]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - arch/arc/include/asm/mmu_context.h
Merge remote-tracking branches 'asoc/topic/tas571x', 'asoc/topic/tlv320aic31xx',...
[mirror_ubuntu-eoan-kernel.git] / arch / arc / include / asm / mmu_context.h
CommitLineData
f1f3347d
VG
1/*
2 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * vineetg: May 2011
9 * -Refactored get_new_mmu_context( ) to only handle live-mm.
10 * retiring-mm handled in other hooks
11 *
12 * Vineetg: March 25th, 2008: Bug #92690
13 * -Major rewrite of Core ASID allocation routine get_new_mmu_context
14 *
15 * Amit Bhor, Sameer Dhavale: Codito Technologies 2004
16 */
17
18#ifndef _ASM_ARC_MMU_CONTEXT_H
19#define _ASM_ARC_MMU_CONTEXT_H
20
21#include <asm/arcregs.h>
22#include <asm/tlb.h>
23
24#include <asm-generic/mm_hooks.h>
25
26/* ARC700 ASID Management
27 *
28 * ARC MMU provides 8-bit ASID (0..255) to TAG TLB entries, allowing entries
29 * with same vaddr (different tasks) to co-exit. This provides for
30 * "Fast Context Switch" i.e. no TLB flush on ctxt-switch
31 *
32 * Linux assigns each task a unique ASID. A simple round-robin allocation
63eca94c 33 * of H/w ASID is done using software tracker @asid_cpu.
f1f3347d
VG
34 * When it reaches max 255, the allocation cycle starts afresh by flushing
35 * the entire TLB and wrapping ASID back to zero.
36 *
947bf103
VG
37 * A new allocation cycle, post rollover, could potentially reassign an ASID
38 * to a different task. Thus the rule is to refresh the ASID in a new cycle.
63eca94c 39 * The 32 bit @asid_cpu (and mm->asid) have 8 bits MMU PID and rest 24 bits
947bf103
VG
40 * serve as cycle/generation indicator and natural 32 bit unsigned math
41 * automagically increments the generation when lower 8 bits rollover.
f1f3347d
VG
42 */
43
947bf103
VG
44#define MM_CTXT_ASID_MASK 0x000000ff /* MMU PID reg :8 bit PID */
45#define MM_CTXT_CYCLE_MASK (~MM_CTXT_ASID_MASK)
46
47#define MM_CTXT_FIRST_CYCLE (MM_CTXT_ASID_MASK + 1)
48#define MM_CTXT_NO_ASID 0UL
f1f3347d 49
63eca94c
VG
50#define asid_mm(mm, cpu) mm->context.asid[cpu]
51#define hw_pid(mm, cpu) (asid_mm(mm, cpu) & MM_CTXT_ASID_MASK)
f1f3347d 52
63eca94c
VG
53DECLARE_PER_CPU(unsigned int, asid_cache);
54#define asid_cpu(cpu) per_cpu(asid_cache, cpu)
f1f3347d
VG
55
56/*
3daa48d1
VG
57 * Get a new ASID if task doesn't have a valid one (unalloc or from prev cycle)
58 * Also set the MMU PID register to existing/updated ASID
f1f3347d
VG
59 */
60static inline void get_new_mmu_context(struct mm_struct *mm)
61{
63eca94c 62 const unsigned int cpu = smp_processor_id();
f1f3347d
VG
63 unsigned long flags;
64
65 local_irq_save(flags);
66
3daa48d1
VG
67 /*
68 * Move to new ASID if it was not from current alloc-cycle/generation.
947bf103
VG
69 * This is done by ensuring that the generation bits in both mm->ASID
70 * and cpu's ASID counter are exactly same.
3daa48d1
VG
71 *
72 * Note: Callers needing new ASID unconditionally, independent of
73 * generation, e.g. local_flush_tlb_mm() for forking parent,
74 * first need to destroy the context, setting it to invalid
75 * value.
76 */
63eca94c 77 if (!((asid_mm(mm, cpu) ^ asid_cpu(cpu)) & MM_CTXT_CYCLE_MASK))
3daa48d1
VG
78 goto set_hw;
79
947bf103 80 /* move to new ASID and handle rollover */
63eca94c 81 if (unlikely(!(++asid_cpu(cpu) & MM_CTXT_ASID_MASK))) {
f1f3347d 82
5ea72a90 83 local_flush_tlb_all();
f1f3347d 84
947bf103 85 /*
2547476a 86 * Above check for rollover of 8 bit ASID in 32 bit container.
947bf103
VG
87 * If the container itself wrapped around, set it to a non zero
88 * "generation" to distinguish from no context
89 */
63eca94c
VG
90 if (!asid_cpu(cpu))
91 asid_cpu(cpu) = MM_CTXT_FIRST_CYCLE;
947bf103 92 }
f1f3347d
VG
93
94 /* Assign new ASID to tsk */
63eca94c 95 asid_mm(mm, cpu) = asid_cpu(cpu);
f1f3347d 96
3daa48d1 97set_hw:
63eca94c 98 write_aux_reg(ARC_REG_PID, hw_pid(mm, cpu) | MMU_ENABLE);
f1f3347d
VG
99
100 local_irq_restore(flags);
101}
102
103/*
104 * Initialize the context related info for a new mm_struct
105 * instance.
106 */
107static inline int
108init_new_context(struct task_struct *tsk, struct mm_struct *mm)
109{
63eca94c
VG
110 int i;
111
112 for_each_possible_cpu(i)
113 asid_mm(mm, i) = MM_CTXT_NO_ASID;
114
f1f3347d
VG
115 return 0;
116}
117
63eca94c
VG
118static inline void destroy_context(struct mm_struct *mm)
119{
120 unsigned long flags;
121
122 /* Needed to elide CONFIG_DEBUG_PREEMPT warning */
123 local_irq_save(flags);
124 asid_mm(mm, smp_processor_id()) = MM_CTXT_NO_ASID;
125 local_irq_restore(flags);
126}
127
f1f3347d
VG
128/* Prepare the MMU for task: setup PID reg with allocated ASID
129 If task doesn't have an ASID (never alloc or stolen, get a new ASID)
130*/
131static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
132 struct task_struct *tsk)
133{
5ea72a90
VG
134 const int cpu = smp_processor_id();
135
136 /*
137 * Note that the mm_cpumask is "aggregating" only, we don't clear it
138 * for the switched-out task, unlike some other arches.
139 * It is used to enlist cpus for sending TLB flush IPIs and not sending
140 * it to CPUs where a task once ran-on, could cause stale TLB entry
141 * re-use, specially for a multi-threaded task.
142 * e.g. T1 runs on C1, migrates to C3. T2 running on C2 munmaps.
143 * For a non-aggregating mm_cpumask, IPI not sent C1, and if T1
144 * were to re-migrate to C1, it could access the unmapped region
145 * via any existing stale TLB entries.
146 */
147 cpumask_set_cpu(cpu, mm_cpumask(next));
148
41195d23 149#ifndef CONFIG_SMP
f1f3347d
VG
150 /* PGD cached in MMU reg to avoid 3 mem lookups: task->mm->pgd */
151 write_aux_reg(ARC_REG_SCRATCH_DATA0, next->pgd);
41195d23 152#endif
f1f3347d 153
3daa48d1 154 get_new_mmu_context(next);
f1f3347d
VG
155}
156
c6011553
VG
157/*
158 * Called at the time of execve() to get a new ASID
159 * Note the subtlety here: get_new_mmu_context() behaves differently here
160 * vs. in switch_mm(). Here it always returns a new ASID, because mm has
161 * an unallocated "initial" value, while in latter, it moves to a new ASID,
162 * only if it was unallocated
163 */
164#define activate_mm(prev, next) switch_mm(prev, next, NULL)
165
f1f3347d
VG
166/* it seemed that deactivate_mm( ) is a reasonable place to do book-keeping
167 * for retiring-mm. However destroy_context( ) still needs to do that because
168 * between mm_release( ) = >deactive_mm( ) and
169 * mmput => .. => __mmdrop( ) => destroy_context( )
170 * there is a good chance that task gets sched-out/in, making it's ASID valid
171 * again (this teased me for a whole day).
172 */
173#define deactivate_mm(tsk, mm) do { } while (0)
174
f1f3347d
VG
175#define enter_lazy_tlb(mm, tsk)
176
177#endif /* __ASM_ARC_MMU_CONTEXT_H */