]> git.proxmox.com Git - ovs.git/blame - FAQ.md
compat: Fix IPv6 frag expiry crash.
[ovs.git] / FAQ.md
CommitLineData
c483d489
BP
1Frequently Asked Questions
2==========================
3
542cc9bb
TG
4Open vSwitch <http://openvswitch.org>
5
fb5b3c22
BB
6## Contents
7
8- [General](#general)
9- [Releases](#releases)
10- [Terminology](#terminology)
11- [Basic configuration](#basic-configuration)
12- [Implementation Details](#implementation-details)
13- [Performance](#performance)
14- [Configuration Problems](#configuration-problems)
15- [QOS](#qos)
16- [VLANs](#vlans)
17- [VXLANs](#vxlans)
18- [Using OpenFlow](#using-openflow)
19- [Development](#development)
20
21## General
3fc7dc18 22
542cc9bb 23### Q: What is Open vSwitch?
3fc7dc18
JP
24
25A: Open vSwitch is a production quality open source software switch
29089a54
RL
26 designed to be used as a vswitch in virtualized server
27 environments. A vswitch forwards traffic between different VMs on
28 the same physical host and also forwards traffic between VMs and
29 the physical network. Open vSwitch supports standard management
30 interfaces (e.g. sFlow, NetFlow, IPFIX, RSPAN, CLI), and is open to
31 programmatic extension and control using OpenFlow and the OVSDB
32 management protocol.
3fc7dc18
JP
33
34 Open vSwitch as designed to be compatible with modern switching
35 chipsets. This means that it can be ported to existing high-fanout
36 switches allowing the same flexible control of the physical
37 infrastructure as the virtual infrastructure. It also means that
38 Open vSwitch will be able to take advantage of on-NIC switching
39 chipsets as their functionality matures.
40
542cc9bb 41### Q: What virtualization platforms can use Open vSwitch?
3fc7dc18
JP
42
43A: Open vSwitch can currently run on any Linux-based virtualization
8063e095 44 platform (kernel 3.10 and newer), including: KVM, VirtualBox, Xen,
3fc7dc18
JP
45 Xen Cloud Platform, XenServer. As of Linux 3.3 it is part of the
46 mainline kernel. The bulk of the code is written in platform-
47 independent C and is easily ported to other environments. We welcome
48 inquires about integrating Open vSwitch with other virtualization
49 platforms.
50
542cc9bb 51### Q: How can I try Open vSwitch?
3fc7dc18 52
7b287e99
JP
53A: The Open vSwitch source code can be built on a Linux system. You can
54 build and experiment with Open vSwitch on any Linux machine.
55 Packages for various Linux distributions are available on many
56 platforms, including: Debian, Ubuntu, Fedora.
3fc7dc18
JP
57
58 You may also download and run a virtualization platform that already
7b287e99
JP
59 has Open vSwitch integrated. For example, download a recent ISO for
60 XenServer or Xen Cloud Platform. Be aware that the version
61 integrated with a particular platform may not be the most recent Open
62 vSwitch release.
63
542cc9bb 64### Q: Does Open vSwitch only work on Linux?
7b287e99
JP
65
66A: No, Open vSwitch has been ported to a number of different operating
67 systems and hardware platforms. Most of the development work occurs
68 on Linux, but the code should be portable to any POSIX system. We've
69 seen Open vSwitch ported to a number of different platforms,
70 including FreeBSD, Windows, and even non-POSIX embedded systems.
71
72 By definition, the Open vSwitch Linux kernel module only works on
73 Linux and will provide the highest performance. However, a userspace
74 datapath is available that should be very portable.
75
542cc9bb 76### Q: What's involved with porting Open vSwitch to a new platform or switching ASIC?
7b287e99 77
9feb1017 78A: The [PORTING.md] document describes how one would go about
542cc9bb 79 porting Open vSwitch to a new operating system or hardware platform.
3fc7dc18 80
542cc9bb 81### Q: Why would I use Open vSwitch instead of the Linux bridge?
3fc7dc18
JP
82
83A: Open vSwitch is specially designed to make it easier to manage VM
7b287e99 84 network configuration and monitor state spread across many physical
542cc9bb 85 hosts in dynamic virtualized environments. Please see
9feb1017
TG
86 [WHY-OVS.md] for a more detailed description of how Open vSwitch
87 relates to the Linux Bridge.
3fc7dc18 88
542cc9bb 89### Q: How is Open vSwitch related to distributed virtual switches like the VMware vNetwork distributed switch or the Cisco Nexus 1000V?
3fc7dc18
JP
90
91A: Distributed vswitch applications (e.g., VMware vNetwork distributed
92 switch, Cisco Nexus 1000V) provide a centralized way to configure and
93 monitor the network state of VMs that are spread across many physical
94 hosts. Open vSwitch is not a distributed vswitch itself, rather it
95 runs on each physical host and supports remote management in a way
96 that makes it easier for developers of virtualization/cloud
97 management platforms to offer distributed vswitch capabilities.
98
99 To aid in distribution, Open vSwitch provides two open protocols that
100 are specially designed for remote management in virtualized network
101 environments: OpenFlow, which exposes flow-based forwarding state,
102 and the OVSDB management protocol, which exposes switch port state.
103 In addition to the switch implementation itself, Open vSwitch
1d5aaa61
BP
104 includes tools (ovs-ofctl, ovs-vsctl) that developers can script and
105 extend to provide distributed vswitch capabilities that are closely
106 integrated with their virtualization management platform.
3fc7dc18 107
542cc9bb 108### Q: Why doesn't Open vSwitch support distribution?
3fc7dc18
JP
109
110A: Open vSwitch is intended to be a useful component for building
111 flexible network infrastructure. There are many different approaches
112 to distribution which balance trade-offs between simplicity,
113 scalability, hardware compatibility, convergence times, logical
114 forwarding model, etc. The goal of Open vSwitch is to be able to
115 support all as a primitive building block rather than choose a
116 particular point in the distributed design space.
117
542cc9bb 118### Q: How can I contribute to the Open vSwitch Community?
3fc7dc18
JP
119
120A: You can start by joining the mailing lists and helping to answer
7b287e99
JP
121 questions. You can also suggest improvements to documentation. If
122 you have a feature or bug you would like to work on, send a mail to
123 one of the mailing lists:
124
542cc9bb 125 http://openvswitch.org/mlists/
7b287e99 126
5fd5a65c 127### Q: Why can I no longer connect to my OpenFlow controller or OVSDB manager?
d4763d1d
JP
128
129A: Starting in OVS 2.4, we switched the default ports to the
130 IANA-specified port numbers for OpenFlow (6633->6653) and OVSDB
131 (6632->6640). We recommend using these port numbers, but if you
132 cannot, all the programs allow overriding the default port. See the
133 appropriate man page.
134
fb5b3c22 135## Releases
7b287e99 136
542cc9bb 137### Q: What does it mean for an Open vSwitch release to be LTS (long-term support)?
3fc7dc18 138
7b287e99 139A: All official releases have been through a comprehensive testing
1a807b41
BP
140 process and are suitable for production use. Planned releases
141 occur twice a year. If a significant bug is identified in an
7b287e99
JP
142 LTS release, we will provide an updated release that includes the
143 fix. Releases that are not LTS may not be fixed and may just be
144 supplanted by the next major release. The current LTS release is
49b507d9 145 2.3.x.
7b287e99 146
1a807b41
BP
147 For more information on the Open vSwitch release process, please
148 see [release-process.md].
149
542cc9bb 150### Q: What Linux kernel versions does each Open vSwitch release work with?
314e60e1
BP
151
152A: The following table lists the Linux kernel versions against which the
153 given versions of the Open vSwitch kernel module will successfully
154 build. The Linux kernel versions are upstream kernel versions, so
a01b5c51
BP
155 Linux kernels modified from the upstream sources may not build in
156 some cases even if they are based on a supported version. This is
157 most notably true of Red Hat Enterprise Linux (RHEL) kernels, which
158 are extensively modified from upstream.
314e60e1 159
542cc9bb
TG
160| Open vSwitch | Linux kernel
161|:------------:|:-------------:
162| 1.4.x | 2.6.18 to 3.2
163| 1.5.x | 2.6.18 to 3.2
164| 1.6.x | 2.6.18 to 3.2
165| 1.7.x | 2.6.18 to 3.3
166| 1.8.x | 2.6.18 to 3.4
167| 1.9.x | 2.6.18 to 3.8
168| 1.10.x | 2.6.18 to 3.8
169| 1.11.x | 2.6.18 to 3.8
170| 2.0.x | 2.6.32 to 3.10
171| 2.1.x | 2.6.32 to 3.11
172| 2.3.x | 2.6.32 to 3.14
3afcde43 173| 2.4.x | 2.6.32 to 4.0
e23775f2 174| 2.5.x | 2.6.32 to 4.3
763f638b 175| 2.6.x | 3.10 to 4.6
314e60e1
BP
176
177 Open vSwitch userspace should also work with the Linux kernel module
178 built into Linux 3.3 and later.
179
180 Open vSwitch userspace is not sensitive to the Linux kernel version.
37418c86 181 It should build against almost any kernel, certainly against 2.6.32
314e60e1
BP
182 and later.
183
d05293af
DDP
184### Q: Are all features available with all datapaths?
185
186A: Open vSwitch supports different datapaths on different platforms. Each
187 datapath has a different feature set: the following tables try to summarize
188 the status.
189
190 Supported datapaths:
191
192 * *Linux upstream*: The datapath implemented by the kernel module shipped
193 with Linux upstream. Since features have been gradually
194 introduced into the kernel, the table mentions the first
195 Linux release whose OVS module supports the feature.
196
197 * *Linux OVS tree*: The datapath implemented by the Linux kernel module
6792e407 198 distributed with the OVS source tree.
d05293af
DDP
199
200 * *Userspace*: Also known as DPDK, dpif-netdev or dummy datapath. It is the
6792e407 201 only datapath that works on NetBSD, FreeBSD and Mac OSX.
d05293af
DDP
202
203 * *Hyper-V*: Also known as the Windows datapath.
204
205 The following table lists the datapath supported features from
206 an Open vSwitch user's perspective.
207
208Feature | Linux upstream | Linux OVS tree | Userspace | Hyper-V |
209----------------------|:--------------:|:--------------:|:---------:|:-------:|
ca65a3b1 210NAT | 4.6 | YES | NO | NO |
5cf3edb3 211Connection tracking | 4.3 | YES | PARTIAL | PARTIAL |
d05293af 212Tunnel - LISP | NO | YES | NO | NO |
6792e407 213Tunnel - STT | NO | YES | NO | YES |
85571a3d 214Tunnel - GRE | 3.11 | YES | YES | YES |
d05293af 215Tunnel - VXLAN | 3.12 | YES | YES | YES |
ca65a3b1 216Tunnel - Geneve | 3.18 | YES | YES | YES |
8a2d4905
PS
217Tunnel - GRE-IPv6 | NO | NO | YES | NO |
218Tunnel - VXLAN-IPv6 | 4.3 | YES | YES | NO |
219Tunnel - Geneve-IPv6 | 4.4 | YES | YES | NO |
d05293af
DDP
220QoS - Policing | YES | YES | NO | NO |
221QoS - Shaping | YES | YES | NO | NO |
222sFlow | YES | YES | YES | NO |
6f0f1657 223IPFIX | 3.10 | YES | YES | NO |
d05293af
DDP
224Set action | YES | YES | YES | PARTIAL |
225NIC Bonding | YES | YES | YES | NO |
226Multiple VTEPs | YES | YES | YES | NO |
227
228 **Notes:**
229 * Only a limited set of flow fields is modifiable via the set action by the
230 Hyper-V datapath.
231 * The Hyper-V datapath only supports one physical NIC per datapath. This is
232 why bonding is not supported.
233 * The Hyper-V datapath can have at most one IP address configured as a
234 tunnel endpoint.
235
236 The following table lists features that do not *directly* impact an
237 Open vSwitch user, e.g. because their absence can be hidden by the ofproto
238 layer (usually this comes with a performance penalty).
239
240Feature | Linux upstream | Linux OVS tree | Userspace | Hyper-V |
241----------------------|:--------------:|:--------------:|:---------:|:-------:|
242SCTP flows | 3.12 | YES | YES | YES |
06954237 243MPLS | 3.19 | YES | YES | YES |
d05293af
DDP
244UFID | 4.0 | YES | YES | NO |
245Megaflows | 3.12 | YES | YES | NO |
246Masked set action | 4.0 | YES | YES | NO |
2eb5deea 247Recirculation | 3.19 | YES | YES | YES |
d05293af
DDP
248TCP flags matching | 3.13 | YES | YES | NO |
249Validate flow actions | YES | YES | N/A | NO |
250Multiple datapaths | YES | YES | YES | NO |
251Tunnel TSO - STT | N/A | YES | NO | YES |
47fe8a1d 252
5d246083
KT
253### Q: What DPDK version does each Open vSwitch release work with?
254
255A: The following table lists the DPDK version against which the
256 given versions of Open vSwitch will successfully build.
257
258| Open vSwitch | DPDK
259|:------------:|:-----:
260| 2.2.x | 1.6
261| 2.3.x | 1.6
262| 2.4.x | 2.0
263| 2.5.x | 2.2
264| 2.6.x | 16.04
265
542cc9bb 266### Q: I get an error like this when I configure Open vSwitch:
29089a54 267
a7ae9380
BP
268 configure: error: Linux kernel in <dir> is version <x>, but
269 version newer than <y> is not supported (please refer to the
270 FAQ for advice)
29089a54 271
a7ae9380 272 What should I do?
33cec590 273
fcc369bc
BP
274A: You have the following options:
275
276 - Use the Linux kernel module supplied with the kernel that you are
277 using. (See also the following FAQ.)
278
279 - If there is a newer released version of Open vSwitch, consider
280 building that one, because it may support the kernel that you are
281 building against. (To find out, consult the table in the
282 previous FAQ.)
283
284 - The Open vSwitch "master" branch may support the kernel that you
285 are using, so consider building the kernel module from "master".
286
287 All versions of Open vSwitch userspace are compatible with all
288 versions of the Open vSwitch kernel module, so you do not have to
289 use the kernel module from one source along with the userspace
290 programs from the same source.
33cec590 291
542cc9bb 292### Q: What features are not available in the Open vSwitch kernel datapath that ships as part of the upstream Linux kernel?
7b287e99 293
9c333bff
JG
294A: The kernel module in upstream Linux does not include support for
295 LISP. Work is in progress to add support for LISP to the upstream
296 Linux version of the Open vSwitch kernel module. For now, if you
297 need this feature, use the kernel module from the Open vSwitch
0a740f48
EJ
298 distribution instead of the upstream Linux kernel module.
299
9c333bff
JG
300 Certain features require kernel support to function or to have
301 reasonable performance. If the ovs-vswitchd log file indicates that
302 a feature is not supported, consider upgrading to a newer upstream
303 Linux release or using the kernel module paired with the userspace
304 distribution.
6302c641 305
542cc9bb 306### Q: Why do tunnels not work when using a kernel module other than the one packaged with Open vSwitch?
6814c630
JG
307
308A: Support for tunnels was added to the upstream Linux kernel module
309 after the rest of Open vSwitch. As a result, some kernels may contain
310 support for Open vSwitch but not tunnels. The minimum kernel version
311 that supports each tunnel protocol is:
312
542cc9bb
TG
313| Protocol | Linux Kernel
314|:--------:|:-------------:
315| GRE | 3.11
316| VXLAN | 3.12
4752cc0c 317| Geneve | 3.18
542cc9bb 318| LISP | <not upstream>
4237026e 319| STT | <not upstream>
6814c630
JG
320
321 If you are using a version of the kernel that is older than the one
322 listed above, it is still possible to use that tunnel protocol. However,
323 you must compile and install the kernel module included with the Open
324 vSwitch distribution rather than the one on your machine. If problems
325 persist after doing this, check to make sure that the module that is
326 loaded is the one you expect.
327
4752cc0c
JG
328### Q: Why are UDP tunnel checksums not computed for VXLAN or Geneve?
329
330A: Generating outer UDP checksums requires kernel support that was not
331 part of the initial implementation of these protocols. If using the
332 upstream Linux Open vSwitch module, you must use kernel 4.0 or
333 newer. The out-of-tree modules from Open vSwitch release 2.4 and later
334 support UDP checksums.
335
542cc9bb 336### Q: What features are not available when using the userspace datapath?
7b287e99 337
0a740f48 338A: Tunnel virtual ports are not supported, as described in the
7b287e99
JP
339 previous answer. It is also not possible to use queue-related
340 actions. On Linux kernels before 2.6.39, maximum-sized VLAN packets
341 may not be transmitted.
3fc7dc18 342
542cc9bb 343### Q: Should userspace or kernel be upgraded first to minimize downtime?
a7ae9380
BP
344
345 In general, the Open vSwitch userspace should be used with the
346 kernel version included in the same release or with the version
347 from upstream Linux. However, when upgrading between two releases
348 of Open vSwitch it is best to migrate userspace first to reduce
349 the possibility of incompatibilities.
350
542cc9bb 351### Q: What happened to the bridge compatibility feature?
900dc97c
BP
352
353A: Bridge compatibility was a feature of Open vSwitch 1.9 and earlier.
354 When it was enabled, Open vSwitch imitated the interface of the
355 Linux kernel "bridge" module. This allowed users to drop Open
356 vSwitch into environments designed to use the Linux kernel bridge
357 module without adapting the environment to use Open vSwitch.
358
359 Open vSwitch 1.10 and later do not support bridge compatibility.
360 The feature was dropped because version 1.10 adopted a new internal
361 architecture that made bridge compatibility difficult to maintain.
362 Now that many environments use OVS directly, it would be rarely
363 useful in any case.
364
365 To use bridge compatibility, install OVS 1.9 or earlier, including
366 the accompanying kernel modules (both the main and bridge
367 compatibility modules), following the instructions that come with
368 the release. Be sure to start the ovs-brcompatd daemon.
369
3fc7dc18 370
fb5b3c22 371## Terminology
79aa9fd0 372
542cc9bb 373### Q: I thought Open vSwitch was a virtual Ethernet switch, but the documentation keeps talking about bridges. What's a bridge?
79aa9fd0
BP
374
375A: In networking, the terms "bridge" and "switch" are synonyms. Open
376 vSwitch implements an Ethernet switch, which means that it is also
377 an Ethernet bridge.
378
542cc9bb 379### Q: What's a VLAN?
79aa9fd0
BP
380
381A: See the "VLAN" section below.
382
fb5b3c22 383## Basic configuration
717e7c8d 384
542cc9bb 385### Q: How do I configure a port as an access port?
717e7c8d
BP
386
387A: Add "tag=VLAN" to your "ovs-vsctl add-port" command. For example,
388 the following commands configure br0 with eth0 as a trunk port (the
389 default) and tap0 as an access port for VLAN 9:
390
391 ovs-vsctl add-br br0
392 ovs-vsctl add-port br0 eth0
393 ovs-vsctl add-port br0 tap0 tag=9
394
395 If you want to configure an already added port as an access port,
396 use "ovs-vsctl set", e.g.:
397
398 ovs-vsctl set port tap0 tag=9
399
542cc9bb 400### Q: How do I configure a port as a SPAN port, that is, enable mirroring of all traffic to that port?
717e7c8d
BP
401
402A: The following commands configure br0 with eth0 and tap0 as trunk
403 ports. All traffic coming in or going out on eth0 or tap0 is also
404 mirrored to tap1; any traffic arriving on tap1 is dropped:
405
406 ovs-vsctl add-br br0
407 ovs-vsctl add-port br0 eth0
408 ovs-vsctl add-port br0 tap0
409 ovs-vsctl add-port br0 tap1 \
410 -- --id=@p get port tap1 \
0dc8b8c2
YT
411 -- --id=@m create mirror name=m0 select-all=true output-port=@p \
412 -- set bridge br0 mirrors=@m
717e7c8d
BP
413
414 To later disable mirroring, run:
415
416 ovs-vsctl clear bridge br0 mirrors
417
542cc9bb 418### Q: Does Open vSwitch support configuring a port in promiscuous mode?
e253f732
BP
419
420A: Yes. How you configure it depends on what you mean by "promiscuous
421 mode":
422
542cc9bb
TG
423 - Conventionally, "promiscuous mode" is a feature of a network
424 interface card. Ordinarily, a NIC passes to the CPU only the
425 packets actually destined to its host machine. It discards
426 the rest to avoid wasting memory and CPU cycles. When
427 promiscuous mode is enabled, however, it passes every packet
428 to the CPU. On an old-style shared-media or hub-based
429 network, this allows the host to spy on all packets on the
430 network. But in the switched networks that are almost
431 everywhere these days, promiscuous mode doesn't have much
432 effect, because few packets not destined to a host are
433 delivered to the host's NIC.
434
435 This form of promiscuous mode is configured in the guest OS of
436 the VMs on your bridge, e.g. with "ifconfig".
437
438 - The VMware vSwitch uses a different definition of "promiscuous
439 mode". When you configure promiscuous mode on a VMware vNIC,
440 the vSwitch sends a copy of every packet received by the
441 vSwitch to that vNIC. That has a much bigger effect than just
442 enabling promiscuous mode in a guest OS. Rather than getting
443 a few stray packets for which the switch does not yet know the
444 correct destination, the vNIC gets every packet. The effect
445 is similar to replacing the vSwitch by a virtual hub.
446
447 This "promiscuous mode" is what switches normally call "port
448 mirroring" or "SPAN". For information on how to configure
449 SPAN, see "How do I configure a port as a SPAN port, that is,
450 enable mirroring of all traffic to that port?"
451
77c180ce
BM
452### Q: How do I configure a DPDK port as an access port?
453
454A: Firstly, you must have a DPDK-enabled version of Open vSwitch.
455
bab69409
AC
456 If your version is DPDK-enabled it will support the other-config:dpdk-init
457 configuration in the database and will display lines with "EAL:..."
458 during startup when other_config:dpdk-init is set to 'true'.
77c180ce
BM
459
460 Secondly, when adding a DPDK port, unlike a system port, the
461 type for the interface must be specified. For example;
462
463 ovs-vsctl add-br br0
464 ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk
465
466 Finally, it is required that DPDK port names begin with 'dpdk'.
467
468 See [INSTALL.DPDK.md] for more information on enabling and using DPDK with
469 Open vSwitch.
470
542cc9bb 471### Q: How do I configure a VLAN as an RSPAN VLAN, that is, enable mirroring of all traffic to that VLAN?
717e7c8d
BP
472
473A: The following commands configure br0 with eth0 as a trunk port and
474 tap0 as an access port for VLAN 10. All traffic coming in or going
475 out on tap0, as well as traffic coming in or going out on eth0 in
476 VLAN 10, is also mirrored to VLAN 15 on eth0. The original tag for
477 VLAN 10, in cases where one is present, is dropped as part of
478 mirroring:
479
480 ovs-vsctl add-br br0
481 ovs-vsctl add-port br0 eth0
482 ovs-vsctl add-port br0 tap0 tag=10
483 ovs-vsctl \
0dc8b8c2 484 -- --id=@m create mirror name=m0 select-all=true select-vlan=10 \
717e7c8d 485 output-vlan=15 \
0dc8b8c2 486 -- set bridge br0 mirrors=@m
717e7c8d
BP
487
488 To later disable mirroring, run:
489
490 ovs-vsctl clear bridge br0 mirrors
491
492 Mirroring to a VLAN can disrupt a network that contains unmanaged
493 switches. See ovs-vswitchd.conf.db(5) for details. Mirroring to a
494 GRE tunnel has fewer caveats than mirroring to a VLAN and should
495 generally be preferred.
496
542cc9bb 497### Q: Can I mirror more than one input VLAN to an RSPAN VLAN?
717e7c8d
BP
498
499A: Yes, but mirroring to a VLAN strips the original VLAN tag in favor
500 of the specified output-vlan. This loss of information may make
501 the mirrored traffic too hard to interpret.
502
503 To mirror multiple VLANs, use the commands above, but specify a
504 comma-separated list of VLANs as the value for select-vlan. To
505 mirror every VLAN, use the commands above, but omit select-vlan and
506 its value entirely.
507
508 When a packet arrives on a VLAN that is used as a mirror output
509 VLAN, the mirror is disregarded. Instead, in standalone mode, OVS
510 floods the packet across all the ports for which the mirror output
511 VLAN is configured. (If an OpenFlow controller is in use, then it
512 can override this behavior through the flow table.) If OVS is used
513 as an intermediate switch, rather than an edge switch, this ensures
514 that the RSPAN traffic is distributed through the network.
515
516 Mirroring to a VLAN can disrupt a network that contains unmanaged
517 switches. See ovs-vswitchd.conf.db(5) for details. Mirroring to a
518 GRE tunnel has fewer caveats than mirroring to a VLAN and should
519 generally be preferred.
520
542cc9bb 521### Q: How do I configure mirroring of all traffic to a GRE tunnel?
717e7c8d
BP
522
523A: The following commands configure br0 with eth0 and tap0 as trunk
524 ports. All traffic coming in or going out on eth0 or tap0 is also
525 mirrored to gre0, a GRE tunnel to the remote host 192.168.1.10; any
526 traffic arriving on gre0 is dropped:
527
528 ovs-vsctl add-br br0
529 ovs-vsctl add-port br0 eth0
530 ovs-vsctl add-port br0 tap0
531 ovs-vsctl add-port br0 gre0 \
532 -- set interface gre0 type=gre options:remote_ip=192.168.1.10 \
533 -- --id=@p get port gre0 \
0dc8b8c2
YT
534 -- --id=@m create mirror name=m0 select-all=true output-port=@p \
535 -- set bridge br0 mirrors=@m
717e7c8d
BP
536
537 To later disable mirroring and destroy the GRE tunnel:
538
539 ovs-vsctl clear bridge br0 mirrors
1e759125 540 ovs-vsctl del-port br0 gre0
717e7c8d 541
542cc9bb 542### Q: Does Open vSwitch support ERSPAN?
717e7c8d
BP
543
544A: No. ERSPAN is an undocumented proprietary protocol. As an
545 alternative, Open vSwitch supports mirroring to a GRE tunnel (see
546 above).
547
542cc9bb 548### Q: How do I connect two bridges?
1ab9712b
BP
549
550A: First, why do you want to do this? Two connected bridges are not
551 much different from a single bridge, so you might as well just have
552 a single bridge with all your ports on it.
553
554 If you still want to connect two bridges, you can use a pair of
555 patch ports. The following example creates bridges br0 and br1,
556 adds eth0 and tap0 to br0, adds tap1 to br1, and then connects br0
557 and br1 with a pair of patch ports.
558
559 ovs-vsctl add-br br0
560 ovs-vsctl add-port br0 eth0
561 ovs-vsctl add-port br0 tap0
562 ovs-vsctl add-br br1
563 ovs-vsctl add-port br1 tap1
564 ovs-vsctl \
565 -- add-port br0 patch0 \
566 -- set interface patch0 type=patch options:peer=patch1 \
567 -- add-port br1 patch1 \
568 -- set interface patch1 type=patch options:peer=patch0
569
570 Bridges connected with patch ports are much like a single bridge.
571 For instance, if the example above also added eth1 to br1, and both
572 eth0 and eth1 happened to be connected to the same next-hop switch,
573 then you could loop your network just as you would if you added
574 eth0 and eth1 to the same bridge (see the "Configuration Problems"
575 section below for more information).
576
577 If you are using Open vSwitch 1.9 or an earlier version, then you
578 need to be using the kernel module bundled with Open vSwitch rather
579 than the one that is integrated into Linux 3.3 and later, because
580 Open vSwitch 1.9 and earlier versions need kernel support for patch
581 ports. This also means that in Open vSwitch 1.9 and earlier, patch
582 ports will not work with the userspace datapath, only with the
583 kernel module.
584
542cc9bb 585### Q: How do I configure a bridge without an OpenFlow local port? (Local port in the sense of OFPP_LOCAL)
5c9c1105
YT
586
587A: Open vSwitch does not support such a configuration.
588 Bridges always have their local ports.
589
fb5b3c22 590## Implementation Details
1a274bfe 591
542cc9bb 592### Q: I hear OVS has a couple of kinds of flows. Can you tell me about them?
a70fc0cf
JP
593
594A: Open vSwitch uses different kinds of flows for different purposes:
595
542cc9bb
TG
596 - OpenFlow flows are the most important kind of flow. OpenFlow
597 controllers use these flows to define a switch's policy.
598 OpenFlow flows support wildcards, priorities, and multiple
599 tables.
600
601 When in-band control is in use, Open vSwitch sets up a few
602 "hidden" flows, with priority higher than a controller or the
603 user can configure, that are not visible via OpenFlow. (See
604 the "Controller" section of the FAQ for more information
605 about hidden flows.)
606
607 - The Open vSwitch software switch implementation uses a second
608 kind of flow internally. These flows, called "datapath" or
609 "kernel" flows, do not support priorities and comprise only a
610 single table, which makes them suitable for caching. (Like
611 OpenFlow flows, datapath flows do support wildcarding, in Open
612 vSwitch 1.11 and later.) OpenFlow flows and datapath flows
613 also support different actions and number ports differently.
614
615 Datapath flows are an implementation detail that is subject to
616 change in future versions of Open vSwitch. Even with the
617 current version of Open vSwitch, hardware switch
618 implementations do not necessarily use this architecture.
a70fc0cf 619
1a274bfe
BP
620 Users and controllers directly control only the OpenFlow flow
621 table. Open vSwitch manages the datapath flow table itself, so
622 users should not normally be concerned with it.
623
542cc9bb 624### Q: Why are there so many different ways to dump flows?
1a274bfe
BP
625
626A: Open vSwitch has two kinds of flows (see the previous question), so
627 it has commands with different purposes for dumping each kind of
628 flow:
a70fc0cf 629
542cc9bb
TG
630 - `ovs-ofctl dump-flows <br>` dumps OpenFlow flows, excluding
631 hidden flows. This is the most commonly useful form of flow
632 dump. (Unlike the other commands, this should work with any
633 OpenFlow switch, not just Open vSwitch.)
a70fc0cf 634
542cc9bb
TG
635 - `ovs-appctl bridge/dump-flows <br>` dumps OpenFlow flows,
636 including hidden flows. This is occasionally useful for
637 troubleshooting suspected issues with in-band control.
a70fc0cf 638
542cc9bb
TG
639 - `ovs-dpctl dump-flows [dp]` dumps the datapath flow table
640 entries for a Linux kernel-based datapath. In Open vSwitch
641 1.10 and later, ovs-vswitchd merges multiple switches into a
642 single datapath, so it will show all the flows on all your
643 kernel-based switches. This command can occasionally be
644 useful for debugging.
a70fc0cf 645
542cc9bb
TG
646 - `ovs-appctl dpif/dump-flows <br>`, new in Open vSwitch 1.10,
647 dumps datapath flows for only the specified bridge, regardless
648 of the type.
a70fc0cf 649
542cc9bb 650### Q: How does multicast snooping works with VLANs?
c81f359b
FL
651
652A: Open vSwitch maintains snooping tables for each VLAN.
653
d25cb282
BP
654### Q: Can OVS populate the kernel flow table in advance instead of in reaction to packets?
655
656A: No. There are several reasons:
657
658 - Kernel flows are not as sophisticated as OpenFlow flows, which
659 means that some OpenFlow policies could require a large number of
660 kernel flows. The "conjunctive match" feature is an extreme
661 example: the number of kernel flows it requires is the product of
662 the number of flows in each dimension.
663
664 - With multiple OpenFlow flow tables and simple sets of actions, the
665 number of kernel flows required can be as large as the product of
666 the number of flows in each dimension. With more sophisticated
667 actions, the number of kernel flows could be even larger.
668
669 - Open vSwitch is designed so that any version of OVS userspace
670 interoperates with any version of the OVS kernel module. This
671 forward and backward compatibility requires that userspace observe
672 how the kernel module parses received packets. This is only
673 possible in a straightforward way when userspace adds kernel flows
674 in reaction to received packets.
675
676 For more relevant information on the architecture of Open vSwitch,
677 please read "The Design and Implementation of Open vSwitch",
678 published in USENIX NSDI 2015.
679
fb5b3c22 680## Performance
bcb8bde4 681
542cc9bb 682### Q: I just upgraded and I see a performance drop. Why?
bcb8bde4
JR
683
684A: The OVS kernel datapath may have been updated to a newer version than
685 the OVS userspace components. Sometimes new versions of OVS kernel
686 module add functionality that is backwards compatible with older
687 userspace components but may cause a drop in performance with them.
688 Especially, if a kernel module from OVS 2.1 or newer is paired with
689 OVS userspace 1.10 or older, there will be a performance drop for
690 TCP traffic.
691
692 Updating the OVS userspace components to the latest released
693 version should fix the performance degradation.
694
695 To get the best possible performance and functionality, it is
696 recommended to pair the same versions of the kernel module and OVS
697 userspace.
698
699
fb5b3c22 700## Configuration Problems
c483d489 701
542cc9bb 702### Q: I created a bridge and added my Ethernet port to it, using commands
c483d489
BP
703 like these:
704
705 ovs-vsctl add-br br0
706 ovs-vsctl add-port br0 eth0
707
708 and as soon as I ran the "add-port" command I lost all connectivity
709 through eth0. Help!
710
711A: A physical Ethernet device that is part of an Open vSwitch bridge
712 should not have an IP address. If one does, then that IP address
713 will not be fully functional.
714
715 You can restore functionality by moving the IP address to an Open
716 vSwitch "internal" device, such as the network device named after
717 the bridge itself. For example, assuming that eth0's IP address is
718 192.168.128.5, you could run the commands below to fix up the
719 situation:
720
721 ifconfig eth0 0.0.0.0
722 ifconfig br0 192.168.128.5
723
724 (If your only connection to the machine running OVS is through the
725 IP address in question, then you would want to run all of these
726 commands on a single command line, or put them into a script.) If
727 there were any additional routes assigned to eth0, then you would
728 also want to use commands to adjust these routes to go through br0.
729
730 If you use DHCP to obtain an IP address, then you should kill the
731 DHCP client that was listening on the physical Ethernet interface
732 (e.g. eth0) and start one listening on the internal interface
733 (e.g. br0). You might still need to manually clear the IP address
734 from the physical interface (e.g. with "ifconfig eth0 0.0.0.0").
735
736 There is no compelling reason why Open vSwitch must work this way.
737 However, this is the way that the Linux kernel bridge module has
738 always worked, so it's a model that those accustomed to Linux
739 bridging are already used to. Also, the model that most people
740 expect is not implementable without kernel changes on all the
741 versions of Linux that Open vSwitch supports.
742
743 By the way, this issue is not specific to physical Ethernet
c7b0cfd3 744 devices. It applies to all network devices except Open vSwitch
c483d489
BP
745 "internal" devices.
746
542cc9bb
TG
747### Q: I created a bridge and added a couple of Ethernet ports to it,
748### using commands like these:
c483d489
BP
749
750 ovs-vsctl add-br br0
751 ovs-vsctl add-port br0 eth0
752 ovs-vsctl add-port br0 eth1
753
754 and now my network seems to have melted: connectivity is unreliable
755 (even connectivity that doesn't go through Open vSwitch), all the
629a6b48
BP
756 LEDs on my physical switches are blinking, wireshark shows
757 duplicated packets, and CPU usage is very high.
c483d489
BP
758
759A: More than likely, you've looped your network. Probably, eth0 and
760 eth1 are connected to the same physical Ethernet switch. This
761 yields a scenario where OVS receives a broadcast packet on eth0 and
762 sends it out on eth1, then the physical switch connected to eth1
763 sends the packet back on eth0, and so on forever. More complicated
764 scenarios, involving a loop through multiple switches, are possible
765 too.
766
767 The solution depends on what you are trying to do:
768
542cc9bb
TG
769 - If you added eth0 and eth1 to get higher bandwidth or higher
770 reliability between OVS and your physical Ethernet switch,
771 use a bond. The following commands create br0 and then add
772 eth0 and eth1 as a bond:
c483d489 773
542cc9bb
TG
774 ovs-vsctl add-br br0
775 ovs-vsctl add-bond br0 bond0 eth0 eth1
c483d489 776
542cc9bb
TG
777 Bonds have tons of configuration options. Please read the
778 documentation on the Port table in ovs-vswitchd.conf.db(5)
779 for all the details.
c483d489 780
77c180ce
BM
781 Configuration for DPDK-enabled interfaces is slightly less
782 straightforward: see [INSTALL.DPDK.md].
783
542cc9bb
TG
784 - Perhaps you don't actually need eth0 and eth1 to be on the
785 same bridge. For example, if you simply want to be able to
786 connect each of them to virtual machines, then you can put
787 each of them on a bridge of its own:
c483d489 788
542cc9bb
TG
789 ovs-vsctl add-br br0
790 ovs-vsctl add-port br0 eth0
c483d489 791
542cc9bb
TG
792 ovs-vsctl add-br br1
793 ovs-vsctl add-port br1 eth1
c483d489 794
542cc9bb
TG
795 and then connect VMs to br0 and br1. (A potential
796 disadvantage is that traffic cannot directly pass between br0
797 and br1. Instead, it will go out eth0 and come back in eth1,
798 or vice versa.)
c483d489 799
542cc9bb
TG
800 - If you have a redundant or complex network topology and you
801 want to prevent loops, turn on spanning tree protocol (STP).
802 The following commands create br0, enable STP, and add eth0
803 and eth1 to the bridge. The order is important because you
804 don't want have to have a loop in your network even
805 transiently:
c483d489 806
542cc9bb
TG
807 ovs-vsctl add-br br0
808 ovs-vsctl set bridge br0 stp_enable=true
809 ovs-vsctl add-port br0 eth0
810 ovs-vsctl add-port br0 eth1
c483d489 811
542cc9bb
TG
812 The Open vSwitch implementation of STP is not well tested.
813 Please report any bugs you observe, but if you'd rather avoid
814 acting as a beta tester then another option might be your
815 best shot.
c483d489 816
542cc9bb 817### Q: I can't seem to use Open vSwitch in a wireless network.
c483d489
BP
818
819A: Wireless base stations generally only allow packets with the source
820 MAC address of NIC that completed the initial handshake.
821 Therefore, without MAC rewriting, only a single device can
822 communicate over a single wireless link.
823
824 This isn't specific to Open vSwitch, it's enforced by the access
825 point, so the same problems will show up with the Linux bridge or
826 any other way to do bridging.
827
542cc9bb 828### Q: I can't seem to add my PPP interface to an Open vSwitch bridge.
8748ec7b
BP
829
830A: PPP most commonly carries IP packets, but Open vSwitch works only
831 with Ethernet frames. The correct way to interface PPP to an
832 Ethernet network is usually to use routing instead of switching.
833
542cc9bb 834### Q: Is there any documentation on the database tables and fields?
5aa75474
BP
835
836A: Yes. ovs-vswitchd.conf.db(5) is a comprehensive reference.
837
542cc9bb 838### Q: When I run ovs-dpctl I no longer see the bridges I created. Instead,
acf60855
JP
839 I only see a datapath called "ovs-system". How can I see datapath
840 information about a particular bridge?
841
842A: In version 1.9.0, OVS switched to using a single datapath that is
843 shared by all bridges of that type. The "ovs-appctl dpif/*"
844 commands provide similar functionality that is scoped by the bridge.
845
542cc9bb 846### Q: I created a GRE port using ovs-vsctl so why can't I send traffic or
004a6249
JG
847 see the port in the datapath?
848
849A: On Linux kernels before 3.11, the OVS GRE module and Linux GRE module
850 cannot be loaded at the same time. It is likely that on your system the
851 Linux GRE module is already loaded and blocking OVS (to confirm, check
852 dmesg for errors regarding GRE registration). To fix this, unload all
853 GRE modules that appear in lsmod as well as the OVS kernel module. You
542cc9bb 854 can then reload the OVS module following the directions in
9feb1017 855 [INSTALL.md], which will ensure that dependencies are satisfied.
004a6249 856
542cc9bb 857### Q: Open vSwitch does not seem to obey my packet filter rules.
c6bbc394
YT
858
859A: It depends on mechanisms and configurations you want to use.
860
861 You cannot usefully use typical packet filters, like iptables, on
862 physical Ethernet ports that you add to an Open vSwitch bridge.
863 This is because Open vSwitch captures packets from the interface at
864 a layer lower below where typical packet-filter implementations
865 install their hooks. (This actually applies to any interface of
866 type "system" that you might add to an Open vSwitch bridge.)
867
868 You can usefully use typical packet filters on Open vSwitch
869 internal ports as they are mostly ordinary interfaces from the point
870 of view of packet filters.
871
872 For example, suppose you create a bridge br0 and add Ethernet port
873 eth0 to it. Then you can usefully add iptables rules to affect the
874 internal interface br0, but not the physical interface eth0. (br0
875 is also where you would add an IP address, as discussed elsewhere
876 in the FAQ.)
877
878 For simple filtering rules, it might be possible to achieve similar
879 results by installing appropriate OpenFlow flows instead.
880
881 If the use of a particular packet filter setup is essential, Open
882 vSwitch might not be the best choice for you. On Linux, you might
883 want to consider using the Linux Bridge. (This is the only choice if
884 you want to use ebtables rules.) On NetBSD, you might want to
885 consider using the bridge(4) with BRIDGE_IPF option.
886
542cc9bb 887### Q: It seems that Open vSwitch does nothing when I removed a port and
dd63a57e
YT
888 then immediately put it back. For example, consider that p1 is
889 a port of type=internal:
890
891 ovs-vsctl del-port br0 p1 -- \
892 add-port br0 p1 -- \
893 set interface p1 type=internal
894
895A: It's an expected behaviour.
896
7494dca8
YT
897 If del-port and add-port happen in a single OVSDB transaction as
898 your example, Open vSwitch always "skips" the intermediate steps.
dd63a57e
YT
899 Even if they are done in multiple transactions, it's still allowed
900 for Open vSwitch to skip the intermediate steps and just implement
901 the overall effect. In both cases, your example would be turned
902 into a no-op.
903
904 If you want to make Open vSwitch actually destroy and then re-create
905 the port for some side effects like resetting kernel setting for the
906 corresponding interface, you need to separate operations into multiple
907 OVSDB transactions and ensure that at least the first one does not have
908 --no-wait. In the following example, the first ovs-vsctl will block
909 until Open vSwitch reloads the new configuration and removes the port:
910
911 ovs-vsctl del-port br0 p1
912 ovs-vsctl add-port br0 p1 -- \
913 set interface p1 type=internal
c483d489 914
ed5c5110
BP
915### Q: I want to add thousands of ports to an Open vSwitch bridge, but
916 it takes too long (minutes or hours) to do it with ovs-vsctl. How
917 can I do it faster?
918
919A: If you add them one at a time with ovs-vsctl, it can take a long
920 time to add thousands of ports to an Open vSwitch bridge. This is
921 because every invocation of ovs-vsctl first reads the current
922 configuration from OVSDB. As the number of ports grows, this
923 starts to take an appreciable amount of time, and when it is
924 repeated thousands of times the total time becomes significant.
925
926 The solution is to add the ports in one invocation of ovs-vsctl (or
927 a small number of them). For example, using bash:
928
929 ovs-vsctl add-br br0
930 cmds=; for i in {1..5000}; do cmds+=" -- add-port br0 p$i"; done
931 ovs-vsctl $cmds
932
933 takes seconds, not minutes or hours, in the OVS sandbox environment.
934
bb50a697
BP
935### Q: I created a bridge named br0. My bridge shows up in "ovs-vsctl
936 show", but "ovs-ofctl show br0" just prints "br0 is not a bridge
937 or a socket".
938
939A: Open vSwitch wasn't able to create the bridge. Check the
940 ovs-vswitchd log for details (Debian and Red Hat packaging for Open
941 vSwitch put it in /var/log/openvswitch/ovs-vswitchd.log).
942
943 In general, the Open vSwitch database reflects the desired
944 configuration state. ovs-vswitchd monitors the database and, when
945 it changes, reconfigures the system to reflect the new desired
946 state. This normally happens very quickly. Thus, a discrepancy
947 between the database and the actual state indicates that
948 ovs-vswitchd could not implement the configuration, and so one
949 should check the log to find out why. (Another possible cause is
950 that ovs-vswitchd is not running. This will make "ovs-vsctl"
951 commands hang, if they change the configuration, unless one
952 specifies "--no-wait".)
953
954### Q: I have a bridge br0. I added a new port vif1.0, and it shows
955 up in "ovs-vsctl show", but "ovs-vsctl list port" says that it has
956 OpenFlow port ("ofport") -1, and "ovs-ofctl show br0" doesn't show
957 vif1.0 at all.
958
959A: Open vSwitch wasn't able to create the port. Check the
960 ovs-vswitchd log for details (Debian and Red Hat packaging for Open
961 vSwitch put it in /var/log/openvswitch/ovs-vswitchd.log). Please
962 see the previous question for more information.
963
964 You may want to upgrade to Open vSwitch 2.3 (or later), in which
965 ovs-vsctl will immediately report when there is an issue creating a
966 port.
967
1c98db0d
BP
968### Q: I created a tap device tap0, configured an IP address on it, and
969 added it to a bridge, like this:
970
971 tunctl -t tap0
972 ifconfig tap0 192.168.0.123
973 ovs-vsctl add-br br0
974 ovs-vsctl add-port br0 tap0
975
976 I expected that I could then use this IP address to contact other
977 hosts on the network, but it doesn't work. Why not?
978
979A: The short answer is that this is a misuse of a "tap" device. Use
980 an "internal" device implemented by Open vSwitch, which works
981 differently and is designed for this use. To solve this problem
982 with an internal device, instead run:
983
984 ovs-vsctl add-br br0
985 ovs-vsctl add-port br0 int0 -- set Interface int0 type=internal
986 ifconfig int0 192.168.0.123
987
988 Even more simply, you can take advantage of the internal port that
989 every bridge has under the name of the bridge:
990
991 ovs-vsctl add-br br0
992 ifconfig br0 192.168.0.123
993
994 In more detail, a "tap" device is an interface between the Linux
995 (or *BSD) network stack and a user program that opens it as a
996 socket. When the "tap" device transmits a packet, it appears in
997 the socket opened by the userspace program. Conversely, when the
998 userspace program writes to the "tap" socket, the kernel TCP/IP
999 stack processes the packet as if it had been received by the "tap"
1000 device.
1001
1002 Consider the configuration above. Given this configuration, if you
1003 "ping" an IP address in the 192.168.0.x subnet, the Linux kernel
1004 routing stack will transmit an ARP on the tap0 device. Open
1005 vSwitch userspace treats "tap" devices just like any other network
1006 device; that is, it doesn't open them as "tap" sockets. That means
1007 that the ARP packet will simply get dropped.
1008
1009 You might wonder why the Open vSwitch kernel module doesn't
1010 intercept the ARP packet and bridge it. After all, Open vSwitch
1011 intercepts packets on other devices. The answer is that Open
1012 vSwitch only intercepts *received* packets, but this is a packet
1013 being transmitted. The same thing happens for all other types of
1014 network devices, except for Open vSwitch "internal" ports. If you,
1015 for example, add a physical Ethernet port to an OVS bridge,
1016 configure an IP address on a physical Ethernet port, and then issue
1017 a "ping" to an address in that subnet, the same thing happens: an
1018 ARP gets transmitted on the physical Ethernet port and Open vSwitch
1019 never sees it. (You should not do that, as documented at the
1020 beginning of this section.)
1021
1022 It can make sense to add a "tap" device to an Open vSwitch bridge,
1023 if some userspace program (other than Open vSwitch) has opened the
1024 tap socket. This is the case, for example, if the "tap" device was
1025 created by KVM (or QEMU) to simulate a virtual NIC. In such a
1026 case, when OVS bridges a packet to the "tap" device, the kernel
1027 forwards that packet to KVM in userspace, which passes it along to
1028 the VM, and in the other direction, when the VM sends a packet, KVM
1029 writes it to the "tap" socket, which causes OVS to receive it and
1030 bridge it to the other OVS ports. Please note that in such a case
1031 no IP address is configured on the "tap" device (there is normally
1032 an IP address configured in the virtual NIC inside the VM, but this
1033 is not visible to the host Linux kernel or to Open vSwitch).
1034
1035 There is one special case in which Open vSwitch does directly read
1036 and write "tap" sockets. This is an implementation detail of the
1037 Open vSwitch userspace switch, which implements its "internal"
1038 ports as Linux (or *BSD) "tap" sockets. In such a userspace
1039 switch, OVS receives packets sent on the "tap" device used to
1040 implement an "internal" port by reading the associated "tap"
1041 socket, and bridges them to the rest of the switch. In the other
1042 direction, OVS transmits packets bridged to the "internal" port by
1043 writing them to the "tap" socket, causing them to be processed by
1044 the kernel TCP/IP stack as if they had been received on the "tap"
1045 device. Users should not need to be concerned with this
1046 implementation detail.
1047
1048 Open vSwitch has a network device type called "tap". This is
1049 intended only for implementing "internal" ports in the OVS
1050 userspace switch and should not be used otherwise. In particular,
1051 users should not configure KVM "tap" devices as type "tap" (use
1052 type "system", the default, instead).
1053
bb50a697 1054
fb5b3c22 1055## QOS
bceafb63 1056
b814e503
JP
1057### Q: Does OVS support Quality of Service (QoS)?
1058
1059A: Yes. For traffic that egresses from a switch, OVS supports traffic
1060 shaping; for traffic that ingresses into a switch, OVS support
1061 policing. Policing is a simple form of quality-of-service that
1062 simply drops packets received in excess of the configured rate. Due
1063 to its simplicity, policing is usually less accurate and less
1064 effective than egress traffic shaping, which queues packets.
1065
1066 Keep in mind that ingress and egress are from the perspective of the
1067 switch. That means that egress shaping limits the rate at which
c47cb7e6 1068 traffic is allowed to transmit from a physical interface, but not the
b814e503
JP
1069 rate at which traffic will be received on a virtual machine's VIF.
1070 For ingress policing, the behavior is the opposite.
1071
1072### Q: How do I configure egress traffic shaping?
bceafb63
BP
1073
1074A: Suppose that you want to set up bridge br0 connected to physical
1075 Ethernet port eth0 (a 1 Gbps device) and virtual machine interfaces
1076 vif1.0 and vif2.0, and that you want to limit traffic from vif1.0
1077 to eth0 to 10 Mbps and from vif2.0 to eth0 to 20 Mbps. Then, you
1078 could configure the bridge this way:
1079
1080 ovs-vsctl -- \
1081 add-br br0 -- \
0dc8b8c2
YT
1082 add-port br0 eth0 -- \
1083 add-port br0 vif1.0 -- set interface vif1.0 ofport_request=5 -- \
1084 add-port br0 vif2.0 -- set interface vif2.0 ofport_request=6 -- \
1085 set port eth0 qos=@newqos -- \
1086 --id=@newqos create qos type=linux-htb \
bceafb63 1087 other-config:max-rate=1000000000 \
0dc8b8c2
YT
1088 queues:123=@vif10queue \
1089 queues:234=@vif20queue -- \
bceafb63
BP
1090 --id=@vif10queue create queue other-config:max-rate=10000000 -- \
1091 --id=@vif20queue create queue other-config:max-rate=20000000
1092
1093 At this point, bridge br0 is configured with the ports and eth0 is
1094 configured with the queues that you need for QoS, but nothing is
1095 actually directing packets from vif1.0 or vif2.0 to the queues that
1096 we have set up for them. That means that all of the packets to
1097 eth0 are going to the "default queue", which is not what we want.
1098
1099 We use OpenFlow to direct packets from vif1.0 and vif2.0 to the
1100 queues reserved for them:
1101
1102 ovs-ofctl add-flow br0 in_port=5,actions=set_queue:123,normal
1103 ovs-ofctl add-flow br0 in_port=6,actions=set_queue:234,normal
1104
1105 Each of the above flows matches on the input port, sets up the
1106 appropriate queue (123 for vif1.0, 234 for vif2.0), and then
1107 executes the "normal" action, which performs the same switching
1108 that Open vSwitch would have done without any OpenFlow flows being
1109 present. (We know that vif1.0 and vif2.0 have OpenFlow port
1110 numbers 5 and 6, respectively, because we set their ofport_request
1111 columns above. If we had not done that, then we would have needed
1112 to find out their port numbers before setting up these flows.)
1113
1114 Now traffic going from vif1.0 or vif2.0 to eth0 should be
1115 rate-limited.
1116
1117 By the way, if you delete the bridge created by the above commands,
1118 with:
1119
1120 ovs-vsctl del-br br0
1121
1122 then that will leave one unreferenced QoS record and two
1123 unreferenced Queue records in the Open vSwich database. One way to
1124 clear them out, assuming you don't have other QoS or Queue records
1125 that you want to keep, is:
1126
1127 ovs-vsctl -- --all destroy QoS -- --all destroy Queue
1128
7839bb41
BP
1129 If you do want to keep some QoS or Queue records, or the Open
1130 vSwitch you are using is older than version 1.8 (which added the
1131 --all option), then you will have to destroy QoS and Queue records
1132 individually.
1133
b814e503
JP
1134### Q: How do I configure ingress policing?
1135
1136A: A policing policy can be configured on an interface to drop packets
1137 that arrive at a higher rate than the configured value. For example,
1138 the following commands will rate-limit traffic that vif1.0 may
1139 generate to 10Mbps:
1140
1141 ovs-vsctl set interface vif1.0 ingress_policing_rate=10000
79abacc8 1142 ovs-vsctl set interface vif1.0 ingress_policing_burst=8000
b814e503
JP
1143
1144 Traffic policing can interact poorly with some network protocols and
1145 can have surprising results. The "Ingress Policing" section of
1146 ovs-vswitchd.conf.db(5) discusses the issues in greater detail.
1147
542cc9bb 1148### Q: I configured Quality of Service (QoS) in my OpenFlow network by
bceafb63
BP
1149 adding records to the QoS and Queue table, but the results aren't
1150 what I expect.
1151
1152A: Did you install OpenFlow flows that use your queues? This is the
1153 primary way to tell Open vSwitch which queues you want to use. If
1154 you don't do this, then the default queue will be used, which will
1155 probably not have the effect you want.
1156
1157 Refer to the previous question for an example.
1158
542cc9bb 1159### Q: I'd like to take advantage of some QoS feature that Open vSwitch
e6d29aa7
BP
1160 doesn't yet support. How do I do that?
1161
1162A: Open vSwitch does not implement QoS itself. Instead, it can
1163 configure some, but not all, of the QoS features built into the
1164 Linux kernel. If you need some QoS feature that OVS cannot
1165 configure itself, then the first step is to figure out whether
1166 Linux QoS supports that feature. If it does, then you can submit a
1167 patch to support Open vSwitch configuration for that feature, or
1168 you can use "tc" directly to configure the feature in Linux. (If
1169 Linux QoS doesn't support the feature you want, then first you have
1170 to add that support to Linux.)
1171
542cc9bb 1172### Q: I configured QoS, correctly, but my measurements show that it isn't
bceafb63
BP
1173 working as well as I expect.
1174
1175A: With the Linux kernel, the Open vSwitch implementation of QoS has
1176 two aspects:
1177
542cc9bb
TG
1178 - Open vSwitch configures a subset of Linux kernel QoS
1179 features, according to what is in OVSDB. It is possible that
1180 this code has bugs. If you believe that this is so, then you
1181 can configure the Linux traffic control (QoS) stack directly
1182 with the "tc" program. If you get better results that way,
1183 you can send a detailed bug report to bugs@openvswitch.org.
bceafb63 1184
542cc9bb
TG
1185 It is certain that Open vSwitch cannot configure every Linux
1186 kernel QoS feature. If you need some feature that OVS cannot
1187 configure, then you can also use "tc" directly (or add that
1188 feature to OVS).
bceafb63 1189
542cc9bb
TG
1190 - The Open vSwitch implementation of OpenFlow allows flows to
1191 be directed to particular queues. This is pretty simple and
1192 unlikely to have serious bugs at this point.
bceafb63
BP
1193
1194 However, most problems with QoS on Linux are not bugs in Open
1195 vSwitch at all. They tend to be either configuration errors
1196 (please see the earlier questions in this section) or issues with
1197 the traffic control (QoS) stack in Linux. The Open vSwitch
1198 developers are not experts on Linux traffic control. We suggest
1199 that, if you believe you are encountering a problem with Linux
1200 traffic control, that you consult the tc manpages (e.g. tc(8),
1201 tc-htb(8), tc-hfsc(8)), web resources (e.g. http://lartc.org/), or
1202 mailing lists (e.g. http://vger.kernel.org/vger-lists.html#netdev).
1203
542cc9bb 1204### Q: Does Open vSwitch support OpenFlow meters?
733fd270
BP
1205
1206A: Since version 2.0, Open vSwitch has OpenFlow protocol support for
1207 OpenFlow meters. There is no implementation of meters in the Open
1208 vSwitch software switch (neither the kernel-based nor userspace
1209 switches).
1210
fb5b3c22 1211## VLANs
c483d489 1212
542cc9bb 1213### Q: What's a VLAN?
14481051
BP
1214
1215A: At the simplest level, a VLAN (short for "virtual LAN") is a way to
1216 partition a single switch into multiple switches. Suppose, for
1217 example, that you have two groups of machines, group A and group B.
1218 You want the machines in group A to be able to talk to each other,
1219 and you want the machine in group B to be able to talk to each
1220 other, but you don't want the machines in group A to be able to
1221 talk to the machines in group B. You can do this with two
1222 switches, by plugging the machines in group A into one switch and
1223 the machines in group B into the other switch.
1224
1225 If you only have one switch, then you can use VLANs to do the same
1226 thing, by configuring the ports for machines in group A as VLAN
1227 "access ports" for one VLAN and the ports for group B as "access
1228 ports" for a different VLAN. The switch will only forward packets
1229 between ports that are assigned to the same VLAN, so this
1230 effectively subdivides your single switch into two independent
1231 switches, one for each group of machines.
1232
1233 So far we haven't said anything about VLAN headers. With access
1234 ports, like we've described so far, no VLAN header is present in
1235 the Ethernet frame. This means that the machines (or switches)
1236 connected to access ports need not be aware that VLANs are
1237 involved, just like in the case where we use two different physical
1238 switches.
1239
1240 Now suppose that you have a whole bunch of switches in your
1241 network, instead of just one, and that some machines in group A are
1242 connected directly to both switches 1 and 2. To allow these
1243 machines to talk to each other, you could add an access port for
1244 group A's VLAN to switch 1 and another to switch 2, and then
1245 connect an Ethernet cable between those ports. That works fine,
1246 but it doesn't scale well as the number of switches and the number
1247 of VLANs increases, because you use up a lot of valuable switch
1248 ports just connecting together your VLANs.
1249
1250 This is where VLAN headers come in. Instead of using one cable and
1251 two ports per VLAN to connect a pair of switches, we configure a
1252 port on each switch as a VLAN "trunk port". Packets sent and
1253 received on a trunk port carry a VLAN header that says what VLAN
1254 the packet belongs to, so that only two ports total are required to
1255 connect the switches, regardless of the number of VLANs in use.
1256 Normally, only switches (either physical or virtual) are connected
1257 to a trunk port, not individual hosts, because individual hosts
1258 don't expect to see a VLAN header in the traffic that they receive.
1259
1260 None of the above discussion says anything about particular VLAN
1261 numbers. This is because VLAN numbers are completely arbitrary.
1262 One must only ensure that a given VLAN is numbered consistently
1263 throughout a network and that different VLANs are given different
1264 numbers. (That said, VLAN 0 is usually synonymous with a packet
1265 that has no VLAN header, and VLAN 4095 is reserved.)
1266
542cc9bb 1267### Q: VLANs don't work.
c483d489
BP
1268
1269A: Many drivers in Linux kernels before version 3.3 had VLAN-related
1270 bugs. If you are having problems with VLANs that you suspect to be
1271 driver related, then you have several options:
1272
542cc9bb 1273 - Upgrade to Linux 3.3 or later.
c483d489 1274
542cc9bb
TG
1275 - Build and install a fixed version of the particular driver
1276 that is causing trouble, if one is available.
c483d489 1277
542cc9bb 1278 - Use a NIC whose driver does not have VLAN problems.
c483d489 1279
42deb67d 1280 - Use "VLAN splinters", a feature in Open vSwitch 1.4 upto 2.5
542cc9bb
TG
1281 that works around bugs in kernel drivers. To enable VLAN
1282 splinters on interface eth0, use the command:
c483d489 1283
542cc9bb 1284 ovs-vsctl set interface eth0 other-config:enable-vlan-splinters=true
c483d489 1285
542cc9bb
TG
1286 For VLAN splinters to be effective, Open vSwitch must know
1287 which VLANs are in use. See the "VLAN splinters" section in
1288 the Interface table in ovs-vswitchd.conf.db(5) for details on
1289 how Open vSwitch infers in-use VLANs.
c483d489 1290
542cc9bb
TG
1291 VLAN splinters increase memory use and reduce performance, so
1292 use them only if needed.
c483d489 1293
542cc9bb
TG
1294 - Apply the "vlan workaround" patch from the XenServer kernel
1295 patch queue, build Open vSwitch against this patched kernel,
1296 and then use ovs-vlan-bug-workaround(8) to enable the VLAN
1297 workaround for each interface whose driver is buggy.
c483d489 1298
542cc9bb
TG
1299 (This is a nontrivial exercise, so this option is included
1300 only for completeness.)
c483d489
BP
1301
1302 It is not always easy to tell whether a Linux kernel driver has
1303 buggy VLAN support. The ovs-vlan-test(8) and ovs-test(8) utilities
1304 can help you test. See their manpages for details. Of the two
1305 utilities, ovs-test(8) is newer and more thorough, but
1306 ovs-vlan-test(8) may be easier to use.
1307
542cc9bb 1308### Q: VLANs still don't work. I've tested the driver so I know that it's OK.
c483d489
BP
1309
1310A: Do you have VLANs enabled on the physical switch that OVS is
1311 attached to? Make sure that the port is configured to trunk the
1312 VLAN or VLANs that you are using with OVS.
1313
542cc9bb 1314### Q: Outgoing VLAN-tagged traffic goes through OVS to my physical switch
c483d489
BP
1315 and to its destination host, but OVS seems to drop incoming return
1316 traffic.
1317
1318A: It's possible that you have the VLAN configured on your physical
1319 switch as the "native" VLAN. In this mode, the switch treats
1320 incoming packets either tagged with the native VLAN or untagged as
1321 part of the native VLAN. It may also send outgoing packets in the
1322 native VLAN without a VLAN tag.
1323
1324 If this is the case, you have two choices:
1325
542cc9bb
TG
1326 - Change the physical switch port configuration to tag packets
1327 it forwards to OVS with the native VLAN instead of forwarding
1328 them untagged.
c483d489 1329
542cc9bb
TG
1330 - Change the OVS configuration for the physical port to a
1331 native VLAN mode. For example, the following sets up a
1332 bridge with port eth0 in "native-tagged" mode in VLAN 9:
c483d489 1333
542cc9bb
TG
1334 ovs-vsctl add-br br0
1335 ovs-vsctl add-port br0 eth0 tag=9 vlan_mode=native-tagged
c483d489 1336
542cc9bb
TG
1337 In this situation, "native-untagged" mode will probably work
1338 equally well. Refer to the documentation for the Port table
1339 in ovs-vswitchd.conf.db(5) for more information.
c483d489 1340
542cc9bb 1341### Q: I added a pair of VMs on different VLANs, like this:
8d45e938
BP
1342
1343 ovs-vsctl add-br br0
1344 ovs-vsctl add-port br0 eth0
1345 ovs-vsctl add-port br0 tap0 tag=9
1346 ovs-vsctl add-port br0 tap1 tag=10
1347
1348 but the VMs can't access each other, the external network, or the
1349 Internet.
1350
1351A: It is to be expected that the VMs can't access each other. VLANs
1352 are a means to partition a network. When you configured tap0 and
1353 tap1 as access ports for different VLANs, you indicated that they
1354 should be isolated from each other.
1355
1356 As for the external network and the Internet, it seems likely that
1357 the machines you are trying to access are not on VLAN 9 (or 10) and
1358 that the Internet is not available on VLAN 9 (or 10).
1359
542cc9bb 1360### Q: I added a pair of VMs on the same VLAN, like this:
3c8399a2
BP
1361
1362 ovs-vsctl add-br br0
1363 ovs-vsctl add-port br0 eth0
1364 ovs-vsctl add-port br0 tap0 tag=9
1365 ovs-vsctl add-port br0 tap1 tag=9
1366
1367 The VMs can access each other, but not the external network or the
1368 Internet.
1369
1370A: It seems likely that the machines you are trying to access in the
1371 external network are not on VLAN 9 and that the Internet is not
1372 available on VLAN 9. Also, ensure VLAN 9 is set up as an allowed
1373 trunk VLAN on the upstream switch port to which eth0 is connected.
1374
542cc9bb 1375### Q: Can I configure an IP address on a VLAN?
c483d489
BP
1376
1377A: Yes. Use an "internal port" configured as an access port. For
1378 example, the following configures IP address 192.168.0.7 on VLAN 9.
1379 That is, OVS will forward packets from eth0 to 192.168.0.7 only if
1380 they have an 802.1Q header with VLAN 9. Conversely, traffic
1381 forwarded from 192.168.0.7 to eth0 will be tagged with an 802.1Q
1382 header with VLAN 9:
1383
1384 ovs-vsctl add-br br0
1385 ovs-vsctl add-port br0 eth0
1386 ovs-vsctl add-port br0 vlan9 tag=9 -- set interface vlan9 type=internal
1387 ifconfig vlan9 192.168.0.7
1388
8dc54921
BP
1389 See also the following question.
1390
542cc9bb 1391### Q: I configured one IP address on VLAN 0 and another on VLAN 9, like
8dc54921
BP
1392 this:
1393
1394 ovs-vsctl add-br br0
1395 ovs-vsctl add-port br0 eth0
1396 ifconfig br0 192.168.0.5
1397 ovs-vsctl add-port br0 vlan9 tag=9 -- set interface vlan9 type=internal
1398 ifconfig vlan9 192.168.0.9
1399
1400 but other hosts that are only on VLAN 0 can reach the IP address
1401 configured on VLAN 9. What's going on?
1402
1403A: RFC 1122 section 3.3.4.2 "Multihoming Requirements" describes two
1404 approaches to IP address handling in Internet hosts:
1405
542cc9bb
TG
1406 - In the "Strong ES Model", where an ES is a host ("End
1407 System"), an IP address is primarily associated with a
1408 particular interface. The host discards packets that arrive
1409 on interface A if they are destined for an IP address that is
1410 configured on interface B. The host never sends packets from
1411 interface A using a source address configured on interface B.
1412
1413 - In the "Weak ES Model", an IP address is primarily associated
1414 with a host. The host accepts packets that arrive on any
1415 interface if they are destined for any of the host's IP
1416 addresses, even if the address is configured on some
1417 interface other than the one on which it arrived. The host
1418 does not restrict itself to sending packets from an IP
1419 address associated with the originating interface.
8dc54921
BP
1420
1421 Linux uses the weak ES model. That means that when packets
1422 destined to the VLAN 9 IP address arrive on eth0 and are bridged to
1423 br0, the kernel IP stack accepts them there for the VLAN 9 IP
1424 address, even though they were not received on vlan9, the network
1425 device for vlan9.
1426
1427 To simulate the strong ES model on Linux, one may add iptables rule
1428 to filter packets based on source and destination address and
1429 adjust ARP configuration with sysctls.
1430
1431 BSD uses the strong ES model.
1432
542cc9bb 1433### Q: My OpenFlow controller doesn't see the VLANs that I expect.
c483d489
BP
1434
1435A: The configuration for VLANs in the Open vSwitch database (e.g. via
1436 ovs-vsctl) only affects traffic that goes through Open vSwitch's
1437 implementation of the OpenFlow "normal switching" action. By
1438 default, when Open vSwitch isn't connected to a controller and
1439 nothing has been manually configured in the flow table, all traffic
1440 goes through the "normal switching" action. But, if you set up
1441 OpenFlow flows on your own, through a controller or using ovs-ofctl
1442 or through other means, then you have to implement VLAN handling
1443 yourself.
1444
1445 You can use "normal switching" as a component of your OpenFlow
1446 actions, e.g. by putting "normal" into the lists of actions on
1447 ovs-ofctl or by outputting to OFPP_NORMAL from an OpenFlow
241241f5
BP
1448 controller. In situations where this is not suitable, you can
1449 implement VLAN handling yourself, e.g.:
1450
542cc9bb
TG
1451 - If a packet comes in on an access port, and the flow table
1452 needs to send it out on a trunk port, then the flow can add
1453 the appropriate VLAN tag with the "mod_vlan_vid" action.
241241f5 1454
542cc9bb
TG
1455 - If a packet comes in on a trunk port, and the flow table
1456 needs to send it out on an access port, then the flow can
1457 strip the VLAN tag with the "strip_vlan" action.
c483d489 1458
542cc9bb 1459### Q: I configured ports on a bridge as access ports with different VLAN
f0a0c1a6
BP
1460 tags, like this:
1461
1462 ovs-vsctl add-br br0
d4763d1d 1463 ovs-vsctl set-controller br0 tcp:192.168.0.10:6653
f0a0c1a6
BP
1464 ovs-vsctl add-port br0 eth0
1465 ovs-vsctl add-port br0 tap0 tag=9
1466 ovs-vsctl add-port br0 tap1 tag=10
1467
1468 but the VMs running behind tap0 and tap1 can still communicate,
1469 that is, they are not isolated from each other even though they are
1470 on different VLANs.
1471
1472A: Do you have a controller configured on br0 (as the commands above
1473 do)? If so, then this is a variant on the previous question, "My
1474 OpenFlow controller doesn't see the VLANs that I expect," and you
1475 can refer to the answer there for more information.
1476
542cc9bb 1477### Q: How MAC learning works with VLANs?
f8003b53
YT
1478
1479A: Open vSwitch implements Independent VLAN Learning (IVL) for
1480 OFPP_NORMAL action. I.e. it logically has separate learning tables
1481 for each VLANs.
1482
c483d489 1483
fb5b3c22 1484## VXLANs
0edbe3fb 1485
542cc9bb 1486### Q: What's a VXLAN?
0edbe3fb
KM
1487
1488A: VXLAN stands for Virtual eXtensible Local Area Network, and is a means
1489 to solve the scaling challenges of VLAN networks in a multi-tenant
1490 environment. VXLAN is an overlay network which transports an L2 network
1491 over an existing L3 network. For more information on VXLAN, please see
bedd6854 1492 RFC 7348:
0edbe3fb 1493
bedd6854 1494 http://tools.ietf.org/html/rfc7348
0edbe3fb 1495
542cc9bb 1496### Q: How much of the VXLAN protocol does Open vSwitch currently support?
0edbe3fb
KM
1497
1498A: Open vSwitch currently supports the framing format for packets on the
1499 wire. There is currently no support for the multicast aspects of VXLAN.
1500 To get around the lack of multicast support, it is possible to
1501 pre-provision MAC to IP address mappings either manually or from a
1502 controller.
1503
542cc9bb 1504### Q: What destination UDP port does the VXLAN implementation in Open vSwitch
0edbe3fb
KM
1505 use?
1506
1507A: By default, Open vSwitch will use the assigned IANA port for VXLAN, which
1508 is 4789. However, it is possible to configure the destination UDP port
1509 manually on a per-VXLAN tunnel basis. An example of this configuration is
1510 provided below.
1511
b770275d
RÃ…A
1512 ovs-vsctl add-br br0
1513 ovs-vsctl add-port br0 vxlan1 -- set interface vxlan1
0edbe3fb
KM
1514 type=vxlan options:remote_ip=192.168.1.2 options:key=flow
1515 options:dst_port=8472
1516
1517
fb5b3c22 1518## Using OpenFlow
c483d489 1519
542cc9bb 1520### Q: What versions of OpenFlow does Open vSwitch support?
7b287e99 1521
c37c0382
AC
1522A: The following table lists the versions of OpenFlow supported by
1523 each version of Open vSwitch:
7b287e99 1524
b79d45a1
BP
1525 Open vSwitch OF1.0 OF1.1 OF1.2 OF1.3 OF1.4 OF1.5 OF1.6
1526 ###============ ===== ===== ===== ===== ===== ===== =====
1527 1.9 and earlier yes --- --- --- --- --- ---
1528 1.10 yes --- [*] [*] --- --- ---
1529 1.11 yes --- [*] [*] --- --- ---
1530 2.0 yes [*] [*] [*] --- --- ---
1531 2.1 yes [*] [*] [*] --- --- ---
1532 2.2 yes [*] [*] [*] [%] [*] ---
1533 2.3 yes yes yes yes [*] [*] ---
1534 2.4 yes yes yes yes [*] [*] ---
1535 2.5 yes yes yes yes [*] [*] [*]
8e70e196 1536
c37c0382 1537 [*] Supported, with one or more missing features.
aa233d57 1538 [%] Experimental, unsafe implementation.
8e70e196 1539
6dc53744
BP
1540 Open vSwitch 2.3 enables OpenFlow 1.0, 1.1, 1.2, and 1.3 by default
1541 in ovs-vswitchd. In Open vSwitch 1.10 through 2.2, OpenFlow 1.1,
b79d45a1
BP
1542 1.2, and 1.3 must be enabled manually in ovs-vswitchd.
1543
1544 Some versions of OpenFlow are supported with missing features and
1545 therefore not enabled by default: OpenFlow 1.4 and 1.5, in Open
1546 vSwitch 2.3 and later, as well as OpenFlow 1.6 in Open vSwitch 2.5
1547 and later. Also, the OpenFlow 1.6 specification is still under
1548 development and thus subject to change.
1549
1550 In any case, the user may override the default:
75fa58f8 1551
542cc9bb 1552 - To enable OpenFlow 1.0, 1.1, 1.2, and 1.3 on bridge br0:
75fa58f8 1553
542cc9bb 1554 ovs-vsctl set bridge br0 protocols=OpenFlow10,OpenFlow11,OpenFlow12,OpenFlow13
6dc53744 1555
542cc9bb 1556 - To enable OpenFlow 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 on bridge br0:
aa233d57 1557
542cc9bb 1558 ovs-vsctl set bridge br0 protocols=OpenFlow10,OpenFlow11,OpenFlow12,OpenFlow13,OpenFlow14,OpenFlow15
aa233d57 1559
542cc9bb 1560 - To enable only OpenFlow 1.0 on bridge br0:
6dc53744 1561
542cc9bb 1562 ovs-vsctl set bridge br0 protocols=OpenFlow10
6dc53744
BP
1563
1564 All current versions of ovs-ofctl enable only OpenFlow 1.0 by
1565 default. Use the -O option to enable support for later versions of
1566 OpenFlow in ovs-ofctl. For example:
ac12b4cb
BP
1567
1568 ovs-ofctl -O OpenFlow13 dump-flows br0
1569
aa233d57
BP
1570 (Open vSwitch 2.2 had an experimental implementation of OpenFlow
1571 1.4 that could cause crashes. We don't recommend enabling it.)
ecb229be 1572
9feb1017 1573 [OPENFLOW-1.1+.md] in the Open vSwitch source tree tracks support for
42dccab5
BP
1574 OpenFlow 1.1 and later features. When support for OpenFlow 1.4 and
1575 1.5 is solidly implemented, Open vSwitch will enable those version
8c0de36e 1576 by default.
7b287e99 1577
542cc9bb 1578### Q: Does Open vSwitch support MPLS?
c78a9ead
BP
1579
1580A: Before version 1.11, Open vSwitch did not support MPLS. That is,
1581 these versions can match on MPLS Ethernet types, but they cannot
1582 match, push, or pop MPLS labels, nor can they look past MPLS labels
1583 into the encapsulated packet.
1584
1585 Open vSwitch versions 1.11, 2.0, and 2.1 have very minimal support
1586 for MPLS. With the userspace datapath only, these versions can
1587 match, push, or pop a single MPLS label, but they still cannot look
1588 past MPLS labels (even after popping them) into the encapsulated
7e6410d2
BP
1589 packet. Kernel datapath support is unchanged from earlier
1590 versions.
c78a9ead 1591
b6fe204d
BP
1592 Open vSwitch version 2.3 can match, push, or pop a single MPLS
1593 label and look past the MPLS label into the encapsulated packet.
1594 Both userspace and kernel datapaths will be supported, but MPLS
1595 processing always happens in userspace either way, so kernel
1596 datapath performance will be disappointing.
1597
1598 Open vSwitch version 2.4 can match, push, or pop up to 3 MPLS
1599 labels and look past the MPLS label into the encapsulated packet.
1600 It will have kernel support for MPLS, yielding improved
1601 performance.
c78a9ead 1602
542cc9bb 1603### Q: I'm getting "error type 45250 code 0". What's that?
c483d489
BP
1604
1605A: This is a Open vSwitch extension to OpenFlow error codes. Open
1606 vSwitch uses this extension when it must report an error to an
1607 OpenFlow controller but no standard OpenFlow error code is
1608 suitable.
1609
1610 Open vSwitch logs the errors that it sends to controllers, so the
1611 easiest thing to do is probably to look at the ovs-vswitchd log to
1612 find out what the error was.
1613
1614 If you want to dissect the extended error message yourself, the
1615 format is documented in include/openflow/nicira-ext.h in the Open
1616 vSwitch source distribution. The extended error codes are
e03c096d 1617 documented in include/openvswitch/ofp-errors.h.
c483d489
BP
1618
1619Q1: Some of the traffic that I'd expect my OpenFlow controller to see
1620 doesn't actually appear through the OpenFlow connection, even
1621 though I know that it's going through.
1622Q2: Some of the OpenFlow flows that my controller sets up don't seem
1623 to apply to certain traffic, especially traffic between OVS and
1624 the controller itself.
1625
1626A: By default, Open vSwitch assumes that OpenFlow controllers are
1627 connected "in-band", that is, that the controllers are actually
1628 part of the network that is being controlled. In in-band mode,
1629 Open vSwitch sets up special "hidden" flows to make sure that
1630 traffic can make it back and forth between OVS and the controllers.
1631 These hidden flows are higher priority than any flows that can be
1632 set up through OpenFlow, and they are not visible through normal
1633 OpenFlow flow table dumps.
1634
1635 Usually, the hidden flows are desirable and helpful, but
1636 occasionally they can cause unexpected behavior. You can view the
1637 full OpenFlow flow table, including hidden flows, on bridge br0
1638 with the command:
1639
1640 ovs-appctl bridge/dump-flows br0
1641
1642 to help you debug. The hidden flows are those with priorities
1643 greater than 65535 (the maximum priority that can be set with
1644 OpenFlow).
1645
1646 The DESIGN file at the top level of the Open vSwitch source
1647 distribution describes the in-band model in detail.
1648
1649 If your controllers are not actually in-band (e.g. they are on
1650 localhost via 127.0.0.1, or on a separate network), then you should
1651 configure your controllers in "out-of-band" mode. If you have one
1652 controller on bridge br0, then you can configure out-of-band mode
1653 on it with:
1654
1655 ovs-vsctl set controller br0 connection-mode=out-of-band
1656
542cc9bb 1657### Q: I configured all my controllers for out-of-band control mode but
c483d489
BP
1658 "ovs-appctl bridge/dump-flows" still shows some hidden flows.
1659
1660A: You probably have a remote manager configured (e.g. with "ovs-vsctl
1661 set-manager"). By default, Open vSwitch assumes that managers need
1662 in-band rules set up on every bridge. You can disable these rules
1663 on bridge br0 with:
1664
1665 ovs-vsctl set bridge br0 other-config:disable-in-band=true
1666
1667 This actually disables in-band control entirely for the bridge, as
1668 if all the bridge's controllers were configured for out-of-band
1669 control.
1670
542cc9bb 1671### Q: My OpenFlow controller doesn't see the VLANs that I expect.
c483d489
BP
1672
1673A: See answer under "VLANs", above.
1674
542cc9bb 1675### Q: I ran "ovs-ofctl add-flow br0 nw_dst=192.168.0.1,actions=drop"
5cb2356b
BP
1676 but I got a funny message like this:
1677
1678 ofp_util|INFO|normalization changed ofp_match, details:
1679 ofp_util|INFO| pre: nw_dst=192.168.0.1
1680 ofp_util|INFO|post:
1681
1682 and when I ran "ovs-ofctl dump-flows br0" I saw that my nw_dst
1683 match had disappeared, so that the flow ends up matching every
1684 packet.
1685
1686A: The term "normalization" in the log message means that a flow
1687 cannot match on an L3 field without saying what L3 protocol is in
1688 use. The "ovs-ofctl" command above didn't specify an L3 protocol,
1689 so the L3 field match was dropped.
1690
1691 In this case, the L3 protocol could be IP or ARP. A correct
1692 command for each possibility is, respectively:
1693
1694 ovs-ofctl add-flow br0 ip,nw_dst=192.168.0.1,actions=drop
1695
1696 and
1697
1698 ovs-ofctl add-flow br0 arp,nw_dst=192.168.0.1,actions=drop
1699
1700 Similarly, a flow cannot match on an L4 field without saying what
1701 L4 protocol is in use. For example, the flow match "tp_src=1234"
1702 is, by itself, meaningless and will be ignored. Instead, to match
1703 TCP source port 1234, write "tcp,tp_src=1234", or to match UDP
1704 source port 1234, write "udp,tp_src=1234".
1705
542cc9bb 1706### Q: How can I figure out the OpenFlow port number for a given port?
c5b25863
BP
1707
1708A: The OFPT_FEATURES_REQUEST message requests an OpenFlow switch to
1709 respond with an OFPT_FEATURES_REPLY that, among other information,
1710 includes a mapping between OpenFlow port names and numbers. From a
1711 command prompt, "ovs-ofctl show br0" makes such a request and
1712 prints the response for switch br0.
1713
1714 The Interface table in the Open vSwitch database also maps OpenFlow
1715 port names to numbers. To print the OpenFlow port number
1716 associated with interface eth0, run:
1717
1718 ovs-vsctl get Interface eth0 ofport
1719
1720 You can print the entire mapping with:
1721
1722 ovs-vsctl -- --columns=name,ofport list Interface
1723
1724 but the output mixes together interfaces from all bridges in the
1725 database, so it may be confusing if more than one bridge exists.
1726
1727 In the Open vSwitch database, ofport value -1 means that the
1728 interface could not be created due to an error. (The Open vSwitch
1729 log should indicate the reason.) ofport value [] (the empty set)
1730 means that the interface hasn't been created yet. The latter is
1731 normally an intermittent condition (unless ovs-vswitchd is not
1732 running).
7b287e99 1733
542cc9bb 1734### Q: I added some flows with my controller or with ovs-ofctl, but when I
af1ac4b9
BP
1735 run "ovs-dpctl dump-flows" I don't see them.
1736
1737A: ovs-dpctl queries a kernel datapath, not an OpenFlow switch. It
1738 won't display the information that you want. You want to use
1739 "ovs-ofctl dump-flows" instead.
1740
542cc9bb 1741### Q: It looks like each of the interfaces in my bonded port shows up
15d63ed3
BP
1742 as an individual OpenFlow port. Is that right?
1743
1744A: Yes, Open vSwitch makes individual bond interfaces visible as
1745 OpenFlow ports, rather than the bond as a whole. The interfaces
1746 are treated together as a bond for only a few purposes:
1747
542cc9bb
TG
1748 - Sending a packet to the OFPP_NORMAL port. (When an OpenFlow
1749 controller is not configured, this happens implicitly to
1750 every packet.)
15d63ed3 1751
542cc9bb 1752 - Mirrors configured for output to a bonded port.
15d63ed3
BP
1753
1754 It would make a lot of sense for Open vSwitch to present a bond as
1755 a single OpenFlow port. If you want to contribute an
1756 implementation of such a feature, please bring it up on the Open
1757 vSwitch development mailing list at dev@openvswitch.org.
1758
542cc9bb 1759### Q: I have a sophisticated network setup involving Open vSwitch, VMs or
bb955418
BP
1760 multiple hosts, and other components. The behavior isn't what I
1761 expect. Help!
1762
1763A: To debug network behavior problems, trace the path of a packet,
1764 hop-by-hop, from its origin in one host to a remote host. If
1765 that's correct, then trace the path of the response packet back to
1766 the origin.
1767
8e3cdf37
FL
1768 The open source tool called "plotnetcfg" can help to understand the
1769 relationship between the networking devices on a single host.
1770
bb955418
BP
1771 Usually a simple ICMP echo request and reply ("ping") packet is
1772 good enough. Start by initiating an ongoing "ping" from the origin
1773 host to a remote host. If you are tracking down a connectivity
1774 problem, the "ping" will not display any successful output, but
1775 packets are still being sent. (In this case the packets being sent
1776 are likely ARP rather than ICMP.)
1777
1778 Tools available for tracing include the following:
1779
542cc9bb
TG
1780 - "tcpdump" and "wireshark" for observing hops across network
1781 devices, such as Open vSwitch internal devices and physical
1782 wires.
bb955418 1783
542cc9bb
TG
1784 - "ovs-appctl dpif/dump-flows <br>" in Open vSwitch 1.10 and
1785 later or "ovs-dpctl dump-flows <br>" in earlier versions.
1786 These tools allow one to observe the actions being taken on
1787 packets in ongoing flows.
bb955418 1788
542cc9bb
TG
1789 See ovs-vswitchd(8) for "ovs-appctl dpif/dump-flows"
1790 documentation, ovs-dpctl(8) for "ovs-dpctl dump-flows"
1791 documentation, and "Why are there so many different ways to
1792 dump flows?" above for some background.
bb955418 1793
542cc9bb
TG
1794 - "ovs-appctl ofproto/trace" to observe the logic behind how
1795 ovs-vswitchd treats packets. See ovs-vswitchd(8) for
1796 documentation. You can out more details about a given flow
1797 that "ovs-dpctl dump-flows" displays, by cutting and pasting
1798 a flow from the output into an "ovs-appctl ofproto/trace"
1799 command.
bb955418 1800
542cc9bb
TG
1801 - SPAN, RSPAN, and ERSPAN features of physical switches, to
1802 observe what goes on at these physical hops.
bb955418
BP
1803
1804 Starting at the origin of a given packet, observe the packet at
1805 each hop in turn. For example, in one plausible scenario, you
1806 might:
1807
542cc9bb
TG
1808 1. "tcpdump" the "eth" interface through which an ARP egresses
1809 a VM, from inside the VM.
bb955418 1810
542cc9bb
TG
1811 2. "tcpdump" the "vif" or "tap" interface through which the ARP
1812 ingresses the host machine.
bb955418 1813
542cc9bb
TG
1814 3. Use "ovs-dpctl dump-flows" to spot the ARP flow and observe
1815 the host interface through which the ARP egresses the
1816 physical machine. You may need to use "ovs-dpctl show" to
1817 interpret the port numbers. If the output seems surprising,
1818 you can use "ovs-appctl ofproto/trace" to observe details of
1819 how ovs-vswitchd determined the actions in the "ovs-dpctl
1820 dump-flows" output.
bb955418 1821
542cc9bb
TG
1822 4. "tcpdump" the "eth" interface through which the ARP egresses
1823 the physical machine.
bb955418 1824
542cc9bb
TG
1825 5. "tcpdump" the "eth" interface through which the ARP
1826 ingresses the physical machine, at the remote host that
1827 receives the ARP.
bb955418 1828
542cc9bb
TG
1829 6. Use "ovs-dpctl dump-flows" to spot the ARP flow on the
1830 remote host that receives the ARP and observe the VM "vif"
1831 or "tap" interface to which the flow is directed. Again,
1832 "ovs-dpctl show" and "ovs-appctl ofproto/trace" might help.
bb955418 1833
542cc9bb
TG
1834 7. "tcpdump" the "vif" or "tap" interface to which the ARP is
1835 directed.
bb955418 1836
542cc9bb
TG
1837 8. "tcpdump" the "eth" interface through which the ARP
1838 ingresses a VM, from inside the VM.
bb955418
BP
1839
1840 It is likely that during one of these steps you will figure out the
1841 problem. If not, then follow the ARP reply back to the origin, in
1842 reverse.
1843
542cc9bb 1844### Q: How do I make a flow drop packets?
0f5edef0 1845
e5f1da19
BP
1846A: To drop a packet is to receive it without forwarding it. OpenFlow
1847 explicitly specifies forwarding actions. Thus, a flow with an
1848 empty set of actions does not forward packets anywhere, causing
1849 them to be dropped. You can specify an empty set of actions with
1850 "actions=" on the ovs-ofctl command line. For example:
0f5edef0
BP
1851
1852 ovs-ofctl add-flow br0 priority=65535,actions=
1853
1854 would cause every packet entering switch br0 to be dropped.
1855
1856 You can write "drop" explicitly if you like. The effect is the
1857 same. Thus, the following command also causes every packet
1858 entering switch br0 to be dropped:
1859
1860 ovs-ofctl add-flow br0 priority=65535,actions=drop
1861
e5f1da19
BP
1862 "drop" is not an action, either in OpenFlow or Open vSwitch.
1863 Rather, it is only a way to say that there are no actions.
1864
542cc9bb 1865### Q: I added a flow to send packets out the ingress port, like this:
2fafc091
BP
1866
1867 ovs-ofctl add-flow br0 in_port=2,actions=2
1868
1869 but OVS drops the packets instead.
1870
1871A: Yes, OpenFlow requires a switch to ignore attempts to send a packet
1872 out its ingress port. The rationale is that dropping these packets
1873 makes it harder to loop the network. Sometimes this behavior can
1874 even be convenient, e.g. it is often the desired behavior in a flow
1875 that forwards a packet to several ports ("floods" the packet).
1876
6620f928
JS
1877 Sometimes one really needs to send a packet out its ingress port
1878 ("hairpin"). In this case, output to OFPP_IN_PORT, which in
1879 ovs-ofctl syntax is expressed as just "in_port", e.g.:
2fafc091
BP
1880
1881 ovs-ofctl add-flow br0 in_port=2,actions=in_port
1882
1883 This also works in some circumstances where the flow doesn't match
1884 on the input port. For example, if you know that your switch has
1885 five ports numbered 2 through 6, then the following will send every
1886 received packet out every port, even its ingress port:
1887
1888 ovs-ofctl add-flow br0 actions=2,3,4,5,6,in_port
1889
1890 or, equivalently:
1891
1892 ovs-ofctl add-flow br0 actions=all,in_port
1893
1894 Sometimes, in complicated flow tables with multiple levels of
1895 "resubmit" actions, a flow needs to output to a particular port
1896 that may or may not be the ingress port. It's difficult to take
1897 advantage of OFPP_IN_PORT in this situation. To help, Open vSwitch
1898 provides, as an OpenFlow extension, the ability to modify the
1899 in_port field. Whatever value is currently in the in_port field is
1900 the port to which outputs will be dropped, as well as the
1901 destination for OFPP_IN_PORT. This means that the following will
1902 reliably output to port 2 or to ports 2 through 6, respectively:
1903
1904 ovs-ofctl add-flow br0 in_port=2,actions=load:0->NXM_OF_IN_PORT[],2
1905 ovs-ofctl add-flow br0 actions=load:0->NXM_OF_IN_PORT[],2,3,4,5,6
1906
1907 If the input port is important, then one may save and restore it on
1908 the stack:
1909
1910 ovs-ofctl add-flow br0 actions=push:NXM_OF_IN_PORT[],\
1911 load:0->NXM_OF_IN_PORT[],\
1912 2,3,4,5,6,\
1913 pop:NXM_OF_IN_PORT[]
1914
542cc9bb 1915### Q: My bridge br0 has host 192.168.0.1 on port 1 and host 192.168.0.2
d4ee72b4
BP
1916 on port 2. I set up flows to forward only traffic destined to the
1917 other host and drop other traffic, like this:
1918
1919 priority=5,in_port=1,ip,nw_dst=192.168.0.2,actions=2
1920 priority=5,in_port=2,ip,nw_dst=192.168.0.1,actions=1
1921 priority=0,actions=drop
1922
1923 But it doesn't work--I don't get any connectivity when I do this.
1924 Why?
1925
1926A: These flows drop the ARP packets that IP hosts use to establish IP
1927 connectivity over Ethernet. To solve the problem, add flows to
1928 allow ARP to pass between the hosts:
1929
1930 priority=5,in_port=1,arp,actions=2
1931 priority=5,in_port=2,arp,actions=1
1932
1933 This issue can manifest other ways, too. The following flows that
1934 match on Ethernet addresses instead of IP addresses will also drop
1935 ARP packets, because ARP requests are broadcast instead of being
1936 directed to a specific host:
1937
1938 priority=5,in_port=1,dl_dst=54:00:00:00:00:02,actions=2
1939 priority=5,in_port=2,dl_dst=54:00:00:00:00:01,actions=1
1940 priority=0,actions=drop
1941
1942 The solution already described above will also work in this case.
1943 It may be better to add flows to allow all multicast and broadcast
1944 traffic:
1945
1946 priority=5,in_port=1,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00,actions=2
1947 priority=5,in_port=2,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00,actions=1
0f5edef0 1948
542cc9bb 1949### Q: My bridge disconnects from my controller on add-port/del-port.
9a7a9154
YT
1950
1951A: Reconfiguring your bridge can change your bridge's datapath-id because
1952 Open vSwitch generates datapath-id from the MAC address of one of its ports.
1953 In that case, Open vSwitch disconnects from controllers because there's
1954 no graceful way to notify controllers about the change of datapath-id.
1955
1956 To avoid the behaviour, you can configure datapath-id manually.
1957
1958 ovs-vsctl set bridge br0 other-config:datapath-id=0123456789abcdef
1959
ae99ee45
BP
1960### Q: My controller is getting errors about "buffers". What's going on?
1961
1962A: When a switch sends a packet to an OpenFlow controller using a
1963 "packet-in" message, it can also keep a copy of that packet in a
1964 "buffer", identified by a 32-bit integer "buffer_id". There are
1965 two advantages to buffering. First, when the controller wants to
1966 tell the switch to do something with the buffered packet (with a
1967 "packet-out" OpenFlow request), it does not need to send another
1968 copy of the packet back across the OpenFlow connection, which
1969 reduces the bandwidth cost of the connection and improves latency.
1970 This enables the second advantage: the switch can optionally send
1971 only the first part of the packet to the controller (assuming that
1972 the switch only needs to look at the first few bytes of the
1973 packet), further reducing bandwidth and improving latency.
1974
1975 However, buffering introduces some issues of its own. First, any
1976 switch has limited resources, so if the controller does not use a
1977 buffered packet, the switch has to decide how long to keep it
1978 buffered. When many packets are sent to a controller and buffered,
1979 Open vSwitch can discard buffered packets that the controller has
1980 not used after as little as 5 seconds. This means that
1981 controllers, if they make use of packet buffering, should use the
1982 buffered packets promptly. (This includes sending a "packet-out"
1983 with no actions if the controller does not want to do anything with
1984 a buffered packet, to clear the packet buffer and effectively
1985 "drop" its packet.)
1986
1987 Second, packet buffers are one-time-use, meaning that a controller
1988 cannot use a single packet buffer in two or more "packet-out"
1989 commands. Open vSwitch will respond with an error to the second
1990 and subsequent "packet-out"s in such a case.
1991
1992 Finally, a common error early in controller development is to try
1993 to use buffer_id 0 in a "packet-out" message as if 0 represented
1994 "no buffered packet". This is incorrect usage: the buffer_id with
1995 this meaning is actually 0xffffffff.
1996
1997 ovs-vswitchd(8) describes some details of Open vSwitch packet
1998 buffering that the OpenFlow specification requires implementations
1999 to document.
2000
363b34f0
BP
2001### Q: How does OVS divide flows among buckets in an OpenFlow "select" group?
2002
2003A: In Open vSwitch 2.3 and earlier, Open vSwitch used the destination
2004 Ethernet address to choose a bucket in a select group.
2005
2006 Open vSwitch 2.4 and later by default hashes the source and
2007 destination Ethernet address, VLAN ID, Ethernet type, IPv4/v6
2008 source and destination address and protocol, and for TCP and SCTP
2009 only, the source and destination ports. The hash is "symmetric",
2010 meaning that exchanging source and destination addresses does not
2011 change the bucket selection.
2012
2013 Select groups in Open vSwitch 2.4 and later can be configured to
2014 use a different hash function, using a Netronome extension to the
2015 OpenFlow 1.5+ group_mod message. For more information, see
2016 Documentation/group-selection-method-property.txt in the Open
2017 vSwitch source tree. (OpenFlow 1.5 support in Open vSwitch is still
2018 experimental.)
2019
b5936d52
BP
2020### Q: I added a flow to accept packets on VLAN 123 and output them on
2021 VLAN 456, like so:
2022
2023 ovs-ofctl add-flow br0 dl_vlan=123,actions=output:1,mod_vlan_vid:456
2024
2025 but the packets are actually being output in VLAN 123. Why?
2026
2027A: OpenFlow actions are executed in the order specified. Thus, the
2028 actions above first output the packet, then change its VLAN. Since
2029 the output occurs before changing the VLAN, the change in VLAN will
2030 have no visible effect.
2031
2032 To solve this and similar problems, order actions so that changes
2033 to headers happen before output, e.g.:
2034
2035 ovs-ofctl add-flow br0 dl_vlan=123,actions=mod_vlan_vid:456,output:1
2036
676caaf7
BP
2037### Q: The "learn" action can't learn the action I want, can you improve it?
2038
2039A: By itself, the "learn" action can only put two kinds of actions
2040 into the flows that it creates: "load" and "output" actions. If
2041 "learn" is used in isolation, these are severe limits.
2042
2043 However, "learn" is not meant to be used in isolation. It is a
2044 primitive meant to be used together with other Open vSwitch
2045 features to accomplish a task. Its existing features are enough to
2046 accomplish most tasks.
2047
2048 Here is an outline of a typical pipeline structure that allows for
2049 versatile behavior using "learn":
2050
2051 - Flows in table A contain a "learn" action, that populates flows
2052 in table L, that use a "load" action to populate register R
2053 with information about what was learned.
2054
2055 - Flows in table B contain two sequential resubmit actions: one
2056 to table L and another one to table B+1.
2057
2058 - Flows in table B+1 match on register R and act differently
2059 depending on what the flows in table L loaded into it.
2060
2061 This approach can be used to implement many "learn"-based features.
2062 For example:
2063
2064 - Resubmit to a table selected based on learned information, e.g. see:
2065 http://openvswitch.org/pipermail/discuss/2016-June/021694.html
2066
2067 - MAC learning in the middle of a pipeline, as described in
2068 [Tutorial.md].
2069
2070 - TCP state based firewalling, by learning outgoing connections
2071 based on SYN packets and matching them up with incoming
2072 packets.
2073
2074 - At least some of the features described in T. A. Hoff,
2075 "Extending Open vSwitch to Facilitate Creation of Stateful SDN
2076 Applications".
2077
66679738 2078
fb5b3c22 2079## Development
66679738 2080
542cc9bb 2081### Q: How do I implement a new OpenFlow message?
66679738
BP
2082
2083A: Add your new message to "enum ofpraw" and "enum ofptype" in
2084 lib/ofp-msgs.h, following the existing pattern. Then recompile and
2085 fix all of the new warnings, implementing new functionality for the
2086 new message as needed. (If you configure with --enable-Werror, as
9feb1017 2087 described in [INSTALL.md], then it is impossible to miss any warnings.)
66679738
BP
2088
2089 If you need to add an OpenFlow vendor extension message for a
2090 vendor that doesn't yet have any extension messages, then you will
2091 also need to edit build-aux/extract-ofp-msgs.
2092
fe540ca9
BP
2093### Q: How do I add support for a new field or header?
2094
2095A: Add new members for your field to "struct flow" in lib/flow.h, and
2096 add new enumerations for your new field to "enum mf_field_id" in
f58df860
BP
2097 lib/meta-flow.h, following the existing pattern. Also, add support
2098 to miniflow_extract() in lib/flow.c for extracting your new field
936ed399
BP
2099 from a packet into struct miniflow, and to nx_put_raw() in
2100 lib/nx-match.c to output your new field in OXM matches. Then
2101 recompile and fix all of the new warnings, implementing new
2102 functionality for the new field or header as needed. (If you
2103 configure with --enable-Werror, as described in [INSTALL.md], then
2104 it is impossible to miss any warnings.)
f58df860
BP
2105
2106 If you want kernel datapath support for your new field, you also
2107 need to modify the kernel module for the operating systems you are
2108 interested in. This isn't mandatory, since fields understood only
2109 by userspace work too (with a performance penalty), so it's
2110 reasonable to start development without it. If you implement
2111 kernel module support for Linux, then the Linux kernel "netdev"
2112 mailing list is the place to submit that support first; please read
2113 up on the Linux kernel development process separately. The Windows
2114 datapath kernel module support, on the other hand, is maintained
2115 within the OVS tree, so patches for that can go directly to
2116 ovs-dev.
fe540ca9
BP
2117
2118### Q: How do I add support for a new OpenFlow action?
2119
2120A: Add your new action to "enum ofp_raw_action_type" in
2121 lib/ofp-actions.c, following the existing pattern. Then recompile
2122 and fix all of the new warnings, implementing new functionality for
2123 the new action as needed. (If you configure with --enable-Werror,
2124 as described in [INSTALL.md], then it is impossible to miss any
2125 warnings.)
2126
2127 If you need to add an OpenFlow vendor extension action for a vendor
2128 that doesn't yet have any extension actions, then you will also
2129 need to edit build-aux/extract-ofp-actions.
2130
66679738 2131
c483d489
BP
2132Contact
2133-------
2134
2135bugs@openvswitch.org
2136http://openvswitch.org/
9feb1017
TG
2137
2138[PORTING.md]:PORTING.md
2139[WHY-OVS.md]:WHY-OVS.md
2140[INSTALL.md]:INSTALL.md
2141[OPENFLOW-1.1+.md]:OPENFLOW-1.1+.md
77c180ce 2142[INSTALL.DPDK.md]:INSTALL.DPDK.md
676caaf7 2143[Tutorial.md]:tutorial/Tutorial.md
1a807b41 2144[release-process.md]:Documentation/release-process.md