]> git.proxmox.com Git - ovs.git/blame - FAQ
datapath: Check gso_type for correct sk_buff in queue_gso_packets().
[ovs.git] / FAQ
CommitLineData
c483d489
BP
1 Open vSwitch <http://openvswitch.org>
2
3Frequently Asked Questions
4==========================
5
3fc7dc18
JP
6General
7-------
8
9Q: What is Open vSwitch?
10
11A: Open vSwitch is a production quality open source software switch
12 designed to be used as a vswitch in virtualized server environments. A
13 vswitch forwards traffic between different VMs on the same physical host
14 and also forwards traffic between VMs and the physical network. Open
15 vSwitch supports standard management interfaces (e.g. sFlow, NetFlow,
16 RSPAN, CLI), and is open to programmatic extension and control using
17 OpenFlow and the OVSDB management protocol.
18
19 Open vSwitch as designed to be compatible with modern switching
20 chipsets. This means that it can be ported to existing high-fanout
21 switches allowing the same flexible control of the physical
22 infrastructure as the virtual infrastructure. It also means that
23 Open vSwitch will be able to take advantage of on-NIC switching
24 chipsets as their functionality matures.
25
26Q: What virtualization platforms can use Open vSwitch?
27
28A: Open vSwitch can currently run on any Linux-based virtualization
29 platform (kernel 2.6.18 and newer), including: KVM, VirtualBox, Xen,
30 Xen Cloud Platform, XenServer. As of Linux 3.3 it is part of the
31 mainline kernel. The bulk of the code is written in platform-
32 independent C and is easily ported to other environments. We welcome
33 inquires about integrating Open vSwitch with other virtualization
34 platforms.
35
36Q: How can I try Open vSwitch?
37
7b287e99
JP
38A: The Open vSwitch source code can be built on a Linux system. You can
39 build and experiment with Open vSwitch on any Linux machine.
40 Packages for various Linux distributions are available on many
41 platforms, including: Debian, Ubuntu, Fedora.
3fc7dc18
JP
42
43 You may also download and run a virtualization platform that already
7b287e99
JP
44 has Open vSwitch integrated. For example, download a recent ISO for
45 XenServer or Xen Cloud Platform. Be aware that the version
46 integrated with a particular platform may not be the most recent Open
47 vSwitch release.
48
49Q: Does Open vSwitch only work on Linux?
50
51A: No, Open vSwitch has been ported to a number of different operating
52 systems and hardware platforms. Most of the development work occurs
53 on Linux, but the code should be portable to any POSIX system. We've
54 seen Open vSwitch ported to a number of different platforms,
55 including FreeBSD, Windows, and even non-POSIX embedded systems.
56
57 By definition, the Open vSwitch Linux kernel module only works on
58 Linux and will provide the highest performance. However, a userspace
59 datapath is available that should be very portable.
60
61Q: What's involved with porting Open vSwitch to a new platform or
62 switching ASIC?
63
64A: The PORTING document describes how one would go about porting Open
65 vSwitch to a new operating system or hardware platform.
3fc7dc18
JP
66
67Q: Why would I use Open vSwitch instead of the Linux bridge?
68
69A: Open vSwitch is specially designed to make it easier to manage VM
7b287e99
JP
70 network configuration and monitor state spread across many physical
71 hosts in dynamic virtualized environments. Please see WHY-OVS for a
72 more detailed description of how Open vSwitch relates to the Linux
73 Bridge.
3fc7dc18
JP
74
75Q: How is Open vSwitch related to distributed virtual switches like the
76 VMware vNetwork distributed switch or the Cisco Nexus 1000V?
77
78A: Distributed vswitch applications (e.g., VMware vNetwork distributed
79 switch, Cisco Nexus 1000V) provide a centralized way to configure and
80 monitor the network state of VMs that are spread across many physical
81 hosts. Open vSwitch is not a distributed vswitch itself, rather it
82 runs on each physical host and supports remote management in a way
83 that makes it easier for developers of virtualization/cloud
84 management platforms to offer distributed vswitch capabilities.
85
86 To aid in distribution, Open vSwitch provides two open protocols that
87 are specially designed for remote management in virtualized network
88 environments: OpenFlow, which exposes flow-based forwarding state,
89 and the OVSDB management protocol, which exposes switch port state.
90 In addition to the switch implementation itself, Open vSwitch
91 includes tools (ovs-controller, ovs-ofctl, ovs-vsctl) that developers
92 can script and extend to provide distributed vswitch capabilities
93 that are closely integrated with their virtualization management
94 platform.
95
96Q: Why doesn't Open vSwitch support distribution?
97
98A: Open vSwitch is intended to be a useful component for building
99 flexible network infrastructure. There are many different approaches
100 to distribution which balance trade-offs between simplicity,
101 scalability, hardware compatibility, convergence times, logical
102 forwarding model, etc. The goal of Open vSwitch is to be able to
103 support all as a primitive building block rather than choose a
104 particular point in the distributed design space.
105
3fc7dc18
JP
106Q: How can I contribute to the Open vSwitch Community?
107
108A: You can start by joining the mailing lists and helping to answer
7b287e99
JP
109 questions. You can also suggest improvements to documentation. If
110 you have a feature or bug you would like to work on, send a mail to
111 one of the mailing lists:
112
113 http://openvswitch.org/mlists/
114
115
116
117Releases
118--------
119
120Q: What does it mean for an Open vSwitch release to be LTS (long-term
121 support)?
3fc7dc18 122
7b287e99
JP
123A: All official releases have been through a comprehensive testing
124 process and are suitable for production use. Planned releases will
125 occur several times a year. If a significant bug is identified in an
126 LTS release, we will provide an updated release that includes the
127 fix. Releases that are not LTS may not be fixed and may just be
128 supplanted by the next major release. The current LTS release is
129 1.4.x.
130
131Q: What features are not available in the Open vSwitch kernel datapath
132 that ships as part of the upstream Linux kernel?
133
134A: The kernel module in upstream Linux 3.3 and later does not include
135 the following features:
136
137 - Bridge compatibility, that is, support for the ovs-brcompatd
138 daemon that (if you enable it) lets "brctl" and other Linux
139 bridge tools transparently work with Open vSwitch instead.
140
141 We do not expect bridge compatibility to ever be available in
142 upstream Linux. If you need bridge compatibility, use the
143 kernel module from the Open vSwitch distribution instead of the
144 upstream Linux kernel module.
145
146 - Tunnel and patch virtual ports, that is, interfaces with type
147 "gre", "ipsec_gre", "capwap", or "patch". It is possible to
148 create tunnels in Linux and attach them to Open vSwitch as
149 system devices. However, they cannot be dynamically created
150 through the OVSDB protocol or set the tunnel ids as a flow
151 action.
152
153 Work is in progress in adding these features to the upstream
154 Linux version of the Open vSwitch kernel module. For now, if
155 you need these features, use the kernel module from the Open
156 vSwitch distribution instead of the upstream Linux kernel
157 module.
158
159Q: What features are not available when using the userspace datapath?
160
161A: Tunnel and patch virtual ports are not supported, as described in the
162 previous answer. It is also not possible to use queue-related
163 actions. On Linux kernels before 2.6.39, maximum-sized VLAN packets
164 may not be transmitted.
3fc7dc18
JP
165
166
c483d489
BP
167Configuration Problems
168----------------------
169
170Q: I created a bridge and added my Ethernet port to it, using commands
171 like these:
172
173 ovs-vsctl add-br br0
174 ovs-vsctl add-port br0 eth0
175
176 and as soon as I ran the "add-port" command I lost all connectivity
177 through eth0. Help!
178
179A: A physical Ethernet device that is part of an Open vSwitch bridge
180 should not have an IP address. If one does, then that IP address
181 will not be fully functional.
182
183 You can restore functionality by moving the IP address to an Open
184 vSwitch "internal" device, such as the network device named after
185 the bridge itself. For example, assuming that eth0's IP address is
186 192.168.128.5, you could run the commands below to fix up the
187 situation:
188
189 ifconfig eth0 0.0.0.0
190 ifconfig br0 192.168.128.5
191
192 (If your only connection to the machine running OVS is through the
193 IP address in question, then you would want to run all of these
194 commands on a single command line, or put them into a script.) If
195 there were any additional routes assigned to eth0, then you would
196 also want to use commands to adjust these routes to go through br0.
197
198 If you use DHCP to obtain an IP address, then you should kill the
199 DHCP client that was listening on the physical Ethernet interface
200 (e.g. eth0) and start one listening on the internal interface
201 (e.g. br0). You might still need to manually clear the IP address
202 from the physical interface (e.g. with "ifconfig eth0 0.0.0.0").
203
204 There is no compelling reason why Open vSwitch must work this way.
205 However, this is the way that the Linux kernel bridge module has
206 always worked, so it's a model that those accustomed to Linux
207 bridging are already used to. Also, the model that most people
208 expect is not implementable without kernel changes on all the
209 versions of Linux that Open vSwitch supports.
210
211 By the way, this issue is not specific to physical Ethernet
212 devices. It applies to all network devices except Open vswitch
213 "internal" devices.
214
215Q: I created a bridge and added a couple of Ethernet ports to it,
216 using commands like these:
217
218 ovs-vsctl add-br br0
219 ovs-vsctl add-port br0 eth0
220 ovs-vsctl add-port br0 eth1
221
222 and now my network seems to have melted: connectivity is unreliable
223 (even connectivity that doesn't go through Open vSwitch), all the
629a6b48
BP
224 LEDs on my physical switches are blinking, wireshark shows
225 duplicated packets, and CPU usage is very high.
c483d489
BP
226
227A: More than likely, you've looped your network. Probably, eth0 and
228 eth1 are connected to the same physical Ethernet switch. This
229 yields a scenario where OVS receives a broadcast packet on eth0 and
230 sends it out on eth1, then the physical switch connected to eth1
231 sends the packet back on eth0, and so on forever. More complicated
232 scenarios, involving a loop through multiple switches, are possible
233 too.
234
235 The solution depends on what you are trying to do:
236
237 - If you added eth0 and eth1 to get higher bandwidth or higher
238 reliability between OVS and your physical Ethernet switch,
239 use a bond. The following commands create br0 and then add
240 eth0 and eth1 as a bond:
241
242 ovs-vsctl add-br br0
243 ovs-vsctl add-bond br0 bond0 eth0 eth1
244
245 Bonds have tons of configuration options. Please read the
246 documentation on the Port table in ovs-vswitchd.conf.db(5)
247 for all the details.
248
249 - Perhaps you don't actually need eth0 and eth1 to be on the
250 same bridge. For example, if you simply want to be able to
251 connect each of them to virtual machines, then you can put
252 each of them on a bridge of its own:
253
254 ovs-vsctl add-br br0
255 ovs-vsctl add-port br0 eth0
256
257 ovs-vsctl add-br br1
258 ovs-vsctl add-port br1 eth1
259
260 and then connect VMs to br0 and br1. (A potential
261 disadvantage is that traffic cannot directly pass between br0
262 and br1. Instead, it will go out eth0 and come back in eth1,
263 or vice versa.)
264
265 - If you have a redundant or complex network topology and you
266 want to prevent loops, turn on spanning tree protocol (STP).
267 The following commands create br0, enable STP, and add eth0
268 and eth1 to the bridge. The order is important because you
269 don't want have to have a loop in your network even
270 transiently:
271
272 ovs-vsctl add-br br0
273 ovs-vsctl set bridge br0 stp_enable=true
274 ovs-vsctl add-port br0 eth0
275 ovs-vsctl add-port br0 eth1
276
277 The Open vSwitch implementation of STP is not well tested.
278 Please report any bugs you observe, but if you'd rather avoid
279 acting as a beta tester then another option might be your
280 best shot.
281
282Q: I can't seem to use Open vSwitch in a wireless network.
283
284A: Wireless base stations generally only allow packets with the source
285 MAC address of NIC that completed the initial handshake.
286 Therefore, without MAC rewriting, only a single device can
287 communicate over a single wireless link.
288
289 This isn't specific to Open vSwitch, it's enforced by the access
290 point, so the same problems will show up with the Linux bridge or
291 any other way to do bridging.
292
5aa75474
BP
293Q: Is there any documentation on the database tables and fields?
294
295A: Yes. ovs-vswitchd.conf.db(5) is a comprehensive reference.
296
c483d489
BP
297
298VLANs
299-----
300
301Q: VLANs don't work.
302
303A: Many drivers in Linux kernels before version 3.3 had VLAN-related
304 bugs. If you are having problems with VLANs that you suspect to be
305 driver related, then you have several options:
306
307 - Upgrade to Linux 3.3 or later.
308
309 - Build and install a fixed version of the particular driver
310 that is causing trouble, if one is available.
311
312 - Use a NIC whose driver does not have VLAN problems.
313
314 - Use "VLAN splinters", a feature in Open vSwitch 1.4 and later
315 that works around bugs in kernel drivers. To enable VLAN
316 splinters on interface eth0, use the command:
317
7b287e99 318 ovs-vsctl set interface eth0 other-config:enable-vlan-splinters=true
c483d489
BP
319
320 For VLAN splinters to be effective, Open vSwitch must know
321 which VLANs are in use. See the "VLAN splinters" section in
322 the Interface table in ovs-vswitchd.conf.db(5) for details on
323 how Open vSwitch infers in-use VLANs.
324
325 VLAN splinters increase memory use and reduce performance, so
326 use them only if needed.
327
328 - Apply the "vlan workaround" patch from the XenServer kernel
329 patch queue, build Open vSwitch against this patched kernel,
330 and then use ovs-vlan-bug-workaround(8) to enable the VLAN
331 workaround for each interface whose driver is buggy.
332
333 (This is a nontrivial exercise, so this option is included
334 only for completeness.)
335
336 It is not always easy to tell whether a Linux kernel driver has
337 buggy VLAN support. The ovs-vlan-test(8) and ovs-test(8) utilities
338 can help you test. See their manpages for details. Of the two
339 utilities, ovs-test(8) is newer and more thorough, but
340 ovs-vlan-test(8) may be easier to use.
341
342Q: VLANs still don't work. I've tested the driver so I know that it's OK.
343
344A: Do you have VLANs enabled on the physical switch that OVS is
345 attached to? Make sure that the port is configured to trunk the
346 VLAN or VLANs that you are using with OVS.
347
348Q: Outgoing VLAN-tagged traffic goes through OVS to my physical switch
349 and to its destination host, but OVS seems to drop incoming return
350 traffic.
351
352A: It's possible that you have the VLAN configured on your physical
353 switch as the "native" VLAN. In this mode, the switch treats
354 incoming packets either tagged with the native VLAN or untagged as
355 part of the native VLAN. It may also send outgoing packets in the
356 native VLAN without a VLAN tag.
357
358 If this is the case, you have two choices:
359
360 - Change the physical switch port configuration to tag packets
361 it forwards to OVS with the native VLAN instead of forwarding
362 them untagged.
363
364 - Change the OVS configuration for the physical port to a
365 native VLAN mode. For example, the following sets up a
366 bridge with port eth0 in "native-tagged" mode in VLAN 9:
367
368 ovs-vsctl add-br br0
369 ovs-vsctl add-port br0 eth0 tag=9 vlan_mode=native-tagged
370
371 In this situation, "native-untagged" mode will probably work
372 equally well. Refer to the documentation for the Port table
373 in ovs-vswitchd.conf.db(5) for more information.
374
375Q: Can I configure an IP address on a VLAN?
376
377A: Yes. Use an "internal port" configured as an access port. For
378 example, the following configures IP address 192.168.0.7 on VLAN 9.
379 That is, OVS will forward packets from eth0 to 192.168.0.7 only if
380 they have an 802.1Q header with VLAN 9. Conversely, traffic
381 forwarded from 192.168.0.7 to eth0 will be tagged with an 802.1Q
382 header with VLAN 9:
383
384 ovs-vsctl add-br br0
385 ovs-vsctl add-port br0 eth0
386 ovs-vsctl add-port br0 vlan9 tag=9 -- set interface vlan9 type=internal
387 ifconfig vlan9 192.168.0.7
388
389Q: My OpenFlow controller doesn't see the VLANs that I expect.
390
391A: The configuration for VLANs in the Open vSwitch database (e.g. via
392 ovs-vsctl) only affects traffic that goes through Open vSwitch's
393 implementation of the OpenFlow "normal switching" action. By
394 default, when Open vSwitch isn't connected to a controller and
395 nothing has been manually configured in the flow table, all traffic
396 goes through the "normal switching" action. But, if you set up
397 OpenFlow flows on your own, through a controller or using ovs-ofctl
398 or through other means, then you have to implement VLAN handling
399 yourself.
400
401 You can use "normal switching" as a component of your OpenFlow
402 actions, e.g. by putting "normal" into the lists of actions on
403 ovs-ofctl or by outputting to OFPP_NORMAL from an OpenFlow
404 controller. This will only be suitable for some situations,
405 though.
406
407
408Controllers
409-----------
410
7b287e99
JP
411Q: What versions of OpenFlow does Open vSwitch support?
412
413A: Open vSwitch supports OpenFlow 1.0. It also includes a number of
414 extensions that bring many of the features from later versions of
415 OpenFlow. Work is underway to provide support for later versions and
416 can be tracked here:
417
418 http://openvswitch.org/development/openflow-1-x-plan/
419
c483d489
BP
420Q: I'm getting "error type 45250 code 0". What's that?
421
422A: This is a Open vSwitch extension to OpenFlow error codes. Open
423 vSwitch uses this extension when it must report an error to an
424 OpenFlow controller but no standard OpenFlow error code is
425 suitable.
426
427 Open vSwitch logs the errors that it sends to controllers, so the
428 easiest thing to do is probably to look at the ovs-vswitchd log to
429 find out what the error was.
430
431 If you want to dissect the extended error message yourself, the
432 format is documented in include/openflow/nicira-ext.h in the Open
433 vSwitch source distribution. The extended error codes are
434 documented in lib/ofp-errors.h.
435
436Q1: Some of the traffic that I'd expect my OpenFlow controller to see
437 doesn't actually appear through the OpenFlow connection, even
438 though I know that it's going through.
439Q2: Some of the OpenFlow flows that my controller sets up don't seem
440 to apply to certain traffic, especially traffic between OVS and
441 the controller itself.
442
443A: By default, Open vSwitch assumes that OpenFlow controllers are
444 connected "in-band", that is, that the controllers are actually
445 part of the network that is being controlled. In in-band mode,
446 Open vSwitch sets up special "hidden" flows to make sure that
447 traffic can make it back and forth between OVS and the controllers.
448 These hidden flows are higher priority than any flows that can be
449 set up through OpenFlow, and they are not visible through normal
450 OpenFlow flow table dumps.
451
452 Usually, the hidden flows are desirable and helpful, but
453 occasionally they can cause unexpected behavior. You can view the
454 full OpenFlow flow table, including hidden flows, on bridge br0
455 with the command:
456
457 ovs-appctl bridge/dump-flows br0
458
459 to help you debug. The hidden flows are those with priorities
460 greater than 65535 (the maximum priority that can be set with
461 OpenFlow).
462
463 The DESIGN file at the top level of the Open vSwitch source
464 distribution describes the in-band model in detail.
465
466 If your controllers are not actually in-band (e.g. they are on
467 localhost via 127.0.0.1, or on a separate network), then you should
468 configure your controllers in "out-of-band" mode. If you have one
469 controller on bridge br0, then you can configure out-of-band mode
470 on it with:
471
472 ovs-vsctl set controller br0 connection-mode=out-of-band
473
474Q: I configured all my controllers for out-of-band control mode but
475 "ovs-appctl bridge/dump-flows" still shows some hidden flows.
476
477A: You probably have a remote manager configured (e.g. with "ovs-vsctl
478 set-manager"). By default, Open vSwitch assumes that managers need
479 in-band rules set up on every bridge. You can disable these rules
480 on bridge br0 with:
481
482 ovs-vsctl set bridge br0 other-config:disable-in-band=true
483
484 This actually disables in-band control entirely for the bridge, as
485 if all the bridge's controllers were configured for out-of-band
486 control.
487
488Q: My OpenFlow controller doesn't see the VLANs that I expect.
489
490A: See answer under "VLANs", above.
491
7b287e99 492
c483d489
BP
493Contact
494-------
495
496bugs@openvswitch.org
497http://openvswitch.org/