]> git.proxmox.com Git - mirror_qemu.git/blame - accel/tcg/user-exec.c
accel: Replace target_ulong with vaddr in probe_*()
[mirror_qemu.git] / accel / tcg / user-exec.c
CommitLineData
42a623c7
BS
1/*
2 * User emulator execution
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
fb0343d5 9 * version 2.1 of the License, or (at your option) any later version.
42a623c7
BS
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
d38ea87a 19#include "qemu/osdep.h"
78271684 20#include "hw/core/tcg-cpu-ops.h"
76cad711 21#include "disas/disas.h"
63c91552 22#include "exec/exec-all.h"
dcb32f1d 23#include "tcg/tcg.h"
023b0ae3 24#include "qemu/bitops.h"
177a8cb8 25#include "qemu/rcu.h"
f08b6170 26#include "exec/cpu_ldst.h"
3b9bd3f4 27#include "exec/translate-all.h"
a411d296 28#include "exec/helper-proto.h"
e6cd4bb5 29#include "qemu/atomic128.h"
243af022 30#include "trace/trace-root.h"
37e891e3 31#include "tcg/tcg-ldst.h"
0583f775 32#include "internal.h"
42a623c7 33
ec603b55
RH
34__thread uintptr_t helper_retaddr;
35
42a623c7
BS
36//#define DEBUG_SIGNAL
37
0fdbb7d2
RH
38/*
39 * Adjust the pc to pass to cpu_restore_state; return the memop type.
40 */
41MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
42a623c7 42{
52ba13f0
RH
43 switch (helper_retaddr) {
44 default:
45 /*
46 * Fault during host memory operation within a helper function.
47 * The helper's host return address, saved here, gives us a
48 * pointer into the generated code that will unwind to the
49 * correct guest pc.
50 */
0fdbb7d2 51 *pc = helper_retaddr;
52ba13f0
RH
52 break;
53
54 case 0:
55 /*
56 * Fault during host memory operation within generated code.
57 * (Or, a unrelated bug within qemu, but we can't tell from here).
58 *
59 * We take the host pc from the signal frame. However, we cannot
60 * use that value directly. Within cpu_restore_state_from_tb, we
61 * assume PC comes from GETPC(), as used by the helper functions,
62 * so we adjust the address by -GETPC_ADJ to form an address that
e3a6e0da 63 * is within the call insn, so that the address does not accidentally
52ba13f0
RH
64 * match the beginning of the next guest insn. However, when the
65 * pc comes from the signal frame it points to the actual faulting
66 * host memory insn and not the return from a call insn.
67 *
68 * Therefore, adjust to compensate for what will be done later
69 * by cpu_restore_state_from_tb.
70 */
0fdbb7d2 71 *pc += GETPC_ADJ;
52ba13f0
RH
72 break;
73
74 case 1:
75 /*
76 * Fault during host read for translation, or loosely, "execution".
77 *
78 * The guest pc is already pointing to the start of the TB for which
79 * code is being generated. If the guest translator manages the
80 * page crossings correctly, this is exactly the correct address
81 * (and if the translator doesn't handle page boundaries correctly
82 * there's little we can do about that here). Therefore, do not
83 * trigger the unwinder.
52ba13f0 84 */
0fdbb7d2
RH
85 *pc = 0;
86 return MMU_INST_FETCH;
ec603b55
RH
87 }
88
0fdbb7d2
RH
89 return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
90}
91
5e38ba7d
RH
92/**
93 * handle_sigsegv_accerr_write:
94 * @cpu: the cpu context
95 * @old_set: the sigset_t from the signal ucontext_t
96 * @host_pc: the host pc, adjusted for the signal
97 * @guest_addr: the guest address of the fault
98 *
99 * Return true if the write fault has been handled, and should be re-tried.
100 *
101 * Note that it is important that we don't call page_unprotect() unless
9323e79f 102 * this is really a "write to nonwritable page" fault, because
5e38ba7d 103 * page_unprotect() assumes that if it is called for an access to
9323e79f
PM
104 * a page that's writable this means we had two threads racing and
105 * another thread got there first and already made the page writable;
5e38ba7d
RH
106 * so we will retry the access. If we were to call page_unprotect()
107 * for some other kind of fault that should really be passed to the
108 * guest, we'd end up in an infinite loop of retrying the faulting access.
109 */
110bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
111 uintptr_t host_pc, abi_ptr guest_addr)
112{
113 switch (page_unprotect(guest_addr, host_pc)) {
114 case 0:
115 /*
116 * Fault not caused by a page marked unwritable to protect
117 * cached translations, must be the guest binary's problem.
118 */
119 return false;
120 case 1:
121 /*
122 * Fault caused by protection of cached translation; TBs
123 * invalidated, so resume execution.
124 */
125 return true;
126 case 2:
127 /*
128 * Fault caused by protection of cached translation, and the
129 * currently executing TB was modified and must be exited immediately.
130 */
940b3090
RH
131 sigprocmask(SIG_SETMASK, old_set, NULL);
132 cpu_loop_exit_noexc(cpu);
5e38ba7d
RH
133 /* NORETURN */
134 default:
135 g_assert_not_reached();
136 }
137}
138
67ff2186 139typedef struct PageFlagsNode {
177a8cb8 140 struct rcu_head rcu;
67ff2186
RH
141 IntervalTreeNode itree;
142 int flags;
143} PageFlagsNode;
d941c086 144
67ff2186 145static IntervalTreeRoot pageflags_root;
d941c086 146
67ff2186
RH
147static PageFlagsNode *pageflags_find(target_ulong start, target_long last)
148{
149 IntervalTreeNode *n;
d941c086 150
67ff2186
RH
151 n = interval_tree_iter_first(&pageflags_root, start, last);
152 return n ? container_of(n, PageFlagsNode, itree) : NULL;
d941c086
RH
153}
154
67ff2186
RH
155static PageFlagsNode *pageflags_next(PageFlagsNode *p, target_ulong start,
156 target_long last)
d941c086 157{
67ff2186 158 IntervalTreeNode *n;
d941c086 159
67ff2186
RH
160 n = interval_tree_iter_next(&p->itree, start, last);
161 return n ? container_of(n, PageFlagsNode, itree) : NULL;
d941c086
RH
162}
163
164int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
165{
67ff2186
RH
166 IntervalTreeNode *n;
167 int rc = 0;
d941c086 168
67ff2186
RH
169 mmap_lock();
170 for (n = interval_tree_iter_first(&pageflags_root, 0, -1);
171 n != NULL;
172 n = interval_tree_iter_next(n, 0, -1)) {
173 PageFlagsNode *p = container_of(n, PageFlagsNode, itree);
d941c086 174
67ff2186 175 rc = fn(priv, n->start, n->last + 1, p->flags);
d941c086 176 if (rc != 0) {
67ff2186 177 break;
d941c086
RH
178 }
179 }
67ff2186 180 mmap_unlock();
d941c086 181
67ff2186 182 return rc;
d941c086
RH
183}
184
185static int dump_region(void *priv, target_ulong start,
67ff2186 186 target_ulong end, unsigned long prot)
d941c086
RH
187{
188 FILE *f = (FILE *)priv;
189
67ff2186
RH
190 fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx" "TARGET_FMT_lx" %c%c%c\n",
191 start, end, end - start,
192 ((prot & PAGE_READ) ? 'r' : '-'),
193 ((prot & PAGE_WRITE) ? 'w' : '-'),
194 ((prot & PAGE_EXEC) ? 'x' : '-'));
d941c086
RH
195 return 0;
196}
197
198/* dump memory mappings */
199void page_dump(FILE *f)
200{
201 const int length = sizeof(target_ulong) * 2;
67ff2186
RH
202
203 fprintf(f, "%-*s %-*s %-*s %s\n",
d941c086
RH
204 length, "start", length, "end", length, "size", "prot");
205 walk_memory_regions(f, dump_region);
206}
207
208int page_get_flags(target_ulong address)
209{
67ff2186 210 PageFlagsNode *p = pageflags_find(address, address);
d941c086 211
67ff2186
RH
212 /*
213 * See util/interval-tree.c re lockless lookups: no false positives but
214 * there are false negatives. If we find nothing, retry with the mmap
215 * lock acquired.
216 */
217 if (p) {
218 return p->flags;
219 }
220 if (have_mmap_lock()) {
d941c086
RH
221 return 0;
222 }
67ff2186
RH
223
224 mmap_lock();
225 p = pageflags_find(address, address);
226 mmap_unlock();
227 return p ? p->flags : 0;
228}
229
230/* A subroutine of page_set_flags: insert a new node for [start,last]. */
231static void pageflags_create(target_ulong start, target_ulong last, int flags)
232{
233 PageFlagsNode *p = g_new(PageFlagsNode, 1);
234
235 p->itree.start = start;
236 p->itree.last = last;
237 p->flags = flags;
238 interval_tree_insert(&p->itree, &pageflags_root);
239}
240
241/* A subroutine of page_set_flags: remove everything in [start,last]. */
242static bool pageflags_unset(target_ulong start, target_ulong last)
243{
244 bool inval_tb = false;
245
246 while (true) {
247 PageFlagsNode *p = pageflags_find(start, last);
248 target_ulong p_last;
249
250 if (!p) {
251 break;
252 }
253
254 if (p->flags & PAGE_EXEC) {
255 inval_tb = true;
256 }
257
258 interval_tree_remove(&p->itree, &pageflags_root);
259 p_last = p->itree.last;
260
261 if (p->itree.start < start) {
262 /* Truncate the node from the end, or split out the middle. */
263 p->itree.last = start - 1;
264 interval_tree_insert(&p->itree, &pageflags_root);
265 if (last < p_last) {
266 pageflags_create(last + 1, p_last, p->flags);
267 break;
268 }
269 } else if (p_last <= last) {
270 /* Range completely covers node -- remove it. */
177a8cb8 271 g_free_rcu(p, rcu);
67ff2186
RH
272 } else {
273 /* Truncate the node from the start. */
274 p->itree.start = last + 1;
275 interval_tree_insert(&p->itree, &pageflags_root);
276 break;
277 }
278 }
279
280 return inval_tb;
281}
282
283/*
284 * A subroutine of page_set_flags: nothing overlaps [start,last],
285 * but check adjacent mappings and maybe merge into a single range.
286 */
287static void pageflags_create_merge(target_ulong start, target_ulong last,
288 int flags)
289{
290 PageFlagsNode *next = NULL, *prev = NULL;
291
292 if (start > 0) {
293 prev = pageflags_find(start - 1, start - 1);
294 if (prev) {
295 if (prev->flags == flags) {
296 interval_tree_remove(&prev->itree, &pageflags_root);
297 } else {
298 prev = NULL;
299 }
300 }
301 }
302 if (last + 1 != 0) {
303 next = pageflags_find(last + 1, last + 1);
304 if (next) {
305 if (next->flags == flags) {
306 interval_tree_remove(&next->itree, &pageflags_root);
307 } else {
308 next = NULL;
309 }
310 }
311 }
312
313 if (prev) {
314 if (next) {
315 prev->itree.last = next->itree.last;
177a8cb8 316 g_free_rcu(next, rcu);
67ff2186
RH
317 } else {
318 prev->itree.last = last;
319 }
320 interval_tree_insert(&prev->itree, &pageflags_root);
321 } else if (next) {
322 next->itree.start = start;
323 interval_tree_insert(&next->itree, &pageflags_root);
324 } else {
325 pageflags_create(start, last, flags);
326 }
d941c086
RH
327}
328
329/*
330 * Allow the target to decide if PAGE_TARGET_[12] may be reset.
331 * By default, they are not kept.
332 */
333#ifndef PAGE_TARGET_STICKY
334#define PAGE_TARGET_STICKY 0
335#endif
336#define PAGE_STICKY (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY)
337
67ff2186
RH
338/* A subroutine of page_set_flags: add flags to [start,last]. */
339static bool pageflags_set_clear(target_ulong start, target_ulong last,
340 int set_flags, int clear_flags)
341{
342 PageFlagsNode *p;
343 target_ulong p_start, p_last;
344 int p_flags, merge_flags;
345 bool inval_tb = false;
346
347 restart:
348 p = pageflags_find(start, last);
349 if (!p) {
350 if (set_flags) {
351 pageflags_create_merge(start, last, set_flags);
352 }
353 goto done;
354 }
355
356 p_start = p->itree.start;
357 p_last = p->itree.last;
358 p_flags = p->flags;
359 /* Using mprotect on a page does not change sticky bits. */
360 merge_flags = (p_flags & ~clear_flags) | set_flags;
361
362 /*
363 * Need to flush if an overlapping executable region
364 * removes exec, or adds write.
365 */
366 if ((p_flags & PAGE_EXEC)
367 && (!(merge_flags & PAGE_EXEC)
368 || (merge_flags & ~p_flags & PAGE_WRITE))) {
369 inval_tb = true;
370 }
371
372 /*
373 * If there is an exact range match, update and return without
374 * attempting to merge with adjacent regions.
375 */
376 if (start == p_start && last == p_last) {
377 if (merge_flags) {
378 p->flags = merge_flags;
379 } else {
380 interval_tree_remove(&p->itree, &pageflags_root);
177a8cb8 381 g_free_rcu(p, rcu);
67ff2186
RH
382 }
383 goto done;
384 }
385
386 /*
387 * If sticky bits affect the original mapping, then we must be more
388 * careful about the existing intervals and the separate flags.
389 */
390 if (set_flags != merge_flags) {
391 if (p_start < start) {
392 interval_tree_remove(&p->itree, &pageflags_root);
393 p->itree.last = start - 1;
394 interval_tree_insert(&p->itree, &pageflags_root);
395
396 if (last < p_last) {
397 if (merge_flags) {
398 pageflags_create(start, last, merge_flags);
399 }
400 pageflags_create(last + 1, p_last, p_flags);
401 } else {
402 if (merge_flags) {
403 pageflags_create(start, p_last, merge_flags);
404 }
405 if (p_last < last) {
406 start = p_last + 1;
407 goto restart;
408 }
409 }
410 } else {
411 if (start < p_start && set_flags) {
412 pageflags_create(start, p_start - 1, set_flags);
413 }
414 if (last < p_last) {
415 interval_tree_remove(&p->itree, &pageflags_root);
416 p->itree.start = last + 1;
417 interval_tree_insert(&p->itree, &pageflags_root);
418 if (merge_flags) {
419 pageflags_create(start, last, merge_flags);
420 }
421 } else {
422 if (merge_flags) {
423 p->flags = merge_flags;
424 } else {
425 interval_tree_remove(&p->itree, &pageflags_root);
177a8cb8 426 g_free_rcu(p, rcu);
67ff2186
RH
427 }
428 if (p_last < last) {
429 start = p_last + 1;
430 goto restart;
431 }
432 }
433 }
434 goto done;
435 }
436
437 /* If flags are not changing for this range, incorporate it. */
438 if (set_flags == p_flags) {
439 if (start < p_start) {
440 interval_tree_remove(&p->itree, &pageflags_root);
441 p->itree.start = start;
442 interval_tree_insert(&p->itree, &pageflags_root);
443 }
444 if (p_last < last) {
445 start = p_last + 1;
446 goto restart;
447 }
448 goto done;
449 }
450
451 /* Maybe split out head and/or tail ranges with the original flags. */
452 interval_tree_remove(&p->itree, &pageflags_root);
453 if (p_start < start) {
454 p->itree.last = start - 1;
455 interval_tree_insert(&p->itree, &pageflags_root);
456
457 if (p_last < last) {
458 goto restart;
459 }
460 if (last < p_last) {
461 pageflags_create(last + 1, p_last, p_flags);
462 }
463 } else if (last < p_last) {
464 p->itree.start = last + 1;
465 interval_tree_insert(&p->itree, &pageflags_root);
466 } else {
177a8cb8 467 g_free_rcu(p, rcu);
67ff2186
RH
468 goto restart;
469 }
470 if (set_flags) {
471 pageflags_create(start, last, set_flags);
472 }
473
474 done:
475 return inval_tb;
476}
477
d941c086
RH
478/*
479 * Modify the flags of a page and invalidate the code if necessary.
480 * The flag PAGE_WRITE_ORG is positioned automatically depending
481 * on PAGE_WRITE. The mmap_lock should already be held.
482 */
49840a4a 483void page_set_flags(target_ulong start, target_ulong last, int flags)
d941c086 484{
67ff2186
RH
485 bool reset = false;
486 bool inval_tb = false;
d941c086
RH
487
488 /* This function should never be called with addresses outside the
489 guest address space. If this assert fires, it probably indicates
490 a missing call to h2g_valid. */
49840a4a
RH
491 assert(start <= last);
492 assert(last <= GUEST_ADDR_MAX);
d941c086
RH
493 /* Only set PAGE_ANON with new mappings. */
494 assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
495 assert_memory_lock();
496
49840a4a
RH
497 start &= TARGET_PAGE_MASK;
498 last |= ~TARGET_PAGE_MASK;
d941c086 499
67ff2186
RH
500 if (!(flags & PAGE_VALID)) {
501 flags = 0;
502 } else {
503 reset = flags & PAGE_RESET;
504 flags &= ~PAGE_RESET;
505 if (flags & PAGE_WRITE) {
506 flags |= PAGE_WRITE_ORG;
507 }
d941c086 508 }
67ff2186
RH
509
510 if (!flags || reset) {
10310cbd 511 page_reset_target_data(start, last);
67ff2186 512 inval_tb |= pageflags_unset(start, last);
d941c086 513 }
67ff2186
RH
514 if (flags) {
515 inval_tb |= pageflags_set_clear(start, last, flags,
516 ~(reset ? 0 : PAGE_STICKY));
d941c086 517 }
d941c086 518 if (inval_tb) {
e506ad6a 519 tb_invalidate_phys_range(start, last);
d941c086
RH
520 }
521}
522
523int page_check_range(target_ulong start, target_ulong len, int flags)
524{
67ff2186 525 target_ulong last;
e630c012
RH
526 int locked; /* tri-state: =0: unlocked, +1: global, -1: local */
527 int ret;
d941c086
RH
528
529 if (len == 0) {
67ff2186 530 return 0; /* trivial length */
d941c086 531 }
67ff2186
RH
532
533 last = start + len - 1;
534 if (last < start) {
535 return -1; /* wrap around */
d941c086
RH
536 }
537
e630c012 538 locked = have_mmap_lock();
67ff2186
RH
539 while (true) {
540 PageFlagsNode *p = pageflags_find(start, last);
541 int missing;
d941c086 542
d941c086 543 if (!p) {
e630c012
RH
544 if (!locked) {
545 /*
546 * Lockless lookups have false negatives.
547 * Retry with the lock held.
548 */
549 mmap_lock();
550 locked = -1;
551 p = pageflags_find(start, last);
552 }
553 if (!p) {
554 ret = -1; /* entire region invalid */
555 break;
556 }
d941c086 557 }
67ff2186 558 if (start < p->itree.start) {
e630c012
RH
559 ret = -1; /* initial bytes invalid */
560 break;
d941c086
RH
561 }
562
67ff2186
RH
563 missing = flags & ~p->flags;
564 if (missing & PAGE_READ) {
e630c012
RH
565 ret = -1; /* page not readable */
566 break;
d941c086 567 }
67ff2186 568 if (missing & PAGE_WRITE) {
d941c086 569 if (!(p->flags & PAGE_WRITE_ORG)) {
e630c012
RH
570 ret = -1; /* page not writable */
571 break;
67ff2186
RH
572 }
573 /* Asking about writable, but has been protected: undo. */
574 if (!page_unprotect(start, 0)) {
e630c012
RH
575 ret = -1;
576 break;
d941c086 577 }
67ff2186
RH
578 /* TODO: page_unprotect should take a range, not a single page. */
579 if (last - start < TARGET_PAGE_SIZE) {
e630c012
RH
580 ret = 0; /* ok */
581 break;
d941c086 582 }
67ff2186
RH
583 start += TARGET_PAGE_SIZE;
584 continue;
d941c086 585 }
67ff2186
RH
586
587 if (last <= p->itree.last) {
e630c012
RH
588 ret = 0; /* ok */
589 break;
67ff2186
RH
590 }
591 start = p->itree.last + 1;
d941c086 592 }
e630c012
RH
593
594 /* Release the lock if acquired locally. */
595 if (locked < 0) {
596 mmap_unlock();
597 }
598 return ret;
d941c086
RH
599}
600
67ff2186 601void page_protect(tb_page_addr_t address)
d941c086 602{
67ff2186
RH
603 PageFlagsNode *p;
604 target_ulong start, last;
d941c086
RH
605 int prot;
606
67ff2186
RH
607 assert_memory_lock();
608
609 if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
610 start = address & TARGET_PAGE_MASK;
611 last = start + TARGET_PAGE_SIZE - 1;
612 } else {
613 start = address & qemu_host_page_mask;
614 last = start + qemu_host_page_size - 1;
615 }
616
617 p = pageflags_find(start, last);
618 if (!p) {
619 return;
620 }
621 prot = p->flags;
622
623 if (unlikely(p->itree.last < last)) {
624 /* More than one protection region covers the one host page. */
625 assert(TARGET_PAGE_SIZE < qemu_host_page_size);
626 while ((p = pageflags_next(p, start, last)) != NULL) {
d941c086 627 prot |= p->flags;
d941c086 628 }
67ff2186
RH
629 }
630
631 if (prot & PAGE_WRITE) {
632 pageflags_set_clear(start, last, 0, PAGE_WRITE);
633 mprotect(g2h_untagged(start), qemu_host_page_size,
634 prot & (PAGE_READ | PAGE_EXEC) ? PROT_READ : PROT_NONE);
d941c086
RH
635 }
636}
637
638/*
639 * Called from signal handler: invalidate the code and unprotect the
640 * page. Return 0 if the fault was not handled, 1 if it was handled,
641 * and 2 if it was handled but the caller must cause the TB to be
642 * immediately exited. (We can only return 2 if the 'pc' argument is
643 * non-zero.)
644 */
645int page_unprotect(target_ulong address, uintptr_t pc)
646{
67ff2186 647 PageFlagsNode *p;
d941c086 648 bool current_tb_invalidated;
d941c086
RH
649
650 /*
651 * Technically this isn't safe inside a signal handler. However we
652 * know this only ever happens in a synchronous SEGV handler, so in
653 * practice it seems to be ok.
654 */
655 mmap_lock();
656
67ff2186
RH
657 p = pageflags_find(address, address);
658
659 /* If this address was not really writable, nothing to do. */
660 if (!p || !(p->flags & PAGE_WRITE_ORG)) {
d941c086
RH
661 mmap_unlock();
662 return 0;
663 }
664
67ff2186
RH
665 current_tb_invalidated = false;
666 if (p->flags & PAGE_WRITE) {
667 /*
668 * If the page is actually marked WRITE then assume this is because
669 * this thread raced with another one which got here first and
670 * set the page to PAGE_WRITE and did the TB invalidate for us.
671 */
d941c086 672#ifdef TARGET_HAS_PRECISE_SMC
67ff2186
RH
673 TranslationBlock *current_tb = tcg_tb_lookup(pc);
674 if (current_tb) {
675 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
676 }
d941c086 677#endif
67ff2186
RH
678 } else {
679 target_ulong start, len, i;
680 int prot;
681
682 if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
683 start = address & TARGET_PAGE_MASK;
684 len = TARGET_PAGE_SIZE;
685 prot = p->flags | PAGE_WRITE;
686 pageflags_set_clear(start, start + len - 1, PAGE_WRITE, 0);
687 current_tb_invalidated = tb_invalidate_phys_page_unwind(start, pc);
d941c086 688 } else {
67ff2186
RH
689 start = address & qemu_host_page_mask;
690 len = qemu_host_page_size;
d941c086 691 prot = 0;
d941c086 692
67ff2186
RH
693 for (i = 0; i < len; i += TARGET_PAGE_SIZE) {
694 target_ulong addr = start + i;
695
696 p = pageflags_find(addr, addr);
697 if (p) {
698 prot |= p->flags;
699 if (p->flags & PAGE_WRITE_ORG) {
700 prot |= PAGE_WRITE;
701 pageflags_set_clear(addr, addr + TARGET_PAGE_SIZE - 1,
702 PAGE_WRITE, 0);
703 }
704 }
d941c086
RH
705 /*
706 * Since the content will be modified, we must invalidate
707 * the corresponding translated code.
708 */
709 current_tb_invalidated |=
710 tb_invalidate_phys_page_unwind(addr, pc);
711 }
d941c086 712 }
67ff2186
RH
713 if (prot & PAGE_EXEC) {
714 prot = (prot & ~PAGE_EXEC) | PAGE_READ;
715 }
716 mprotect((void *)g2h_untagged(start), len, prot & PAGE_BITS);
d941c086
RH
717 }
718 mmap_unlock();
67ff2186
RH
719
720 /* If current TB was invalidated return to main loop */
721 return current_tb_invalidated ? 2 : 1;
d941c086
RH
722}
723
4f8f4127 724static int probe_access_internal(CPUArchState *env, vaddr addr,
069cfe77
RH
725 int fault_size, MMUAccessType access_type,
726 bool nonfault, uintptr_t ra)
59e96ac6 727{
72d2bbf9
RH
728 int acc_flag;
729 bool maperr;
c25c283d 730
c25c283d
DH
731 switch (access_type) {
732 case MMU_DATA_STORE:
72d2bbf9 733 acc_flag = PAGE_WRITE_ORG;
c25c283d
DH
734 break;
735 case MMU_DATA_LOAD:
72d2bbf9 736 acc_flag = PAGE_READ;
c25c283d
DH
737 break;
738 case MMU_INST_FETCH:
72d2bbf9 739 acc_flag = PAGE_EXEC;
c25c283d
DH
740 break;
741 default:
742 g_assert_not_reached();
743 }
744
72d2bbf9
RH
745 if (guest_addr_valid_untagged(addr)) {
746 int page_flags = page_get_flags(addr);
747 if (page_flags & acc_flag) {
748 return 0; /* success */
069cfe77 749 }
72d2bbf9
RH
750 maperr = !(page_flags & PAGE_VALID);
751 } else {
752 maperr = true;
753 }
754
755 if (nonfault) {
756 return TLB_INVALID_MASK;
59e96ac6 757 }
72d2bbf9
RH
758
759 cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
069cfe77
RH
760}
761
4f8f4127 762int probe_access_flags(CPUArchState *env, vaddr addr, int size,
069cfe77
RH
763 MMUAccessType access_type, int mmu_idx,
764 bool nonfault, void **phost, uintptr_t ra)
765{
766 int flags;
767
1770b2f2
DHB
768 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
769 flags = probe_access_internal(env, addr, size, access_type, nonfault, ra);
3e8f1628 770 *phost = flags ? NULL : g2h(env_cpu(env), addr);
069cfe77
RH
771 return flags;
772}
773
4f8f4127 774void *probe_access(CPUArchState *env, vaddr addr, int size,
069cfe77
RH
775 MMUAccessType access_type, int mmu_idx, uintptr_t ra)
776{
777 int flags;
778
779 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
780 flags = probe_access_internal(env, addr, size, access_type, false, ra);
781 g_assert(flags == 0);
fef39ccd 782
3e8f1628 783 return size ? g2h(env_cpu(env), addr) : NULL;
59e96ac6
DH
784}
785
4f8f4127 786tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
cdf71308
RH
787 void **hostp)
788{
789 int flags;
790
791 flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0);
792 g_assert(flags == 0);
793
794 if (hostp) {
795 *hostp = g2h_untagged(addr);
796 }
797 return addr;
798}
799
f88f3ac9
RH
800#ifdef TARGET_PAGE_DATA_SIZE
801/*
802 * Allocate chunks of target data together. For the only current user,
803 * if we allocate one hunk per page, we have overhead of 40/128 or 40%.
804 * Therefore, allocate memory for 64 pages at a time for overhead < 1%.
805 */
806#define TPD_PAGES 64
807#define TBD_MASK (TARGET_PAGE_MASK * TPD_PAGES)
808
809typedef struct TargetPageDataNode {
177a8cb8 810 struct rcu_head rcu;
f88f3ac9
RH
811 IntervalTreeNode itree;
812 char data[TPD_PAGES][TARGET_PAGE_DATA_SIZE] __attribute__((aligned));
813} TargetPageDataNode;
814
815static IntervalTreeRoot targetdata_root;
816
10310cbd 817void page_reset_target_data(target_ulong start, target_ulong last)
0fe61084 818{
f88f3ac9 819 IntervalTreeNode *n, *next;
f88f3ac9 820
0fe61084
RH
821 assert_memory_lock();
822
10310cbd
RH
823 start &= TARGET_PAGE_MASK;
824 last |= ~TARGET_PAGE_MASK;
f88f3ac9
RH
825
826 for (n = interval_tree_iter_first(&targetdata_root, start, last),
827 next = n ? interval_tree_iter_next(n, start, last) : NULL;
828 n != NULL;
829 n = next,
830 next = next ? interval_tree_iter_next(n, start, last) : NULL) {
831 target_ulong n_start, n_last, p_ofs, p_len;
177a8cb8 832 TargetPageDataNode *t = container_of(n, TargetPageDataNode, itree);
f88f3ac9
RH
833
834 if (n->start >= start && n->last <= last) {
835 interval_tree_remove(n, &targetdata_root);
177a8cb8 836 g_free_rcu(t, rcu);
f88f3ac9
RH
837 continue;
838 }
0fe61084 839
f88f3ac9
RH
840 if (n->start < start) {
841 n_start = start;
842 p_ofs = (start - n->start) >> TARGET_PAGE_BITS;
843 } else {
844 n_start = n->start;
845 p_ofs = 0;
846 }
847 n_last = MIN(last, n->last);
848 p_len = (n_last + 1 - n_start) >> TARGET_PAGE_BITS;
0fe61084 849
f88f3ac9 850 memset(t->data[p_ofs], 0, p_len * TARGET_PAGE_DATA_SIZE);
0fe61084 851 }
0fe61084
RH
852}
853
0fe61084
RH
854void *page_get_target_data(target_ulong address)
855{
f88f3ac9
RH
856 IntervalTreeNode *n;
857 TargetPageDataNode *t;
858 target_ulong page, region;
859
860 page = address & TARGET_PAGE_MASK;
861 region = address & TBD_MASK;
0fe61084 862
f88f3ac9
RH
863 n = interval_tree_iter_first(&targetdata_root, page, page);
864 if (!n) {
865 /*
866 * See util/interval-tree.c re lockless lookups: no false positives
867 * but there are false negatives. If we find nothing, retry with
868 * the mmap lock acquired. We also need the lock for the
869 * allocation + insert.
870 */
871 mmap_lock();
872 n = interval_tree_iter_first(&targetdata_root, page, page);
873 if (!n) {
874 t = g_new0(TargetPageDataNode, 1);
875 n = &t->itree;
876 n->start = region;
877 n->last = region | ~TBD_MASK;
878 interval_tree_insert(n, &targetdata_root);
879 }
880 mmap_unlock();
0fe61084 881 }
f88f3ac9
RH
882
883 t = container_of(n, TargetPageDataNode, itree);
884 return t->data[(page - region) >> TARGET_PAGE_BITS];
0fe61084 885}
f88f3ac9 886#else
10310cbd 887void page_reset_target_data(target_ulong start, target_ulong last) { }
f88f3ac9 888#endif /* TARGET_PAGE_DATA_SIZE */
0fe61084 889
a411d296
PMD
890/* The softmmu versions of these helpers are in cputlb.c. */
891
de95016d
RH
892static void *cpu_mmu_lookup(CPUArchState *env, abi_ptr addr,
893 MemOp mop, uintptr_t ra, MMUAccessType type)
b9e60257 894{
9395cd0a 895 int a_bits = get_alignment_bits(mop);
f83bcecb 896 void *ret;
b9e60257 897
9395cd0a
RH
898 /* Enforce guest required alignment. */
899 if (unlikely(addr & ((1 << a_bits) - 1))) {
900 cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra);
901 }
b9e60257 902
f83bcecb
RH
903 ret = g2h(env_cpu(env), addr);
904 set_helper_retaddr(ra);
ed4cfbcd
RH
905 return ret;
906}
907
cdfac37b
RH
908#include "ldst_atomicity.c.inc"
909
de95016d
RH
910static uint8_t do_ld1_mmu(CPUArchState *env, abi_ptr addr,
911 MemOp mop, uintptr_t ra)
ed4cfbcd 912{
f83bcecb
RH
913 void *haddr;
914 uint8_t ret;
ed4cfbcd 915
de95016d
RH
916 tcg_debug_assert((mop & MO_SIZE) == MO_8);
917 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
f83bcecb 918 ret = ldub_p(haddr);
ed4cfbcd 919 clear_helper_retaddr();
de95016d
RH
920 return ret;
921}
922
24e46e6c 923tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
de95016d
RH
924 MemOpIdx oi, uintptr_t ra)
925{
926 return do_ld1_mmu(env, addr, get_memop(oi), ra);
927}
928
24e46e6c 929tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
de95016d
RH
930 MemOpIdx oi, uintptr_t ra)
931{
932 return (int8_t)do_ld1_mmu(env, addr, get_memop(oi), ra);
933}
934
935uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
936 MemOpIdx oi, uintptr_t ra)
937{
938 uint8_t ret = do_ld1_mmu(env, addr, get_memop(oi), ra);
f83bcecb 939 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
ed4cfbcd
RH
940 return ret;
941}
942
fbea7a40
RH
943static uint16_t do_ld2_mmu(CPUArchState *env, abi_ptr addr,
944 MemOp mop, uintptr_t ra)
ed4cfbcd 945{
f83bcecb
RH
946 void *haddr;
947 uint16_t ret;
ed4cfbcd 948
de95016d
RH
949 tcg_debug_assert((mop & MO_SIZE) == MO_16);
950 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
951 ret = load_atom_2(env, ra, haddr, mop);
ed4cfbcd 952 clear_helper_retaddr();
de95016d
RH
953
954 if (mop & MO_BSWAP) {
955 ret = bswap16(ret);
956 }
957 return ret;
958}
959
fbea7a40 960tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
de95016d
RH
961 MemOpIdx oi, uintptr_t ra)
962{
fbea7a40 963 return do_ld2_mmu(env, addr, get_memop(oi), ra);
de95016d
RH
964}
965
fbea7a40
RH
966tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
967 MemOpIdx oi, uintptr_t ra)
de95016d 968{
fbea7a40 969 return (int16_t)do_ld2_mmu(env, addr, get_memop(oi), ra);
ed4cfbcd
RH
970}
971
fbea7a40
RH
972uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
973 MemOpIdx oi, uintptr_t ra)
de95016d 974{
fbea7a40 975 uint16_t ret = do_ld2_mmu(env, addr, get_memop(oi), ra);
de95016d 976 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
fbea7a40 977 return ret;
de95016d
RH
978}
979
fbea7a40
RH
980static uint32_t do_ld4_mmu(CPUArchState *env, abi_ptr addr,
981 MemOp mop, uintptr_t ra)
ed4cfbcd 982{
f83bcecb 983 void *haddr;
ed4cfbcd
RH
984 uint32_t ret;
985
de95016d
RH
986 tcg_debug_assert((mop & MO_SIZE) == MO_32);
987 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
988 ret = load_atom_4(env, ra, haddr, mop);
ed4cfbcd 989 clear_helper_retaddr();
de95016d
RH
990
991 if (mop & MO_BSWAP) {
992 ret = bswap32(ret);
993 }
994 return ret;
995}
996
fbea7a40 997tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
de95016d
RH
998 MemOpIdx oi, uintptr_t ra)
999{
fbea7a40 1000 return do_ld4_mmu(env, addr, get_memop(oi), ra);
de95016d
RH
1001}
1002
fbea7a40
RH
1003tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
1004 MemOpIdx oi, uintptr_t ra)
de95016d 1005{
fbea7a40 1006 return (int32_t)do_ld4_mmu(env, addr, get_memop(oi), ra);
ed4cfbcd
RH
1007}
1008
fbea7a40
RH
1009uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
1010 MemOpIdx oi, uintptr_t ra)
de95016d 1011{
fbea7a40 1012 uint32_t ret = do_ld4_mmu(env, addr, get_memop(oi), ra);
de95016d 1013 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
fbea7a40 1014 return ret;
de95016d
RH
1015}
1016
fbea7a40
RH
1017static uint64_t do_ld8_mmu(CPUArchState *env, abi_ptr addr,
1018 MemOp mop, uintptr_t ra)
ed4cfbcd 1019{
f83bcecb 1020 void *haddr;
ed4cfbcd
RH
1021 uint64_t ret;
1022
de95016d
RH
1023 tcg_debug_assert((mop & MO_SIZE) == MO_64);
1024 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1025 ret = load_atom_8(env, ra, haddr, mop);
b9e60257 1026 clear_helper_retaddr();
b9e60257 1027
de95016d
RH
1028 if (mop & MO_BSWAP) {
1029 ret = bswap64(ret);
1030 }
1031 return ret;
b9e60257
RH
1032}
1033
fbea7a40 1034uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
f83bcecb 1035 MemOpIdx oi, uintptr_t ra)
b9e60257 1036{
fbea7a40 1037 return do_ld8_mmu(env, addr, get_memop(oi), ra);
b9e60257
RH
1038}
1039
fbea7a40
RH
1040uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
1041 MemOpIdx oi, uintptr_t ra)
b9e60257 1042{
fbea7a40 1043 uint64_t ret = do_ld8_mmu(env, addr, get_memop(oi), ra);
f83bcecb 1044 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
fbea7a40 1045 return ret;
ed4cfbcd
RH
1046}
1047
fbea7a40
RH
1048static Int128 do_ld16_mmu(CPUArchState *env, abi_ptr addr,
1049 MemOp mop, uintptr_t ra)
cb48f365
RH
1050{
1051 void *haddr;
1052 Int128 ret;
1053
35c653c4
RH
1054 tcg_debug_assert((mop & MO_SIZE) == MO_128);
1055 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1056 ret = load_atom_16(env, ra, haddr, mop);
cb48f365 1057 clear_helper_retaddr();
35c653c4
RH
1058
1059 if (mop & MO_BSWAP) {
1060 ret = bswap128(ret);
1061 }
1062 return ret;
1063}
1064
fbea7a40
RH
1065Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
1066 MemOpIdx oi, uintptr_t ra)
35c653c4 1067{
fbea7a40 1068 return do_ld16_mmu(env, addr, get_memop(oi), ra);
35c653c4
RH
1069}
1070
fbea7a40 1071Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, MemOpIdx oi)
35c653c4 1072{
fbea7a40 1073 return helper_ld16_mmu(env, addr, oi, GETPC());
cb48f365
RH
1074}
1075
fbea7a40
RH
1076Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
1077 MemOpIdx oi, uintptr_t ra)
cb48f365 1078{
fbea7a40 1079 Int128 ret = do_ld16_mmu(env, addr, get_memop(oi), ra);
cb48f365 1080 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
cb48f365
RH
1081 return ret;
1082}
1083
de95016d
RH
1084static void do_st1_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
1085 MemOp mop, uintptr_t ra)
ed4cfbcd 1086{
f83bcecb 1087 void *haddr;
ed4cfbcd 1088
de95016d
RH
1089 tcg_debug_assert((mop & MO_SIZE) == MO_8);
1090 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
f83bcecb
RH
1091 stb_p(haddr, val);
1092 clear_helper_retaddr();
ed4cfbcd
RH
1093}
1094
24e46e6c 1095void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
f83bcecb 1096 MemOpIdx oi, uintptr_t ra)
ed4cfbcd 1097{
de95016d
RH
1098 do_st1_mmu(env, addr, val, get_memop(oi), ra);
1099}
ed4cfbcd 1100
de95016d
RH
1101void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
1102 MemOpIdx oi, uintptr_t ra)
1103{
1104 do_st1_mmu(env, addr, val, get_memop(oi), ra);
f83bcecb 1105 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
b9e60257
RH
1106}
1107
fbea7a40
RH
1108static void do_st2_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
1109 MemOp mop, uintptr_t ra)
b9e60257 1110{
f83bcecb 1111 void *haddr;
b9e60257 1112
de95016d
RH
1113 tcg_debug_assert((mop & MO_SIZE) == MO_16);
1114 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
b9e60257 1115
de95016d
RH
1116 if (mop & MO_BSWAP) {
1117 val = bswap16(val);
1118 }
fbea7a40
RH
1119 store_atom_2(env, ra, haddr, mop, val);
1120 clear_helper_retaddr();
de95016d
RH
1121}
1122
fbea7a40 1123void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
de95016d
RH
1124 MemOpIdx oi, uintptr_t ra)
1125{
fbea7a40 1126 do_st2_mmu(env, addr, val, get_memop(oi), ra);
ed4cfbcd
RH
1127}
1128
fbea7a40 1129void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
f83bcecb 1130 MemOpIdx oi, uintptr_t ra)
de95016d 1131{
fbea7a40 1132 do_st2_mmu(env, addr, val, get_memop(oi), ra);
de95016d
RH
1133 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1134}
1135
fbea7a40
RH
1136static void do_st4_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
1137 MemOp mop, uintptr_t ra)
ed4cfbcd 1138{
f83bcecb 1139 void *haddr;
ed4cfbcd 1140
de95016d
RH
1141 tcg_debug_assert((mop & MO_SIZE) == MO_32);
1142 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
de95016d
RH
1143
1144 if (mop & MO_BSWAP) {
1145 val = bswap32(val);
1146 }
fbea7a40
RH
1147 store_atom_4(env, ra, haddr, mop, val);
1148 clear_helper_retaddr();
de95016d
RH
1149}
1150
fbea7a40 1151void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
de95016d
RH
1152 MemOpIdx oi, uintptr_t ra)
1153{
fbea7a40 1154 do_st4_mmu(env, addr, val, get_memop(oi), ra);
b9e60257
RH
1155}
1156
fbea7a40
RH
1157void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
1158 MemOpIdx oi, uintptr_t ra)
de95016d 1159{
fbea7a40 1160 do_st4_mmu(env, addr, val, get_memop(oi), ra);
de95016d
RH
1161 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1162}
1163
fbea7a40
RH
1164static void do_st8_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
1165 MemOp mop, uintptr_t ra)
b9e60257 1166{
f83bcecb 1167 void *haddr;
b9e60257 1168
de95016d
RH
1169 tcg_debug_assert((mop & MO_SIZE) == MO_64);
1170 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
de95016d
RH
1171
1172 if (mop & MO_BSWAP) {
1173 val = bswap64(val);
1174 }
fbea7a40
RH
1175 store_atom_8(env, ra, haddr, mop, val);
1176 clear_helper_retaddr();
de95016d
RH
1177}
1178
fbea7a40 1179void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
de95016d
RH
1180 MemOpIdx oi, uintptr_t ra)
1181{
fbea7a40 1182 do_st8_mmu(env, addr, val, get_memop(oi), ra);
b9e60257
RH
1183}
1184
fbea7a40 1185void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
f83bcecb 1186 MemOpIdx oi, uintptr_t ra)
ed4cfbcd 1187{
fbea7a40 1188 do_st8_mmu(env, addr, val, get_memop(oi), ra);
f83bcecb 1189 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
ed4cfbcd
RH
1190}
1191
fbea7a40
RH
1192static void do_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
1193 MemOp mop, uintptr_t ra)
35c653c4
RH
1194{
1195 void *haddr;
1196
1197 tcg_debug_assert((mop & MO_SIZE) == MO_128);
1198 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
fbea7a40
RH
1199
1200 if (mop & MO_BSWAP) {
1201 val = bswap128(val);
1202 }
35c653c4
RH
1203 store_atom_16(env, ra, haddr, mop, val);
1204 clear_helper_retaddr();
1205}
1206
24e46e6c 1207void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
35c653c4
RH
1208 MemOpIdx oi, uintptr_t ra)
1209{
fbea7a40 1210 do_st16_mmu(env, addr, val, get_memop(oi), ra);
35c653c4
RH
1211}
1212
e570597a 1213void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
35c653c4
RH
1214{
1215 helper_st16_mmu(env, addr, val, oi, GETPC());
1216}
1217
fbea7a40
RH
1218void cpu_st16_mmu(CPUArchState *env, abi_ptr addr,
1219 Int128 val, MemOpIdx oi, uintptr_t ra)
cb48f365 1220{
fbea7a40 1221 do_st16_mmu(env, addr, val, get_memop(oi), ra);
cb48f365
RH
1222 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1223}
1224
ed4cfbcd
RH
1225uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1226{
1227 uint32_t ret;
1228
1229 set_helper_retaddr(1);
3e8f1628 1230 ret = ldub_p(g2h_untagged(ptr));
ed4cfbcd
RH
1231 clear_helper_retaddr();
1232 return ret;
1233}
1234
1235uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1236{
1237 uint32_t ret;
1238
1239 set_helper_retaddr(1);
3e8f1628 1240 ret = lduw_p(g2h_untagged(ptr));
ed4cfbcd
RH
1241 clear_helper_retaddr();
1242 return ret;
1243}
1244
1245uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1246{
1247 uint32_t ret;
1248
1249 set_helper_retaddr(1);
3e8f1628 1250 ret = ldl_p(g2h_untagged(ptr));
ed4cfbcd
RH
1251 clear_helper_retaddr();
1252 return ret;
1253}
1254
1255uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1256{
1257 uint64_t ret;
1258
1259 set_helper_retaddr(1);
3e8f1628 1260 ret = ldq_p(g2h_untagged(ptr));
ed4cfbcd
RH
1261 clear_helper_retaddr();
1262 return ret;
1263}
1264
28990626
RH
1265uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
1266 MemOpIdx oi, uintptr_t ra)
1267{
1268 void *haddr;
1269 uint8_t ret;
1270
1271 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1272 ret = ldub_p(haddr);
1273 clear_helper_retaddr();
1274 return ret;
1275}
1276
1277uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
1278 MemOpIdx oi, uintptr_t ra)
1279{
1280 void *haddr;
1281 uint16_t ret;
1282
1283 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1284 ret = lduw_p(haddr);
1285 clear_helper_retaddr();
1286 if (get_memop(oi) & MO_BSWAP) {
1287 ret = bswap16(ret);
1288 }
1289 return ret;
1290}
1291
1292uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
1293 MemOpIdx oi, uintptr_t ra)
1294{
1295 void *haddr;
1296 uint32_t ret;
1297
1298 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1299 ret = ldl_p(haddr);
1300 clear_helper_retaddr();
1301 if (get_memop(oi) & MO_BSWAP) {
1302 ret = bswap32(ret);
1303 }
1304 return ret;
1305}
1306
1307uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
1308 MemOpIdx oi, uintptr_t ra)
1309{
1310 void *haddr;
1311 uint64_t ret;
1312
28990626
RH
1313 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
1314 ret = ldq_p(haddr);
1315 clear_helper_retaddr();
1316 if (get_memop(oi) & MO_BSWAP) {
1317 ret = bswap64(ret);
1318 }
1319 return ret;
1320}
1321
f83bcecb
RH
1322#include "ldst_common.c.inc"
1323
a754f7f3
RH
1324/*
1325 * Do not allow unaligned operations to proceed. Return the host address.
a754f7f3 1326 */
a411d296 1327static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
7bedee32 1328 MemOpIdx oi, int size, uintptr_t retaddr)
a411d296 1329{
fce3f474
RH
1330 MemOp mop = get_memop(oi);
1331 int a_bits = get_alignment_bits(mop);
1332 void *ret;
1333
1334 /* Enforce guest required alignment. */
1335 if (unlikely(addr & ((1 << a_bits) - 1))) {
7bedee32 1336 cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, retaddr);
fce3f474
RH
1337 }
1338
a411d296
PMD
1339 /* Enforce qemu required alignment. */
1340 if (unlikely(addr & (size - 1))) {
29a0af61 1341 cpu_loop_exit_atomic(env_cpu(env), retaddr);
a411d296 1342 }
fce3f474
RH
1343
1344 ret = g2h(env_cpu(env), addr);
08b97f7f
RH
1345 set_helper_retaddr(retaddr);
1346 return ret;
a411d296
PMD
1347}
1348
be9568b4
RH
1349#include "atomic_common.c.inc"
1350
1351/*
1352 * First set of functions passes in OI and RETADDR.
1353 * This makes them callable from other helpers.
1354 */
1355
be9568b4
RH
1356#define ATOMIC_NAME(X) \
1357 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
08b97f7f 1358#define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
a411d296 1359
a411d296
PMD
1360#define DATA_SIZE 1
1361#include "atomic_template.h"
1362
1363#define DATA_SIZE 2
1364#include "atomic_template.h"
1365
1366#define DATA_SIZE 4
1367#include "atomic_template.h"
1368
1369#ifdef CONFIG_ATOMIC64
1370#define DATA_SIZE 8
1371#include "atomic_template.h"
1372#endif
1373
4deb39eb 1374#if defined(CONFIG_ATOMIC128) || defined(CONFIG_CMPXCHG128)
be9568b4
RH
1375#define DATA_SIZE 16
1376#include "atomic_template.h"
1377#endif