
1980 PPC | KVM_REG_PPC_IAMR | 64
1981 PPC | KVM_REG_PPC_TFHAR | 64
1982 PPC | KVM_REG_PPC_TFIAR | 64
1983 PPC | KVM_REG_PPC_TEXASR | 64
1984 PPC | KVM_REG_PPC_FSCR | 64
1985 PPC | KVM_REG_PPC_PSPB | 32
1986 PPC | KVM_REG_PPC_EBBHR | 64
1987 PPC | KVM_REG_PPC_EBBRR | 64
1988 PPC | KVM_REG_PPC_BESCR | 64
1989 PPC | KVM_REG_PPC_TAR | 64
1990 PPC | KVM_REG_PPC_DPDES | 64
1991 PPC | KVM_REG_PPC_DAWR | 64
1992 PPC | KVM_REG_PPC_DAWRX | 64
1993 PPC | KVM_REG_PPC_CIABR | 64
1994 PPC | KVM_REG_PPC_IC | 64
1995 PPC | KVM_REG_PPC_VTB | 64
1996 PPC | KVM_REG_PPC_CSIGR | 64
1997 PPC | KVM_REG_PPC_TACR | 64
1998 PPC | KVM_REG_PPC_TCSCR | 64
1999 PPC | KVM_REG_PPC_PID | 64
2000 PPC | KVM_REG_PPC_ACOP | 64
2001 PPC | KVM_REG_PPC_VRSAVE | 32
cc568ead
PB
2002 PPC | KVM_REG_PPC_LPCR | 32
2003 PPC | KVM_REG_PPC_LPCR_64 | 64
bf5590f3
JH
2004 PPC | KVM_REG_PPC_PPR | 64
2005 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
2006 PPC | KVM_REG_PPC_DABRX | 32
2007 PPC | KVM_REG_PPC_WORT | 64
bc8a4e5c
BB
2008 PPC | KVM_REG_PPC_SPRG9 | 64
2009 PPC | KVM_REG_PPC_DBSR | 32
bf5590f3 2010 PPC | KVM_REG_PPC_TM_GPR0 | 64
3b783474 2011 ...
bf5590f3
JH
2012 PPC | KVM_REG_PPC_TM_GPR31 | 64
2013 PPC | KVM_REG_PPC_TM_VSR0 | 128
3b783474 2014 ...
bf5590f3
JH
2015 PPC | KVM_REG_PPC_TM_VSR63 | 128
2016 PPC | KVM_REG_PPC_TM_CR | 64
2017 PPC | KVM_REG_PPC_TM_LR | 64
2018 PPC | KVM_REG_PPC_TM_CTR | 64
2019 PPC | KVM_REG_PPC_TM_FPSCR | 64
2020 PPC | KVM_REG_PPC_TM_AMR | 64
2021 PPC | KVM_REG_PPC_TM_PPR | 64
2022 PPC | KVM_REG_PPC_TM_VRSAVE | 64
2023 PPC | KVM_REG_PPC_TM_VSCR | 32
2024 PPC | KVM_REG_PPC_TM_DSCR | 64
2025 PPC | KVM_REG_PPC_TM_TAR | 64
c2d2c21b
JH
2026 | |
2027 MIPS | KVM_REG_MIPS_R0 | 64
2028 ...
2029 MIPS | KVM_REG_MIPS_R31 | 64
2030 MIPS | KVM_REG_MIPS_HI | 64
2031 MIPS | KVM_REG_MIPS_LO | 64
2032 MIPS | KVM_REG_MIPS_PC | 64
2033 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
2034 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
2035 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
2036 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
2037 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
2038 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
2039 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
2040 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
2041 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
2042 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
2043 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
2044 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
2045 MIPS | KVM_REG_MIPS_CP0_EPC | 64
1068eaaf 2046 MIPS | KVM_REG_MIPS_CP0_PRID | 32
c2d2c21b
JH
2047 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
2048 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
2049 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
2050 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
c771607a
JH
2051 MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32
2052 MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32
c2d2c21b
JH
2053 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
2054 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
05108709
JH
2055 MIPS | KVM_REG_MIPS_CP0_KSCRATCH1 | 64
2056 MIPS | KVM_REG_MIPS_CP0_KSCRATCH2 | 64
2057 MIPS | KVM_REG_MIPS_CP0_KSCRATCH3 | 64
2058 MIPS | KVM_REG_MIPS_CP0_KSCRATCH4 | 64
2059 MIPS | KVM_REG_MIPS_CP0_KSCRATCH5 | 64
2060 MIPS | KVM_REG_MIPS_CP0_KSCRATCH6 | 64
c2d2c21b
JH
2061 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
2062 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
2063 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
379245cd
JH
2064 MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32
2065 MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64
ab86bd60 2066 MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128
379245cd
JH
2067 MIPS | KVM_REG_MIPS_FCR_IR | 32
2068 MIPS | KVM_REG_MIPS_FCR_CSR | 32
ab86bd60
JH
2069 MIPS | KVM_REG_MIPS_MSA_IR | 32
2070 MIPS | KVM_REG_MIPS_MSA_CSR | 32
414fa985 2071
749cf76c
CD
2072ARM registers are mapped using the lower 32 bits. The upper 16 of that
2073is the register group type, or coprocessor number:
2074
2075ARM core registers have the following id bit patterns:
aa404ddf 2076 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 2077
1138245c 2078ARM 32-bit CP15 registers have the following id bit patterns:
aa404ddf 2079 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c
CD
2080
2081ARM 64-bit CP15 registers have the following id bit patterns:
aa404ddf 2082 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 2083
c27581ed 2084ARM CCSIDR registers are demultiplexed by CSSELR value:
aa404ddf 2085 0x4020 0000 0011 00 <csselr:8>
749cf76c 2086
4fe21e4c 2087ARM 32-bit VFP control registers have the following id bit patterns:
aa404ddf 2088 0x4020 0000 0012 1 <regno:12>
4fe21e4c
RR
2089
2090ARM 64-bit FP registers have the following id bit patterns:
aa404ddf 2091 0x4030 0000 0012 0 <regno:12>
4fe21e4c 2092
379e04c7
MZ
2093
2094arm64 registers are mapped using the lower 32 bits. The upper 16 of
2095that is the register group type, or coprocessor number:
2096
2097arm64 core/FP-SIMD registers have the following id bit patterns. Note
2098that the size of the access is variable, as the kvm_regs structure
2099contains elements ranging from 32 to 128 bits. The index is a 32bit
2100value in the kvm_regs structure seen as a 32bit array.
2101 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2102
2103arm64 CCSIDR registers are demultiplexed by CSSELR value:
2104 0x6020 0000 0011 00 <csselr:8>
2105
2106arm64 system registers have the following id bit patterns:
2107 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2108
c2d2c21b
JH
2109
2110MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2111the register group type:
2112
2113MIPS core registers (see above) have the following id bit patterns:
2114 0x7030 0000 0000 <reg:16>
2115
2116MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
2117patterns depending on whether they're 32-bit or 64-bit registers:
2118 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2119 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2120
2121MIPS KVM control registers (see above) have the following id bit patterns:
2122 0x7030 0000 0002 <reg:16>
2123
379245cd
JH
2124MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
2125id bit patterns depending on the size of the register being accessed. They are
2126always accessed according to the current guest FPU mode (Status.FR and
2127Config5.FRE), i.e. as the guest would see them, and they become unpredictable
ab86bd60
JH
2128if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
2129registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
2130overlap the FPU registers:
379245cd
JH
2131 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
2132 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
ab86bd60 2133 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
379245cd
JH
2134
2135MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
2136following id bit patterns:
2137 0x7020 0000 0003 01 <0:3> <reg:5>
2138
ab86bd60
JH
2139MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
2140following id bit patterns:
2141 0x7020 0000 0003 02 <0:3> <reg:5>
2142
c2d2c21b 2143
e24ed81f
AG
21444.69 KVM_GET_ONE_REG
2145
2146Capability: KVM_CAP_ONE_REG
2147Architectures: all
2148Type: vcpu ioctl
2149Parameters: struct kvm_one_reg (in and out)
2150Returns: 0 on success, negative value on failure
2151
2152This ioctl allows to receive the value of a single register implemented
2153in a vcpu. The register to read is indicated by the "id" field of the
2154kvm_one_reg struct passed in. On success, the register value can be found
2155at the memory location pointed to by "addr".
2156
2157The list of registers accessible using this interface is identical to the
2e232702 2158list in 4.68.
e24ed81f 2159
414fa985 2160
1c0b28c2
EM
21614.70 KVM_KVMCLOCK_CTRL
2162
2163Capability: KVM_CAP_KVMCLOCK_CTRL
2164Architectures: Any that implement pvclocks (currently x86 only)
2165Type: vcpu ioctl
2166Parameters: None
2167Returns: 0 on success, -1 on error
2168
2169This signals to the host kernel that the specified guest is being paused by
2170userspace. The host will set a flag in the pvclock structure that is checked
2171from the soft lockup watchdog. The flag is part of the pvclock structure that
2172is shared between guest and host, specifically the second bit of the flags
2173field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2174the host and read/cleared exclusively by the guest. The guest operation of
2175checking and clearing the flag must an atomic operation so
2176load-link/store-conditional, or equivalent must be used. There are two cases
2177where the guest will clear the flag: when the soft lockup watchdog timer resets
2178itself or when a soft lockup is detected. This ioctl can be called any time
2179after pausing the vcpu, but before it is resumed.
2180
414fa985 2181
07975ad3
JK
21824.71 KVM_SIGNAL_MSI
2183
2184Capability: KVM_CAP_SIGNAL_MSI
2185Architectures: x86
2186Type: vm ioctl
2187Parameters: struct kvm_msi (in)
2188Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2189
2190Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2191MSI messages.
2192
2193struct kvm_msi {
2194 __u32 address_lo;
2195 __u32 address_hi;
2196 __u32 data;
2197 __u32 flags;
2198 __u8 pad[16];
2199};
2200
2201No flags are defined so far. The corresponding field must be 0.
2202
37131313
RK
2203On x86, address_hi is ignored unless the KVM_CAP_X2APIC_API capability is
2204enabled. If it is enabled, address_hi bits 31-8 provide bits 31-8 of the
2205destination id. Bits 7-0 of address_hi must be zero.
2206
414fa985 2207
0589ff6c
JK
22084.71 KVM_CREATE_PIT2
2209
2210Capability: KVM_CAP_PIT2
2211Architectures: x86
2212Type: vm ioctl
2213Parameters: struct kvm_pit_config (in)
2214Returns: 0 on success, -1 on error
2215
2216Creates an in-kernel device model for the i8254 PIT. This call is only valid
2217after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2218parameters have to be passed:
2219
2220struct kvm_pit_config {
2221 __u32 flags;
2222 __u32 pad[15];
2223};
2224
2225Valid flags are:
2226
2227#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2228
b6ddf05f
JK
2229PIT timer interrupts may use a per-VM kernel thread for injection. If it
2230exists, this thread will have a name of the following pattern:
2231
2232kvm-pit/<owner-process-pid>
2233
2234When running a guest with elevated priorities, the scheduling parameters of
2235this thread may have to be adjusted accordingly.
2236
0589ff6c
JK
2237This IOCTL replaces the obsolete KVM_CREATE_PIT.
2238
2239
22404.72 KVM_GET_PIT2
2241
2242Capability: KVM_CAP_PIT_STATE2
2243Architectures: x86
2244Type: vm ioctl
2245Parameters: struct kvm_pit_state2 (out)
2246Returns: 0 on success, -1 on error
2247
2248Retrieves the state of the in-kernel PIT model. Only valid after
2249KVM_CREATE_PIT2. The state is returned in the following structure:
2250
2251struct kvm_pit_state2 {
2252 struct kvm_pit_channel_state channels[3];
2253 __u32 flags;
2254 __u32 reserved[9];
2255};
2256
2257Valid flags are:
2258
2259/* disable PIT in HPET legacy mode */
2260#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2261
2262This IOCTL replaces the obsolete KVM_GET_PIT.
2263
2264
22654.73 KVM_SET_PIT2
2266
2267Capability: KVM_CAP_PIT_STATE2
2268Architectures: x86
2269Type: vm ioctl
2270Parameters: struct kvm_pit_state2 (in)
2271Returns: 0 on success, -1 on error
2272
2273Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2274See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2275
2276This IOCTL replaces the obsolete KVM_SET_PIT.
2277
2278
5b74716e
BH
22794.74 KVM_PPC_GET_SMMU_INFO
2280
2281Capability: KVM_CAP_PPC_GET_SMMU_INFO
2282Architectures: powerpc
2283Type: vm ioctl
2284Parameters: None
2285Returns: 0 on success, -1 on error
2286
2287This populates and returns a structure describing the features of
2288the "Server" class MMU emulation supported by KVM.
cc22c354 2289This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2290device-tree properties for the guest operating system.
2291
c98be0c9 2292The structure contains some global information, followed by an
5b74716e
BH
2293array of supported segment page sizes:
2294
2295 struct kvm_ppc_smmu_info {
2296 __u64 flags;
2297 __u32 slb_size;
2298 __u32 pad;
2299 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2300 };
2301
2302The supported flags are:
2303
2304 - KVM_PPC_PAGE_SIZES_REAL:
2305 When that flag is set, guest page sizes must "fit" the backing
2306 store page sizes. When not set, any page size in the list can
2307 be used regardless of how they are backed by userspace.
2308
2309 - KVM_PPC_1T_SEGMENTS
2310 The emulated MMU supports 1T segments in addition to the
2311 standard 256M ones.
2312
2313The "slb_size" field indicates how many SLB entries are supported
2314
2315The "sps" array contains 8 entries indicating the supported base
2316page sizes for a segment in increasing order. Each entry is defined
2317as follow:
2318
2319 struct kvm_ppc_one_seg_page_size {
2320 __u32 page_shift; /* Base page shift of segment (or 0) */
2321 __u32 slb_enc; /* SLB encoding for BookS */
2322 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2323 };
2324
2325An entry with a "page_shift" of 0 is unused. Because the array is
2326organized in increasing order, a lookup can stop when encoutering
2327such an entry.
2328
2329The "slb_enc" field provides the encoding to use in the SLB for the
2330page size. The bits are in positions such as the value can directly
2331be OR'ed into the "vsid" argument of the slbmte instruction.
2332
2333The "enc" array is a list which for each of those segment base page
2334size provides the list of supported actual page sizes (which can be
2335only larger or equal to the base page size), along with the
f884ab15 2336corresponding encoding in the hash PTE. Similarly, the array is
5b74716e
BH
23378 entries sorted by increasing sizes and an entry with a "0" shift
2338is an empty entry and a terminator:
2339
2340 struct kvm_ppc_one_page_size {
2341 __u32 page_shift; /* Page shift (or 0) */
2342 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2343 };
2344
2345The "pte_enc" field provides a value that can OR'ed into the hash
2346PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2347into the hash PTE second double word).
2348
f36992e3
AW
23494.75 KVM_IRQFD
2350
2351Capability: KVM_CAP_IRQFD
174178fe 2352Architectures: x86 s390 arm arm64
f36992e3
AW
2353Type: vm ioctl
2354Parameters: struct kvm_irqfd (in)
2355Returns: 0 on success, -1 on error
2356
2357Allows setting an eventfd to directly trigger a guest interrupt.
2358kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2359kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
17180032 2360an event is triggered on the eventfd, an interrupt is injected into
f36992e3
AW
2361the guest using the specified gsi pin. The irqfd is removed using
2362the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2363and kvm_irqfd.gsi.
2364
7a84428a
AW
2365With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2366mechanism allowing emulation of level-triggered, irqfd-based
2367interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2368additional eventfd in the kvm_irqfd.resamplefd field. When operating
2369in resample mode, posting of an interrupt through kvm_irq.fd asserts
2370the specified gsi in the irqchip. When the irqchip is resampled, such
17180032 2371as from an EOI, the gsi is de-asserted and the user is notified via
7a84428a
AW
2372kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2373the interrupt if the device making use of it still requires service.
2374Note that closing the resamplefd is not sufficient to disable the
2375irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2376and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2377
174178fe
EA
2378On ARM/ARM64, the gsi field in the kvm_irqfd struct specifies the Shared
2379Peripheral Interrupt (SPI) index, such that the GIC interrupt ID is
2380given by gsi + 32.
2381
5fecc9d8 23824.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2383
2384Capability: KVM_CAP_PPC_ALLOC_HTAB
2385Architectures: powerpc
2386Type: vm ioctl
2387Parameters: Pointer to u32 containing hash table order (in/out)
2388Returns: 0 on success, -1 on error
2389
2390This requests the host kernel to allocate an MMU hash table for a
2391guest using the PAPR paravirtualization interface. This only does
2392anything if the kernel is configured to use the Book 3S HV style of
2393virtualization. Otherwise the capability doesn't exist and the ioctl
2394returns an ENOTTY error. The rest of this description assumes Book 3S
2395HV.
2396
2397There must be no vcpus running when this ioctl is called; if there
2398are, it will do nothing and return an EBUSY error.
2399
2400The parameter is a pointer to a 32-bit unsigned integer variable
2401containing the order (log base 2) of the desired size of the hash
2402table, which must be between 18 and 46. On successful return from the
2403ioctl, it will have been updated with the order of the hash table that
2404was allocated.
2405
2406If no hash table has been allocated when any vcpu is asked to run
2407(with the KVM_RUN ioctl), the host kernel will allocate a
2408default-sized hash table (16 MB).
2409
2410If this ioctl is called when a hash table has already been allocated,
2411the kernel will clear out the existing hash table (zero all HPTEs) and
2412return the hash table order in the parameter. (If the guest is using
2413the virtualized real-mode area (VRMA) facility, the kernel will
2414re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2415
416ad65f
CH
24164.77 KVM_S390_INTERRUPT
2417
2418Capability: basic
2419Architectures: s390
2420Type: vm ioctl, vcpu ioctl
2421Parameters: struct kvm_s390_interrupt (in)
2422Returns: 0 on success, -1 on error
2423
2424Allows to inject an interrupt to the guest. Interrupts can be floating
2425(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2426
2427Interrupt parameters are passed via kvm_s390_interrupt:
2428
2429struct kvm_s390_interrupt {
2430 __u32 type;
2431 __u32 parm;
2432 __u64 parm64;
2433};
2434
2435type can be one of the following:
2436
2822545f 2437KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
416ad65f
CH
2438KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2439KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2440KVM_S390_RESTART (vcpu) - restart
e029ae5b
TH
2441KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2442KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
416ad65f
CH
2443KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2444 parameters in parm and parm64
2445KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2446KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2447KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2448KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2449 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2450 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2451 interruption subclass)
48a3e950
CH
2452KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2453 machine check interrupt code in parm64 (note that
2454 machine checks needing further payload are not
2455 supported by this ioctl)
416ad65f
CH
2456
2457Note that the vcpu ioctl is asynchronous to vcpu execution.
2458
a2932923
PM
24594.78 KVM_PPC_GET_HTAB_FD
2460
2461Capability: KVM_CAP_PPC_HTAB_FD
2462Architectures: powerpc
2463Type: vm ioctl
2464Parameters: Pointer to struct kvm_get_htab_fd (in)
2465Returns: file descriptor number (>= 0) on success, -1 on error
2466
2467This returns a file descriptor that can be used either to read out the
2468entries in the guest's hashed page table (HPT), or to write entries to
2469initialize the HPT. The returned fd can only be written to if the
2470KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2471can only be read if that bit is clear. The argument struct looks like
2472this:
2473
2474/* For KVM_PPC_GET_HTAB_FD */
2475struct kvm_get_htab_fd {
2476 __u64 flags;
2477 __u64 start_index;
2478 __u64 reserved[2];
2479};
2480
2481/* Values for kvm_get_htab_fd.flags */
2482#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2483#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2484
2485The `start_index' field gives the index in the HPT of the entry at
2486which to start reading. It is ignored when writing.
2487
2488Reads on the fd will initially supply information about all
2489"interesting" HPT entries. Interesting entries are those with the
2490bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2491all entries. When the end of the HPT is reached, the read() will
2492return. If read() is called again on the fd, it will start again from
2493the beginning of the HPT, but will only return HPT entries that have
2494changed since they were last read.
2495
2496Data read or written is structured as a header (8 bytes) followed by a
2497series of valid HPT entries (16 bytes) each. The header indicates how
2498many valid HPT entries there are and how many invalid entries follow
2499the valid entries. The invalid entries are not represented explicitly
2500in the stream. The header format is:
2501
2502struct kvm_get_htab_header {
2503 __u32 index;
2504 __u16 n_valid;
2505 __u16 n_invalid;
2506};
2507
2508Writes to the fd create HPT entries starting at the index given in the
2509header; first `n_valid' valid entries with contents from the data
2510written, then `n_invalid' invalid entries, invalidating any previously
2511valid entries found.
2512
852b6d57
SW
25134.79 KVM_CREATE_DEVICE
2514
2515Capability: KVM_CAP_DEVICE_CTRL
2516Type: vm ioctl
2517Parameters: struct kvm_create_device (in/out)
2518Returns: 0 on success, -1 on error
2519Errors:
2520 ENODEV: The device type is unknown or unsupported
2521 EEXIST: Device already created, and this type of device may not
2522 be instantiated multiple times
2523
2524 Other error conditions may be defined by individual device types or
2525 have their standard meanings.
2526
2527Creates an emulated device in the kernel. The file descriptor returned
2528in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2529
2530If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2531device type is supported (not necessarily whether it can be created
2532in the current vm).
2533
2534Individual devices should not define flags. Attributes should be used
2535for specifying any behavior that is not implied by the device type
2536number.
2537
2538struct kvm_create_device {
2539 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2540 __u32 fd; /* out: device handle */
2541 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2542};
2543
25444.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2545
f577f6c2
SZ
2546Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2547 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2548Type: device ioctl, vm ioctl, vcpu ioctl
852b6d57
SW
2549Parameters: struct kvm_device_attr
2550Returns: 0 on success, -1 on error
2551Errors:
2552 ENXIO: The group or attribute is unknown/unsupported for this device
f9cbd9b0 2553 or hardware support is missing.
852b6d57
SW
2554 EPERM: The attribute cannot (currently) be accessed this way
2555 (e.g. read-only attribute, or attribute that only makes
2556 sense when the device is in a different state)
2557
2558 Other error conditions may be defined by individual device types.
2559
2560Gets/sets a specified piece of device configuration and/or state. The
2561semantics are device-specific. See individual device documentation in
2562the "devices" directory. As with ONE_REG, the size of the data
2563transferred is defined by the particular attribute.
2564
2565struct kvm_device_attr {
2566 __u32 flags; /* no flags currently defined */
2567 __u32 group; /* device-defined */
2568 __u64 attr; /* group-defined */
2569 __u64 addr; /* userspace address of attr data */
2570};
2571
25724.81 KVM_HAS_DEVICE_ATTR
2573
f577f6c2
SZ
2574Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2575 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2576Type: device ioctl, vm ioctl, vcpu ioctl
852b6d57
SW
2577Parameters: struct kvm_device_attr
2578Returns: 0 on success, -1 on error
2579Errors:
2580 ENXIO: The group or attribute is unknown/unsupported for this device
f9cbd9b0 2581 or hardware support is missing.
852b6d57
SW
2582
2583Tests whether a device supports a particular attribute. A successful
2584return indicates the attribute is implemented. It does not necessarily
2585indicate that the attribute can be read or written in the device's
2586current state. "addr" is ignored.
f36992e3 2587
d8968f1f 25884.82 KVM_ARM_VCPU_INIT
749cf76c
CD
2589
2590Capability: basic
379e04c7 2591Architectures: arm, arm64
749cf76c 2592Type: vcpu ioctl
beb11fc7 2593Parameters: struct kvm_vcpu_init (in)
749cf76c
CD
2594Returns: 0 on success; -1 on error
2595Errors:
2596  EINVAL:    the target is unknown, or the combination of features is invalid.
2597  ENOENT:    a features bit specified is unknown.
2598
2599This tells KVM what type of CPU to present to the guest, and what
2600optional features it should have.  This will cause a reset of the cpu
2601registers to their initial values.  If this is not called, KVM_RUN will
2602return ENOEXEC for that vcpu.
2603
2604Note that because some registers reflect machine topology, all vcpus
2605should be created before this ioctl is invoked.
2606
f7fa034d
CD
2607Userspace can call this function multiple times for a given vcpu, including
2608after the vcpu has been run. This will reset the vcpu to its initial
2609state. All calls to this function after the initial call must use the same
2610target and same set of feature flags, otherwise EINVAL will be returned.
2611
aa024c2f
MZ
2612Possible features:
2613 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
3ad8b3de
CD
2614 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2615 and execute guest code when KVM_RUN is called.
379e04c7
MZ
2616 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2617 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
50bb0c94
AP
2618 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2619 Depends on KVM_CAP_ARM_PSCI_0_2.
808e7381
SZ
2620 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU.
2621 Depends on KVM_CAP_ARM_PMU_V3.
aa024c2f 2622
749cf76c 2623
740edfc0
AP
26244.83 KVM_ARM_PREFERRED_TARGET
2625
2626Capability: basic
2627Architectures: arm, arm64
2628Type: vm ioctl
2629Parameters: struct struct kvm_vcpu_init (out)
2630Returns: 0 on success; -1 on error
2631Errors:
a7265fb1 2632 ENODEV: no preferred target available for the host
740edfc0
AP
2633
2634This queries KVM for preferred CPU target type which can be emulated
2635by KVM on underlying host.
2636
2637The ioctl returns struct kvm_vcpu_init instance containing information
2638about preferred CPU target type and recommended features for it. The
2639kvm_vcpu_init->features bitmap returned will have feature bits set if
2640the preferred target recommends setting these features, but this is
2641not mandatory.
2642
2643The information returned by this ioctl can be used to prepare an instance
2644of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2645in VCPU matching underlying host.
2646
2647
26484.84 KVM_GET_REG_LIST
749cf76c
CD
2649
2650Capability: basic
c2d2c21b 2651Architectures: arm, arm64, mips
749cf76c
CD
2652Type: vcpu ioctl
2653Parameters: struct kvm_reg_list (in/out)
2654Returns: 0 on success; -1 on error
2655Errors:
2656  E2BIG:     the reg index list is too big to fit in the array specified by
2657             the user (the number required will be written into n).
2658
2659struct kvm_reg_list {
2660 __u64 n; /* number of registers in reg[] */
2661 __u64 reg[0];
2662};
2663
2664This ioctl returns the guest registers that are supported for the
2665KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2666
ce01e4e8
CD
2667
26684.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
3401d546
CD
2669
2670Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
379e04c7 2671Architectures: arm, arm64
3401d546
CD
2672Type: vm ioctl
2673Parameters: struct kvm_arm_device_address (in)
2674Returns: 0 on success, -1 on error
2675Errors:
2676 ENODEV: The device id is unknown
2677 ENXIO: Device not supported on current system
2678 EEXIST: Address already set
2679 E2BIG: Address outside guest physical address space
330690cd 2680 EBUSY: Address overlaps with other device range
3401d546
CD
2681
2682struct kvm_arm_device_addr {
2683 __u64 id;
2684 __u64 addr;
2685};
2686
2687Specify a device address in the guest's physical address space where guests
2688can access emulated or directly exposed devices, which the host kernel needs
2689to know about. The id field is an architecture specific identifier for a
2690specific device.
2691
379e04c7
MZ
2692ARM/arm64 divides the id field into two parts, a device id and an
2693address type id specific to the individual device.
3401d546
CD
2694
2695  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2696 field: | 0x00000000 | device id | addr type id |
2697
379e04c7
MZ
2698ARM/arm64 currently only require this when using the in-kernel GIC
2699support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2700as the device id. When setting the base address for the guest's
2701mapping of the VGIC virtual CPU and distributor interface, the ioctl
2702must be called after calling KVM_CREATE_IRQCHIP, but before calling
2703KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2704base addresses will return -EEXIST.
3401d546 2705
ce01e4e8
CD
2706Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2707should be used instead.
2708
2709
740edfc0 27104.86 KVM_PPC_RTAS_DEFINE_TOKEN
8e591cb7
ME
2711
2712Capability: KVM_CAP_PPC_RTAS
2713Architectures: ppc
2714Type: vm ioctl
2715Parameters: struct kvm_rtas_token_args
2716Returns: 0 on success, -1 on error
2717
2718Defines a token value for a RTAS (Run Time Abstraction Services)
2719service in order to allow it to be handled in the kernel. The
2720argument struct gives the name of the service, which must be the name
2721of a service that has a kernel-side implementation. If the token
2722value is non-zero, it will be associated with that service, and
2723subsequent RTAS calls by the guest specifying that token will be
2724handled by the kernel. If the token value is 0, then any token
2725associated with the service will be forgotten, and subsequent RTAS
2726calls by the guest for that service will be passed to userspace to be
2727handled.
2728
4bd9d344
AB
27294.87 KVM_SET_GUEST_DEBUG
2730
2731Capability: KVM_CAP_SET_GUEST_DEBUG
0e6f07f2 2732Architectures: x86, s390, ppc, arm64
4bd9d344
AB
2733Type: vcpu ioctl
2734Parameters: struct kvm_guest_debug (in)
2735Returns: 0 on success; -1 on error
2736
2737struct kvm_guest_debug {
2738 __u32 control;
2739 __u32 pad;
2740 struct kvm_guest_debug_arch arch;
2741};
2742
2743Set up the processor specific debug registers and configure vcpu for
2744handling guest debug events. There are two parts to the structure, the
2745first a control bitfield indicates the type of debug events to handle
2746when running. Common control bits are:
2747
2748 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2749 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2750
2751The top 16 bits of the control field are architecture specific control
2752flags which can include the following:
2753
4bd611ca 2754 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64]
834bf887 2755 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64]
4bd9d344
AB
2756 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2757 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2758 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2759
2760For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2761are enabled in memory so we need to ensure breakpoint exceptions are
2762correctly trapped and the KVM run loop exits at the breakpoint and not
2763running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2764we need to ensure the guest vCPUs architecture specific registers are
2765updated to the correct (supplied) values.
2766
2767The second part of the structure is architecture specific and
2768typically contains a set of debug registers.
2769
834bf887
AB
2770For arm64 the number of debug registers is implementation defined and
2771can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and
2772KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number
2773indicating the number of supported registers.
2774
4bd9d344
AB
2775When debug events exit the main run loop with the reason
2776KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2777structure containing architecture specific debug information.
3401d546 2778
209cf19f
AB
27794.88 KVM_GET_EMULATED_CPUID
2780
2781Capability: KVM_CAP_EXT_EMUL_CPUID
2782Architectures: x86
2783Type: system ioctl
2784Parameters: struct kvm_cpuid2 (in/out)
2785Returns: 0 on success, -1 on error
2786
2787struct kvm_cpuid2 {
2788 __u32 nent;
2789 __u32 flags;
2790 struct kvm_cpuid_entry2 entries[0];
2791};
2792
2793The member 'flags' is used for passing flags from userspace.
2794
2795#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2796#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2797#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2798
2799struct kvm_cpuid_entry2 {
2800 __u32 function;
2801 __u32 index;
2802 __u32 flags;
2803 __u32 eax;
2804 __u32 ebx;
2805 __u32 ecx;
2806 __u32 edx;
2807 __u32 padding[3];
2808};
2809
2810This ioctl returns x86 cpuid features which are emulated by
2811kvm.Userspace can use the information returned by this ioctl to query
2812which features are emulated by kvm instead of being present natively.
2813
2814Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2815structure with the 'nent' field indicating the number of entries in
2816the variable-size array 'entries'. If the number of entries is too low
2817to describe the cpu capabilities, an error (E2BIG) is returned. If the
2818number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2819is returned. If the number is just right, the 'nent' field is adjusted
2820to the number of valid entries in the 'entries' array, which is then
2821filled.
2822
2823The entries returned are the set CPUID bits of the respective features
2824which kvm emulates, as returned by the CPUID instruction, with unknown
2825or unsupported feature bits cleared.
2826
2827Features like x2apic, for example, may not be present in the host cpu
2828but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2829emulated efficiently and thus not included here.
2830
2831The fields in each entry are defined as follows:
2832
2833 function: the eax value used to obtain the entry
2834 index: the ecx value used to obtain the entry (for entries that are
2835 affected by ecx)
2836 flags: an OR of zero or more of the following:
2837 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2838 if the index field is valid
2839 KVM_CPUID_FLAG_STATEFUL_FUNC:
2840 if cpuid for this function returns different values for successive
2841 invocations; there will be several entries with the same function,
2842 all with this flag set
2843 KVM_CPUID_FLAG_STATE_READ_NEXT:
2844 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2845 the first entry to be read by a cpu
2846 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2847 this function/index combination
2848
41408c28
TH
28494.89 KVM_S390_MEM_OP
2850
2851Capability: KVM_CAP_S390_MEM_OP
2852Architectures: s390
2853Type: vcpu ioctl
2854Parameters: struct kvm_s390_mem_op (in)
2855Returns: = 0 on success,
2856 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2857 > 0 if an exception occurred while walking the page tables
2858
5d4f6f3d 2859Read or write data from/to the logical (virtual) memory of a VCPU.
41408c28
TH
2860
2861Parameters are specified via the following structure:
2862
2863struct kvm_s390_mem_op {
2864 __u64 gaddr; /* the guest address */
2865 __u64 flags; /* flags */
2866 __u32 size; /* amount of bytes */
2867 __u32 op; /* type of operation */
2868 __u64 buf; /* buffer in userspace */
2869 __u8 ar; /* the access register number */
2870 __u8 reserved[31]; /* should be set to 0 */
2871};
2872
2873The type of operation is specified in the "op" field. It is either
2874KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2875KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2876KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2877whether the corresponding memory access would create an access exception
2878(without touching the data in the memory at the destination). In case an
2879access exception occurred while walking the MMU tables of the guest, the
2880ioctl returns a positive error number to indicate the type of exception.
2881This exception is also raised directly at the corresponding VCPU if the
2882flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2883
2884The start address of the memory region has to be specified in the "gaddr"
2885field, and the length of the region in the "size" field. "buf" is the buffer
2886supplied by the userspace application where the read data should be written
2887to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2888is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2889when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2890register number to be used.
2891
2892The "reserved" field is meant for future extensions. It is not used by
2893KVM with the currently defined set of flags.
2894
30ee2a98
JH
28954.90 KVM_S390_GET_SKEYS
2896
2897Capability: KVM_CAP_S390_SKEYS
2898Architectures: s390
2899Type: vm ioctl
2900Parameters: struct kvm_s390_skeys
2901Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2902 keys, negative value on error
2903
2904This ioctl is used to get guest storage key values on the s390
2905architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2906
2907struct kvm_s390_skeys {
2908 __u64 start_gfn;
2909 __u64 count;
2910 __u64 skeydata_addr;
2911 __u32 flags;
2912 __u32 reserved[9];
2913};
2914
2915The start_gfn field is the number of the first guest frame whose storage keys
2916you want to get.
2917
2918The count field is the number of consecutive frames (starting from start_gfn)
2919whose storage keys to get. The count field must be at least 1 and the maximum
2920allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2921will cause the ioctl to return -EINVAL.
2922
2923The skeydata_addr field is the address to a buffer large enough to hold count
2924bytes. This buffer will be filled with storage key data by the ioctl.
2925
29264.91 KVM_S390_SET_SKEYS
2927
2928Capability: KVM_CAP_S390_SKEYS
2929Architectures: s390
2930Type: vm ioctl
2931Parameters: struct kvm_s390_skeys
2932Returns: 0 on success, negative value on error
2933
2934This ioctl is used to set guest storage key values on the s390
2935architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2936See section on KVM_S390_GET_SKEYS for struct definition.
2937
2938The start_gfn field is the number of the first guest frame whose storage keys
2939you want to set.
2940
2941The count field is the number of consecutive frames (starting from start_gfn)
2942whose storage keys to get. The count field must be at least 1 and the maximum
2943allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2944will cause the ioctl to return -EINVAL.
2945
2946The skeydata_addr field is the address to a buffer containing count bytes of
2947storage keys. Each byte in the buffer will be set as the storage key for a
2948single frame starting at start_gfn for count frames.
2949
2950Note: If any architecturally invalid key value is found in the given data then
2951the ioctl will return -EINVAL.
2952
47b43c52
JF
29534.92 KVM_S390_IRQ
2954
2955Capability: KVM_CAP_S390_INJECT_IRQ
2956Architectures: s390
2957Type: vcpu ioctl
2958Parameters: struct kvm_s390_irq (in)
2959Returns: 0 on success, -1 on error
2960Errors:
2961 EINVAL: interrupt type is invalid
2962 type is KVM_S390_SIGP_STOP and flag parameter is invalid value
2963 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
2964 than the maximum of VCPUs
2965 EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
2966 type is KVM_S390_SIGP_STOP and a stop irq is already pending
2967 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
2968 is already pending
2969
2970Allows to inject an interrupt to the guest.
2971
2972Using struct kvm_s390_irq as a parameter allows
2973to inject additional payload which is not
2974possible via KVM_S390_INTERRUPT.
2975
2976Interrupt parameters are passed via kvm_s390_irq:
2977
2978struct kvm_s390_irq {
2979 __u64 type;
2980 union {
2981 struct kvm_s390_io_info io;
2982 struct kvm_s390_ext_info ext;
2983 struct kvm_s390_pgm_info pgm;
2984 struct kvm_s390_emerg_info emerg;
2985 struct kvm_s390_extcall_info extcall;
2986 struct kvm_s390_prefix_info prefix;
2987 struct kvm_s390_stop_info stop;
2988 struct kvm_s390_mchk_info mchk;
2989 char reserved[64];
2990 } u;
2991};
2992
2993type can be one of the following:
2994
2995KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
2996KVM_S390_PROGRAM_INT - program check; parameters in .pgm
2997KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
2998KVM_S390_RESTART - restart; no parameters
2999KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
3000KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
3001KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
3002KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
3003KVM_S390_MCHK - machine check interrupt; parameters in .mchk
3004
3005
3006Note that the vcpu ioctl is asynchronous to vcpu execution.
3007
816c7667
JF
30084.94 KVM_S390_GET_IRQ_STATE
3009
3010Capability: KVM_CAP_S390_IRQ_STATE
3011Architectures: s390
3012Type: vcpu ioctl
3013Parameters: struct kvm_s390_irq_state (out)
3014Returns: >= number of bytes copied into buffer,
3015 -EINVAL if buffer size is 0,
3016 -ENOBUFS if buffer size is too small to fit all pending interrupts,
3017 -EFAULT if the buffer address was invalid
3018
3019This ioctl allows userspace to retrieve the complete state of all currently
3020pending interrupts in a single buffer. Use cases include migration
3021and introspection. The parameter structure contains the address of a
3022userspace buffer and its length:
3023
3024struct kvm_s390_irq_state {
3025 __u64 buf;
3026 __u32 flags;
3027 __u32 len;
3028 __u32 reserved[4];
3029};
3030
3031Userspace passes in the above struct and for each pending interrupt a
3032struct kvm_s390_irq is copied to the provided buffer.
3033
3034If -ENOBUFS is returned the buffer provided was too small and userspace
3035may retry with a bigger buffer.
3036
30374.95 KVM_S390_SET_IRQ_STATE
3038
3039Capability: KVM_CAP_S390_IRQ_STATE
3040Architectures: s390
3041Type: vcpu ioctl
3042Parameters: struct kvm_s390_irq_state (in)
3043Returns: 0 on success,
3044 -EFAULT if the buffer address was invalid,
3045 -EINVAL for an invalid buffer length (see below),
3046 -EBUSY if there were already interrupts pending,
3047 errors occurring when actually injecting the
3048 interrupt. See KVM_S390_IRQ.
3049
3050This ioctl allows userspace to set the complete state of all cpu-local
3051interrupts currently pending for the vcpu. It is intended for restoring
3052interrupt state after a migration. The input parameter is a userspace buffer
3053containing a struct kvm_s390_irq_state:
3054
3055struct kvm_s390_irq_state {
3056 __u64 buf;
3057 __u32 len;
3058 __u32 pad;
3059};
3060
3061The userspace memory referenced by buf contains a struct kvm_s390_irq
3062for each interrupt to be injected into the guest.
3063If one of the interrupts could not be injected for some reason the
3064ioctl aborts.
3065
3066len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
3067and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
3068which is the maximum number of possibly pending cpu-local interrupts.
47b43c52 3069
ed8e5a24 30704.96 KVM_SMI
f077825a
PB
3071
3072Capability: KVM_CAP_X86_SMM
3073Architectures: x86
3074Type: vcpu ioctl
3075Parameters: none
3076Returns: 0 on success, -1 on error
3077
3078Queues an SMI on the thread's vcpu.
3079
d3695aa4
AK
30804.97 KVM_CAP_PPC_MULTITCE
3081
3082Capability: KVM_CAP_PPC_MULTITCE
3083Architectures: ppc
3084Type: vm
3085
3086This capability means the kernel is capable of handling hypercalls
3087H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user
3088space. This significantly accelerates DMA operations for PPC KVM guests.
3089User space should expect that its handlers for these hypercalls
3090are not going to be called if user space previously registered LIOBN
3091in KVM (via KVM_CREATE_SPAPR_TCE or similar calls).
3092
3093In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest,
3094user space might have to advertise it for the guest. For example,
3095IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is
3096present in the "ibm,hypertas-functions" device-tree property.
3097
3098The hypercalls mentioned above may or may not be processed successfully
3099in the kernel based fast path. If they can not be handled by the kernel,
3100they will get passed on to user space. So user space still has to have
3101an implementation for these despite the in kernel acceleration.
3102
3103This capability is always enabled.
3104
58ded420
AK
31054.98 KVM_CREATE_SPAPR_TCE_64
3106
3107Capability: KVM_CAP_SPAPR_TCE_64
3108Architectures: powerpc
3109Type: vm ioctl
3110Parameters: struct kvm_create_spapr_tce_64 (in)
3111Returns: file descriptor for manipulating the created TCE table
3112
3113This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit
3114windows, described in 4.62 KVM_CREATE_SPAPR_TCE
3115
3116This capability uses extended struct in ioctl interface:
3117
3118/* for KVM_CAP_SPAPR_TCE_64 */
3119struct kvm_create_spapr_tce_64 {
3120 __u64 liobn;
3121 __u32 page_shift;
3122 __u32 flags;
3123 __u64 offset; /* in pages */
3124 __u64 size; /* in pages */
3125};
3126
3127The aim of extension is to support an additional bigger DMA window with
3128a variable page size.
3129KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and
3130a bus offset of the corresponding DMA window, @size and @offset are numbers
3131of IOMMU pages.
3132
3133@flags are not used at the moment.
3134
3135The rest of functionality is identical to KVM_CREATE_SPAPR_TCE.
3136
107d44a2
RK
31374.98 KVM_REINJECT_CONTROL
3138
3139Capability: KVM_CAP_REINJECT_CONTROL
3140Architectures: x86
3141Type: vm ioctl
3142Parameters: struct kvm_reinject_control (in)
3143Returns: 0 on success,
3144 -EFAULT if struct kvm_reinject_control cannot be read,
3145 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier.
3146
3147i8254 (PIT) has two modes, reinject and !reinject. The default is reinject,
3148where KVM queues elapsed i8254 ticks and monitors completion of interrupt from
3149vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its
3150interrupt whenever there isn't a pending interrupt from i8254.
3151!reinject mode injects an interrupt as soon as a tick arrives.
3152
3153struct kvm_reinject_control {
3154 __u8 pit_reinject;
3155 __u8 reserved[31];
3156};
3157
3158pit_reinject = 0 (!reinject mode) is recommended, unless running an old
3159operating system that uses the PIT for timing (e.g. Linux 2.4.x).
3160
9c1b96e3 31615. The kvm_run structure
414fa985 3162------------------------
9c1b96e3
AK
3163
3164Application code obtains a pointer to the kvm_run structure by
3165mmap()ing a vcpu fd. From that point, application code can control
3166execution by changing fields in kvm_run prior to calling the KVM_RUN
3167ioctl, and obtain information about the reason KVM_RUN returned by
3168looking up structure members.
3169
3170struct kvm_run {
3171 /* in */
3172 __u8 request_interrupt_window;
3173
3174Request that KVM_RUN return when it becomes possible to inject external
3175interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
3176
3177 __u8 padding1[7];
3178
3179 /* out */
3180 __u32 exit_reason;
3181
3182When KVM_RUN has returned successfully (return value 0), this informs
3183application code why KVM_RUN has returned. Allowable values for this
3184field are detailed below.
3185
3186 __u8 ready_for_interrupt_injection;
3187
3188If request_interrupt_window has been specified, this field indicates
3189an interrupt can be injected now with KVM_INTERRUPT.
3190
3191 __u8 if_flag;
3192
3193The value of the current interrupt flag. Only valid if in-kernel
3194local APIC is not used.
3195
f077825a
PB
3196 __u16 flags;
3197
3198More architecture-specific flags detailing state of the VCPU that may
3199affect the device's behavior. The only currently defined flag is
3200KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
3201VCPU is in system management mode.
9c1b96e3
AK
3202
3203 /* in (pre_kvm_run), out (post_kvm_run) */
3204 __u64 cr8;
3205
3206The value of the cr8 register. Only valid if in-kernel local APIC is
3207not used. Both input and output.
3208
3209 __u64 apic_base;
3210
3211The value of the APIC BASE msr. Only valid if in-kernel local
3212APIC is not used. Both input and output.
3213
3214 union {
3215 /* KVM_EXIT_UNKNOWN */
3216 struct {
3217 __u64 hardware_exit_reason;
3218 } hw;
3219
3220If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
3221reasons. Further architecture-specific information is available in
3222hardware_exit_reason.
3223
3224 /* KVM_EXIT_FAIL_ENTRY */
3225 struct {
3226 __u64 hardware_entry_failure_reason;
3227 } fail_entry;
3228
3229If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
3230to unknown reasons. Further architecture-specific information is
3231available in hardware_entry_failure_reason.
3232
3233 /* KVM_EXIT_EXCEPTION */
3234 struct {
3235 __u32 exception;
3236 __u32 error_code;
3237 } ex;
3238
3239Unused.
3240
3241 /* KVM_EXIT_IO */
3242 struct {
3243#define KVM_EXIT_IO_IN 0
3244#define KVM_EXIT_IO_OUT 1
3245 __u8 direction;
3246 __u8 size; /* bytes */
3247 __u16 port;
3248 __u32 count;
3249 __u64 data_offset; /* relative to kvm_run start */
3250 } io;
3251
2044892d 3252If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
3253executed a port I/O instruction which could not be satisfied by kvm.
3254data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
3255where kvm expects application code to place the data for the next
2044892d 3256KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3 3257
8ab30c15 3258 /* KVM_EXIT_DEBUG */
9c1b96e3
AK
3259 struct {
3260 struct kvm_debug_exit_arch arch;
3261 } debug;
3262
8ab30c15
AB
3263If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
3264for which architecture specific information is returned.
9c1b96e3
AK
3265
3266 /* KVM_EXIT_MMIO */
3267 struct {
3268 __u64 phys_addr;
3269 __u8 data[8];
3270 __u32 len;
3271 __u8 is_write;
3272 } mmio;
3273
2044892d 3274If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
3275executed a memory-mapped I/O instruction which could not be satisfied
3276by kvm. The 'data' member contains the written data if 'is_write' is
3277true, and should be filled by application code otherwise.
3278
6acdb160
CD
3279The 'data' member contains, in its first 'len' bytes, the value as it would
3280appear if the VCPU performed a load or store of the appropriate width directly
3281to the byte array.
3282
cc568ead 3283NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
ce91ddc4 3284 KVM_EXIT_EPR the corresponding
ad0a048b
AG
3285operations are complete (and guest state is consistent) only after userspace
3286has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
3287incomplete operations and then check for pending signals. Userspace
3288can re-enter the guest with an unmasked signal pending to complete
3289pending operations.
3290
9c1b96e3
AK
3291 /* KVM_EXIT_HYPERCALL */
3292 struct {
3293 __u64 nr;
3294 __u64 args[6];
3295 __u64 ret;
3296 __u32 longmode;
3297 __u32 pad;
3298 } hypercall;
3299
647dc49e
AK
3300Unused. This was once used for 'hypercall to userspace'. To implement
3301such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
3302Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
3303
3304 /* KVM_EXIT_TPR_ACCESS */
3305 struct {
3306 __u64 rip;
3307 __u32 is_write;
3308 __u32 pad;
3309 } tpr_access;
3310
3311To be documented (KVM_TPR_ACCESS_REPORTING).
3312
3313 /* KVM_EXIT_S390_SIEIC */
3314 struct {
3315 __u8 icptcode;
3316 __u64 mask; /* psw upper half */
3317 __u64 addr; /* psw lower half */
3318 __u16 ipa;
3319 __u32 ipb;
3320 } s390_sieic;
3321
3322s390 specific.
3323
3324 /* KVM_EXIT_S390_RESET */
3325#define KVM_S390_RESET_POR 1
3326#define KVM_S390_RESET_CLEAR 2
3327#define KVM_S390_RESET_SUBSYSTEM 4
3328#define KVM_S390_RESET_CPU_INIT 8
3329#define KVM_S390_RESET_IPL 16
3330 __u64 s390_reset_flags;
3331
3332s390 specific.
3333
e168bf8d
CO
3334 /* KVM_EXIT_S390_UCONTROL */
3335 struct {
3336 __u64 trans_exc_code;
3337 __u32 pgm_code;
3338 } s390_ucontrol;
3339
3340s390 specific. A page fault has occurred for a user controlled virtual
3341machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
3342resolved by the kernel.
3343The program code and the translation exception code that were placed
3344in the cpu's lowcore are presented here as defined by the z Architecture
3345Principles of Operation Book in the Chapter for Dynamic Address Translation
3346(DAT)
3347
9c1b96e3
AK
3348 /* KVM_EXIT_DCR */
3349 struct {
3350 __u32 dcrn;
3351 __u32 data;
3352 __u8 is_write;
3353 } dcr;
3354
ce91ddc4 3355Deprecated - was used for 440 KVM.
9c1b96e3 3356
ad0a048b
AG
3357 /* KVM_EXIT_OSI */
3358 struct {
3359 __u64 gprs[32];
3360 } osi;
3361
3362MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3363hypercalls and exit with this exit struct that contains all the guest gprs.
3364
3365If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3366Userspace can now handle the hypercall and when it's done modify the gprs as
3367necessary. Upon guest entry all guest GPRs will then be replaced by the values
3368in this struct.
3369
de56a948
PM
3370 /* KVM_EXIT_PAPR_HCALL */
3371 struct {
3372 __u64 nr;
3373 __u64 ret;
3374 __u64 args[9];
3375 } papr_hcall;
3376
3377This is used on 64-bit PowerPC when emulating a pSeries partition,
3378e.g. with the 'pseries' machine type in qemu. It occurs when the
3379guest does a hypercall using the 'sc 1' instruction. The 'nr' field
3380contains the hypercall number (from the guest R3), and 'args' contains
3381the arguments (from the guest R4 - R12). Userspace should put the
3382return code in 'ret' and any extra returned values in args[].
3383The possible hypercalls are defined in the Power Architecture Platform
3384Requirements (PAPR) document available from www.power.org (free
3385developer registration required to access it).
3386
fa6b7fe9
CH
3387 /* KVM_EXIT_S390_TSCH */
3388 struct {
3389 __u16 subchannel_id;
3390 __u16 subchannel_nr;
3391 __u32 io_int_parm;
3392 __u32 io_int_word;
3393 __u32 ipb;
3394 __u8 dequeued;
3395 } s390_tsch;
3396
3397s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
3398and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
3399interrupt for the target subchannel has been dequeued and subchannel_id,
3400subchannel_nr, io_int_parm and io_int_word contain the parameters for that
3401interrupt. ipb is needed for instruction parameter decoding.
3402
1c810636
AG
3403 /* KVM_EXIT_EPR */
3404 struct {
3405 __u32 epr;
3406 } epr;
3407
3408On FSL BookE PowerPC chips, the interrupt controller has a fast patch
3409interrupt acknowledge path to the core. When the core successfully
3410delivers an interrupt, it automatically populates the EPR register with
3411the interrupt vector number and acknowledges the interrupt inside
3412the interrupt controller.
3413
3414In case the interrupt controller lives in user space, we need to do
3415the interrupt acknowledge cycle through it to fetch the next to be
3416delivered interrupt vector using this exit.
3417
3418It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
3419external interrupt has just been delivered into the guest. User space
3420should put the acknowledged interrupt vector into the 'epr' field.
3421
8ad6b634
AP
3422 /* KVM_EXIT_SYSTEM_EVENT */
3423 struct {
3424#define KVM_SYSTEM_EVENT_SHUTDOWN 1
3425#define KVM_SYSTEM_EVENT_RESET 2
2ce79189 3426#define KVM_SYSTEM_EVENT_CRASH 3
8ad6b634
AP
3427 __u32 type;
3428 __u64 flags;
3429 } system_event;
3430
3431If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
3432a system-level event using some architecture specific mechanism (hypercall
3433or some special instruction). In case of ARM/ARM64, this is triggered using
3434HVC instruction based PSCI call from the vcpu. The 'type' field describes
3435the system-level event type. The 'flags' field describes architecture
3436specific flags for the system-level event.
3437
cf5d3188
CD
3438Valid values for 'type' are:
3439 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
3440 VM. Userspace is not obliged to honour this, and if it does honour
3441 this does not need to destroy the VM synchronously (ie it may call
3442 KVM_RUN again before shutdown finally occurs).
3443 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
3444 As with SHUTDOWN, userspace can choose to ignore the request, or
3445 to schedule the reset to occur in the future and may call KVM_RUN again.
2ce79189
AS
3446 KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
3447 has requested a crash condition maintenance. Userspace can choose
3448 to ignore the request, or to gather VM memory core dump and/or
3449 reset/shutdown of the VM.
cf5d3188 3450
7543a635
SR
3451 /* KVM_EXIT_IOAPIC_EOI */
3452 struct {
3453 __u8 vector;
3454 } eoi;
3455
3456Indicates that the VCPU's in-kernel local APIC received an EOI for a
3457level-triggered IOAPIC interrupt. This exit only triggers when the
3458IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled);
3459the userspace IOAPIC should process the EOI and retrigger the interrupt if
3460it is still asserted. Vector is the LAPIC interrupt vector for which the
3461EOI was received.
3462
db397571
AS
3463 struct kvm_hyperv_exit {
3464#define KVM_EXIT_HYPERV_SYNIC 1
83326e43 3465#define KVM_EXIT_HYPERV_HCALL 2
db397571
AS
3466 __u32 type;
3467 union {
3468 struct {
3469 __u32 msr;
3470 __u64 control;
3471 __u64 evt_page;
3472 __u64 msg_page;
3473 } synic;
83326e43
AS
3474 struct {
3475 __u64 input;
3476 __u64 result;
3477 __u64 params[2];
3478 } hcall;
db397571
AS
3479 } u;
3480 };
3481 /* KVM_EXIT_HYPERV */
3482 struct kvm_hyperv_exit hyperv;
3483Indicates that the VCPU exits into userspace to process some tasks
3484related to Hyper-V emulation.
3485Valid values for 'type' are:
3486 KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about
3487Hyper-V SynIC state change. Notification is used to remap SynIC
3488event/message pages and to enable/disable SynIC messages/events processing
3489in userspace.
3490
9c1b96e3
AK
3491 /* Fix the size of the union. */
3492 char padding[256];
3493 };
b9e5dc8d
CB
3494
3495 /*
3496 * shared registers between kvm and userspace.
3497 * kvm_valid_regs specifies the register classes set by the host
3498 * kvm_dirty_regs specified the register classes dirtied by userspace
3499 * struct kvm_sync_regs is architecture specific, as well as the
3500 * bits for kvm_valid_regs and kvm_dirty_regs
3501 */
3502 __u64 kvm_valid_regs;
3503 __u64 kvm_dirty_regs;
3504 union {
3505 struct kvm_sync_regs regs;
3506 char padding[1024];
3507 } s;
3508
3509If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3510certain guest registers without having to call SET/GET_*REGS. Thus we can
3511avoid some system call overhead if userspace has to handle the exit.
3512Userspace can query the validity of the structure by checking
3513kvm_valid_regs for specific bits. These bits are architecture specific
3514and usually define the validity of a groups of registers. (e.g. one bit
3515 for general purpose registers)
3516
d8482c0d
DH
3517Please note that the kernel is allowed to use the kvm_run structure as the
3518primary storage for certain register types. Therefore, the kernel may use the
3519values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3520
9c1b96e3 3521};
821246a5 3522
414fa985 3523
9c15bb1d 3524
699a0ea0
PM
35256. Capabilities that can be enabled on vCPUs
3526--------------------------------------------
821246a5 3527
0907c855
CH
3528There are certain capabilities that change the behavior of the virtual CPU or
3529the virtual machine when enabled. To enable them, please see section 4.37.
3530Below you can find a list of capabilities and what their effect on the vCPU or
3531the virtual machine is when enabling them.
821246a5
AG
3532
3533The following information is provided along with the description:
3534
3535 Architectures: which instruction set architectures provide this ioctl.
3536 x86 includes both i386 and x86_64.
3537
0907c855
CH
3538 Target: whether this is a per-vcpu or per-vm capability.
3539
821246a5
AG
3540 Parameters: what parameters are accepted by the capability.
3541
3542 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3543 are not detailed, but errors with specific meanings are.
3544
414fa985 3545
821246a5
AG
35466.1 KVM_CAP_PPC_OSI
3547
3548Architectures: ppc
0907c855 3549Target: vcpu
821246a5
AG
3550Parameters: none
3551Returns: 0 on success; -1 on error
3552
3553This capability enables interception of OSI hypercalls that otherwise would
3554be treated as normal system calls to be injected into the guest. OSI hypercalls
3555were invented by Mac-on-Linux to have a standardized communication mechanism
3556between the guest and the host.
3557
3558When this capability is enabled, KVM_EXIT_OSI can occur.
3559
414fa985 3560
821246a5
AG
35616.2 KVM_CAP_PPC_PAPR
3562
3563Architectures: ppc
0907c855 3564Target: vcpu
821246a5
AG
3565Parameters: none
3566Returns: 0 on success; -1 on error
3567
3568This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3569done using the hypercall instruction "sc 1".
3570
3571It also sets the guest privilege level to "supervisor" mode. Usually the guest
3572runs in "hypervisor" privilege mode with a few missing features.
3573
3574In addition to the above, it changes the semantics of SDR1. In this mode, the
3575HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3576HTAB invisible to the guest.
3577
3578When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 3579
414fa985 3580
dc83b8bc
SW
35816.3 KVM_CAP_SW_TLB
3582
3583Architectures: ppc
0907c855 3584Target: vcpu
dc83b8bc
SW
3585Parameters: args[0] is the address of a struct kvm_config_tlb
3586Returns: 0 on success; -1 on error
3587
3588struct kvm_config_tlb {
3589 __u64 params;
3590 __u64 array;
3591 __u32 mmu_type;
3592 __u32 array_len;
3593};
3594
3595Configures the virtual CPU's TLB array, establishing a shared memory area
3596between userspace and KVM. The "params" and "array" fields are userspace
3597addresses of mmu-type-specific data structures. The "array_len" field is an
3598safety mechanism, and should be set to the size in bytes of the memory that
3599userspace has reserved for the array. It must be at least the size dictated
3600by "mmu_type" and "params".
3601
3602While KVM_RUN is active, the shared region is under control of KVM. Its
3603contents are undefined, and any modification by userspace results in
3604boundedly undefined behavior.
3605
3606On return from KVM_RUN, the shared region will reflect the current state of
3607the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3608to tell KVM which entries have been changed, prior to calling KVM_RUN again
3609on this vcpu.
3610
3611For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3612 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3613 - The "array" field points to an array of type "struct
3614 kvm_book3e_206_tlb_entry".
3615 - The array consists of all entries in the first TLB, followed by all
3616 entries in the second TLB.
3617 - Within a TLB, entries are ordered first by increasing set number. Within a
3618 set, entries are ordered by way (increasing ESEL).
3619 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3620 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3621 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3622 hardware ignores this value for TLB0.
fa6b7fe9
CH
3623
36246.4 KVM_CAP_S390_CSS_SUPPORT
3625
3626Architectures: s390
0907c855 3627Target: vcpu
fa6b7fe9
CH
3628Parameters: none
3629Returns: 0 on success; -1 on error
3630
3631This capability enables support for handling of channel I/O instructions.
3632
3633TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3634handled in-kernel, while the other I/O instructions are passed to userspace.
3635
3636When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3637SUBCHANNEL intercepts.
1c810636 3638
0907c855
CH
3639Note that even though this capability is enabled per-vcpu, the complete
3640virtual machine is affected.
3641
1c810636
AG
36426.5 KVM_CAP_PPC_EPR
3643
3644Architectures: ppc
0907c855 3645Target: vcpu
1c810636
AG
3646Parameters: args[0] defines whether the proxy facility is active
3647Returns: 0 on success; -1 on error
3648
3649This capability enables or disables the delivery of interrupts through the
3650external proxy facility.
3651
3652When enabled (args[0] != 0), every time the guest gets an external interrupt
3653delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3654to receive the topmost interrupt vector.
3655
3656When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3657
3658When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
3659
36606.6 KVM_CAP_IRQ_MPIC
3661
3662Architectures: ppc
3663Parameters: args[0] is the MPIC device fd
3664 args[1] is the MPIC CPU number for this vcpu
3665
3666This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
3667
36686.7 KVM_CAP_IRQ_XICS
3669
3670Architectures: ppc
0907c855 3671Target: vcpu
5975a2e0
PM
3672Parameters: args[0] is the XICS device fd
3673 args[1] is the XICS CPU number (server ID) for this vcpu
3674
3675This capability connects the vcpu to an in-kernel XICS device.
8a366a4b
CH
3676
36776.8 KVM_CAP_S390_IRQCHIP
3678
3679Architectures: s390
3680Target: vm
3681Parameters: none
3682
3683This capability enables the in-kernel irqchip for s390. Please refer to
3684"4.24 KVM_CREATE_IRQCHIP" for details.
699a0ea0 3685
5fafd874
JH
36866.9 KVM_CAP_MIPS_FPU
3687
3688Architectures: mips
3689Target: vcpu
3690Parameters: args[0] is reserved for future use (should be 0).
3691
3692This capability allows the use of the host Floating Point Unit by the guest. It
3693allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
3694done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
3695(depending on the current guest FPU register mode), and the Status.FR,
3696Config5.FRE bits are accessible via the KVM API and also from the guest,
3697depending on them being supported by the FPU.
3698
d952bd07
JH
36996.10 KVM_CAP_MIPS_MSA
3700
3701Architectures: mips
3702Target: vcpu
3703Parameters: args[0] is reserved for future use (should be 0).
3704
3705This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
3706It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
3707Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
3708accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
3709the guest.
3710
699a0ea0
PM
37117. Capabilities that can be enabled on VMs
3712------------------------------------------
3713
3714There are certain capabilities that change the behavior of the virtual
3715machine when enabled. To enable them, please see section 4.37. Below
3716you can find a list of capabilities and what their effect on the VM
3717is when enabling them.
3718
3719The following information is provided along with the description:
3720
3721 Architectures: which instruction set architectures provide this ioctl.
3722 x86 includes both i386 and x86_64.
3723
3724 Parameters: what parameters are accepted by the capability.
3725
3726 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3727 are not detailed, but errors with specific meanings are.
3728
3729
37307.1 KVM_CAP_PPC_ENABLE_HCALL
3731
3732Architectures: ppc
3733Parameters: args[0] is the sPAPR hcall number
3734 args[1] is 0 to disable, 1 to enable in-kernel handling
3735
3736This capability controls whether individual sPAPR hypercalls (hcalls)
3737get handled by the kernel or not. Enabling or disabling in-kernel
3738handling of an hcall is effective across the VM. On creation, an
3739initial set of hcalls are enabled for in-kernel handling, which
3740consists of those hcalls for which in-kernel handlers were implemented
3741before this capability was implemented. If disabled, the kernel will
3742not to attempt to handle the hcall, but will always exit to userspace
3743to handle it. Note that it may not make sense to enable some and
3744disable others of a group of related hcalls, but KVM does not prevent
3745userspace from doing that.
ae2113a4
PM
3746
3747If the hcall number specified is not one that has an in-kernel
3748implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3749error.
2444b352
DH
3750
37517.2 KVM_CAP_S390_USER_SIGP
3752
3753Architectures: s390
3754Parameters: none
3755
3756This capability controls which SIGP orders will be handled completely in user
3757space. With this capability enabled, all fast orders will be handled completely
3758in the kernel:
3759- SENSE
3760- SENSE RUNNING
3761- EXTERNAL CALL
3762- EMERGENCY SIGNAL
3763- CONDITIONAL EMERGENCY SIGNAL
3764
3765All other orders will be handled completely in user space.
3766
3767Only privileged operation exceptions will be checked for in the kernel (or even
3768in the hardware prior to interception). If this capability is not enabled, the
3769old way of handling SIGP orders is used (partially in kernel and user space).
68c55750
EF
3770
37717.3 KVM_CAP_S390_VECTOR_REGISTERS
3772
3773Architectures: s390
3774Parameters: none
3775Returns: 0 on success, negative value on error
3776
3777Allows use of the vector registers introduced with z13 processor, and
3778provides for the synchronization between host and user space. Will
3779return -EINVAL if the machine does not support vectors.
e44fc8c9
ET
3780
37817.4 KVM_CAP_S390_USER_STSI
3782
3783Architectures: s390
3784Parameters: none
3785
3786This capability allows post-handlers for the STSI instruction. After
3787initial handling in the kernel, KVM exits to user space with
3788KVM_EXIT_S390_STSI to allow user space to insert further data.
3789
3790Before exiting to userspace, kvm handlers should fill in s390_stsi field of
3791vcpu->run:
3792struct {
3793 __u64 addr;
3794 __u8 ar;
3795 __u8 reserved;
3796 __u8 fc;
3797 __u8 sel1;
3798 __u16 sel2;
3799} s390_stsi;
3800
3801@addr - guest address of STSI SYSIB
3802@fc - function code
3803@sel1 - selector 1
3804@sel2 - selector 2
3805@ar - access register number
3806
3807KVM handlers should exit to userspace with rc = -EREMOTE.
e928e9cb 3808
49df6397
SR
38097.5 KVM_CAP_SPLIT_IRQCHIP
3810
3811Architectures: x86
b053b2ae 3812Parameters: args[0] - number of routes reserved for userspace IOAPICs
49df6397
SR
3813Returns: 0 on success, -1 on error
3814
3815Create a local apic for each processor in the kernel. This can be used
3816instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
3817IOAPIC and PIC (and also the PIT, even though this has to be enabled
3818separately).
3819
b053b2ae
SR
3820This capability also enables in kernel routing of interrupt requests;
3821when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
3822used in the IRQ routing table. The first args[0] MSI routes are reserved
3823for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes,
3824a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.
49df6397
SR
3825
3826Fails if VCPU has already been created, or if the irqchip is already in the
3827kernel (i.e. KVM_CREATE_IRQCHIP has already been called).
3828
051c87f7
DH
38297.6 KVM_CAP_S390_RI
3830
3831Architectures: s390
3832Parameters: none
3833
3834Allows use of runtime-instrumentation introduced with zEC12 processor.
3835Will return -EINVAL if the machine does not support runtime-instrumentation.
3836Will return -EBUSY if a VCPU has already been created.
e928e9cb 3837
37131313
RK
38387.7 KVM_CAP_X2APIC_API
3839
3840Architectures: x86
3841Parameters: args[0] - features that should be enabled
3842Returns: 0 on success, -EINVAL when args[0] contains invalid features
3843
3844Valid feature flags in args[0] are
3845
3846#define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0)
c519265f 3847#define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1)
37131313
RK
3848
3849Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of
3850KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC,
3851allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their
3852respective sections.
3853
c519265f
RK
3854KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work
3855in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff
3856as a broadcast even in x2APIC mode in order to support physical x2APIC
3857without interrupt remapping. This is undesirable in logical mode,
3858where 0xff represents CPUs 0-7 in cluster 0.
37131313
RK
3859
3860
e928e9cb
ME
38618. Other capabilities.
3862----------------------
3863
3864This section lists capabilities that give information about other
3865features of the KVM implementation.
3866
38678.1 KVM_CAP_PPC_HWRNG
3868
3869Architectures: ppc
3870
3871This capability, if KVM_CHECK_EXTENSION indicates that it is
3872available, means that that the kernel has an implementation of the
3873H_RANDOM hypercall backed by a hardware random-number generator.
3874If present, the kernel H_RANDOM handler can be enabled for guest use
3875with the KVM_CAP_PPC_ENABLE_HCALL capability.
5c919412
AS
3876
38778.2 KVM_CAP_HYPERV_SYNIC
3878
3879Architectures: x86
3880This capability, if KVM_CHECK_EXTENSION indicates that it is
3881available, means that that the kernel has an implementation of the
3882Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is
3883used to support Windows Hyper-V based guest paravirt drivers(VMBus).
3884
3885In order to use SynIC, it has to be activated by setting this
3886capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this
3887will disable the use of APIC hardware virtualization even if supported
3888by the CPU, as it's incompatible with SynIC auto-EOI behavior.