]> git.proxmox.com Git - mirror_qemu.git/blame - accel/tcg/cputlb.c
semihosting: split console_out into string and char versions
[mirror_qemu.git] / accel / tcg / cputlb.c
CommitLineData
0cac1b66
BS
1/*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
fb0343d5 9 * version 2.1 of the License, or (at your option) any later version.
0cac1b66
BS
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
7b31bbc2 20#include "qemu/osdep.h"
8d04fb55 21#include "qemu/main-loop.h"
0cac1b66 22#include "cpu.h"
022c62cb
PB
23#include "exec/exec-all.h"
24#include "exec/memory.h"
25#include "exec/address-spaces.h"
f08b6170 26#include "exec/cpu_ldst.h"
022c62cb 27#include "exec/cputlb.h"
022c62cb 28#include "exec/memory-internal.h"
220c3ebd 29#include "exec/ram_addr.h"
0f590e74 30#include "tcg/tcg.h"
d7f30403
PM
31#include "qemu/error-report.h"
32#include "exec/log.h"
c482cb11
RH
33#include "exec/helper-proto.h"
34#include "qemu/atomic.h"
e6cd4bb5 35#include "qemu/atomic128.h"
0cac1b66 36
8526e1f4
AB
37/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
38/* #define DEBUG_TLB */
39/* #define DEBUG_TLB_LOG */
40
41#ifdef DEBUG_TLB
42# define DEBUG_TLB_GATE 1
43# ifdef DEBUG_TLB_LOG
44# define DEBUG_TLB_LOG_GATE 1
45# else
46# define DEBUG_TLB_LOG_GATE 0
47# endif
48#else
49# define DEBUG_TLB_GATE 0
50# define DEBUG_TLB_LOG_GATE 0
51#endif
52
53#define tlb_debug(fmt, ...) do { \
54 if (DEBUG_TLB_LOG_GATE) { \
55 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
56 ## __VA_ARGS__); \
57 } else if (DEBUG_TLB_GATE) { \
58 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
59 } \
60} while (0)
0cac1b66 61
ea9025cb 62#define assert_cpu_is_self(cpu) do { \
f0aff0f1 63 if (DEBUG_TLB_GATE) { \
ea9025cb 64 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
f0aff0f1
AB
65 } \
66 } while (0)
67
e3b9ca81
FK
68/* run_on_cpu_data.target_ptr should always be big enough for a
69 * target_ulong even on 32 bit builds */
70QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
71
e7218445
AB
72/* We currently can't handle more than 16 bits in the MMUIDX bitmask.
73 */
74QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
75#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
76
86e1eff8
EC
77static inline size_t sizeof_tlb(CPUArchState *env, uintptr_t mmu_idx)
78{
a40ec84e 79 return env_tlb(env)->f[mmu_idx].mask + (1 << CPU_TLB_ENTRY_BITS);
86e1eff8
EC
80}
81
79e42085 82static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
86e1eff8
EC
83 size_t max_entries)
84{
79e42085
RH
85 desc->window_begin_ns = ns;
86 desc->window_max_entries = max_entries;
86e1eff8
EC
87}
88
89static void tlb_dyn_init(CPUArchState *env)
90{
91 int i;
92
93 for (i = 0; i < NB_MMU_MODES; i++) {
a40ec84e 94 CPUTLBDesc *desc = &env_tlb(env)->d[i];
86e1eff8
EC
95 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
96
79e42085 97 tlb_window_reset(desc, get_clock_realtime(), 0);
86e1eff8 98 desc->n_used_entries = 0;
a40ec84e
RH
99 env_tlb(env)->f[i].mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
100 env_tlb(env)->f[i].table = g_new(CPUTLBEntry, n_entries);
101 env_tlb(env)->d[i].iotlb = g_new(CPUIOTLBEntry, n_entries);
86e1eff8
EC
102 }
103}
104
105/**
106 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
107 * @env: CPU that owns the TLB
108 * @mmu_idx: MMU index of the TLB
109 *
110 * Called with tlb_lock_held.
111 *
112 * We have two main constraints when resizing a TLB: (1) we only resize it
113 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
114 * the array or unnecessarily flushing it), which means we do not control how
115 * frequently the resizing can occur; (2) we don't have access to the guest's
116 * future scheduling decisions, and therefore have to decide the magnitude of
117 * the resize based on past observations.
118 *
119 * In general, a memory-hungry process can benefit greatly from an appropriately
120 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
121 * we just have to make the TLB as large as possible; while an oversized TLB
122 * results in minimal TLB miss rates, it also takes longer to be flushed
123 * (flushes can be _very_ frequent), and the reduced locality can also hurt
124 * performance.
125 *
126 * To achieve near-optimal performance for all kinds of workloads, we:
127 *
128 * 1. Aggressively increase the size of the TLB when the use rate of the
129 * TLB being flushed is high, since it is likely that in the near future this
130 * memory-hungry process will execute again, and its memory hungriness will
131 * probably be similar.
132 *
133 * 2. Slowly reduce the size of the TLB as the use rate declines over a
134 * reasonably large time window. The rationale is that if in such a time window
135 * we have not observed a high TLB use rate, it is likely that we won't observe
136 * it in the near future. In that case, once a time window expires we downsize
137 * the TLB to match the maximum use rate observed in the window.
138 *
139 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
140 * since in that range performance is likely near-optimal. Recall that the TLB
141 * is direct mapped, so we want the use rate to be low (or at least not too
142 * high), since otherwise we are likely to have a significant amount of
143 * conflict misses.
144 */
145static void tlb_mmu_resize_locked(CPUArchState *env, int mmu_idx)
146{
a40ec84e 147 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
86e1eff8
EC
148 size_t old_size = tlb_n_entries(env, mmu_idx);
149 size_t rate;
150 size_t new_size = old_size;
151 int64_t now = get_clock_realtime();
152 int64_t window_len_ms = 100;
153 int64_t window_len_ns = window_len_ms * 1000 * 1000;
79e42085 154 bool window_expired = now > desc->window_begin_ns + window_len_ns;
86e1eff8 155
79e42085
RH
156 if (desc->n_used_entries > desc->window_max_entries) {
157 desc->window_max_entries = desc->n_used_entries;
86e1eff8 158 }
79e42085 159 rate = desc->window_max_entries * 100 / old_size;
86e1eff8
EC
160
161 if (rate > 70) {
162 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
163 } else if (rate < 30 && window_expired) {
79e42085
RH
164 size_t ceil = pow2ceil(desc->window_max_entries);
165 size_t expected_rate = desc->window_max_entries * 100 / ceil;
86e1eff8
EC
166
167 /*
168 * Avoid undersizing when the max number of entries seen is just below
169 * a pow2. For instance, if max_entries == 1025, the expected use rate
170 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
171 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
172 * later. Thus, make sure that the expected use rate remains below 70%.
173 * (and since we double the size, that means the lowest rate we'd
174 * expect to get is 35%, which is still in the 30-70% range where
175 * we consider that the size is appropriate.)
176 */
177 if (expected_rate > 70) {
178 ceil *= 2;
179 }
180 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
181 }
182
183 if (new_size == old_size) {
184 if (window_expired) {
79e42085 185 tlb_window_reset(desc, now, desc->n_used_entries);
86e1eff8
EC
186 }
187 return;
188 }
189
a40ec84e
RH
190 g_free(env_tlb(env)->f[mmu_idx].table);
191 g_free(env_tlb(env)->d[mmu_idx].iotlb);
86e1eff8 192
79e42085 193 tlb_window_reset(desc, now, 0);
86e1eff8 194 /* desc->n_used_entries is cleared by the caller */
a40ec84e
RH
195 env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
196 env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size);
197 env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size);
86e1eff8
EC
198 /*
199 * If the allocations fail, try smaller sizes. We just freed some
200 * memory, so going back to half of new_size has a good chance of working.
201 * Increased memory pressure elsewhere in the system might cause the
202 * allocations to fail though, so we progressively reduce the allocation
203 * size, aborting if we cannot even allocate the smallest TLB we support.
204 */
a40ec84e
RH
205 while (env_tlb(env)->f[mmu_idx].table == NULL ||
206 env_tlb(env)->d[mmu_idx].iotlb == NULL) {
86e1eff8
EC
207 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
208 error_report("%s: %s", __func__, strerror(errno));
209 abort();
210 }
211 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
a40ec84e 212 env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
86e1eff8 213
a40ec84e
RH
214 g_free(env_tlb(env)->f[mmu_idx].table);
215 g_free(env_tlb(env)->d[mmu_idx].iotlb);
216 env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size);
217 env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size);
86e1eff8
EC
218 }
219}
220
221static inline void tlb_table_flush_by_mmuidx(CPUArchState *env, int mmu_idx)
222{
223 tlb_mmu_resize_locked(env, mmu_idx);
a40ec84e
RH
224 memset(env_tlb(env)->f[mmu_idx].table, -1, sizeof_tlb(env, mmu_idx));
225 env_tlb(env)->d[mmu_idx].n_used_entries = 0;
86e1eff8
EC
226}
227
228static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
229{
a40ec84e 230 env_tlb(env)->d[mmu_idx].n_used_entries++;
86e1eff8
EC
231}
232
233static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
234{
a40ec84e 235 env_tlb(env)->d[mmu_idx].n_used_entries--;
86e1eff8
EC
236}
237
5005e253
EC
238void tlb_init(CPUState *cpu)
239{
71aec354
EC
240 CPUArchState *env = cpu->env_ptr;
241
a40ec84e 242 qemu_spin_init(&env_tlb(env)->c.lock);
3d1523ce
RH
243
244 /* Ensure that cpu_reset performs a full flush. */
a40ec84e 245 env_tlb(env)->c.dirty = ALL_MMUIDX_BITS;
86e1eff8
EC
246
247 tlb_dyn_init(env);
5005e253
EC
248}
249
c3b9a07a
AB
250/* flush_all_helper: run fn across all cpus
251 *
252 * If the wait flag is set then the src cpu's helper will be queued as
253 * "safe" work and the loop exited creating a synchronisation point
254 * where all queued work will be finished before execution starts
255 * again.
256 */
257static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
258 run_on_cpu_data d)
259{
260 CPUState *cpu;
261
262 CPU_FOREACH(cpu) {
263 if (cpu != src) {
264 async_run_on_cpu(cpu, fn, d);
265 }
266 }
267}
268
e09de0a2 269void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
83974cf4
EC
270{
271 CPUState *cpu;
e09de0a2 272 size_t full = 0, part = 0, elide = 0;
83974cf4
EC
273
274 CPU_FOREACH(cpu) {
275 CPUArchState *env = cpu->env_ptr;
276
a40ec84e
RH
277 full += atomic_read(&env_tlb(env)->c.full_flush_count);
278 part += atomic_read(&env_tlb(env)->c.part_flush_count);
279 elide += atomic_read(&env_tlb(env)->c.elide_flush_count);
83974cf4 280 }
e09de0a2
RH
281 *pfull = full;
282 *ppart = part;
283 *pelide = elide;
83974cf4 284}
0cac1b66 285
1308e026
RH
286static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx)
287{
86e1eff8 288 tlb_table_flush_by_mmuidx(env, mmu_idx);
a40ec84e
RH
289 env_tlb(env)->d[mmu_idx].large_page_addr = -1;
290 env_tlb(env)->d[mmu_idx].large_page_mask = -1;
291 env_tlb(env)->d[mmu_idx].vindex = 0;
292 memset(env_tlb(env)->d[mmu_idx].vtable, -1,
293 sizeof(env_tlb(env)->d[0].vtable));
1308e026
RH
294}
295
e7218445 296static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
d7a74a9d
PM
297{
298 CPUArchState *env = cpu->env_ptr;
3d1523ce
RH
299 uint16_t asked = data.host_int;
300 uint16_t all_dirty, work, to_clean;
d7a74a9d 301
f0aff0f1 302 assert_cpu_is_self(cpu);
d7a74a9d 303
3d1523ce 304 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
e7218445 305
a40ec84e 306 qemu_spin_lock(&env_tlb(env)->c.lock);
60a2ad7d 307
a40ec84e 308 all_dirty = env_tlb(env)->c.dirty;
3d1523ce
RH
309 to_clean = asked & all_dirty;
310 all_dirty &= ~to_clean;
a40ec84e 311 env_tlb(env)->c.dirty = all_dirty;
3d1523ce
RH
312
313 for (work = to_clean; work != 0; work &= work - 1) {
314 int mmu_idx = ctz32(work);
315 tlb_flush_one_mmuidx_locked(env, mmu_idx);
d7a74a9d 316 }
3d1523ce 317
a40ec84e 318 qemu_spin_unlock(&env_tlb(env)->c.lock);
d7a74a9d 319
f3ced3c5 320 cpu_tb_jmp_cache_clear(cpu);
64f2674b 321
3d1523ce 322 if (to_clean == ALL_MMUIDX_BITS) {
a40ec84e
RH
323 atomic_set(&env_tlb(env)->c.full_flush_count,
324 env_tlb(env)->c.full_flush_count + 1);
e09de0a2 325 } else {
a40ec84e
RH
326 atomic_set(&env_tlb(env)->c.part_flush_count,
327 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
3d1523ce 328 if (to_clean != asked) {
a40ec84e
RH
329 atomic_set(&env_tlb(env)->c.elide_flush_count,
330 env_tlb(env)->c.elide_flush_count +
3d1523ce
RH
331 ctpop16(asked & ~to_clean));
332 }
64f2674b 333 }
d7a74a9d
PM
334}
335
0336cbf8 336void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
d7a74a9d 337{
e7218445
AB
338 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
339
64f2674b 340 if (cpu->created && !qemu_cpu_is_self(cpu)) {
ab651105
RH
341 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
342 RUN_ON_CPU_HOST_INT(idxmap));
e7218445 343 } else {
60a2ad7d 344 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
e7218445 345 }
d7a74a9d
PM
346}
347
64f2674b
RH
348void tlb_flush(CPUState *cpu)
349{
350 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
351}
352
c3b9a07a
AB
353void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
354{
355 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
356
357 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
358
359 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
360 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
361}
362
64f2674b
RH
363void tlb_flush_all_cpus(CPUState *src_cpu)
364{
365 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
366}
367
368void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
c3b9a07a
AB
369{
370 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
371
372 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
373
374 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
375 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
376}
377
64f2674b
RH
378void tlb_flush_all_cpus_synced(CPUState *src_cpu)
379{
380 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
381}
382
68fea038
RH
383static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
384 target_ulong page)
385{
386 return tlb_hit_page(tlb_entry->addr_read, page) ||
403f290c 387 tlb_hit_page(tlb_addr_write(tlb_entry), page) ||
68fea038
RH
388 tlb_hit_page(tlb_entry->addr_code, page);
389}
c3b9a07a 390
3cea94bb
EC
391/**
392 * tlb_entry_is_empty - return true if the entry is not in use
393 * @te: pointer to CPUTLBEntry
394 */
395static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
396{
397 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
398}
399
53d28455 400/* Called with tlb_c.lock held */
86e1eff8 401static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
71aec354 402 target_ulong page)
0cac1b66 403{
68fea038 404 if (tlb_hit_page_anyprot(tlb_entry, page)) {
4fadb3bb 405 memset(tlb_entry, -1, sizeof(*tlb_entry));
86e1eff8 406 return true;
0cac1b66 407 }
86e1eff8 408 return false;
0cac1b66
BS
409}
410
53d28455 411/* Called with tlb_c.lock held */
71aec354
EC
412static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
413 target_ulong page)
68fea038 414{
a40ec84e 415 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
68fea038 416 int k;
71aec354 417
29a0af61 418 assert_cpu_is_self(env_cpu(env));
68fea038 419 for (k = 0; k < CPU_VTLB_SIZE; k++) {
a40ec84e 420 if (tlb_flush_entry_locked(&d->vtable[k], page)) {
86e1eff8
EC
421 tlb_n_used_entries_dec(env, mmu_idx);
422 }
68fea038
RH
423 }
424}
425
1308e026
RH
426static void tlb_flush_page_locked(CPUArchState *env, int midx,
427 target_ulong page)
428{
a40ec84e
RH
429 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
430 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
1308e026
RH
431
432 /* Check if we need to flush due to large pages. */
433 if ((page & lp_mask) == lp_addr) {
434 tlb_debug("forcing full flush midx %d ("
435 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
436 midx, lp_addr, lp_mask);
437 tlb_flush_one_mmuidx_locked(env, midx);
438 } else {
86e1eff8
EC
439 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
440 tlb_n_used_entries_dec(env, midx);
441 }
1308e026
RH
442 tlb_flush_vtlb_page_locked(env, midx, page);
443 }
444}
445
e7218445
AB
446/* As we are going to hijack the bottom bits of the page address for a
447 * mmuidx bit mask we need to fail to build if we can't do that
448 */
449QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
450
451static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
452 run_on_cpu_data data)
d7a74a9d
PM
453{
454 CPUArchState *env = cpu->env_ptr;
e7218445
AB
455 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
456 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
457 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
e7218445 458 int mmu_idx;
d7a74a9d 459
f0aff0f1 460 assert_cpu_is_self(cpu);
d7a74a9d 461
1308e026 462 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%lx\n",
383beda9 463 addr, mmu_idx_bitmap);
d7a74a9d 464
a40ec84e 465 qemu_spin_lock(&env_tlb(env)->c.lock);
0336cbf8
AB
466 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
467 if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
1308e026 468 tlb_flush_page_locked(env, mmu_idx, addr);
d7a74a9d
PM
469 }
470 }
a40ec84e 471 qemu_spin_unlock(&env_tlb(env)->c.lock);
d7a74a9d 472
d7a74a9d
PM
473 tb_flush_jmp_cache(cpu, addr);
474}
475
e7218445
AB
476void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
477{
478 target_ulong addr_and_mmu_idx;
479
480 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
481
482 /* This should already be page aligned */
483 addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
484 addr_and_mmu_idx |= idxmap;
485
486 if (!qemu_cpu_is_self(cpu)) {
1308e026 487 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_work,
e7218445
AB
488 RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
489 } else {
1308e026 490 tlb_flush_page_by_mmuidx_async_work(
e7218445
AB
491 cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
492 }
493}
494
f8144c6c
RH
495void tlb_flush_page(CPUState *cpu, target_ulong addr)
496{
497 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
498}
499
c3b9a07a
AB
500void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
501 uint16_t idxmap)
e3b9ca81 502{
1308e026 503 const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
c3b9a07a 504 target_ulong addr_and_mmu_idx;
e3b9ca81 505
c3b9a07a
AB
506 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
507
508 /* This should already be page aligned */
509 addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
510 addr_and_mmu_idx |= idxmap;
511
512 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
513 fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
514}
515
f8144c6c
RH
516void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
517{
518 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
519}
520
c3b9a07a 521void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
1308e026
RH
522 target_ulong addr,
523 uint16_t idxmap)
c3b9a07a 524{
1308e026 525 const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
c3b9a07a
AB
526 target_ulong addr_and_mmu_idx;
527
528 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
529
530 /* This should already be page aligned */
531 addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
532 addr_and_mmu_idx |= idxmap;
533
534 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
535 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
536}
537
f8144c6c 538void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
c3b9a07a 539{
f8144c6c 540 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
e3b9ca81
FK
541}
542
0cac1b66
BS
543/* update the TLBs so that writes to code in the virtual page 'addr'
544 can be detected */
545void tlb_protect_code(ram_addr_t ram_addr)
546{
03eebc9e
SH
547 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
548 DIRTY_MEMORY_CODE);
0cac1b66
BS
549}
550
551/* update the TLB so that writes in physical page 'phys_addr' are no longer
552 tested for self modifying code */
9564f52d 553void tlb_unprotect_code(ram_addr_t ram_addr)
0cac1b66 554{
52159192 555 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
0cac1b66
BS
556}
557
0cac1b66 558
b0706b71
AB
559/*
560 * Dirty write flag handling
561 *
562 * When the TCG code writes to a location it looks up the address in
563 * the TLB and uses that data to compute the final address. If any of
564 * the lower bits of the address are set then the slow path is forced.
565 * There are a number of reasons to do this but for normal RAM the
566 * most usual is detecting writes to code regions which may invalidate
567 * generated code.
568 *
71aec354
EC
569 * Other vCPUs might be reading their TLBs during guest execution, so we update
570 * te->addr_write with atomic_set. We don't need to worry about this for
571 * oversized guests as MTTCG is disabled for them.
b0706b71 572 *
53d28455 573 * Called with tlb_c.lock held.
b0706b71 574 */
71aec354
EC
575static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
576 uintptr_t start, uintptr_t length)
0cac1b66 577{
b0706b71 578 uintptr_t addr = tlb_entry->addr_write;
0cac1b66 579
b0706b71
AB
580 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
581 addr &= TARGET_PAGE_MASK;
582 addr += tlb_entry->addend;
0cac1b66 583 if ((addr - start) < length) {
71aec354 584#if TCG_OVERSIZED_GUEST
0cac1b66 585 tlb_entry->addr_write |= TLB_NOTDIRTY;
b0706b71 586#else
71aec354
EC
587 atomic_set(&tlb_entry->addr_write,
588 tlb_entry->addr_write | TLB_NOTDIRTY);
589#endif
b0706b71
AB
590 }
591 }
b0706b71
AB
592}
593
71aec354 594/*
53d28455 595 * Called with tlb_c.lock held.
71aec354
EC
596 * Called only from the vCPU context, i.e. the TLB's owner thread.
597 */
598static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
b0706b71 599{
b0706b71 600 *d = *s;
0cac1b66
BS
601}
602
b0706b71 603/* This is a cross vCPU call (i.e. another vCPU resetting the flags of
71aec354 604 * the target vCPU).
53d28455 605 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
71aec354 606 * thing actually updated is the target TLB entry ->addr_write flags.
b0706b71 607 */
9a13565d 608void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
0cac1b66
BS
609{
610 CPUArchState *env;
611
9a13565d 612 int mmu_idx;
0cac1b66 613
9a13565d 614 env = cpu->env_ptr;
a40ec84e 615 qemu_spin_lock(&env_tlb(env)->c.lock);
9a13565d
PC
616 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
617 unsigned int i;
86e1eff8 618 unsigned int n = tlb_n_entries(env, mmu_idx);
0cac1b66 619
86e1eff8 620 for (i = 0; i < n; i++) {
a40ec84e
RH
621 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
622 start1, length);
9a13565d 623 }
88e89a57 624
9a13565d 625 for (i = 0; i < CPU_VTLB_SIZE; i++) {
a40ec84e
RH
626 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
627 start1, length);
0cac1b66
BS
628 }
629 }
a40ec84e 630 qemu_spin_unlock(&env_tlb(env)->c.lock);
0cac1b66
BS
631}
632
53d28455 633/* Called with tlb_c.lock held */
71aec354
EC
634static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
635 target_ulong vaddr)
0cac1b66
BS
636{
637 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
638 tlb_entry->addr_write = vaddr;
639 }
640}
641
642/* update the TLB corresponding to virtual page vaddr
643 so that it is no longer dirty */
bcae01e4 644void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
0cac1b66 645{
bcae01e4 646 CPUArchState *env = cpu->env_ptr;
0cac1b66
BS
647 int mmu_idx;
648
f0aff0f1
AB
649 assert_cpu_is_self(cpu);
650
0cac1b66 651 vaddr &= TARGET_PAGE_MASK;
a40ec84e 652 qemu_spin_lock(&env_tlb(env)->c.lock);
0cac1b66 653 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
383beda9 654 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
0cac1b66 655 }
88e89a57
XT
656
657 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
658 int k;
659 for (k = 0; k < CPU_VTLB_SIZE; k++) {
a40ec84e 660 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
88e89a57
XT
661 }
662 }
a40ec84e 663 qemu_spin_unlock(&env_tlb(env)->c.lock);
0cac1b66
BS
664}
665
666/* Our TLB does not support large pages, so remember the area covered by
667 large pages and trigger a full TLB flush if these are invalidated. */
1308e026
RH
668static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
669 target_ulong vaddr, target_ulong size)
0cac1b66 670{
a40ec84e 671 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1308e026 672 target_ulong lp_mask = ~(size - 1);
0cac1b66 673
1308e026
RH
674 if (lp_addr == (target_ulong)-1) {
675 /* No previous large page. */
676 lp_addr = vaddr;
677 } else {
678 /* Extend the existing region to include the new page.
679 This is a compromise between unnecessary flushes and
680 the cost of maintaining a full variable size TLB. */
a40ec84e 681 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1308e026
RH
682 while (((lp_addr ^ vaddr) & lp_mask) != 0) {
683 lp_mask <<= 1;
684 }
0cac1b66 685 }
a40ec84e
RH
686 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
687 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
0cac1b66
BS
688}
689
690/* Add a new TLB entry. At most one entry for a given virtual address
79e2b9ae
PB
691 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
692 * supplied size is only used by tlb_flush_page.
693 *
694 * Called from TCG-generated code, which is under an RCU read-side
695 * critical section.
696 */
fadc1cbe
PM
697void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
698 hwaddr paddr, MemTxAttrs attrs, int prot,
699 int mmu_idx, target_ulong size)
0cac1b66 700{
0c591eb0 701 CPUArchState *env = cpu->env_ptr;
a40ec84e
RH
702 CPUTLB *tlb = env_tlb(env);
703 CPUTLBDesc *desc = &tlb->d[mmu_idx];
0cac1b66
BS
704 MemoryRegionSection *section;
705 unsigned int index;
706 target_ulong address;
707 target_ulong code_address;
708 uintptr_t addend;
68fea038 709 CPUTLBEntry *te, tn;
55df6fcf
PM
710 hwaddr iotlb, xlat, sz, paddr_page;
711 target_ulong vaddr_page;
d7898cda 712 int asidx = cpu_asidx_from_attrs(cpu, attrs);
0cac1b66 713
f0aff0f1 714 assert_cpu_is_self(cpu);
55df6fcf 715
1308e026 716 if (size <= TARGET_PAGE_SIZE) {
55df6fcf
PM
717 sz = TARGET_PAGE_SIZE;
718 } else {
1308e026 719 tlb_add_large_page(env, mmu_idx, vaddr, size);
55df6fcf 720 sz = size;
0cac1b66 721 }
55df6fcf
PM
722 vaddr_page = vaddr & TARGET_PAGE_MASK;
723 paddr_page = paddr & TARGET_PAGE_MASK;
149f54b5 724
55df6fcf
PM
725 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
726 &xlat, &sz, attrs, &prot);
149f54b5
PB
727 assert(sz >= TARGET_PAGE_SIZE);
728
8526e1f4
AB
729 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
730 " prot=%x idx=%d\n",
731 vaddr, paddr, prot, mmu_idx);
0cac1b66 732
55df6fcf
PM
733 address = vaddr_page;
734 if (size < TARGET_PAGE_SIZE) {
735 /*
736 * Slow-path the TLB entries; we will repeat the MMU check and TLB
737 * fill on every access.
738 */
739 address |= TLB_RECHECK;
740 }
741 if (!memory_region_is_ram(section->mr) &&
742 !memory_region_is_romd(section->mr)) {
8f3e03cb 743 /* IO memory case */
0cac1b66 744 address |= TLB_MMIO;
8f3e03cb
PB
745 addend = 0;
746 } else {
747 /* TLB_MMIO for rom/romd handled below */
149f54b5 748 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
0cac1b66 749 }
0cac1b66
BS
750
751 code_address = address;
55df6fcf
PM
752 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page,
753 paddr_page, xlat, prot, &address);
0cac1b66 754
383beda9
RH
755 index = tlb_index(env, mmu_idx, vaddr_page);
756 te = tlb_entry(env, mmu_idx, vaddr_page);
b0706b71 757
71aec354
EC
758 /*
759 * Hold the TLB lock for the rest of the function. We could acquire/release
760 * the lock several times in the function, but it is faster to amortize the
761 * acquisition cost by acquiring it just once. Note that this leads to
762 * a longer critical section, but this is not a concern since the TLB lock
763 * is unlikely to be contended.
764 */
a40ec84e 765 qemu_spin_lock(&tlb->c.lock);
71aec354 766
3d1523ce 767 /* Note that the tlb is no longer clean. */
a40ec84e 768 tlb->c.dirty |= 1 << mmu_idx;
3d1523ce 769
71aec354
EC
770 /* Make sure there's no cached translation for the new page. */
771 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
772
68fea038
RH
773 /*
774 * Only evict the old entry to the victim tlb if it's for a
775 * different page; otherwise just overwrite the stale data.
776 */
3cea94bb 777 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
a40ec84e
RH
778 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
779 CPUTLBEntry *tv = &desc->vtable[vidx];
b0706b71 780
68fea038 781 /* Evict the old entry into the victim tlb. */
71aec354 782 copy_tlb_helper_locked(tv, te);
a40ec84e 783 desc->viotlb[vidx] = desc->iotlb[index];
86e1eff8 784 tlb_n_used_entries_dec(env, mmu_idx);
68fea038 785 }
88e89a57
XT
786
787 /* refill the tlb */
ace41090
PM
788 /*
789 * At this point iotlb contains a physical section number in the lower
790 * TARGET_PAGE_BITS, and either
791 * + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM)
792 * + the offset within section->mr of the page base (otherwise)
55df6fcf 793 * We subtract the vaddr_page (which is page aligned and thus won't
ace41090
PM
794 * disturb the low bits) to give an offset which can be added to the
795 * (non-page-aligned) vaddr of the eventual memory access to get
796 * the MemoryRegion offset for the access. Note that the vaddr we
797 * subtract here is that of the page base, and not the same as the
798 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
799 */
a40ec84e
RH
800 desc->iotlb[index].addr = iotlb - vaddr_page;
801 desc->iotlb[index].attrs = attrs;
b0706b71
AB
802
803 /* Now calculate the new entry */
55df6fcf 804 tn.addend = addend - vaddr_page;
0cac1b66 805 if (prot & PAGE_READ) {
b0706b71 806 tn.addr_read = address;
0cac1b66 807 } else {
b0706b71 808 tn.addr_read = -1;
0cac1b66
BS
809 }
810
811 if (prot & PAGE_EXEC) {
b0706b71 812 tn.addr_code = code_address;
0cac1b66 813 } else {
b0706b71 814 tn.addr_code = -1;
0cac1b66 815 }
b0706b71
AB
816
817 tn.addr_write = -1;
0cac1b66
BS
818 if (prot & PAGE_WRITE) {
819 if ((memory_region_is_ram(section->mr) && section->readonly)
cc5bea60 820 || memory_region_is_romd(section->mr)) {
0cac1b66 821 /* Write access calls the I/O callback. */
b0706b71 822 tn.addr_write = address | TLB_MMIO;
0cac1b66 823 } else if (memory_region_is_ram(section->mr)
8e41fb63 824 && cpu_physical_memory_is_clean(
55df6fcf 825 memory_region_get_ram_addr(section->mr) + xlat)) {
b0706b71 826 tn.addr_write = address | TLB_NOTDIRTY;
0cac1b66 827 } else {
b0706b71 828 tn.addr_write = address;
0cac1b66 829 }
f52bfb12
DH
830 if (prot & PAGE_WRITE_INV) {
831 tn.addr_write |= TLB_INVALID_MASK;
832 }
0cac1b66 833 }
b0706b71 834
71aec354 835 copy_tlb_helper_locked(te, &tn);
86e1eff8 836 tlb_n_used_entries_inc(env, mmu_idx);
a40ec84e 837 qemu_spin_unlock(&tlb->c.lock);
0cac1b66
BS
838}
839
fadc1cbe
PM
840/* Add a new TLB entry, but without specifying the memory
841 * transaction attributes to be used.
842 */
843void tlb_set_page(CPUState *cpu, target_ulong vaddr,
844 hwaddr paddr, int prot,
845 int mmu_idx, target_ulong size)
846{
847 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
848 prot, mmu_idx, size);
849}
850
857baec1
AB
851static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
852{
853 ram_addr_t ram_addr;
854
855 ram_addr = qemu_ram_addr_from_host(ptr);
856 if (ram_addr == RAM_ADDR_INVALID) {
857 error_report("Bad ram pointer %p", ptr);
858 abort();
859 }
860 return ram_addr;
861}
862
c319dc13
RH
863/*
864 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
865 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
866 * be discarded and looked up again (e.g. via tlb_entry()).
867 */
868static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
869 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
870{
871 CPUClass *cc = CPU_GET_CLASS(cpu);
872 bool ok;
873
874 /*
875 * This is not a probe, so only valid return is success; failure
876 * should result in exception + longjmp to the cpu loop.
877 */
878 ok = cc->tlb_fill(cpu, addr, size, access_type, mmu_idx, false, retaddr);
879 assert(ok);
880}
881
82a45b96 882static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
f1be3696
RH
883 int mmu_idx, target_ulong addr, uintptr_t retaddr,
884 MMUAccessType access_type, int size)
82a45b96 885{
29a0af61 886 CPUState *cpu = env_cpu(env);
2d54f194
PM
887 hwaddr mr_offset;
888 MemoryRegionSection *section;
889 MemoryRegion *mr;
82a45b96 890 uint64_t val;
8d04fb55 891 bool locked = false;
04e3aabd 892 MemTxResult r;
82a45b96 893
2d54f194
PM
894 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
895 mr = section->mr;
896 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
82a45b96
RH
897 cpu->mem_io_pc = retaddr;
898 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
899 cpu_io_recompile(cpu, retaddr);
900 }
901
902 cpu->mem_io_vaddr = addr;
dbea78a4 903 cpu->mem_io_access_type = access_type;
8d04fb55 904
8b812533 905 if (mr->global_locking && !qemu_mutex_iothread_locked()) {
8d04fb55
JK
906 qemu_mutex_lock_iothread();
907 locked = true;
908 }
2d54f194 909 r = memory_region_dispatch_read(mr, mr_offset,
04e3aabd
PM
910 &val, size, iotlbentry->attrs);
911 if (r != MEMTX_OK) {
2d54f194
PM
912 hwaddr physaddr = mr_offset +
913 section->offset_within_address_space -
914 section->offset_within_region;
915
dbea78a4 916 cpu_transaction_failed(cpu, physaddr, addr, size, access_type,
04e3aabd
PM
917 mmu_idx, iotlbentry->attrs, r, retaddr);
918 }
8d04fb55
JK
919 if (locked) {
920 qemu_mutex_unlock_iothread();
921 }
922
82a45b96
RH
923 return val;
924}
925
926static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
f1be3696
RH
927 int mmu_idx, uint64_t val, target_ulong addr,
928 uintptr_t retaddr, int size)
82a45b96 929{
29a0af61 930 CPUState *cpu = env_cpu(env);
2d54f194
PM
931 hwaddr mr_offset;
932 MemoryRegionSection *section;
933 MemoryRegion *mr;
8d04fb55 934 bool locked = false;
04e3aabd 935 MemTxResult r;
82a45b96 936
2d54f194
PM
937 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
938 mr = section->mr;
939 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
82a45b96
RH
940 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
941 cpu_io_recompile(cpu, retaddr);
942 }
82a45b96
RH
943 cpu->mem_io_vaddr = addr;
944 cpu->mem_io_pc = retaddr;
8d04fb55 945
8b812533 946 if (mr->global_locking && !qemu_mutex_iothread_locked()) {
8d04fb55
JK
947 qemu_mutex_lock_iothread();
948 locked = true;
949 }
2d54f194 950 r = memory_region_dispatch_write(mr, mr_offset,
04e3aabd
PM
951 val, size, iotlbentry->attrs);
952 if (r != MEMTX_OK) {
2d54f194
PM
953 hwaddr physaddr = mr_offset +
954 section->offset_within_address_space -
955 section->offset_within_region;
956
04e3aabd
PM
957 cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_STORE,
958 mmu_idx, iotlbentry->attrs, r, retaddr);
959 }
8d04fb55
JK
960 if (locked) {
961 qemu_mutex_unlock_iothread();
962 }
82a45b96
RH
963}
964
4811e909
RH
965static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
966{
967#if TCG_OVERSIZED_GUEST
968 return *(target_ulong *)((uintptr_t)entry + ofs);
969#else
970 /* ofs might correspond to .addr_write, so use atomic_read */
971 return atomic_read((target_ulong *)((uintptr_t)entry + ofs));
972#endif
973}
974
7e9a7c50
RH
975/* Return true if ADDR is present in the victim tlb, and has been copied
976 back to the main tlb. */
977static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
978 size_t elt_ofs, target_ulong page)
979{
980 size_t vidx;
71aec354 981
29a0af61 982 assert_cpu_is_self(env_cpu(env));
7e9a7c50 983 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
a40ec84e
RH
984 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
985 target_ulong cmp;
986
987 /* elt_ofs might correspond to .addr_write, so use atomic_read */
988#if TCG_OVERSIZED_GUEST
989 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
990#else
991 cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
992#endif
7e9a7c50
RH
993
994 if (cmp == page) {
995 /* Found entry in victim tlb, swap tlb and iotlb. */
a40ec84e 996 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
b0706b71 997
a40ec84e 998 qemu_spin_lock(&env_tlb(env)->c.lock);
71aec354
EC
999 copy_tlb_helper_locked(&tmptlb, tlb);
1000 copy_tlb_helper_locked(tlb, vtlb);
1001 copy_tlb_helper_locked(vtlb, &tmptlb);
a40ec84e 1002 qemu_spin_unlock(&env_tlb(env)->c.lock);
b0706b71 1003
a40ec84e
RH
1004 CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1005 CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
7e9a7c50
RH
1006 tmpio = *io; *io = *vio; *vio = tmpio;
1007 return true;
1008 }
1009 }
1010 return false;
1011}
1012
1013/* Macro to call the above, with local variables from the use context. */
a390284b 1014#define VICTIM_TLB_HIT(TY, ADDR) \
7e9a7c50 1015 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
a390284b 1016 (ADDR) & TARGET_PAGE_MASK)
7e9a7c50 1017
f2553f04
FK
1018/* NOTE: this function can trigger an exception */
1019/* NOTE2: the returned address is not exactly the physical address: it
1020 * is actually a ram_addr_t (in system mode; the user mode emulation
1021 * version of this function returns a guest virtual address).
1022 */
1023tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1024{
383beda9
RH
1025 uintptr_t mmu_idx = cpu_mmu_index(env, true);
1026 uintptr_t index = tlb_index(env, mmu_idx, addr);
1027 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
f2553f04 1028 void *p;
f2553f04 1029
383beda9 1030 if (unlikely(!tlb_hit(entry->addr_code, addr))) {
b493ccf1 1031 if (!VICTIM_TLB_HIT(addr_code, addr)) {
29a0af61 1032 tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
6d967cb8
EC
1033 index = tlb_index(env, mmu_idx, addr);
1034 entry = tlb_entry(env, mmu_idx, addr);
71b9a453 1035 }
383beda9 1036 assert(tlb_hit(entry->addr_code, addr));
f2553f04 1037 }
55df6fcf 1038
383beda9 1039 if (unlikely(entry->addr_code & (TLB_RECHECK | TLB_MMIO))) {
55df6fcf 1040 /*
55a7cb14
PM
1041 * Return -1 if we can't translate and execute from an entire
1042 * page of RAM here, which will cause us to execute by loading
1043 * and translating one insn at a time, without caching:
1044 * - TLB_RECHECK: means the MMU protection covers a smaller range
1045 * than a target page, so we must redo the MMU check every insn
1046 * - TLB_MMIO: region is not backed by RAM
55df6fcf 1047 */
20cb6ae4 1048 return -1;
55df6fcf
PM
1049 }
1050
383beda9 1051 p = (void *)((uintptr_t)addr + entry->addend);
f2553f04
FK
1052 return qemu_ram_addr_from_host_nofail(p);
1053}
1054
3b08f0a9
RH
1055/* Probe for whether the specified guest write access is permitted.
1056 * If it is not permitted then an exception will be taken in the same
1057 * way as if this were a real write access (and we will not return).
1058 * Otherwise the function will return, and there will be a valid
1059 * entry in the TLB for this access.
1060 */
98670d47 1061void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
3b08f0a9
RH
1062 uintptr_t retaddr)
1063{
383beda9
RH
1064 uintptr_t index = tlb_index(env, mmu_idx, addr);
1065 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
3b08f0a9 1066
403f290c 1067 if (!tlb_hit(tlb_addr_write(entry), addr)) {
3b08f0a9
RH
1068 /* TLB entry is for a different page */
1069 if (!VICTIM_TLB_HIT(addr_write, addr)) {
29a0af61 1070 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
98670d47 1071 mmu_idx, retaddr);
3b08f0a9
RH
1072 }
1073 }
1074}
1075
4811e909
RH
1076void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1077 MMUAccessType access_type, int mmu_idx)
1078{
1079 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1080 uintptr_t tlb_addr, page;
1081 size_t elt_ofs;
1082
1083 switch (access_type) {
1084 case MMU_DATA_LOAD:
1085 elt_ofs = offsetof(CPUTLBEntry, addr_read);
1086 break;
1087 case MMU_DATA_STORE:
1088 elt_ofs = offsetof(CPUTLBEntry, addr_write);
1089 break;
1090 case MMU_INST_FETCH:
1091 elt_ofs = offsetof(CPUTLBEntry, addr_code);
1092 break;
1093 default:
1094 g_assert_not_reached();
1095 }
1096
1097 page = addr & TARGET_PAGE_MASK;
1098 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1099
1100 if (!tlb_hit_page(tlb_addr, page)) {
1101 uintptr_t index = tlb_index(env, mmu_idx, addr);
1102
1103 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page)) {
29a0af61 1104 CPUState *cs = env_cpu(env);
4811e909
RH
1105 CPUClass *cc = CPU_GET_CLASS(cs);
1106
1107 if (!cc->tlb_fill(cs, addr, 0, access_type, mmu_idx, true, 0)) {
1108 /* Non-faulting page table read failed. */
1109 return NULL;
1110 }
1111
1112 /* TLB resize via tlb_fill may have moved the entry. */
1113 entry = tlb_entry(env, mmu_idx, addr);
1114 }
1115 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1116 }
1117
1118 if (tlb_addr & ~TARGET_PAGE_MASK) {
1119 /* IO access */
1120 return NULL;
1121 }
1122
1123 return (void *)((uintptr_t)addr + entry->addend);
1124}
1125
c482cb11
RH
1126/* Probe for a read-modify-write atomic operation. Do not allow unaligned
1127 * operations, or io operations to proceed. Return the host address. */
1128static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
34d49937
PM
1129 TCGMemOpIdx oi, uintptr_t retaddr,
1130 NotDirtyInfo *ndi)
c482cb11
RH
1131{
1132 size_t mmu_idx = get_mmuidx(oi);
383beda9
RH
1133 uintptr_t index = tlb_index(env, mmu_idx, addr);
1134 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
403f290c 1135 target_ulong tlb_addr = tlb_addr_write(tlbe);
c482cb11
RH
1136 TCGMemOp mop = get_memop(oi);
1137 int a_bits = get_alignment_bits(mop);
1138 int s_bits = mop & MO_SIZE;
34d49937 1139 void *hostaddr;
c482cb11
RH
1140
1141 /* Adjust the given return address. */
1142 retaddr -= GETPC_ADJ;
1143
1144 /* Enforce guest required alignment. */
1145 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1146 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
29a0af61 1147 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
c482cb11
RH
1148 mmu_idx, retaddr);
1149 }
1150
1151 /* Enforce qemu required alignment. */
1152 if (unlikely(addr & ((1 << s_bits) - 1))) {
1153 /* We get here if guest alignment was not requested,
1154 or was not enforced by cpu_unaligned_access above.
1155 We might widen the access and emulate, but for now
1156 mark an exception and exit the cpu loop. */
1157 goto stop_the_world;
1158 }
1159
1160 /* Check TLB entry and enforce page permissions. */
334692bc 1161 if (!tlb_hit(tlb_addr, addr)) {
c482cb11 1162 if (!VICTIM_TLB_HIT(addr_write, addr)) {
29a0af61 1163 tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_STORE,
98670d47 1164 mmu_idx, retaddr);
6d967cb8
EC
1165 index = tlb_index(env, mmu_idx, addr);
1166 tlbe = tlb_entry(env, mmu_idx, addr);
c482cb11 1167 }
403f290c 1168 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
c482cb11
RH
1169 }
1170
55df6fcf
PM
1171 /* Notice an IO access or a needs-MMU-lookup access */
1172 if (unlikely(tlb_addr & (TLB_MMIO | TLB_RECHECK))) {
c482cb11
RH
1173 /* There's really nothing that can be done to
1174 support this apart from stop-the-world. */
1175 goto stop_the_world;
1176 }
1177
1178 /* Let the guest notice RMW on a write-only page. */
34d49937 1179 if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
29a0af61 1180 tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_LOAD,
98670d47 1181 mmu_idx, retaddr);
c482cb11
RH
1182 /* Since we don't support reads and writes to different addresses,
1183 and we do have the proper page loaded for write, this shouldn't
1184 ever return. But just in case, handle via stop-the-world. */
1185 goto stop_the_world;
1186 }
1187
34d49937
PM
1188 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1189
1190 ndi->active = false;
1191 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1192 ndi->active = true;
29a0af61 1193 memory_notdirty_write_prepare(ndi, env_cpu(env), addr,
34d49937
PM
1194 qemu_ram_addr_from_host_nofail(hostaddr),
1195 1 << s_bits);
1196 }
1197
1198 return hostaddr;
c482cb11
RH
1199
1200 stop_the_world:
29a0af61 1201 cpu_loop_exit_atomic(env_cpu(env), retaddr);
c482cb11
RH
1202}
1203
c86c6e4c 1204#ifdef TARGET_WORDS_BIGENDIAN
eed56642
AB
1205#define NEED_BE_BSWAP 0
1206#define NEED_LE_BSWAP 1
c86c6e4c 1207#else
eed56642
AB
1208#define NEED_BE_BSWAP 1
1209#define NEED_LE_BSWAP 0
c86c6e4c
RH
1210#endif
1211
eed56642
AB
1212/*
1213 * Byte Swap Helper
1214 *
1215 * This should all dead code away depending on the build host and
1216 * access type.
1217 */
0f590e74 1218
eed56642
AB
1219static inline uint64_t handle_bswap(uint64_t val, int size, bool big_endian)
1220{
1221 if ((big_endian && NEED_BE_BSWAP) || (!big_endian && NEED_LE_BSWAP)) {
1222 switch (size) {
1223 case 1: return val;
1224 case 2: return bswap16(val);
1225 case 4: return bswap32(val);
1226 case 8: return bswap64(val);
1227 default:
1228 g_assert_not_reached();
1229 }
1230 } else {
1231 return val;
1232 }
1233}
0f590e74 1234
eed56642
AB
1235/*
1236 * Load Helpers
1237 *
1238 * We support two different access types. SOFTMMU_CODE_ACCESS is
1239 * specifically for reading instructions from system memory. It is
1240 * called by the translation loop and in some helpers where the code
1241 * is disassembled. It shouldn't be called directly by guest code.
1242 */
0f590e74 1243
2dd92606
RH
1244typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1245 TCGMemOpIdx oi, uintptr_t retaddr);
1246
1247static inline uint64_t __attribute__((always_inline))
1248load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1249 uintptr_t retaddr, size_t size, bool big_endian, bool code_read,
1250 FullLoadHelper *full_load)
eed56642
AB
1251{
1252 uintptr_t mmu_idx = get_mmuidx(oi);
1253 uintptr_t index = tlb_index(env, mmu_idx, addr);
1254 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1255 target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1256 const size_t tlb_off = code_read ?
1257 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
f1be3696
RH
1258 const MMUAccessType access_type =
1259 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
eed56642
AB
1260 unsigned a_bits = get_alignment_bits(get_memop(oi));
1261 void *haddr;
1262 uint64_t res;
1263
1264 /* Handle CPU specific unaligned behaviour */
1265 if (addr & ((1 << a_bits) - 1)) {
29a0af61 1266 cpu_unaligned_access(env_cpu(env), addr, access_type,
eed56642
AB
1267 mmu_idx, retaddr);
1268 }
0f590e74 1269
eed56642
AB
1270 /* If the TLB entry is for a different page, reload and try again. */
1271 if (!tlb_hit(tlb_addr, addr)) {
1272 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1273 addr & TARGET_PAGE_MASK)) {
29a0af61 1274 tlb_fill(env_cpu(env), addr, size,
f1be3696 1275 access_type, mmu_idx, retaddr);
eed56642
AB
1276 index = tlb_index(env, mmu_idx, addr);
1277 entry = tlb_entry(env, mmu_idx, addr);
1278 }
1279 tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1280 }
1281
1282 /* Handle an IO access. */
1283 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
eed56642
AB
1284 if ((addr & (size - 1)) != 0) {
1285 goto do_unaligned_access;
1286 }
1287
f1be3696
RH
1288 if (tlb_addr & TLB_RECHECK) {
1289 /*
1290 * This is a TLB_RECHECK access, where the MMU protection
1291 * covers a smaller range than a target page, and we must
1292 * repeat the MMU check here. This tlb_fill() call might
1293 * longjump out if this access should cause a guest exception.
1294 */
29a0af61 1295 tlb_fill(env_cpu(env), addr, size,
f1be3696
RH
1296 access_type, mmu_idx, retaddr);
1297 index = tlb_index(env, mmu_idx, addr);
1298 entry = tlb_entry(env, mmu_idx, addr);
1299
1300 tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1301 tlb_addr &= ~TLB_RECHECK;
1302 if (!(tlb_addr & ~TARGET_PAGE_MASK)) {
1303 /* RAM access */
1304 goto do_aligned_access;
1305 }
1306 }
1307
a40ec84e
RH
1308 res = io_readx(env, &env_tlb(env)->d[mmu_idx].iotlb[index],
1309 mmu_idx, addr, retaddr, access_type, size);
f1be3696 1310 return handle_bswap(res, size, big_endian);
eed56642
AB
1311 }
1312
1313 /* Handle slow unaligned access (it spans two pages or IO). */
1314 if (size > 1
1315 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1316 >= TARGET_PAGE_SIZE)) {
1317 target_ulong addr1, addr2;
1318 tcg_target_ulong r1, r2;
1319 unsigned shift;
1320 do_unaligned_access:
1321 addr1 = addr & ~(size - 1);
1322 addr2 = addr1 + size;
2dd92606
RH
1323 r1 = full_load(env, addr1, oi, retaddr);
1324 r2 = full_load(env, addr2, oi, retaddr);
eed56642
AB
1325 shift = (addr & (size - 1)) * 8;
1326
1327 if (big_endian) {
1328 /* Big-endian combine. */
1329 res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1330 } else {
1331 /* Little-endian combine. */
1332 res = (r1 >> shift) | (r2 << ((size * 8) - shift));
1333 }
1334 return res & MAKE_64BIT_MASK(0, size * 8);
1335 }
1336
f1be3696 1337 do_aligned_access:
eed56642 1338 haddr = (void *)((uintptr_t)addr + entry->addend);
eed56642
AB
1339 switch (size) {
1340 case 1:
1341 res = ldub_p(haddr);
1342 break;
1343 case 2:
1344 if (big_endian) {
1345 res = lduw_be_p(haddr);
1346 } else {
1347 res = lduw_le_p(haddr);
1348 }
1349 break;
1350 case 4:
1351 if (big_endian) {
1352 res = (uint32_t)ldl_be_p(haddr);
1353 } else {
1354 res = (uint32_t)ldl_le_p(haddr);
1355 }
1356 break;
1357 case 8:
1358 if (big_endian) {
1359 res = ldq_be_p(haddr);
1360 } else {
1361 res = ldq_le_p(haddr);
1362 }
1363 break;
1364 default:
1365 g_assert_not_reached();
1366 }
1367
1368 return res;
1369}
1370
1371/*
1372 * For the benefit of TCG generated code, we want to avoid the
1373 * complication of ABI-specific return type promotion and always
1374 * return a value extended to the register size of the host. This is
1375 * tcg_target_long, except in the case of a 32-bit host and 64-bit
1376 * data, and for that we always have uint64_t.
1377 *
1378 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1379 */
1380
2dd92606
RH
1381static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
1382 TCGMemOpIdx oi, uintptr_t retaddr)
1383{
1384 return load_helper(env, addr, oi, retaddr, 1, false, false,
1385 full_ldub_mmu);
1386}
1387
fc1bc777
RH
1388tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
1389 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642 1390{
2dd92606
RH
1391 return full_ldub_mmu(env, addr, oi, retaddr);
1392}
1393
1394static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
1395 TCGMemOpIdx oi, uintptr_t retaddr)
1396{
1397 return load_helper(env, addr, oi, retaddr, 2, false, false,
1398 full_le_lduw_mmu);
eed56642
AB
1399}
1400
fc1bc777
RH
1401tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
1402 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642 1403{
2dd92606
RH
1404 return full_le_lduw_mmu(env, addr, oi, retaddr);
1405}
1406
1407static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
1408 TCGMemOpIdx oi, uintptr_t retaddr)
1409{
1410 return load_helper(env, addr, oi, retaddr, 2, true, false,
1411 full_be_lduw_mmu);
eed56642
AB
1412}
1413
fc1bc777
RH
1414tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
1415 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642 1416{
2dd92606
RH
1417 return full_be_lduw_mmu(env, addr, oi, retaddr);
1418}
1419
1420static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
1421 TCGMemOpIdx oi, uintptr_t retaddr)
1422{
1423 return load_helper(env, addr, oi, retaddr, 4, false, false,
1424 full_le_ldul_mmu);
eed56642
AB
1425}
1426
fc1bc777
RH
1427tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
1428 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642 1429{
2dd92606
RH
1430 return full_le_ldul_mmu(env, addr, oi, retaddr);
1431}
1432
1433static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
1434 TCGMemOpIdx oi, uintptr_t retaddr)
1435{
1436 return load_helper(env, addr, oi, retaddr, 4, true, false,
1437 full_be_ldul_mmu);
eed56642
AB
1438}
1439
fc1bc777
RH
1440tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
1441 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642 1442{
2dd92606 1443 return full_be_ldul_mmu(env, addr, oi, retaddr);
eed56642
AB
1444}
1445
fc1bc777
RH
1446uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
1447 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642 1448{
2dd92606
RH
1449 return load_helper(env, addr, oi, retaddr, 8, false, false,
1450 helper_le_ldq_mmu);
eed56642
AB
1451}
1452
fc1bc777
RH
1453uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
1454 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642 1455{
2dd92606
RH
1456 return load_helper(env, addr, oi, retaddr, 8, true, false,
1457 helper_be_ldq_mmu);
eed56642
AB
1458}
1459
1460/*
1461 * Provide signed versions of the load routines as well. We can of course
1462 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
1463 */
1464
1465
1466tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
1467 TCGMemOpIdx oi, uintptr_t retaddr)
1468{
1469 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
1470}
1471
1472tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
1473 TCGMemOpIdx oi, uintptr_t retaddr)
1474{
1475 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
1476}
1477
1478tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
1479 TCGMemOpIdx oi, uintptr_t retaddr)
1480{
1481 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
1482}
1483
1484tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
1485 TCGMemOpIdx oi, uintptr_t retaddr)
1486{
1487 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
1488}
1489
1490tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
1491 TCGMemOpIdx oi, uintptr_t retaddr)
1492{
1493 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
1494}
1495
1496/*
1497 * Store Helpers
1498 */
1499
4601f8d1
RH
1500static inline void __attribute__((always_inline))
1501store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
1502 TCGMemOpIdx oi, uintptr_t retaddr, size_t size, bool big_endian)
eed56642
AB
1503{
1504 uintptr_t mmu_idx = get_mmuidx(oi);
1505 uintptr_t index = tlb_index(env, mmu_idx, addr);
1506 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1507 target_ulong tlb_addr = tlb_addr_write(entry);
1508 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
1509 unsigned a_bits = get_alignment_bits(get_memop(oi));
1510 void *haddr;
1511
1512 /* Handle CPU specific unaligned behaviour */
1513 if (addr & ((1 << a_bits) - 1)) {
29a0af61 1514 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
eed56642
AB
1515 mmu_idx, retaddr);
1516 }
1517
1518 /* If the TLB entry is for a different page, reload and try again. */
1519 if (!tlb_hit(tlb_addr, addr)) {
1520 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1521 addr & TARGET_PAGE_MASK)) {
29a0af61 1522 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
eed56642
AB
1523 mmu_idx, retaddr);
1524 index = tlb_index(env, mmu_idx, addr);
1525 entry = tlb_entry(env, mmu_idx, addr);
1526 }
1527 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
1528 }
1529
1530 /* Handle an IO access. */
1531 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
eed56642
AB
1532 if ((addr & (size - 1)) != 0) {
1533 goto do_unaligned_access;
1534 }
1535
f1be3696
RH
1536 if (tlb_addr & TLB_RECHECK) {
1537 /*
1538 * This is a TLB_RECHECK access, where the MMU protection
1539 * covers a smaller range than a target page, and we must
1540 * repeat the MMU check here. This tlb_fill() call might
1541 * longjump out if this access should cause a guest exception.
1542 */
29a0af61 1543 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
f1be3696
RH
1544 mmu_idx, retaddr);
1545 index = tlb_index(env, mmu_idx, addr);
1546 entry = tlb_entry(env, mmu_idx, addr);
1547
1548 tlb_addr = tlb_addr_write(entry);
1549 tlb_addr &= ~TLB_RECHECK;
1550 if (!(tlb_addr & ~TARGET_PAGE_MASK)) {
1551 /* RAM access */
1552 goto do_aligned_access;
1553 }
1554 }
1555
a40ec84e 1556 io_writex(env, &env_tlb(env)->d[mmu_idx].iotlb[index], mmu_idx,
eed56642 1557 handle_bswap(val, size, big_endian),
f1be3696 1558 addr, retaddr, size);
eed56642
AB
1559 return;
1560 }
1561
1562 /* Handle slow unaligned access (it spans two pages or IO). */
1563 if (size > 1
1564 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1565 >= TARGET_PAGE_SIZE)) {
1566 int i;
1567 uintptr_t index2;
1568 CPUTLBEntry *entry2;
1569 target_ulong page2, tlb_addr2;
1570 do_unaligned_access:
1571 /*
1572 * Ensure the second page is in the TLB. Note that the first page
1573 * is already guaranteed to be filled, and that the second page
1574 * cannot evict the first.
1575 */
1576 page2 = (addr + size) & TARGET_PAGE_MASK;
1577 index2 = tlb_index(env, mmu_idx, page2);
1578 entry2 = tlb_entry(env, mmu_idx, page2);
1579 tlb_addr2 = tlb_addr_write(entry2);
1580 if (!tlb_hit_page(tlb_addr2, page2)
1581 && !victim_tlb_hit(env, mmu_idx, index2, tlb_off,
1582 page2 & TARGET_PAGE_MASK)) {
29a0af61 1583 tlb_fill(env_cpu(env), page2, size, MMU_DATA_STORE,
eed56642
AB
1584 mmu_idx, retaddr);
1585 }
1586
1587 /*
1588 * XXX: not efficient, but simple.
1589 * This loop must go in the forward direction to avoid issues
1590 * with self-modifying code in Windows 64-bit.
1591 */
1592 for (i = 0; i < size; ++i) {
1593 uint8_t val8;
1594 if (big_endian) {
1595 /* Big-endian extract. */
1596 val8 = val >> (((size - 1) * 8) - (i * 8));
1597 } else {
1598 /* Little-endian extract. */
1599 val8 = val >> (i * 8);
1600 }
4601f8d1 1601 helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
eed56642
AB
1602 }
1603 return;
1604 }
1605
f1be3696 1606 do_aligned_access:
eed56642 1607 haddr = (void *)((uintptr_t)addr + entry->addend);
eed56642
AB
1608 switch (size) {
1609 case 1:
1610 stb_p(haddr, val);
1611 break;
1612 case 2:
1613 if (big_endian) {
1614 stw_be_p(haddr, val);
1615 } else {
1616 stw_le_p(haddr, val);
1617 }
1618 break;
1619 case 4:
1620 if (big_endian) {
1621 stl_be_p(haddr, val);
1622 } else {
1623 stl_le_p(haddr, val);
1624 }
1625 break;
1626 case 8:
1627 if (big_endian) {
1628 stq_be_p(haddr, val);
1629 } else {
1630 stq_le_p(haddr, val);
1631 }
1632 break;
1633 default:
1634 g_assert_not_reached();
1635 break;
1636 }
1637}
1638
fc1bc777
RH
1639void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
1640 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642
AB
1641{
1642 store_helper(env, addr, val, oi, retaddr, 1, false);
1643}
1644
fc1bc777
RH
1645void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
1646 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642
AB
1647{
1648 store_helper(env, addr, val, oi, retaddr, 2, false);
1649}
1650
fc1bc777
RH
1651void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
1652 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642
AB
1653{
1654 store_helper(env, addr, val, oi, retaddr, 2, true);
1655}
1656
fc1bc777
RH
1657void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
1658 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642
AB
1659{
1660 store_helper(env, addr, val, oi, retaddr, 4, false);
1661}
1662
fc1bc777
RH
1663void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
1664 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642
AB
1665{
1666 store_helper(env, addr, val, oi, retaddr, 4, true);
1667}
1668
fc1bc777
RH
1669void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
1670 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642
AB
1671{
1672 store_helper(env, addr, val, oi, retaddr, 8, false);
1673}
1674
fc1bc777
RH
1675void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
1676 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642
AB
1677{
1678 store_helper(env, addr, val, oi, retaddr, 8, true);
1679}
0f590e74 1680
c482cb11
RH
1681/* First set of helpers allows passing in of OI and RETADDR. This makes
1682 them callable from other helpers. */
1683
1684#define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
1685#define ATOMIC_NAME(X) \
1686 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
34d49937
PM
1687#define ATOMIC_MMU_DECLS NotDirtyInfo ndi
1688#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi)
1689#define ATOMIC_MMU_CLEANUP \
1690 do { \
1691 if (unlikely(ndi.active)) { \
1692 memory_notdirty_write_complete(&ndi); \
1693 } \
1694 } while (0)
c482cb11
RH
1695
1696#define DATA_SIZE 1
1697#include "atomic_template.h"
1698
1699#define DATA_SIZE 2
1700#include "atomic_template.h"
1701
1702#define DATA_SIZE 4
1703#include "atomic_template.h"
1704
df79b996 1705#ifdef CONFIG_ATOMIC64
c482cb11
RH
1706#define DATA_SIZE 8
1707#include "atomic_template.h"
df79b996 1708#endif
c482cb11 1709
e6cd4bb5 1710#if HAVE_CMPXCHG128 || HAVE_ATOMIC128
7ebee43e
RH
1711#define DATA_SIZE 16
1712#include "atomic_template.h"
1713#endif
1714
c482cb11
RH
1715/* Second set of helpers are directly callable from TCG as helpers. */
1716
1717#undef EXTRA_ARGS
1718#undef ATOMIC_NAME
1719#undef ATOMIC_MMU_LOOKUP
1720#define EXTRA_ARGS , TCGMemOpIdx oi
1721#define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
34d49937 1722#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi)
c482cb11
RH
1723
1724#define DATA_SIZE 1
1725#include "atomic_template.h"
1726
1727#define DATA_SIZE 2
1728#include "atomic_template.h"
1729
1730#define DATA_SIZE 4
1731#include "atomic_template.h"
1732
df79b996 1733#ifdef CONFIG_ATOMIC64
c482cb11
RH
1734#define DATA_SIZE 8
1735#include "atomic_template.h"
df79b996 1736#endif
c482cb11
RH
1737
1738/* Code access functions. */
1739
2dd92606
RH
1740static uint64_t full_ldub_cmmu(CPUArchState *env, target_ulong addr,
1741 TCGMemOpIdx oi, uintptr_t retaddr)
1742{
1743 return load_helper(env, addr, oi, retaddr, 1, false, true,
1744 full_ldub_cmmu);
1745}
1746
fc1bc777
RH
1747uint8_t helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr,
1748 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642 1749{
2dd92606
RH
1750 return full_ldub_cmmu(env, addr, oi, retaddr);
1751}
1752
1753static uint64_t full_le_lduw_cmmu(CPUArchState *env, target_ulong addr,
1754 TCGMemOpIdx oi, uintptr_t retaddr)
1755{
1756 return load_helper(env, addr, oi, retaddr, 2, false, true,
1757 full_le_lduw_cmmu);
eed56642 1758}
0cac1b66 1759
fc1bc777
RH
1760uint16_t helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr,
1761 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642 1762{
2dd92606
RH
1763 return full_le_lduw_cmmu(env, addr, oi, retaddr);
1764}
1765
1766static uint64_t full_be_lduw_cmmu(CPUArchState *env, target_ulong addr,
1767 TCGMemOpIdx oi, uintptr_t retaddr)
1768{
1769 return load_helper(env, addr, oi, retaddr, 2, true, true,
1770 full_be_lduw_cmmu);
eed56642 1771}
0cac1b66 1772
fc1bc777
RH
1773uint16_t helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr,
1774 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642 1775{
2dd92606
RH
1776 return full_be_lduw_cmmu(env, addr, oi, retaddr);
1777}
1778
1779static uint64_t full_le_ldul_cmmu(CPUArchState *env, target_ulong addr,
1780 TCGMemOpIdx oi, uintptr_t retaddr)
1781{
1782 return load_helper(env, addr, oi, retaddr, 4, false, true,
1783 full_le_ldul_cmmu);
eed56642 1784}
0cac1b66 1785
fc1bc777
RH
1786uint32_t helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr,
1787 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642 1788{
2dd92606
RH
1789 return full_le_ldul_cmmu(env, addr, oi, retaddr);
1790}
1791
1792static uint64_t full_be_ldul_cmmu(CPUArchState *env, target_ulong addr,
1793 TCGMemOpIdx oi, uintptr_t retaddr)
1794{
1795 return load_helper(env, addr, oi, retaddr, 4, true, true,
1796 full_be_ldul_cmmu);
eed56642 1797}
0cac1b66 1798
fc1bc777
RH
1799uint32_t helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr,
1800 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642 1801{
2dd92606 1802 return full_be_ldul_cmmu(env, addr, oi, retaddr);
eed56642
AB
1803}
1804
fc1bc777
RH
1805uint64_t helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr,
1806 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642 1807{
2dd92606
RH
1808 return load_helper(env, addr, oi, retaddr, 8, false, true,
1809 helper_le_ldq_cmmu);
eed56642
AB
1810}
1811
fc1bc777
RH
1812uint64_t helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr,
1813 TCGMemOpIdx oi, uintptr_t retaddr)
eed56642 1814{
2dd92606
RH
1815 return load_helper(env, addr, oi, retaddr, 8, true, true,
1816 helper_be_ldq_cmmu);
eed56642 1817}