]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm/common/dmabounce.c
[ARM] 4134/1: Add generic support for outer caches
[mirror_ubuntu-artful-kernel.git] / arch / arm / common / dmabounce.c
CommitLineData
1da177e4
LT
1/*
2 * arch/arm/common/dmabounce.c
3 *
4 * Special dma_{map/unmap/dma_sync}_* routines for systems that have
5 * limited DMA windows. These functions utilize bounce buffers to
6 * copy data to/from buffers located outside the DMA region. This
7 * only works for systems in which DMA memory is at the bottom of
3a2916aa 8 * RAM, the remainder of memory is at the top and the DMA memory
1da177e4
LT
9 * can be marked as ZONE_DMA. Anything beyond that such as discontigous
10 * DMA windows will require custom implementations that reserve memory
11 * areas at early bootup.
12 *
13 * Original version by Brad Parker (brad@heeltoe.com)
14 * Re-written by Christopher Hoover <ch@murgatroid.com>
15 * Made generic by Deepak Saxena <dsaxena@plexity.net>
16 *
17 * Copyright (C) 2002 Hewlett Packard Company.
18 * Copyright (C) 2004 MontaVista Software, Inc.
19 *
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * version 2 as published by the Free Software Foundation.
23 */
24
25#include <linux/module.h>
26#include <linux/init.h>
27#include <linux/slab.h>
28#include <linux/device.h>
29#include <linux/dma-mapping.h>
30#include <linux/dmapool.h>
31#include <linux/list.h>
32
14eb75b6
RK
33#include <asm/cacheflush.h>
34
1da177e4 35#undef DEBUG
1da177e4 36#undef STATS
cb7610d0 37
1da177e4
LT
38#ifdef STATS
39#define DO_STATS(X) do { X ; } while (0)
40#else
41#define DO_STATS(X) do { } while (0)
42#endif
43
44/* ************************************************** */
45
46struct safe_buffer {
47 struct list_head node;
48
49 /* original request */
50 void *ptr;
51 size_t size;
52 int direction;
53
54 /* safe buffer info */
cb7610d0 55 struct dmabounce_pool *pool;
1da177e4
LT
56 void *safe;
57 dma_addr_t safe_dma_addr;
58};
59
cb7610d0
RK
60struct dmabounce_pool {
61 unsigned long size;
62 struct dma_pool *pool;
63#ifdef STATS
64 unsigned long allocs;
65#endif
66};
67
1da177e4
LT
68struct dmabounce_device_info {
69 struct list_head node;
70
71 struct device *dev;
1da177e4 72 struct list_head safe_buffers;
1da177e4 73#ifdef STATS
1da177e4
LT
74 unsigned long total_allocs;
75 unsigned long map_op_count;
76 unsigned long bounce_count;
77#endif
cb7610d0
RK
78 struct dmabounce_pool small;
79 struct dmabounce_pool large;
823588c1
KH
80
81 rwlock_t lock;
1da177e4
LT
82};
83
84static LIST_HEAD(dmabounce_devs);
85
86#ifdef STATS
87static void print_alloc_stats(struct dmabounce_device_info *device_info)
88{
89 printk(KERN_INFO
90 "%s: dmabounce: sbp: %lu, lbp: %lu, other: %lu, total: %lu\n",
91 device_info->dev->bus_id,
cb7610d0
RK
92 device_info->small.allocs, device_info->large.allocs,
93 device_info->total_allocs - device_info->small.allocs -
94 device_info->large.allocs,
1da177e4
LT
95 device_info->total_allocs);
96}
97#endif
98
99/* find the given device in the dmabounce device list */
100static inline struct dmabounce_device_info *
101find_dmabounce_dev(struct device *dev)
102{
b46a58fd 103 struct dmabounce_device_info *d;
1da177e4 104
b46a58fd 105 list_for_each_entry(d, &dmabounce_devs, node)
1da177e4
LT
106 if (d->dev == dev)
107 return d;
b46a58fd 108
1da177e4
LT
109 return NULL;
110}
111
112
113/* allocate a 'safe' buffer and keep track of it */
114static inline struct safe_buffer *
115alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
cb7610d0 116 size_t size, enum dma_data_direction dir)
1da177e4
LT
117{
118 struct safe_buffer *buf;
cb7610d0 119 struct dmabounce_pool *pool;
1da177e4 120 struct device *dev = device_info->dev;
823588c1 121 unsigned long flags;
1da177e4
LT
122
123 dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
124 __func__, ptr, size, dir);
125
cb7610d0
RK
126 if (size <= device_info->small.size) {
127 pool = &device_info->small;
128 } else if (size <= device_info->large.size) {
129 pool = &device_info->large;
130 } else {
131 pool = NULL;
132 }
1da177e4
LT
133
134 buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
135 if (buf == NULL) {
136 dev_warn(dev, "%s: kmalloc failed\n", __func__);
137 return NULL;
138 }
139
cb7610d0
RK
140 buf->ptr = ptr;
141 buf->size = size;
142 buf->direction = dir;
143 buf->pool = pool;
1da177e4 144
cb7610d0
RK
145 if (pool) {
146 buf->safe = dma_pool_alloc(pool->pool, GFP_ATOMIC,
147 &buf->safe_dma_addr);
1da177e4 148 } else {
cb7610d0
RK
149 buf->safe = dma_alloc_coherent(dev, size, &buf->safe_dma_addr,
150 GFP_ATOMIC);
1da177e4
LT
151 }
152
cb7610d0
RK
153 if (buf->safe == NULL) {
154 dev_warn(dev,
155 "%s: could not alloc dma memory (size=%d)\n",
156 __func__, size);
1da177e4
LT
157 kfree(buf);
158 return NULL;
159 }
160
161#ifdef STATS
cb7610d0
RK
162 if (pool)
163 pool->allocs++;
164 device_info->total_allocs++;
1da177e4
LT
165 if (device_info->total_allocs % 1000 == 0)
166 print_alloc_stats(device_info);
167#endif
168
823588c1
KH
169 write_lock_irqsave(&device_info->lock, flags);
170
1da177e4
LT
171 list_add(&buf->node, &device_info->safe_buffers);
172
823588c1
KH
173 write_unlock_irqrestore(&device_info->lock, flags);
174
1da177e4
LT
175 return buf;
176}
177
178/* determine if a buffer is from our "safe" pool */
179static inline struct safe_buffer *
180find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
181{
e2785f0d 182 struct safe_buffer *b, *rb = NULL;
823588c1
KH
183 unsigned long flags;
184
185 read_lock_irqsave(&device_info->lock, flags);
1da177e4 186
b46a58fd 187 list_for_each_entry(b, &device_info->safe_buffers, node)
e2785f0d
KH
188 if (b->safe_dma_addr == safe_dma_addr) {
189 rb = b;
823588c1 190 break;
e2785f0d 191 }
1da177e4 192
823588c1 193 read_unlock_irqrestore(&device_info->lock, flags);
e2785f0d 194 return rb;
1da177e4
LT
195}
196
197static inline void
198free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
199{
823588c1
KH
200 unsigned long flags;
201
1da177e4
LT
202 dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
203
823588c1
KH
204 write_lock_irqsave(&device_info->lock, flags);
205
1da177e4
LT
206 list_del(&buf->node);
207
823588c1
KH
208 write_unlock_irqrestore(&device_info->lock, flags);
209
1da177e4 210 if (buf->pool)
cb7610d0 211 dma_pool_free(buf->pool->pool, buf->safe, buf->safe_dma_addr);
1da177e4
LT
212 else
213 dma_free_coherent(device_info->dev, buf->size, buf->safe,
214 buf->safe_dma_addr);
215
216 kfree(buf);
217}
218
219/* ************************************************** */
220
221#ifdef STATS
1da177e4
LT
222static void print_map_stats(struct dmabounce_device_info *device_info)
223{
cb7610d0
RK
224 dev_info(device_info->dev,
225 "dmabounce: map_op_count=%lu, bounce_count=%lu\n",
1da177e4
LT
226 device_info->map_op_count, device_info->bounce_count);
227}
228#endif
229
230static inline dma_addr_t
231map_single(struct device *dev, void *ptr, size_t size,
232 enum dma_data_direction dir)
233{
234 struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
235 dma_addr_t dma_addr;
236 int needs_bounce = 0;
237
238 if (device_info)
239 DO_STATS ( device_info->map_op_count++ );
240
241 dma_addr = virt_to_dma(dev, ptr);
242
243 if (dev->dma_mask) {
244 unsigned long mask = *dev->dma_mask;
245 unsigned long limit;
246
247 limit = (mask + 1) & ~mask;
248 if (limit && size > limit) {
249 dev_err(dev, "DMA mapping too big (requested %#x "
250 "mask %#Lx)\n", size, *dev->dma_mask);
251 return ~0;
252 }
253
254 /*
255 * Figure out if we need to bounce from the DMA mask.
256 */
257 needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
258 }
259
260 if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
261 struct safe_buffer *buf;
262
263 buf = alloc_safe_buffer(device_info, ptr, size, dir);
264 if (buf == 0) {
265 dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
266 __func__, ptr);
267 return 0;
268 }
269
270 dev_dbg(dev,
271 "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
272 __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
273 buf->safe, (void *) buf->safe_dma_addr);
274
275 if ((dir == DMA_TO_DEVICE) ||
276 (dir == DMA_BIDIRECTIONAL)) {
277 dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
278 __func__, ptr, buf->safe, size);
279 memcpy(buf->safe, ptr, size);
280 }
cb7610d0 281 ptr = buf->safe;
1da177e4
LT
282
283 dma_addr = buf->safe_dma_addr;
7f8e3354
RK
284 } else {
285 /*
286 * We don't need to sync the DMA buffer since
287 * it was allocated via the coherent allocators.
288 */
289 consistent_sync(ptr, size, dir);
1da177e4
LT
290 }
291
292 return dma_addr;
293}
294
295static inline void
296unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
297 enum dma_data_direction dir)
298{
299 struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
300 struct safe_buffer *buf = NULL;
301
302 /*
303 * Trying to unmap an invalid mapping
304 */
cb7610d0 305 if (dma_mapping_error(dma_addr)) {
1da177e4
LT
306 dev_err(dev, "Trying to unmap invalid mapping\n");
307 return;
308 }
309
310 if (device_info)
311 buf = find_safe_buffer(device_info, dma_addr);
312
313 if (buf) {
314 BUG_ON(buf->size != size);
315
316 dev_dbg(dev,
317 "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
318 __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
319 buf->safe, (void *) buf->safe_dma_addr);
320
1da177e4
LT
321 DO_STATS ( device_info->bounce_count++ );
322
5abc100e
RK
323 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
324 unsigned long ptr;
325
1da177e4
LT
326 dev_dbg(dev,
327 "%s: copy back safe %p to unsafe %p size %d\n",
328 __func__, buf->safe, buf->ptr, size);
329 memcpy(buf->ptr, buf->safe, size);
5abc100e
RK
330
331 /*
332 * DMA buffers must have the same cache properties
333 * as if they were really used for DMA - which means
334 * data must be written back to RAM. Note that
335 * we don't use dmac_flush_range() here for the
336 * bidirectional case because we know the cache
337 * lines will be coherent with the data written.
338 */
339 ptr = (unsigned long)buf->ptr;
340 dmac_clean_range(ptr, ptr + size);
953233dc 341 outer_clean_range(__pa(ptr), __pa(ptr) + size);
1da177e4
LT
342 }
343 free_safe_buffer(device_info, buf);
344 }
345}
346
347static inline void
348sync_single(struct device *dev, dma_addr_t dma_addr, size_t size,
349 enum dma_data_direction dir)
350{
351 struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
352 struct safe_buffer *buf = NULL;
353
354 if (device_info)
355 buf = find_safe_buffer(device_info, dma_addr);
356
357 if (buf) {
358 /*
359 * Both of these checks from original code need to be
360 * commented out b/c some drivers rely on the following:
361 *
362 * 1) Drivers may map a large chunk of memory into DMA space
363 * but only sync a small portion of it. Good example is
364 * allocating a large buffer, mapping it, and then
365 * breaking it up into small descriptors. No point
366 * in syncing the whole buffer if you only have to
367 * touch one descriptor.
368 *
369 * 2) Buffers that are mapped as DMA_BIDIRECTIONAL are
370 * usually only synced in one dir at a time.
371 *
372 * See drivers/net/eepro100.c for examples of both cases.
373 *
374 * -ds
375 *
376 * BUG_ON(buf->size != size);
377 * BUG_ON(buf->direction != dir);
378 */
379
380 dev_dbg(dev,
381 "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
382 __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
383 buf->safe, (void *) buf->safe_dma_addr);
384
385 DO_STATS ( device_info->bounce_count++ );
386
387 switch (dir) {
388 case DMA_FROM_DEVICE:
389 dev_dbg(dev,
390 "%s: copy back safe %p to unsafe %p size %d\n",
391 __func__, buf->safe, buf->ptr, size);
392 memcpy(buf->ptr, buf->safe, size);
393 break;
394 case DMA_TO_DEVICE:
395 dev_dbg(dev,
396 "%s: copy out unsafe %p to safe %p, size %d\n",
397 __func__,buf->ptr, buf->safe, size);
398 memcpy(buf->safe, buf->ptr, size);
399 break;
400 case DMA_BIDIRECTIONAL:
401 BUG(); /* is this allowed? what does it mean? */
402 default:
403 BUG();
404 }
7f8e3354
RK
405 /*
406 * No need to sync the safe buffer - it was allocated
407 * via the coherent allocators.
408 */
1da177e4
LT
409 } else {
410 consistent_sync(dma_to_virt(dev, dma_addr), size, dir);
411 }
412}
413
414/* ************************************************** */
415
416/*
417 * see if a buffer address is in an 'unsafe' range. if it is
418 * allocate a 'safe' buffer and copy the unsafe buffer into it.
419 * substitute the safe buffer for the unsafe one.
420 * (basically move the buffer from an unsafe area to a safe one)
421 */
422dma_addr_t
423dma_map_single(struct device *dev, void *ptr, size_t size,
424 enum dma_data_direction dir)
425{
1da177e4
LT
426 dma_addr_t dma_addr;
427
428 dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
429 __func__, ptr, size, dir);
430
431 BUG_ON(dir == DMA_NONE);
432
1da177e4
LT
433 dma_addr = map_single(dev, ptr, size, dir);
434
1da177e4
LT
435 return dma_addr;
436}
437
438/*
439 * see if a mapped address was really a "safe" buffer and if so, copy
440 * the data from the safe buffer back to the unsafe buffer and free up
441 * the safe buffer. (basically return things back to the way they
442 * should be)
443 */
444
445void
446dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
447 enum dma_data_direction dir)
448{
1da177e4
LT
449 dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
450 __func__, (void *) dma_addr, size, dir);
451
452 BUG_ON(dir == DMA_NONE);
453
1da177e4 454 unmap_single(dev, dma_addr, size, dir);
1da177e4
LT
455}
456
457int
458dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
459 enum dma_data_direction dir)
460{
1da177e4
LT
461 int i;
462
463 dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
464 __func__, sg, nents, dir);
465
466 BUG_ON(dir == DMA_NONE);
467
1da177e4
LT
468 for (i = 0; i < nents; i++, sg++) {
469 struct page *page = sg->page;
470 unsigned int offset = sg->offset;
471 unsigned int length = sg->length;
472 void *ptr = page_address(page) + offset;
473
474 sg->dma_address =
475 map_single(dev, ptr, length, dir);
476 }
477
1da177e4
LT
478 return nents;
479}
480
481void
482dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
483 enum dma_data_direction dir)
484{
1da177e4
LT
485 int i;
486
487 dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
488 __func__, sg, nents, dir);
489
490 BUG_ON(dir == DMA_NONE);
491
1da177e4
LT
492 for (i = 0; i < nents; i++, sg++) {
493 dma_addr_t dma_addr = sg->dma_address;
494 unsigned int length = sg->length;
495
496 unmap_single(dev, dma_addr, length, dir);
497 }
1da177e4
LT
498}
499
500void
501dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size,
502 enum dma_data_direction dir)
503{
1da177e4
LT
504 dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
505 __func__, (void *) dma_addr, size, dir);
506
1da177e4 507 sync_single(dev, dma_addr, size, dir);
1da177e4
LT
508}
509
510void
511dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size,
512 enum dma_data_direction dir)
513{
1da177e4
LT
514 dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
515 __func__, (void *) dma_addr, size, dir);
516
1da177e4 517 sync_single(dev, dma_addr, size, dir);
1da177e4
LT
518}
519
520void
521dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
522 enum dma_data_direction dir)
523{
1da177e4
LT
524 int i;
525
526 dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
527 __func__, sg, nents, dir);
528
529 BUG_ON(dir == DMA_NONE);
530
1da177e4
LT
531 for (i = 0; i < nents; i++, sg++) {
532 dma_addr_t dma_addr = sg->dma_address;
533 unsigned int length = sg->length;
534
535 sync_single(dev, dma_addr, length, dir);
536 }
1da177e4
LT
537}
538
539void
540dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
541 enum dma_data_direction dir)
542{
1da177e4
LT
543 int i;
544
545 dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
546 __func__, sg, nents, dir);
547
548 BUG_ON(dir == DMA_NONE);
549
1da177e4
LT
550 for (i = 0; i < nents; i++, sg++) {
551 dma_addr_t dma_addr = sg->dma_address;
552 unsigned int length = sg->length;
553
554 sync_single(dev, dma_addr, length, dir);
555 }
1da177e4
LT
556}
557
cb7610d0
RK
558static int
559dmabounce_init_pool(struct dmabounce_pool *pool, struct device *dev, const char *name,
560 unsigned long size)
561{
562 pool->size = size;
563 DO_STATS(pool->allocs = 0);
564 pool->pool = dma_pool_create(name, dev, size,
565 0 /* byte alignment */,
566 0 /* no page-crossing issues */);
567
568 return pool->pool ? 0 : -ENOMEM;
569}
570
1da177e4
LT
571int
572dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
573 unsigned long large_buffer_size)
574{
575 struct dmabounce_device_info *device_info;
cb7610d0 576 int ret;
1da177e4
LT
577
578 device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
579 if (!device_info) {
580 printk(KERN_ERR
581 "Could not allocated dmabounce_device_info for %s",
582 dev->bus_id);
583 return -ENOMEM;
584 }
585
cb7610d0
RK
586 ret = dmabounce_init_pool(&device_info->small, dev,
587 "small_dmabounce_pool", small_buffer_size);
588 if (ret) {
589 dev_err(dev,
590 "dmabounce: could not allocate DMA pool for %ld byte objects\n",
591 small_buffer_size);
592 goto err_free;
1da177e4
LT
593 }
594
595 if (large_buffer_size) {
cb7610d0
RK
596 ret = dmabounce_init_pool(&device_info->large, dev,
597 "large_dmabounce_pool",
598 large_buffer_size);
599 if (ret) {
600 dev_err(dev,
601 "dmabounce: could not allocate DMA pool for %ld byte objects\n",
602 large_buffer_size);
603 goto err_destroy;
1da177e4
LT
604 }
605 }
606
607 device_info->dev = dev;
1da177e4 608 INIT_LIST_HEAD(&device_info->safe_buffers);
823588c1 609 rwlock_init(&device_info->lock);
1da177e4
LT
610
611#ifdef STATS
1da177e4
LT
612 device_info->total_allocs = 0;
613 device_info->map_op_count = 0;
614 device_info->bounce_count = 0;
615#endif
616
617 list_add(&device_info->node, &dmabounce_devs);
618
619 printk(KERN_INFO "dmabounce: registered device %s on %s bus\n",
620 dev->bus_id, dev->bus->name);
621
622 return 0;
cb7610d0
RK
623
624 err_destroy:
625 dma_pool_destroy(device_info->small.pool);
626 err_free:
627 kfree(device_info);
628 return ret;
1da177e4
LT
629}
630
631void
632dmabounce_unregister_dev(struct device *dev)
633{
634 struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
635
636 if (!device_info) {
637 printk(KERN_WARNING
638 "%s: Never registered with dmabounce but attempting" \
639 "to unregister!\n", dev->bus_id);
640 return;
641 }
642
643 if (!list_empty(&device_info->safe_buffers)) {
644 printk(KERN_ERR
645 "%s: Removing from dmabounce with pending buffers!\n",
646 dev->bus_id);
647 BUG();
648 }
649
cb7610d0
RK
650 if (device_info->small.pool)
651 dma_pool_destroy(device_info->small.pool);
652 if (device_info->large.pool)
653 dma_pool_destroy(device_info->large.pool);
1da177e4
LT
654
655#ifdef STATS
656 print_alloc_stats(device_info);
657 print_map_stats(device_info);
658#endif
659
660 list_del(&device_info->node);
661
662 kfree(device_info);
663
664 printk(KERN_INFO "dmabounce: device %s on %s bus unregistered\n",
665 dev->bus_id, dev->bus->name);
666}
667
668
669EXPORT_SYMBOL(dma_map_single);
670EXPORT_SYMBOL(dma_unmap_single);
671EXPORT_SYMBOL(dma_map_sg);
672EXPORT_SYMBOL(dma_unmap_sg);
73218187
KH
673EXPORT_SYMBOL(dma_sync_single_for_cpu);
674EXPORT_SYMBOL(dma_sync_single_for_device);
1da177e4
LT
675EXPORT_SYMBOL(dma_sync_sg);
676EXPORT_SYMBOL(dmabounce_register_dev);
677EXPORT_SYMBOL(dmabounce_unregister_dev);
678
679MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
680MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
681MODULE_LICENSE("GPL");