]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/alpha/kernel/time.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-bionic-kernel.git] / arch / alpha / kernel / time.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/arch/alpha/kernel/time.c
4 *
5 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
6 *
85d0b3a5 7 * This file contains the clocksource time handling.
1da177e4
LT
8 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
9 * "A Kernel Model for Precision Timekeeping" by Dave Mills
10 * 1997-01-09 Adrian Sun
11 * use interval timer if CONFIG_RTC=y
12 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
13 * fixed tick loss calculation in timer_interrupt
14 * (round system clock to nearest tick instead of truncating)
15 * fixed algorithm in time_init for getting time from CMOS clock
16 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
17 * fixed algorithm in do_gettimeofday() for calculating the precise time
18 * from processor cycle counter (now taking lost_ticks into account)
1da177e4
LT
19 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
20 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
21 */
1da177e4
LT
22#include <linux/errno.h>
23#include <linux/module.h>
24#include <linux/sched.h>
25#include <linux/kernel.h>
26#include <linux/param.h>
27#include <linux/string.h>
28#include <linux/mm.h>
29#include <linux/delay.h>
30#include <linux/ioport.h>
31#include <linux/irq.h>
32#include <linux/interrupt.h>
33#include <linux/init.h>
34#include <linux/bcd.h>
35#include <linux/profile.h>
e360adbe 36#include <linux/irq_work.h>
1da177e4 37
7c0f6ba6 38#include <linux/uaccess.h>
1da177e4
LT
39#include <asm/io.h>
40#include <asm/hwrpb.h>
1da177e4
LT
41
42#include <linux/mc146818rtc.h>
43#include <linux/time.h>
44#include <linux/timex.h>
9ce34c8f 45#include <linux/clocksource.h>
a1659d6d 46#include <linux/clockchips.h>
1da177e4
LT
47
48#include "proto.h"
49#include "irq_impl.h"
50
1da177e4 51DEFINE_SPINLOCK(rtc_lock);
cff52daf 52EXPORT_SYMBOL(rtc_lock);
1da177e4 53
1da177e4
LT
54unsigned long est_cycle_freq;
55
e360adbe 56#ifdef CONFIG_IRQ_WORK
979f8671 57
e360adbe 58DEFINE_PER_CPU(u8, irq_work_pending);
979f8671 59
2999a4b3
CL
60#define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
61#define test_irq_work_pending() __this_cpu_read(irq_work_pending)
62#define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
979f8671 63
0f933625 64void arch_irq_work_raise(void)
979f8671 65{
e360adbe 66 set_irq_work_pending_flag();
979f8671
MC
67}
68
e360adbe 69#else /* CONFIG_IRQ_WORK */
979f8671 70
e360adbe
PZ
71#define test_irq_work_pending() 0
72#define clear_irq_work_pending()
979f8671 73
e360adbe 74#endif /* CONFIG_IRQ_WORK */
979f8671 75
1da177e4
LT
76
77static inline __u32 rpcc(void)
78{
91531b05 79 return __builtin_alpha_rpcc();
1da177e4
LT
80}
81
a1659d6d
RH
82
83\f
1da177e4 84/*
a1659d6d 85 * The RTC as a clock_event_device primitive.
1da177e4 86 */
1da177e4 87
a1659d6d 88static DEFINE_PER_CPU(struct clock_event_device, cpu_ce);
1da177e4 89
a1659d6d 90irqreturn_t
4914d7b4 91rtc_timer_interrupt(int irq, void *dev)
a1659d6d
RH
92{
93 int cpu = smp_processor_id();
94 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
1da177e4 95
a1659d6d 96 /* Don't run the hook for UNUSED or SHUTDOWN. */
6ec81932 97 if (likely(clockevent_state_periodic(ce)))
a1659d6d 98 ce->event_handler(ce);
aa02cd2d 99
e360adbe
PZ
100 if (test_irq_work_pending()) {
101 clear_irq_work_pending();
102 irq_work_run();
979f8671
MC
103 }
104
1da177e4
LT
105 return IRQ_HANDLED;
106}
107
a1659d6d
RH
108static int
109rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
110{
111 /* This hook is for oneshot mode, which we don't support. */
112 return -EINVAL;
113}
114
4914d7b4
RH
115static void __init
116init_rtc_clockevent(void)
a1659d6d
RH
117{
118 int cpu = smp_processor_id();
119 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
120
121 *ce = (struct clock_event_device){
122 .name = "rtc",
123 .features = CLOCK_EVT_FEAT_PERIODIC,
124 .rating = 100,
125 .cpumask = cpumask_of(cpu),
a1659d6d
RH
126 .set_next_event = rtc_ce_set_next_event,
127 };
128
129 clockevents_config_and_register(ce, CONFIG_HZ, 0, 0);
130}
131
4914d7b4
RH
132\f
133/*
134 * The QEMU clock as a clocksource primitive.
135 */
136
a5a1d1c2 137static u64
4914d7b4
RH
138qemu_cs_read(struct clocksource *cs)
139{
140 return qemu_get_vmtime();
141}
142
143static struct clocksource qemu_cs = {
144 .name = "qemu",
145 .rating = 400,
146 .read = qemu_cs_read,
147 .mask = CLOCKSOURCE_MASK(64),
148 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
149 .max_idle_ns = LONG_MAX
150};
151
152
153/*
154 * The QEMU alarm as a clock_event_device primitive.
155 */
156
6ec81932 157static int qemu_ce_shutdown(struct clock_event_device *ce)
4914d7b4
RH
158{
159 /* The mode member of CE is updated for us in generic code.
160 Just make sure that the event is disabled. */
161 qemu_set_alarm_abs(0);
6ec81932 162 return 0;
4914d7b4
RH
163}
164
165static int
166qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
167{
168 qemu_set_alarm_rel(evt);
169 return 0;
170}
171
172static irqreturn_t
173qemu_timer_interrupt(int irq, void *dev)
174{
175 int cpu = smp_processor_id();
176 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
177
178 ce->event_handler(ce);
179 return IRQ_HANDLED;
180}
181
182static void __init
183init_qemu_clockevent(void)
184{
185 int cpu = smp_processor_id();
186 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
187
188 *ce = (struct clock_event_device){
189 .name = "qemu",
190 .features = CLOCK_EVT_FEAT_ONESHOT,
191 .rating = 400,
192 .cpumask = cpumask_of(cpu),
6ec81932
VK
193 .set_state_shutdown = qemu_ce_shutdown,
194 .set_state_oneshot = qemu_ce_shutdown,
195 .tick_resume = qemu_ce_shutdown,
4914d7b4
RH
196 .set_next_event = qemu_ce_set_next_event,
197 };
198
199 clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX);
200}
201
202\f
ebaf4fc1 203void __init
1da177e4
LT
204common_init_rtc(void)
205{
fddd87d6 206 unsigned char x, sel = 0;
1da177e4
LT
207
208 /* Reset periodic interrupt frequency. */
fddd87d6
RH
209#if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
210 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
211 /* Test includes known working values on various platforms
212 where 0x26 is wrong; we refuse to change those. */
213 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
214 sel = RTC_REF_CLCK_32KHZ + 6;
1da177e4 215 }
fddd87d6
RH
216#elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
217 sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
218#else
219# error "Unknown HZ from arch/alpha/Kconfig"
220#endif
221 if (sel) {
222 printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
223 CONFIG_HZ, sel);
224 CMOS_WRITE(sel, RTC_FREQ_SELECT);
225 }
1da177e4
LT
226
227 /* Turn on periodic interrupts. */
228 x = CMOS_READ(RTC_CONTROL);
229 if (!(x & RTC_PIE)) {
230 printk("Turning on RTC interrupts.\n");
231 x |= RTC_PIE;
232 x &= ~(RTC_AIE | RTC_UIE);
233 CMOS_WRITE(x, RTC_CONTROL);
234 }
235 (void) CMOS_READ(RTC_INTR_FLAGS);
236
237 outb(0x36, 0x43); /* pit counter 0: system timer */
238 outb(0x00, 0x40);
239 outb(0x00, 0x40);
240
241 outb(0xb6, 0x43); /* pit counter 2: speaker */
242 outb(0x31, 0x42);
243 outb(0x13, 0x42);
244
245 init_rtc_irq();
246}
247
db2d3260
RH
248\f
249#ifndef CONFIG_ALPHA_WTINT
250/*
251 * The RPCC as a clocksource primitive.
252 *
253 * While we have free-running timecounters running on all CPUs, and we make
254 * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter
255 * with the wall clock, that initialization isn't kept up-to-date across
256 * different time counters in SMP mode. Therefore we can only use this
257 * method when there's only one CPU enabled.
258 *
259 * When using the WTINT PALcall, the RPCC may shift to a lower frequency,
260 * or stop altogether, while waiting for the interrupt. Therefore we cannot
261 * use this method when WTINT is in use.
262 */
263
a5a1d1c2 264static u64 read_rpcc(struct clocksource *cs)
db2d3260
RH
265{
266 return rpcc();
267}
268
269static struct clocksource clocksource_rpcc = {
270 .name = "rpcc",
271 .rating = 300,
272 .read = read_rpcc,
273 .mask = CLOCKSOURCE_MASK(32),
274 .flags = CLOCK_SOURCE_IS_CONTINUOUS
275};
276#endif /* ALPHA_WTINT */
277
278\f
1da177e4
LT
279/* Validate a computed cycle counter result against the known bounds for
280 the given processor core. There's too much brokenness in the way of
281 timing hardware for any one method to work everywhere. :-(
282
283 Return 0 if the result cannot be trusted, otherwise return the argument. */
284
285static unsigned long __init
286validate_cc_value(unsigned long cc)
287{
288 static struct bounds {
289 unsigned int min, max;
290 } cpu_hz[] __initdata = {
291 [EV3_CPU] = { 50000000, 200000000 }, /* guess */
292 [EV4_CPU] = { 100000000, 300000000 },
293 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */
294 [EV45_CPU] = { 200000000, 300000000 },
295 [EV5_CPU] = { 250000000, 433000000 },
296 [EV56_CPU] = { 333000000, 667000000 },
297 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */
298 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */
299 [EV6_CPU] = { 466000000, 600000000 },
300 [EV67_CPU] = { 600000000, 750000000 },
301 [EV68AL_CPU] = { 750000000, 940000000 },
302 [EV68CB_CPU] = { 1000000000, 1333333333 },
303 /* None of the following are shipping as of 2001-11-01. */
304 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
305 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
306 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */
307 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
308 };
309
310 /* Allow for some drift in the crystal. 10MHz is more than enough. */
311 const unsigned int deviation = 10000000;
312
313 struct percpu_struct *cpu;
314 unsigned int index;
315
316 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
317 index = cpu->type & 0xffffffff;
318
319 /* If index out of bounds, no way to validate. */
25c8716c 320 if (index >= ARRAY_SIZE(cpu_hz))
1da177e4
LT
321 return cc;
322
323 /* If index contains no data, no way to validate. */
324 if (cpu_hz[index].max == 0)
325 return cc;
326
327 if (cc < cpu_hz[index].min - deviation
328 || cc > cpu_hz[index].max + deviation)
329 return 0;
330
331 return cc;
332}
333
334
335/*
336 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
337 * arch/i386/time.c.
338 */
339
340#define CALIBRATE_LATCH 0xffff
341#define TIMEOUT_COUNT 0x100000
342
343static unsigned long __init
344calibrate_cc_with_pit(void)
345{
346 int cc, count = 0;
347
348 /* Set the Gate high, disable speaker */
349 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
350
351 /*
352 * Now let's take care of CTC channel 2
353 *
354 * Set the Gate high, program CTC channel 2 for mode 0,
355 * (interrupt on terminal count mode), binary count,
356 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
357 */
358 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
359 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
360 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
361
362 cc = rpcc();
363 do {
364 count++;
365 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
366 cc = rpcc() - cc;
367
368 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
369 if (count <= 1 || count == TIMEOUT_COUNT)
370 return 0;
371
372 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
373}
374
375/* The Linux interpretation of the CMOS clock register contents:
376 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
377 RTC registers show the second which has precisely just started.
378 Let's hope other operating systems interpret the RTC the same way. */
379
380static unsigned long __init
381rpcc_after_update_in_progress(void)
382{
383 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
384 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
385
386 return rpcc();
387}
388
389void __init
390time_init(void)
391{
1e871be1 392 unsigned int cc1, cc2;
1da177e4
LT
393 unsigned long cycle_freq, tolerance;
394 long diff;
395
4914d7b4
RH
396 if (alpha_using_qemu) {
397 clocksource_register_hz(&qemu_cs, NSEC_PER_SEC);
398 init_qemu_clockevent();
399
400 timer_irqaction.handler = qemu_timer_interrupt;
401 init_rtc_irq();
402 return;
403 }
404
1da177e4
LT
405 /* Calibrate CPU clock -- attempt #1. */
406 if (!est_cycle_freq)
407 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
408
4c2e6f6a 409 cc1 = rpcc();
1da177e4
LT
410
411 /* Calibrate CPU clock -- attempt #2. */
412 if (!est_cycle_freq) {
4c2e6f6a 413 cc1 = rpcc_after_update_in_progress();
1da177e4
LT
414 cc2 = rpcc_after_update_in_progress();
415 est_cycle_freq = validate_cc_value(cc2 - cc1);
416 cc1 = cc2;
417 }
418
419 cycle_freq = hwrpb->cycle_freq;
420 if (est_cycle_freq) {
421 /* If the given value is within 250 PPM of what we calculated,
422 accept it. Otherwise, use what we found. */
423 tolerance = cycle_freq / 4000;
424 diff = cycle_freq - est_cycle_freq;
425 if (diff < 0)
426 diff = -diff;
427 if ((unsigned long)diff > tolerance) {
428 cycle_freq = est_cycle_freq;
429 printk("HWRPB cycle frequency bogus. "
430 "Estimated %lu Hz\n", cycle_freq);
431 } else {
432 est_cycle_freq = 0;
433 }
434 } else if (! validate_cc_value (cycle_freq)) {
435 printk("HWRPB cycle frequency bogus, "
436 "and unable to estimate a proper value!\n");
437 }
438
db2d3260
RH
439 /* See above for restrictions on using clocksource_rpcc. */
440#ifndef CONFIG_ALPHA_WTINT
441 if (hwrpb->nr_processors == 1)
442 clocksource_register_hz(&clocksource_rpcc, cycle_freq);
443#endif
444
1da177e4
LT
445 /* Startup the timer source. */
446 alpha_mv.init_rtc();
4914d7b4
RH
447 init_rtc_clockevent();
448}
a1659d6d 449
4914d7b4
RH
450/* Initialize the clock_event_device for secondary cpus. */
451#ifdef CONFIG_SMP
452void __init
453init_clockevent(void)
454{
455 if (alpha_using_qemu)
456 init_qemu_clockevent();
457 else
458 init_rtc_clockevent();
1da177e4 459}
4914d7b4 460#endif