]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/arm/common/edma.c
Merge branches 'acpi-fan', 'acpi-video' and 'acpi-ec'
[mirror_ubuntu-focal-kernel.git] / arch / arm / common / edma.c
CommitLineData
a4768d22
KH
1/*
2 * EDMA3 support for DaVinci
3 *
4 * Copyright (C) 2006-2009 Texas Instruments.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
e7eff702 20#include <linux/err.h>
a4768d22 21#include <linux/kernel.h>
a4768d22
KH
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/platform_device.h>
a4768d22 26#include <linux/io.h>
5a0e3ad6 27#include <linux/slab.h>
6cba4355 28#include <linux/edma.h>
5305e4d6 29#include <linux/dma-mapping.h>
6cba4355
MP
30#include <linux/of_address.h>
31#include <linux/of_device.h>
32#include <linux/of_dma.h>
33#include <linux/of_irq.h>
34#include <linux/pm_runtime.h>
a4768d22 35
3ad7a42d 36#include <linux/platform_data/edma.h>
a4768d22
KH
37
38/* Offsets matching "struct edmacc_param" */
39#define PARM_OPT 0x00
40#define PARM_SRC 0x04
41#define PARM_A_B_CNT 0x08
42#define PARM_DST 0x0c
43#define PARM_SRC_DST_BIDX 0x10
44#define PARM_LINK_BCNTRLD 0x14
45#define PARM_SRC_DST_CIDX 0x18
46#define PARM_CCNT 0x1c
47
48#define PARM_SIZE 0x20
49
50/* Offsets for EDMA CC global channel registers and their shadows */
51#define SH_ER 0x00 /* 64 bits */
52#define SH_ECR 0x08 /* 64 bits */
53#define SH_ESR 0x10 /* 64 bits */
54#define SH_CER 0x18 /* 64 bits */
55#define SH_EER 0x20 /* 64 bits */
56#define SH_EECR 0x28 /* 64 bits */
57#define SH_EESR 0x30 /* 64 bits */
58#define SH_SER 0x38 /* 64 bits */
59#define SH_SECR 0x40 /* 64 bits */
60#define SH_IER 0x50 /* 64 bits */
61#define SH_IECR 0x58 /* 64 bits */
62#define SH_IESR 0x60 /* 64 bits */
63#define SH_IPR 0x68 /* 64 bits */
64#define SH_ICR 0x70 /* 64 bits */
65#define SH_IEVAL 0x78
66#define SH_QER 0x80
67#define SH_QEER 0x84
68#define SH_QEECR 0x88
69#define SH_QEESR 0x8c
70#define SH_QSER 0x90
71#define SH_QSECR 0x94
72#define SH_SIZE 0x200
73
74/* Offsets for EDMA CC global registers */
75#define EDMA_REV 0x0000
76#define EDMA_CCCFG 0x0004
77#define EDMA_QCHMAP 0x0200 /* 8 registers */
78#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
79#define EDMA_QDMAQNUM 0x0260
80#define EDMA_QUETCMAP 0x0280
81#define EDMA_QUEPRI 0x0284
82#define EDMA_EMR 0x0300 /* 64 bits */
83#define EDMA_EMCR 0x0308 /* 64 bits */
84#define EDMA_QEMR 0x0310
85#define EDMA_QEMCR 0x0314
86#define EDMA_CCERR 0x0318
87#define EDMA_CCERRCLR 0x031c
88#define EDMA_EEVAL 0x0320
89#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
90#define EDMA_QRAE 0x0380 /* 4 registers */
91#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
92#define EDMA_QSTAT 0x0600 /* 2 registers */
93#define EDMA_QWMTHRA 0x0620
94#define EDMA_QWMTHRB 0x0624
95#define EDMA_CCSTAT 0x0640
96
97#define EDMA_M 0x1000 /* global channel registers */
98#define EDMA_ECR 0x1008
99#define EDMA_ECRH 0x100C
100#define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
101#define EDMA_PARM 0x4000 /* 128 param entries */
102
a4768d22
KH
103#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
104
60902a2c 105#define EDMA_DCHMAP 0x0100 /* 64 registers */
6d10c395
PU
106
107/* CCCFG register */
108#define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
109#define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
110#define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
111#define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
112#define CHMAP_EXIST BIT(24)
60902a2c 113
a4768d22
KH
114#define EDMA_MAX_DMACH 64
115#define EDMA_MAX_PARAMENTRY 512
a4768d22
KH
116
117/*****************************************************************************/
118
60902a2c 119static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
a4768d22 120
60902a2c 121static inline unsigned int edma_read(unsigned ctlr, int offset)
a4768d22 122{
60902a2c 123 return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
a4768d22
KH
124}
125
60902a2c 126static inline void edma_write(unsigned ctlr, int offset, int val)
a4768d22 127{
60902a2c 128 __raw_writel(val, edmacc_regs_base[ctlr] + offset);
a4768d22 129}
60902a2c
SR
130static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
131 unsigned or)
a4768d22 132{
60902a2c 133 unsigned val = edma_read(ctlr, offset);
a4768d22
KH
134 val &= and;
135 val |= or;
60902a2c 136 edma_write(ctlr, offset, val);
a4768d22 137}
60902a2c 138static inline void edma_and(unsigned ctlr, int offset, unsigned and)
a4768d22 139{
60902a2c 140 unsigned val = edma_read(ctlr, offset);
a4768d22 141 val &= and;
60902a2c 142 edma_write(ctlr, offset, val);
a4768d22 143}
60902a2c 144static inline void edma_or(unsigned ctlr, int offset, unsigned or)
a4768d22 145{
60902a2c 146 unsigned val = edma_read(ctlr, offset);
a4768d22 147 val |= or;
60902a2c 148 edma_write(ctlr, offset, val);
a4768d22 149}
60902a2c 150static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
a4768d22 151{
60902a2c 152 return edma_read(ctlr, offset + (i << 2));
a4768d22 153}
60902a2c
SR
154static inline void edma_write_array(unsigned ctlr, int offset, int i,
155 unsigned val)
a4768d22 156{
60902a2c 157 edma_write(ctlr, offset + (i << 2), val);
a4768d22 158}
60902a2c 159static inline void edma_modify_array(unsigned ctlr, int offset, int i,
a4768d22
KH
160 unsigned and, unsigned or)
161{
60902a2c 162 edma_modify(ctlr, offset + (i << 2), and, or);
a4768d22 163}
60902a2c 164static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
a4768d22 165{
60902a2c 166 edma_or(ctlr, offset + (i << 2), or);
a4768d22 167}
60902a2c
SR
168static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
169 unsigned or)
a4768d22 170{
60902a2c 171 edma_or(ctlr, offset + ((i*2 + j) << 2), or);
a4768d22 172}
60902a2c
SR
173static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
174 unsigned val)
a4768d22 175{
60902a2c 176 edma_write(ctlr, offset + ((i*2 + j) << 2), val);
a4768d22 177}
60902a2c 178static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
a4768d22 179{
60902a2c 180 return edma_read(ctlr, EDMA_SHADOW0 + offset);
a4768d22 181}
60902a2c
SR
182static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
183 int i)
a4768d22 184{
60902a2c 185 return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
a4768d22 186}
60902a2c 187static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
a4768d22 188{
60902a2c 189 edma_write(ctlr, EDMA_SHADOW0 + offset, val);
a4768d22 190}
60902a2c
SR
191static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
192 unsigned val)
a4768d22 193{
60902a2c 194 edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
a4768d22 195}
60902a2c
SR
196static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
197 int param_no)
a4768d22 198{
60902a2c 199 return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
a4768d22 200}
60902a2c
SR
201static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
202 unsigned val)
a4768d22 203{
60902a2c 204 edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
a4768d22 205}
60902a2c 206static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
a4768d22
KH
207 unsigned and, unsigned or)
208{
60902a2c 209 edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
a4768d22 210}
60902a2c
SR
211static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
212 unsigned and)
a4768d22 213{
60902a2c 214 edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
a4768d22 215}
60902a2c
SR
216static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
217 unsigned or)
a4768d22 218{
60902a2c 219 edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
a4768d22
KH
220}
221
90bd4e6d
RS
222static inline void set_bits(int offset, int len, unsigned long *p)
223{
224 for (; len > 0; len--)
225 set_bit(offset + (len - 1), p);
226}
227
228static inline void clear_bits(int offset, int len, unsigned long *p)
229{
230 for (; len > 0; len--)
231 clear_bit(offset + (len - 1), p);
232}
233
a4768d22
KH
234/*****************************************************************************/
235
236/* actual number of DMA channels and slots on this silicon */
60902a2c
SR
237struct edma {
238 /* how many dma resources of each type */
239 unsigned num_channels;
240 unsigned num_region;
241 unsigned num_slots;
242 unsigned num_tc;
a0f0202e 243 enum dma_event_q default_queue;
60902a2c
SR
244
245 /* list of channels with no even trigger; terminated by "-1" */
246 const s8 *noevent;
247
a2b11751
DM
248 struct edma_soc_info *info;
249
60902a2c
SR
250 /* The edma_inuse bit for each PaRAM slot is clear unless the
251 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
252 */
253 DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
a4768d22 254
f900d552
SR
255 /* The edma_unused bit for each channel is clear unless
256 * it is not being used on this platform. It uses a bit
257 * of SOC-specific initialization code.
60902a2c 258 */
f900d552 259 DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
a4768d22 260
60902a2c
SR
261 unsigned irq_res_start;
262 unsigned irq_res_end;
a4768d22 263
60902a2c
SR
264 struct dma_interrupt_data {
265 void (*callback)(unsigned channel, unsigned short ch_status,
266 void *data);
267 void *data;
268 } intr_data[EDMA_MAX_DMACH];
269};
270
3f68b98a 271static struct edma *edma_cc[EDMA_MAX_CC];
2d517508 272static int arch_num_cc;
a4768d22
KH
273
274/* dummy param set used to (re)initialize parameter RAM slots */
275static const struct edmacc_param dummy_paramset = {
276 .link_bcntrld = 0xffff,
277 .ccnt = 1,
278};
279
6cdaca48
JF
280static const struct of_device_id edma_of_ids[] = {
281 { .compatible = "ti,edma3", },
282 {}
283};
284
a4768d22
KH
285/*****************************************************************************/
286
60902a2c
SR
287static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
288 enum dma_event_q queue_no)
a4768d22
KH
289{
290 int bit = (ch_no & 0x7) * 4;
291
292 /* default to low priority queue */
293 if (queue_no == EVENTQ_DEFAULT)
3f68b98a 294 queue_no = edma_cc[ctlr]->default_queue;
a4768d22
KH
295
296 queue_no &= 7;
60902a2c 297 edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
a4768d22
KH
298 ~(0x7 << bit), queue_no << bit);
299}
300
a2b11751 301static void assign_priority_to_queue(unsigned ctlr, int queue_no,
60902a2c 302 int priority)
a4768d22
KH
303{
304 int bit = queue_no * 4;
60902a2c
SR
305 edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
306 ((priority & 0x7) << bit));
307}
308
309/**
310 * map_dmach_param - Maps channel number to param entry number
311 *
312 * This maps the dma channel number to param entry numberter. In
313 * other words using the DMA channel mapping registers a param entry
314 * can be mapped to any channel
315 *
316 * Callers are responsible for ensuring the channel mapping logic is
317 * included in that particular EDMA variant (Eg : dm646x)
318 *
319 */
a2b11751 320static void map_dmach_param(unsigned ctlr)
60902a2c
SR
321{
322 int i;
323 for (i = 0; i < EDMA_MAX_DMACH; i++)
324 edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
a4768d22
KH
325}
326
327static inline void
328setup_dma_interrupt(unsigned lch,
329 void (*callback)(unsigned channel, u16 ch_status, void *data),
330 void *data)
331{
60902a2c
SR
332 unsigned ctlr;
333
334 ctlr = EDMA_CTLR(lch);
335 lch = EDMA_CHAN_SLOT(lch);
336
243bc654 337 if (!callback)
60902a2c 338 edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
d78a9494 339 BIT(lch & 0x1f));
a4768d22 340
3f68b98a
SN
341 edma_cc[ctlr]->intr_data[lch].callback = callback;
342 edma_cc[ctlr]->intr_data[lch].data = data;
a4768d22
KH
343
344 if (callback) {
60902a2c 345 edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
d78a9494 346 BIT(lch & 0x1f));
60902a2c 347 edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
d78a9494 348 BIT(lch & 0x1f));
a4768d22
KH
349 }
350}
351
60902a2c
SR
352static int irq2ctlr(int irq)
353{
3f68b98a 354 if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
60902a2c 355 return 0;
3f68b98a
SN
356 else if (irq >= edma_cc[1]->irq_res_start &&
357 irq <= edma_cc[1]->irq_res_end)
60902a2c
SR
358 return 1;
359
360 return -1;
361}
362
a4768d22
KH
363/******************************************************************************
364 *
365 * DMA interrupt handler
366 *
367 *****************************************************************************/
368static irqreturn_t dma_irq_handler(int irq, void *data)
369{
93fe23d8 370 int ctlr;
bcd59b0f
SAS
371 u32 sh_ier;
372 u32 sh_ipr;
373 u32 bank;
a4768d22 374
60902a2c 375 ctlr = irq2ctlr(irq);
93fe23d8
KV
376 if (ctlr < 0)
377 return IRQ_NONE;
60902a2c 378
a4768d22
KH
379 dev_dbg(data, "dma_irq_handler\n");
380
bcd59b0f
SAS
381 sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0);
382 if (!sh_ipr) {
383 sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1);
384 if (!sh_ipr)
385 return IRQ_NONE;
386 sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1);
387 bank = 1;
388 } else {
389 sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0);
390 bank = 0;
391 }
392
393 do {
394 u32 slot;
395 u32 channel;
a4768d22 396
bcd59b0f
SAS
397 dev_dbg(data, "IPR%d %08x\n", bank, sh_ipr);
398
399 slot = __ffs(sh_ipr);
400 sh_ipr &= ~(BIT(slot));
401
402 if (sh_ier & BIT(slot)) {
403 channel = (bank << 5) | slot;
404 /* Clear the corresponding IPR bits */
405 edma_shadow0_write_array(ctlr, SH_ICR, bank,
406 BIT(slot));
407 if (edma_cc[ctlr]->intr_data[channel].callback)
408 edma_cc[ctlr]->intr_data[channel].callback(
db60d8da 409 channel, EDMA_DMA_COMPLETE,
bcd59b0f 410 edma_cc[ctlr]->intr_data[channel].data);
a4768d22 411 }
bcd59b0f
SAS
412 } while (sh_ipr);
413
60902a2c 414 edma_shadow0_write(ctlr, SH_IEVAL, 1);
a4768d22
KH
415 return IRQ_HANDLED;
416}
417
418/******************************************************************************
419 *
420 * DMA error interrupt handler
421 *
422 *****************************************************************************/
423static irqreturn_t dma_ccerr_handler(int irq, void *data)
424{
425 int i;
93fe23d8 426 int ctlr;
a4768d22
KH
427 unsigned int cnt = 0;
428
60902a2c 429 ctlr = irq2ctlr(irq);
93fe23d8
KV
430 if (ctlr < 0)
431 return IRQ_NONE;
60902a2c 432
a4768d22
KH
433 dev_dbg(data, "dma_ccerr_handler\n");
434
60902a2c
SR
435 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
436 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
437 (edma_read(ctlr, EDMA_QEMR) == 0) &&
438 (edma_read(ctlr, EDMA_CCERR) == 0))
a4768d22
KH
439 return IRQ_NONE;
440
441 while (1) {
442 int j = -1;
60902a2c 443 if (edma_read_array(ctlr, EDMA_EMR, 0))
a4768d22 444 j = 0;
60902a2c 445 else if (edma_read_array(ctlr, EDMA_EMR, 1))
a4768d22
KH
446 j = 1;
447 if (j >= 0) {
448 dev_dbg(data, "EMR%d %08x\n", j,
60902a2c 449 edma_read_array(ctlr, EDMA_EMR, j));
a4768d22
KH
450 for (i = 0; i < 32; i++) {
451 int k = (j << 5) + i;
60902a2c 452 if (edma_read_array(ctlr, EDMA_EMR, j) &
d78a9494 453 BIT(i)) {
a4768d22 454 /* Clear the corresponding EMR bits */
60902a2c 455 edma_write_array(ctlr, EDMA_EMCR, j,
d78a9494 456 BIT(i));
a4768d22 457 /* Clear any SER */
60902a2c 458 edma_shadow0_write_array(ctlr, SH_SECR,
d78a9494 459 j, BIT(i));
3f68b98a 460 if (edma_cc[ctlr]->intr_data[k].
60902a2c 461 callback) {
3f68b98a 462 edma_cc[ctlr]->intr_data[k].
60902a2c 463 callback(k,
db60d8da 464 EDMA_DMA_CC_ERROR,
3f68b98a 465 edma_cc[ctlr]->intr_data
60902a2c 466 [k].data);
a4768d22
KH
467 }
468 }
469 }
60902a2c 470 } else if (edma_read(ctlr, EDMA_QEMR)) {
a4768d22 471 dev_dbg(data, "QEMR %02x\n",
60902a2c 472 edma_read(ctlr, EDMA_QEMR));
a4768d22 473 for (i = 0; i < 8; i++) {
d78a9494 474 if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
a4768d22 475 /* Clear the corresponding IPR bits */
d78a9494 476 edma_write(ctlr, EDMA_QEMCR, BIT(i));
60902a2c 477 edma_shadow0_write(ctlr, SH_QSECR,
d78a9494 478 BIT(i));
a4768d22
KH
479
480 /* NOTE: not reported!! */
481 }
482 }
60902a2c 483 } else if (edma_read(ctlr, EDMA_CCERR)) {
a4768d22 484 dev_dbg(data, "CCERR %08x\n",
60902a2c 485 edma_read(ctlr, EDMA_CCERR));
a4768d22
KH
486 /* FIXME: CCERR.BIT(16) ignored! much better
487 * to just write CCERRCLR with CCERR value...
488 */
489 for (i = 0; i < 8; i++) {
d78a9494 490 if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
a4768d22 491 /* Clear the corresponding IPR bits */
d78a9494 492 edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
a4768d22
KH
493
494 /* NOTE: not reported!! */
495 }
496 }
497 }
a6374f53
SN
498 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
499 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
500 (edma_read(ctlr, EDMA_QEMR) == 0) &&
501 (edma_read(ctlr, EDMA_CCERR) == 0))
a4768d22 502 break;
a4768d22
KH
503 cnt++;
504 if (cnt > 10)
505 break;
506 }
60902a2c 507 edma_write(ctlr, EDMA_EEVAL, 1);
a4768d22
KH
508 return IRQ_HANDLED;
509}
510
134ce221
SP
511static int reserve_contiguous_slots(int ctlr, unsigned int id,
512 unsigned int num_slots,
513 unsigned int start_slot)
213765d7
SP
514{
515 int i, j;
134ce221
SP
516 unsigned int count = num_slots;
517 int stop_slot = start_slot;
cc93fc3f 518 DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
213765d7 519
3f68b98a 520 for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
213765d7 521 j = EDMA_CHAN_SLOT(i);
3f68b98a 522 if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
cc93fc3f 523 /* Record our current beginning slot */
134ce221
SP
524 if (count == num_slots)
525 stop_slot = i;
cc93fc3f 526
213765d7 527 count--;
cc93fc3f
SP
528 set_bit(j, tmp_inuse);
529
213765d7
SP
530 if (count == 0)
531 break;
cc93fc3f
SP
532 } else {
533 clear_bit(j, tmp_inuse);
534
535 if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
134ce221 536 stop_slot = i;
cc93fc3f 537 break;
243bc654 538 } else {
134ce221 539 count = num_slots;
243bc654 540 }
cc93fc3f 541 }
213765d7
SP
542 }
543
544 /*
545 * We have to clear any bits that we set
134ce221
SP
546 * if we run out parameter RAM slots, i.e we do find a set
547 * of contiguous parameter RAM slots but do not find the exact number
548 * requested as we may reach the total number of parameter RAM slots
213765d7 549 */
3f68b98a 550 if (i == edma_cc[ctlr]->num_slots)
134ce221 551 stop_slot = i;
cc93fc3f 552
98e3b339
AM
553 j = start_slot;
554 for_each_set_bit_from(j, tmp_inuse, stop_slot)
555 clear_bit(j, edma_cc[ctlr]->edma_inuse);
213765d7 556
cc93fc3f 557 if (count)
213765d7 558 return -EBUSY;
213765d7 559
134ce221 560 for (j = i - num_slots + 1; j <= i; ++j)
213765d7
SP
561 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
562 &dummy_paramset, PARM_SIZE);
563
134ce221 564 return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
213765d7
SP
565}
566
f900d552
SR
567static int prepare_unused_channel_list(struct device *dev, void *data)
568{
569 struct platform_device *pdev = to_platform_device(dev);
6cdaca48
JF
570 int i, count, ctlr;
571 struct of_phandle_args dma_spec;
f900d552 572
6cdaca48
JF
573 if (dev->of_node) {
574 count = of_property_count_strings(dev->of_node, "dma-names");
575 if (count < 0)
576 return 0;
577 for (i = 0; i < count; i++) {
578 if (of_parse_phandle_with_args(dev->of_node, "dmas",
579 "#dma-cells", i,
580 &dma_spec))
581 continue;
582
583 if (!of_match_node(edma_of_ids, dma_spec.np)) {
584 of_node_put(dma_spec.np);
585 continue;
586 }
587
588 clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
589 edma_cc[0]->edma_unused);
590 of_node_put(dma_spec.np);
591 }
592 return 0;
593 }
594
595 /* For non-OF case */
f900d552
SR
596 for (i = 0; i < pdev->num_resources; i++) {
597 if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
598 (int)pdev->resource[i].start >= 0) {
599 ctlr = EDMA_CTLR(pdev->resource[i].start);
600 clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
6cdaca48 601 edma_cc[ctlr]->edma_unused);
f900d552
SR
602 }
603 }
604
605 return 0;
606}
607
a4768d22
KH
608/*-----------------------------------------------------------------------*/
609
f900d552
SR
610static bool unused_chan_list_done;
611
a4768d22
KH
612/* Resource alloc/free: dma channels, parameter RAM slots */
613
614/**
615 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
616 * @channel: specific channel to allocate; negative for "any unmapped channel"
617 * @callback: optional; to be issued on DMA completion or errors
618 * @data: passed to callback
619 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
620 * Controller (TC) executes requests using this channel. Use
621 * EVENTQ_DEFAULT unless you really need a high priority queue.
622 *
623 * This allocates a DMA channel and its associated parameter RAM slot.
624 * The parameter RAM is initialized to hold a dummy transfer.
625 *
626 * Normal use is to pass a specific channel number as @channel, to make
627 * use of hardware events mapped to that channel. When the channel will
628 * be used only for software triggering or event chaining, channels not
629 * mapped to hardware events (or mapped to unused events) are preferable.
630 *
631 * DMA transfers start from a channel using edma_start(), or by
632 * chaining. When the transfer described in that channel's parameter RAM
633 * slot completes, that slot's data may be reloaded through a link.
634 *
635 * DMA errors are only reported to the @callback associated with the
636 * channel driving that transfer, but transfer completion callbacks can
637 * be sent to another channel under control of the TCC field in
638 * the option word of the transfer's parameter RAM set. Drivers must not
639 * use DMA transfer completion callbacks for channels they did not allocate.
640 * (The same applies to TCC codes used in transfer chaining.)
641 *
642 * Returns the number of the channel, else negative errno.
643 */
644int edma_alloc_channel(int channel,
645 void (*callback)(unsigned channel, u16 ch_status, void *data),
646 void *data,
647 enum dma_event_q eventq_no)
648{
447f18f1 649 unsigned i, done = 0, ctlr = 0;
f900d552
SR
650 int ret = 0;
651
652 if (!unused_chan_list_done) {
653 /*
654 * Scan all the platform devices to find out the EDMA channels
655 * used and clear them in the unused list, making the rest
656 * available for ARM usage.
657 */
658 ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
659 prepare_unused_channel_list);
660 if (ret < 0)
661 return ret;
662
663 unused_chan_list_done = true;
664 }
60902a2c
SR
665
666 if (channel >= 0) {
667 ctlr = EDMA_CTLR(channel);
668 channel = EDMA_CHAN_SLOT(channel);
669 }
670
a4768d22 671 if (channel < 0) {
2d517508 672 for (i = 0; i < arch_num_cc; i++) {
60902a2c
SR
673 channel = 0;
674 for (;;) {
3f68b98a
SN
675 channel = find_next_bit(edma_cc[i]->edma_unused,
676 edma_cc[i]->num_channels,
60902a2c 677 channel);
3f68b98a 678 if (channel == edma_cc[i]->num_channels)
447f18f1 679 break;
60902a2c 680 if (!test_and_set_bit(channel,
3f68b98a 681 edma_cc[i]->edma_inuse)) {
60902a2c
SR
682 done = 1;
683 ctlr = i;
684 break;
685 }
686 channel++;
687 }
688 if (done)
a4768d22 689 break;
a4768d22 690 }
447f18f1
SR
691 if (!done)
692 return -ENOMEM;
3f68b98a 693 } else if (channel >= edma_cc[ctlr]->num_channels) {
a4768d22 694 return -EINVAL;
3f68b98a 695 } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
a4768d22
KH
696 return -EBUSY;
697 }
698
699 /* ensure access through shadow region 0 */
d78a9494 700 edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
a4768d22
KH
701
702 /* ensure no events are pending */
60902a2c
SR
703 edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
704 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
a4768d22
KH
705 &dummy_paramset, PARM_SIZE);
706
707 if (callback)
60902a2c
SR
708 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
709 callback, data);
a4768d22 710
60902a2c 711 map_dmach_queue(ctlr, channel, eventq_no);
a4768d22 712
0e6cb8d2 713 return EDMA_CTLR_CHAN(ctlr, channel);
a4768d22
KH
714}
715EXPORT_SYMBOL(edma_alloc_channel);
716
717
718/**
719 * edma_free_channel - deallocate DMA channel
720 * @channel: dma channel returned from edma_alloc_channel()
721 *
722 * This deallocates the DMA channel and associated parameter RAM slot
723 * allocated by edma_alloc_channel().
724 *
725 * Callers are responsible for ensuring the channel is inactive, and
726 * will not be reactivated by linking, chaining, or software calls to
727 * edma_start().
728 */
729void edma_free_channel(unsigned channel)
730{
60902a2c
SR
731 unsigned ctlr;
732
733 ctlr = EDMA_CTLR(channel);
734 channel = EDMA_CHAN_SLOT(channel);
735
3f68b98a 736 if (channel >= edma_cc[ctlr]->num_channels)
a4768d22
KH
737 return;
738
739 setup_dma_interrupt(channel, NULL, NULL);
740 /* REVISIT should probably take out of shadow region 0 */
741
60902a2c 742 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
a4768d22 743 &dummy_paramset, PARM_SIZE);
3f68b98a 744 clear_bit(channel, edma_cc[ctlr]->edma_inuse);
a4768d22
KH
745}
746EXPORT_SYMBOL(edma_free_channel);
747
748/**
749 * edma_alloc_slot - allocate DMA parameter RAM
750 * @slot: specific slot to allocate; negative for "any unused slot"
751 *
752 * This allocates a parameter RAM slot, initializing it to hold a
753 * dummy transfer. Slots allocated using this routine have not been
754 * mapped to a hardware DMA channel, and will normally be used by
755 * linking to them from a slot associated with a DMA channel.
756 *
757 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
758 * slots may be allocated on behalf of DSP firmware.
759 *
760 * Returns the number of the slot, else negative errno.
761 */
60902a2c 762int edma_alloc_slot(unsigned ctlr, int slot)
a4768d22 763{
06955277
MP
764 if (!edma_cc[ctlr])
765 return -EINVAL;
766
60902a2c
SR
767 if (slot >= 0)
768 slot = EDMA_CHAN_SLOT(slot);
769
a4768d22 770 if (slot < 0) {
3f68b98a 771 slot = edma_cc[ctlr]->num_channels;
a4768d22 772 for (;;) {
3f68b98a
SN
773 slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
774 edma_cc[ctlr]->num_slots, slot);
775 if (slot == edma_cc[ctlr]->num_slots)
a4768d22 776 return -ENOMEM;
3f68b98a 777 if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
a4768d22
KH
778 break;
779 }
3f68b98a
SN
780 } else if (slot < edma_cc[ctlr]->num_channels ||
781 slot >= edma_cc[ctlr]->num_slots) {
a4768d22 782 return -EINVAL;
3f68b98a 783 } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
a4768d22
KH
784 return -EBUSY;
785 }
786
60902a2c 787 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
a4768d22
KH
788 &dummy_paramset, PARM_SIZE);
789
60902a2c 790 return EDMA_CTLR_CHAN(ctlr, slot);
a4768d22
KH
791}
792EXPORT_SYMBOL(edma_alloc_slot);
793
794/**
795 * edma_free_slot - deallocate DMA parameter RAM
796 * @slot: parameter RAM slot returned from edma_alloc_slot()
797 *
798 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
799 * Callers are responsible for ensuring the slot is inactive, and will
800 * not be activated.
801 */
802void edma_free_slot(unsigned slot)
803{
60902a2c
SR
804 unsigned ctlr;
805
806 ctlr = EDMA_CTLR(slot);
807 slot = EDMA_CHAN_SLOT(slot);
808
3f68b98a
SN
809 if (slot < edma_cc[ctlr]->num_channels ||
810 slot >= edma_cc[ctlr]->num_slots)
a4768d22
KH
811 return;
812
60902a2c 813 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
a4768d22 814 &dummy_paramset, PARM_SIZE);
3f68b98a 815 clear_bit(slot, edma_cc[ctlr]->edma_inuse);
a4768d22
KH
816}
817EXPORT_SYMBOL(edma_free_slot);
818
213765d7
SP
819
820/**
821 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
822 * The API will return the starting point of a set of
134ce221 823 * contiguous parameter RAM slots that have been requested
213765d7
SP
824 *
825 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
826 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
134ce221
SP
827 * @count: number of contiguous Paramter RAM slots
828 * @slot - the start value of Parameter RAM slot that should be passed if id
213765d7
SP
829 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
830 *
831 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
134ce221
SP
832 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
833 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
213765d7
SP
834 *
835 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
134ce221 836 * set of contiguous parameter RAM slots from the "slot" that is passed as an
213765d7
SP
837 * argument to the API.
838 *
839 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
134ce221 840 * starts looking for a set of contiguous parameter RAMs from the "slot"
213765d7 841 * that is passed as an argument to the API. On failure the API will try to
134ce221
SP
842 * find a set of contiguous Parameter RAM slots from the remaining Parameter
843 * RAM slots
213765d7
SP
844 */
845int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
846{
847 /*
848 * The start slot requested should be greater than
849 * the number of channels and lesser than the total number
850 * of slots
851 */
6b0cf4e9 852 if ((id != EDMA_CONT_PARAMS_ANY) &&
3f68b98a
SN
853 (slot < edma_cc[ctlr]->num_channels ||
854 slot >= edma_cc[ctlr]->num_slots))
213765d7
SP
855 return -EINVAL;
856
857 /*
134ce221 858 * The number of parameter RAM slots requested cannot be less than 1
213765d7
SP
859 * and cannot be more than the number of slots minus the number of
860 * channels
861 */
862 if (count < 1 || count >
3f68b98a 863 (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
213765d7
SP
864 return -EINVAL;
865
866 switch (id) {
867 case EDMA_CONT_PARAMS_ANY:
134ce221 868 return reserve_contiguous_slots(ctlr, id, count,
3f68b98a 869 edma_cc[ctlr]->num_channels);
213765d7
SP
870 case EDMA_CONT_PARAMS_FIXED_EXACT:
871 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
134ce221 872 return reserve_contiguous_slots(ctlr, id, count, slot);
213765d7
SP
873 default:
874 return -EINVAL;
875 }
876
877}
878EXPORT_SYMBOL(edma_alloc_cont_slots);
879
880/**
134ce221
SP
881 * edma_free_cont_slots - deallocate DMA parameter RAM slots
882 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
883 * @count: the number of contiguous parameter RAM slots to be freed
213765d7
SP
884 *
885 * This deallocates the parameter RAM slots allocated by
886 * edma_alloc_cont_slots.
887 * Callers/applications need to keep track of sets of contiguous
134ce221 888 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
213765d7
SP
889 * API.
890 * Callers are responsible for ensuring the slots are inactive, and will
891 * not be activated.
892 */
893int edma_free_cont_slots(unsigned slot, int count)
894{
51c99e04 895 unsigned ctlr, slot_to_free;
213765d7
SP
896 int i;
897
898 ctlr = EDMA_CTLR(slot);
899 slot = EDMA_CHAN_SLOT(slot);
900
3f68b98a
SN
901 if (slot < edma_cc[ctlr]->num_channels ||
902 slot >= edma_cc[ctlr]->num_slots ||
213765d7
SP
903 count < 1)
904 return -EINVAL;
905
906 for (i = slot; i < slot + count; ++i) {
907 ctlr = EDMA_CTLR(i);
51c99e04 908 slot_to_free = EDMA_CHAN_SLOT(i);
213765d7 909
51c99e04 910 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
213765d7 911 &dummy_paramset, PARM_SIZE);
3f68b98a 912 clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
213765d7
SP
913 }
914
915 return 0;
916}
917EXPORT_SYMBOL(edma_free_cont_slots);
918
a4768d22
KH
919/*-----------------------------------------------------------------------*/
920
921/* Parameter RAM operations (i) -- read/write partial slots */
922
923/**
924 * edma_set_src - set initial DMA source address in parameter RAM slot
925 * @slot: parameter RAM slot being configured
926 * @src_port: physical address of source (memory, controller FIFO, etc)
927 * @addressMode: INCR, except in very rare cases
928 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
929 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
930 *
931 * Note that the source address is modified during the DMA transfer
932 * according to edma_set_src_index().
933 */
934void edma_set_src(unsigned slot, dma_addr_t src_port,
935 enum address_mode mode, enum fifo_width width)
936{
60902a2c
SR
937 unsigned ctlr;
938
939 ctlr = EDMA_CTLR(slot);
940 slot = EDMA_CHAN_SLOT(slot);
941
3f68b98a 942 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 943 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
a4768d22
KH
944
945 if (mode) {
946 /* set SAM and program FWID */
947 i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
948 } else {
949 /* clear SAM */
950 i &= ~SAM;
951 }
60902a2c 952 edma_parm_write(ctlr, PARM_OPT, slot, i);
a4768d22
KH
953
954 /* set the source port address
955 in source register of param structure */
60902a2c 956 edma_parm_write(ctlr, PARM_SRC, slot, src_port);
a4768d22
KH
957 }
958}
959EXPORT_SYMBOL(edma_set_src);
960
961/**
962 * edma_set_dest - set initial DMA destination address in parameter RAM slot
963 * @slot: parameter RAM slot being configured
964 * @dest_port: physical address of destination (memory, controller FIFO, etc)
965 * @addressMode: INCR, except in very rare cases
966 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
967 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
968 *
969 * Note that the destination address is modified during the DMA transfer
970 * according to edma_set_dest_index().
971 */
972void edma_set_dest(unsigned slot, dma_addr_t dest_port,
973 enum address_mode mode, enum fifo_width width)
974{
60902a2c
SR
975 unsigned ctlr;
976
977 ctlr = EDMA_CTLR(slot);
978 slot = EDMA_CHAN_SLOT(slot);
979
3f68b98a 980 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 981 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
a4768d22
KH
982
983 if (mode) {
984 /* set DAM and program FWID */
985 i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
986 } else {
987 /* clear DAM */
988 i &= ~DAM;
989 }
60902a2c 990 edma_parm_write(ctlr, PARM_OPT, slot, i);
a4768d22
KH
991 /* set the destination port address
992 in dest register of param structure */
60902a2c 993 edma_parm_write(ctlr, PARM_DST, slot, dest_port);
a4768d22
KH
994 }
995}
996EXPORT_SYMBOL(edma_set_dest);
997
998/**
cdae05a0 999 * edma_get_position - returns the current transfer point
a4768d22 1000 * @slot: parameter RAM slot being examined
cdae05a0 1001 * @dst: true selects the dest position, false the source
a4768d22 1002 *
cdae05a0 1003 * Returns the position of the current active slot
a4768d22 1004 */
cdae05a0 1005dma_addr_t edma_get_position(unsigned slot, bool dst)
a4768d22 1006{
cdae05a0 1007 u32 offs, ctlr = EDMA_CTLR(slot);
60902a2c 1008
60902a2c 1009 slot = EDMA_CHAN_SLOT(slot);
a4768d22 1010
cdae05a0
TG
1011 offs = PARM_OFFSET(slot);
1012 offs += dst ? PARM_DST : PARM_SRC;
1013
1014 return edma_read(ctlr, offs);
a4768d22 1015}
a4768d22
KH
1016
1017/**
1018 * edma_set_src_index - configure DMA source address indexing
1019 * @slot: parameter RAM slot being configured
1020 * @src_bidx: byte offset between source arrays in a frame
1021 * @src_cidx: byte offset between source frames in a block
1022 *
1023 * Offsets are specified to support either contiguous or discontiguous
1024 * memory transfers, or repeated access to a hardware register, as needed.
1025 * When accessing hardware registers, both offsets are normally zero.
1026 */
1027void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1028{
60902a2c
SR
1029 unsigned ctlr;
1030
1031 ctlr = EDMA_CTLR(slot);
1032 slot = EDMA_CHAN_SLOT(slot);
1033
3f68b98a 1034 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 1035 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
a4768d22 1036 0xffff0000, src_bidx);
60902a2c 1037 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
a4768d22
KH
1038 0xffff0000, src_cidx);
1039 }
1040}
1041EXPORT_SYMBOL(edma_set_src_index);
1042
1043/**
1044 * edma_set_dest_index - configure DMA destination address indexing
1045 * @slot: parameter RAM slot being configured
1046 * @dest_bidx: byte offset between destination arrays in a frame
1047 * @dest_cidx: byte offset between destination frames in a block
1048 *
1049 * Offsets are specified to support either contiguous or discontiguous
1050 * memory transfers, or repeated access to a hardware register, as needed.
1051 * When accessing hardware registers, both offsets are normally zero.
1052 */
1053void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1054{
60902a2c
SR
1055 unsigned ctlr;
1056
1057 ctlr = EDMA_CTLR(slot);
1058 slot = EDMA_CHAN_SLOT(slot);
1059
3f68b98a 1060 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 1061 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
a4768d22 1062 0x0000ffff, dest_bidx << 16);
60902a2c 1063 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
a4768d22
KH
1064 0x0000ffff, dest_cidx << 16);
1065 }
1066}
1067EXPORT_SYMBOL(edma_set_dest_index);
1068
1069/**
1070 * edma_set_transfer_params - configure DMA transfer parameters
1071 * @slot: parameter RAM slot being configured
1072 * @acnt: how many bytes per array (at least one)
1073 * @bcnt: how many arrays per frame (at least one)
1074 * @ccnt: how many frames per block (at least one)
1075 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1076 * the value to reload into bcnt when it decrements to zero
1077 * @sync_mode: ASYNC or ABSYNC
1078 *
1079 * See the EDMA3 documentation to understand how to configure and link
1080 * transfers using the fields in PaRAM slots. If you are not doing it
1081 * all at once with edma_write_slot(), you will use this routine
1082 * plus two calls each for source and destination, setting the initial
1083 * address and saying how to index that address.
1084 *
1085 * An example of an A-Synchronized transfer is a serial link using a
1086 * single word shift register. In that case, @acnt would be equal to
1087 * that word size; the serial controller issues a DMA synchronization
1088 * event to transfer each word, and memory access by the DMA transfer
1089 * controller will be word-at-a-time.
1090 *
1091 * An example of an AB-Synchronized transfer is a device using a FIFO.
1092 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1093 * The controller with the FIFO issues DMA synchronization events when
1094 * the FIFO threshold is reached, and the DMA transfer controller will
1095 * transfer one frame to (or from) the FIFO. It will probably use
1096 * efficient burst modes to access memory.
1097 */
1098void edma_set_transfer_params(unsigned slot,
1099 u16 acnt, u16 bcnt, u16 ccnt,
1100 u16 bcnt_rld, enum sync_dimension sync_mode)
1101{
60902a2c
SR
1102 unsigned ctlr;
1103
1104 ctlr = EDMA_CTLR(slot);
1105 slot = EDMA_CHAN_SLOT(slot);
1106
3f68b98a 1107 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 1108 edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
a4768d22
KH
1109 0x0000ffff, bcnt_rld << 16);
1110 if (sync_mode == ASYNC)
60902a2c 1111 edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
a4768d22 1112 else
60902a2c 1113 edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
a4768d22 1114 /* Set the acount, bcount, ccount registers */
60902a2c
SR
1115 edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1116 edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
a4768d22
KH
1117 }
1118}
1119EXPORT_SYMBOL(edma_set_transfer_params);
1120
1121/**
1122 * edma_link - link one parameter RAM slot to another
1123 * @from: parameter RAM slot originating the link
1124 * @to: parameter RAM slot which is the link target
1125 *
1126 * The originating slot should not be part of any active DMA transfer.
1127 */
1128void edma_link(unsigned from, unsigned to)
1129{
60902a2c
SR
1130 unsigned ctlr_from, ctlr_to;
1131
1132 ctlr_from = EDMA_CTLR(from);
1133 from = EDMA_CHAN_SLOT(from);
1134 ctlr_to = EDMA_CTLR(to);
1135 to = EDMA_CHAN_SLOT(to);
1136
3f68b98a 1137 if (from >= edma_cc[ctlr_from]->num_slots)
a4768d22 1138 return;
3f68b98a 1139 if (to >= edma_cc[ctlr_to]->num_slots)
a4768d22 1140 return;
60902a2c
SR
1141 edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1142 PARM_OFFSET(to));
a4768d22
KH
1143}
1144EXPORT_SYMBOL(edma_link);
1145
1146/**
1147 * edma_unlink - cut link from one parameter RAM slot
1148 * @from: parameter RAM slot originating the link
1149 *
1150 * The originating slot should not be part of any active DMA transfer.
1151 * Its link is set to 0xffff.
1152 */
1153void edma_unlink(unsigned from)
1154{
60902a2c
SR
1155 unsigned ctlr;
1156
1157 ctlr = EDMA_CTLR(from);
1158 from = EDMA_CHAN_SLOT(from);
1159
3f68b98a 1160 if (from >= edma_cc[ctlr]->num_slots)
a4768d22 1161 return;
60902a2c 1162 edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
a4768d22
KH
1163}
1164EXPORT_SYMBOL(edma_unlink);
1165
1166/*-----------------------------------------------------------------------*/
1167
1168/* Parameter RAM operations (ii) -- read/write whole parameter sets */
1169
1170/**
1171 * edma_write_slot - write parameter RAM data for slot
1172 * @slot: number of parameter RAM slot being modified
1173 * @param: data to be written into parameter RAM slot
1174 *
1175 * Use this to assign all parameters of a transfer at once. This
1176 * allows more efficient setup of transfers than issuing multiple
1177 * calls to set up those parameters in small pieces, and provides
1178 * complete control over all transfer options.
1179 */
1180void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1181{
60902a2c
SR
1182 unsigned ctlr;
1183
1184 ctlr = EDMA_CTLR(slot);
1185 slot = EDMA_CHAN_SLOT(slot);
1186
3f68b98a 1187 if (slot >= edma_cc[ctlr]->num_slots)
a4768d22 1188 return;
60902a2c
SR
1189 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1190 PARM_SIZE);
a4768d22
KH
1191}
1192EXPORT_SYMBOL(edma_write_slot);
1193
1194/**
1195 * edma_read_slot - read parameter RAM data from slot
1196 * @slot: number of parameter RAM slot being copied
1197 * @param: where to store copy of parameter RAM data
1198 *
1199 * Use this to read data from a parameter RAM slot, perhaps to
1200 * save them as a template for later reuse.
1201 */
1202void edma_read_slot(unsigned slot, struct edmacc_param *param)
1203{
60902a2c
SR
1204 unsigned ctlr;
1205
1206 ctlr = EDMA_CTLR(slot);
1207 slot = EDMA_CHAN_SLOT(slot);
1208
3f68b98a 1209 if (slot >= edma_cc[ctlr]->num_slots)
a4768d22 1210 return;
60902a2c
SR
1211 memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1212 PARM_SIZE);
a4768d22
KH
1213}
1214EXPORT_SYMBOL(edma_read_slot);
1215
1216/*-----------------------------------------------------------------------*/
1217
1218/* Various EDMA channel control operations */
1219
1220/**
1221 * edma_pause - pause dma on a channel
1222 * @channel: on which edma_start() has been called
1223 *
1224 * This temporarily disables EDMA hardware events on the specified channel,
1225 * preventing them from triggering new transfers on its behalf
1226 */
1227void edma_pause(unsigned channel)
1228{
60902a2c
SR
1229 unsigned ctlr;
1230
1231 ctlr = EDMA_CTLR(channel);
1232 channel = EDMA_CHAN_SLOT(channel);
1233
3f68b98a 1234 if (channel < edma_cc[ctlr]->num_channels) {
d78a9494 1235 unsigned int mask = BIT(channel & 0x1f);
a4768d22 1236
60902a2c 1237 edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
a4768d22
KH
1238 }
1239}
1240EXPORT_SYMBOL(edma_pause);
1241
1242/**
1243 * edma_resume - resumes dma on a paused channel
1244 * @channel: on which edma_pause() has been called
1245 *
1246 * This re-enables EDMA hardware events on the specified channel.
1247 */
1248void edma_resume(unsigned channel)
1249{
60902a2c
SR
1250 unsigned ctlr;
1251
1252 ctlr = EDMA_CTLR(channel);
1253 channel = EDMA_CHAN_SLOT(channel);
1254
3f68b98a 1255 if (channel < edma_cc[ctlr]->num_channels) {
d78a9494 1256 unsigned int mask = BIT(channel & 0x1f);
a4768d22 1257
60902a2c 1258 edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
a4768d22
KH
1259 }
1260}
1261EXPORT_SYMBOL(edma_resume);
1262
96874b9a
JF
1263int edma_trigger_channel(unsigned channel)
1264{
1265 unsigned ctlr;
1266 unsigned int mask;
1267
1268 ctlr = EDMA_CTLR(channel);
1269 channel = EDMA_CHAN_SLOT(channel);
1270 mask = BIT(channel & 0x1f);
1271
1272 edma_shadow0_write_array(ctlr, SH_ESR, (channel >> 5), mask);
1273
1274 pr_debug("EDMA: ESR%d %08x\n", (channel >> 5),
1275 edma_shadow0_read_array(ctlr, SH_ESR, (channel >> 5)));
1276 return 0;
1277}
1278EXPORT_SYMBOL(edma_trigger_channel);
1279
a4768d22
KH
1280/**
1281 * edma_start - start dma on a channel
1282 * @channel: channel being activated
1283 *
1284 * Channels with event associations will be triggered by their hardware
1285 * events, and channels without such associations will be triggered by
1286 * software. (At this writing there is no interface for using software
1287 * triggers except with channels that don't support hardware triggers.)
1288 *
1289 * Returns zero on success, else negative errno.
1290 */
1291int edma_start(unsigned channel)
1292{
60902a2c
SR
1293 unsigned ctlr;
1294
1295 ctlr = EDMA_CTLR(channel);
1296 channel = EDMA_CHAN_SLOT(channel);
1297
3f68b98a 1298 if (channel < edma_cc[ctlr]->num_channels) {
a4768d22 1299 int j = channel >> 5;
d78a9494 1300 unsigned int mask = BIT(channel & 0x1f);
a4768d22
KH
1301
1302 /* EDMA channels without event association */
3f68b98a 1303 if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
a4768d22 1304 pr_debug("EDMA: ESR%d %08x\n", j,
60902a2c
SR
1305 edma_shadow0_read_array(ctlr, SH_ESR, j));
1306 edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
a4768d22
KH
1307 return 0;
1308 }
1309
1310 /* EDMA channel with event association */
1311 pr_debug("EDMA: ER%d %08x\n", j,
60902a2c 1312 edma_shadow0_read_array(ctlr, SH_ER, j));
bb17ef10
BN
1313 /* Clear any pending event or error */
1314 edma_write_array(ctlr, EDMA_ECR, j, mask);
60902a2c 1315 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22 1316 /* Clear any SER */
60902a2c
SR
1317 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1318 edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
a4768d22 1319 pr_debug("EDMA: EER%d %08x\n", j,
60902a2c 1320 edma_shadow0_read_array(ctlr, SH_EER, j));
a4768d22
KH
1321 return 0;
1322 }
1323
1324 return -EINVAL;
1325}
1326EXPORT_SYMBOL(edma_start);
1327
1328/**
1329 * edma_stop - stops dma on the channel passed
1330 * @channel: channel being deactivated
1331 *
1332 * When @lch is a channel, any active transfer is paused and
1333 * all pending hardware events are cleared. The current transfer
1334 * may not be resumed, and the channel's Parameter RAM should be
1335 * reinitialized before being reused.
1336 */
1337void edma_stop(unsigned channel)
1338{
60902a2c
SR
1339 unsigned ctlr;
1340
1341 ctlr = EDMA_CTLR(channel);
1342 channel = EDMA_CHAN_SLOT(channel);
1343
3f68b98a 1344 if (channel < edma_cc[ctlr]->num_channels) {
a4768d22 1345 int j = channel >> 5;
d78a9494 1346 unsigned int mask = BIT(channel & 0x1f);
a4768d22 1347
60902a2c
SR
1348 edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1349 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1350 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1351 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22
KH
1352
1353 pr_debug("EDMA: EER%d %08x\n", j,
60902a2c 1354 edma_shadow0_read_array(ctlr, SH_EER, j));
a4768d22
KH
1355
1356 /* REVISIT: consider guarding against inappropriate event
1357 * chaining by overwriting with dummy_paramset.
1358 */
1359 }
1360}
1361EXPORT_SYMBOL(edma_stop);
1362
1363/******************************************************************************
1364 *
1365 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1366 * been removed before EDMA has finished.It is usedful for removable media.
1367 * Arguments:
1368 * ch_no - channel no
1369 *
1370 * Return: zero on success, or corresponding error no on failure
1371 *
1372 * FIXME this should not be needed ... edma_stop() should suffice.
1373 *
1374 *****************************************************************************/
1375
1376void edma_clean_channel(unsigned channel)
1377{
60902a2c
SR
1378 unsigned ctlr;
1379
1380 ctlr = EDMA_CTLR(channel);
1381 channel = EDMA_CHAN_SLOT(channel);
1382
3f68b98a 1383 if (channel < edma_cc[ctlr]->num_channels) {
a4768d22 1384 int j = (channel >> 5);
d78a9494 1385 unsigned int mask = BIT(channel & 0x1f);
a4768d22
KH
1386
1387 pr_debug("EDMA: EMR%d %08x\n", j,
60902a2c
SR
1388 edma_read_array(ctlr, EDMA_EMR, j));
1389 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
a4768d22 1390 /* Clear the corresponding EMR bits */
60902a2c 1391 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22 1392 /* Clear any SER */
60902a2c 1393 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
d78a9494 1394 edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
a4768d22
KH
1395 }
1396}
1397EXPORT_SYMBOL(edma_clean_channel);
1398
1399/*
1400 * edma_clear_event - clear an outstanding event on the DMA channel
1401 * Arguments:
1402 * channel - channel number
1403 */
1404void edma_clear_event(unsigned channel)
1405{
60902a2c
SR
1406 unsigned ctlr;
1407
1408 ctlr = EDMA_CTLR(channel);
1409 channel = EDMA_CHAN_SLOT(channel);
1410
3f68b98a 1411 if (channel >= edma_cc[ctlr]->num_channels)
a4768d22
KH
1412 return;
1413 if (channel < 32)
d78a9494 1414 edma_write(ctlr, EDMA_ECR, BIT(channel));
a4768d22 1415 else
d78a9494 1416 edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
a4768d22
KH
1417}
1418EXPORT_SYMBOL(edma_clear_event);
1419
eb3fe7de
PU
1420/*
1421 * edma_assign_channel_eventq - move given channel to desired eventq
1422 * Arguments:
1423 * channel - channel number
1424 * eventq_no - queue to move the channel
1425 *
1426 * Can be used to move a channel to a selected event queue.
1427 */
1428void edma_assign_channel_eventq(unsigned channel, enum dma_event_q eventq_no)
1429{
1430 unsigned ctlr;
1431
1432 ctlr = EDMA_CTLR(channel);
1433 channel = EDMA_CHAN_SLOT(channel);
1434
1435 if (channel >= edma_cc[ctlr]->num_channels)
1436 return;
1437
1438 /* default to low priority queue */
1439 if (eventq_no == EVENTQ_DEFAULT)
1440 eventq_no = edma_cc[ctlr]->default_queue;
1441 if (eventq_no >= edma_cc[ctlr]->num_tc)
1442 return;
1443
1444 map_dmach_queue(ctlr, channel, eventq_no);
1445}
1446EXPORT_SYMBOL(edma_assign_channel_eventq);
1447
6d10c395 1448static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
929a015b 1449 struct edma *edma_cc, int cc_id)
6d10c395
PU
1450{
1451 int i;
1452 u32 value, cccfg;
1453 s8 (*queue_priority_map)[2];
1454
1455 /* Decode the eDMA3 configuration from CCCFG register */
929a015b 1456 cccfg = edma_read(cc_id, EDMA_CCCFG);
6d10c395
PU
1457
1458 value = GET_NUM_REGN(cccfg);
1459 edma_cc->num_region = BIT(value);
1460
1461 value = GET_NUM_DMACH(cccfg);
1462 edma_cc->num_channels = BIT(value + 1);
1463
1464 value = GET_NUM_PAENTRY(cccfg);
1465 edma_cc->num_slots = BIT(value + 4);
1466
1467 value = GET_NUM_EVQUE(cccfg);
1468 edma_cc->num_tc = value + 1;
1469
929a015b
PU
1470 dev_dbg(dev, "eDMA3 CC%d HW configuration (cccfg: 0x%08x):\n", cc_id,
1471 cccfg);
6d10c395
PU
1472 dev_dbg(dev, "num_region: %u\n", edma_cc->num_region);
1473 dev_dbg(dev, "num_channel: %u\n", edma_cc->num_channels);
1474 dev_dbg(dev, "num_slot: %u\n", edma_cc->num_slots);
1475 dev_dbg(dev, "num_tc: %u\n", edma_cc->num_tc);
1476
1477 /* Nothing need to be done if queue priority is provided */
1478 if (pdata->queue_priority_mapping)
1479 return 0;
1480
1481 /*
1482 * Configure TC/queue priority as follows:
1483 * Q0 - priority 0
1484 * Q1 - priority 1
1485 * Q2 - priority 2
1486 * ...
1487 * The meaning of priority numbers: 0 highest priority, 7 lowest
1488 * priority. So Q0 is the highest priority queue and the last queue has
1489 * the lowest priority.
1490 */
1491 queue_priority_map = devm_kzalloc(dev,
1492 (edma_cc->num_tc + 1) * sizeof(s8),
1493 GFP_KERNEL);
1494 if (!queue_priority_map)
1495 return -ENOMEM;
1496
1497 for (i = 0; i < edma_cc->num_tc; i++) {
1498 queue_priority_map[i][0] = i;
1499 queue_priority_map[i][1] = i;
1500 }
1501 queue_priority_map[i][0] = -1;
1502 queue_priority_map[i][1] = -1;
1503
1504 pdata->queue_priority_mapping = queue_priority_map;
85a70762
PU
1505 /* Default queue has the lowest priority */
1506 pdata->default_queue = i - 1;
6d10c395
PU
1507
1508 return 0;
1509}
1510
6cba4355
MP
1511#if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES)
1512
cf7eb979
TG
1513static int edma_xbar_event_map(struct device *dev, struct device_node *node,
1514 struct edma_soc_info *pdata, size_t sz)
2646a0e5 1515{
cf7eb979 1516 const char pname[] = "ti,edma-xbar-event-map";
2646a0e5
MP
1517 struct resource res;
1518 void __iomem *xbar;
cf7eb979
TG
1519 s16 (*xbar_chans)[2];
1520 size_t nelm = sz / sizeof(s16);
2646a0e5 1521 u32 shift, offset, mux;
cf7eb979 1522 int ret, i;
2646a0e5 1523
cf7eb979 1524 xbar_chans = devm_kzalloc(dev, (nelm + 2) * sizeof(s16), GFP_KERNEL);
2646a0e5
MP
1525 if (!xbar_chans)
1526 return -ENOMEM;
1527
1528 ret = of_address_to_resource(node, 1, &res);
1529 if (ret)
cf7eb979 1530 return -ENOMEM;
2646a0e5
MP
1531
1532 xbar = devm_ioremap(dev, res.start, resource_size(&res));
1533 if (!xbar)
1534 return -ENOMEM;
1535
cf7eb979 1536 ret = of_property_read_u16_array(node, pname, (u16 *)xbar_chans, nelm);
2646a0e5
MP
1537 if (ret)
1538 return -EIO;
1539
cf7eb979
TG
1540 /* Invalidate last entry for the other user of this mess */
1541 nelm >>= 1;
1542 xbar_chans[nelm][0] = xbar_chans[nelm][1] = -1;
1543
1544 for (i = 0; i < nelm; i++) {
2646a0e5
MP
1545 shift = (xbar_chans[i][1] & 0x03) << 3;
1546 offset = xbar_chans[i][1] & 0xfffffffc;
1547 mux = readl(xbar + offset);
1548 mux &= ~(0xff << shift);
1549 mux |= xbar_chans[i][0] << shift;
1550 writel(mux, (xbar + offset));
1551 }
1552
cf7eb979 1553 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2646a0e5
MP
1554 return 0;
1555}
1556
6cba4355
MP
1557static int edma_of_parse_dt(struct device *dev,
1558 struct device_node *node,
1559 struct edma_soc_info *pdata)
1560{
6d10c395 1561 int ret = 0;
2646a0e5
MP
1562 struct property *prop;
1563 size_t sz;
6cba4355 1564 struct edma_rsv_info *rsv_info;
6cba4355
MP
1565
1566 rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
1567 if (!rsv_info)
1568 return -ENOMEM;
1569 pdata->rsv = rsv_info;
1570
2646a0e5
MP
1571 prop = of_find_property(node, "ti,edma-xbar-event-map", &sz);
1572 if (prop)
1573 ret = edma_xbar_event_map(dev, node, pdata, sz);
1574
6cba4355
MP
1575 return ret;
1576}
1577
1578static struct of_dma_filter_info edma_filter_info = {
1579 .filter_fn = edma_filter_fn,
1580};
1581
1582static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1583 struct device_node *node)
1584{
1585 struct edma_soc_info *info;
1586 int ret;
1587
1588 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
1589 if (!info)
1590 return ERR_PTR(-ENOMEM);
1591
1592 ret = edma_of_parse_dt(dev, node, info);
1593 if (ret)
1594 return ERR_PTR(ret);
1595
1596 dma_cap_set(DMA_SLAVE, edma_filter_info.dma_cap);
232b223d 1597 dma_cap_set(DMA_CYCLIC, edma_filter_info.dma_cap);
6cba4355
MP
1598 of_dma_controller_register(dev->of_node, of_dma_simple_xlate,
1599 &edma_filter_info);
1600
1601 return info;
1602}
1603#else
1604static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1605 struct device_node *node)
1606{
1607 return ERR_PTR(-ENOSYS);
1608}
1609#endif
1610
1611static int edma_probe(struct platform_device *pdev)
a4768d22 1612{
bc3ac9f3 1613 struct edma_soc_info **info = pdev->dev.platform_data;
6cba4355
MP
1614 struct edma_soc_info *ninfo[EDMA_MAX_CC] = {NULL};
1615 s8 (*queue_priority_mapping)[2];
90bd4e6d 1616 int i, j, off, ln, found = 0;
60902a2c 1617 int status = -1;
90bd4e6d
RS
1618 const s16 (*rsv_chans)[2];
1619 const s16 (*rsv_slots)[2];
2646a0e5 1620 const s16 (*xbar_chans)[2];
60902a2c
SR
1621 int irq[EDMA_MAX_CC] = {0, 0};
1622 int err_irq[EDMA_MAX_CC] = {0, 0};
1623 struct resource *r[EDMA_MAX_CC] = {NULL};
6cba4355 1624 struct resource res[EDMA_MAX_CC];
60902a2c 1625 char res_name[10];
6cba4355
MP
1626 struct device_node *node = pdev->dev.of_node;
1627 struct device *dev = &pdev->dev;
1628 int ret;
5305e4d6
AB
1629 struct platform_device_info edma_dev_info = {
1630 .name = "edma-dma-engine",
1631 .dma_mask = DMA_BIT_MASK(32),
1632 .parent = &pdev->dev,
1633 };
6cba4355
MP
1634
1635 if (node) {
1636 /* Check if this is a second instance registered */
1637 if (arch_num_cc) {
1638 dev_err(dev, "only one EDMA instance is supported via DT\n");
1639 return -ENODEV;
1640 }
1641
1642 ninfo[0] = edma_setup_info_from_dt(dev, node);
1643 if (IS_ERR(ninfo[0])) {
1644 dev_err(dev, "failed to get DT data\n");
1645 return PTR_ERR(ninfo[0]);
1646 }
1647
1648 info = ninfo;
1649 }
a4768d22
KH
1650
1651 if (!info)
1652 return -ENODEV;
1653
6cba4355
MP
1654 pm_runtime_enable(dev);
1655 ret = pm_runtime_get_sync(dev);
1656 if (ret < 0) {
1657 dev_err(dev, "pm_runtime_get_sync() failed\n");
1658 return ret;
1659 }
1660
60902a2c 1661 for (j = 0; j < EDMA_MAX_CC; j++) {
6cba4355
MP
1662 if (!info[j]) {
1663 if (!found)
1664 return -ENODEV;
1665 break;
1666 }
1667 if (node) {
1668 ret = of_address_to_resource(node, j, &res[j]);
1669 if (!ret)
1670 r[j] = &res[j];
1671 } else {
1672 sprintf(res_name, "edma_cc%d", j);
1673 r[j] = platform_get_resource_byname(pdev,
1674 IORESOURCE_MEM,
60902a2c 1675 res_name);
6cba4355
MP
1676 }
1677 if (!r[j]) {
60902a2c
SR
1678 if (found)
1679 break;
1680 else
1681 return -ENODEV;
243bc654 1682 } else {
60902a2c 1683 found = 1;
243bc654 1684 }
60902a2c 1685
e7eff702
LP
1686 edmacc_regs_base[j] = devm_ioremap_resource(&pdev->dev, r[j]);
1687 if (IS_ERR(edmacc_regs_base[j]))
1688 return PTR_ERR(edmacc_regs_base[j]);
60902a2c 1689
e7eff702
LP
1690 edma_cc[j] = devm_kzalloc(&pdev->dev, sizeof(struct edma),
1691 GFP_KERNEL);
1692 if (!edma_cc[j])
1693 return -ENOMEM;
60902a2c 1694
6d10c395 1695 /* Get eDMA3 configuration from IP */
929a015b 1696 ret = edma_setup_from_hw(dev, info[j], edma_cc[j], j);
6d10c395
PU
1697 if (ret)
1698 return ret;
60902a2c 1699
bc3ac9f3 1700 edma_cc[j]->default_queue = info[j]->default_queue;
a0f0202e 1701
60902a2c
SR
1702 dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1703 edmacc_regs_base[j]);
1704
3f68b98a 1705 for (i = 0; i < edma_cc[j]->num_slots; i++)
60902a2c
SR
1706 memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1707 &dummy_paramset, PARM_SIZE);
1708
f900d552 1709 /* Mark all channels as unused */
3f68b98a
SN
1710 memset(edma_cc[j]->edma_unused, 0xff,
1711 sizeof(edma_cc[j]->edma_unused));
a4768d22 1712
90bd4e6d
RS
1713 if (info[j]->rsv) {
1714
1715 /* Clear the reserved channels in unused list */
1716 rsv_chans = info[j]->rsv->rsv_chans;
1717 if (rsv_chans) {
1718 for (i = 0; rsv_chans[i][0] != -1; i++) {
1719 off = rsv_chans[i][0];
1720 ln = rsv_chans[i][1];
1721 clear_bits(off, ln,
6cba4355 1722 edma_cc[j]->edma_unused);
90bd4e6d
RS
1723 }
1724 }
1725
1726 /* Set the reserved slots in inuse list */
1727 rsv_slots = info[j]->rsv->rsv_slots;
1728 if (rsv_slots) {
1729 for (i = 0; rsv_slots[i][0] != -1; i++) {
1730 off = rsv_slots[i][0];
1731 ln = rsv_slots[i][1];
1732 set_bits(off, ln,
1733 edma_cc[j]->edma_inuse);
1734 }
1735 }
1736 }
1737
2646a0e5
MP
1738 /* Clear the xbar mapped channels in unused list */
1739 xbar_chans = info[j]->xbar_chans;
1740 if (xbar_chans) {
1741 for (i = 0; xbar_chans[i][1] != -1; i++) {
1742 off = xbar_chans[i][1];
1743 clear_bits(off, 1,
1744 edma_cc[j]->edma_unused);
1745 }
1746 }
6cba4355
MP
1747
1748 if (node) {
1749 irq[j] = irq_of_parse_and_map(node, 0);
44161767 1750 err_irq[j] = irq_of_parse_and_map(node, 2);
6cba4355 1751 } else {
44161767
PU
1752 char irq_name[10];
1753
6cba4355
MP
1754 sprintf(irq_name, "edma%d", j);
1755 irq[j] = platform_get_irq_byname(pdev, irq_name);
44161767
PU
1756
1757 sprintf(irq_name, "edma%d_err", j);
1758 err_irq[j] = platform_get_irq_byname(pdev, irq_name);
6cba4355 1759 }
3f68b98a 1760 edma_cc[j]->irq_res_start = irq[j];
44161767
PU
1761 edma_cc[j]->irq_res_end = err_irq[j];
1762
1763 status = devm_request_irq(dev, irq[j], dma_irq_handler, 0,
1764 "edma", dev);
60902a2c 1765 if (status < 0) {
e7eff702
LP
1766 dev_dbg(&pdev->dev,
1767 "devm_request_irq %d failed --> %d\n",
60902a2c 1768 irq[j], status);
e7eff702 1769 return status;
60902a2c 1770 }
a4768d22 1771
44161767
PU
1772 status = devm_request_irq(dev, err_irq[j], dma_ccerr_handler, 0,
1773 "edma_error", dev);
60902a2c 1774 if (status < 0) {
e7eff702
LP
1775 dev_dbg(&pdev->dev,
1776 "devm_request_irq %d failed --> %d\n",
60902a2c 1777 err_irq[j], status);
e7eff702 1778 return status;
60902a2c 1779 }
a4768d22 1780
3f68b98a 1781 for (i = 0; i < edma_cc[j]->num_channels; i++)
0b7580ba 1782 map_dmach_queue(j, i, info[j]->default_queue);
a4768d22 1783
bc3ac9f3 1784 queue_priority_mapping = info[j]->queue_priority_mapping;
a4768d22 1785
60902a2c
SR
1786 /* Event queue priority mapping */
1787 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1788 assign_priority_to_queue(j,
1789 queue_priority_mapping[i][0],
1790 queue_priority_mapping[i][1]);
1791
1792 /* Map the channel to param entry if channel mapping logic
1793 * exist
1794 */
1795 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1796 map_dmach_param(j);
a4768d22 1797
643efcff 1798 for (i = 0; i < edma_cc[j]->num_region; i++) {
60902a2c
SR
1799 edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1800 edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1801 edma_write_array(j, EDMA_QRAE, i, 0x0);
1802 }
a2b11751 1803 edma_cc[j]->info = info[j];
2d517508 1804 arch_num_cc++;
5305e4d6
AB
1805
1806 edma_dev_info.id = j;
1807 platform_device_register_full(&edma_dev_info);
a4768d22
KH
1808 }
1809
a4768d22 1810 return 0;
a4768d22
KH
1811}
1812
a850c427 1813#ifdef CONFIG_PM_SLEEP
a2b11751
DM
1814static int edma_pm_resume(struct device *dev)
1815{
1816 int i, j;
1817
1818 for (j = 0; j < arch_num_cc; j++) {
1819 struct edma *cc = edma_cc[j];
1820
1821 s8 (*queue_priority_mapping)[2];
1822
1823 queue_priority_mapping = cc->info->queue_priority_mapping;
1824
1825 /* Event queue priority mapping */
1826 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1827 assign_priority_to_queue(j,
1828 queue_priority_mapping[i][0],
1829 queue_priority_mapping[i][1]);
1830
1831 /*
1832 * Map the channel to param entry if channel mapping logic
1833 * exist
1834 */
1835 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1836 map_dmach_param(j);
1837
1838 for (i = 0; i < cc->num_channels; i++) {
1839 if (test_bit(i, cc->edma_inuse)) {
1840 /* ensure access through shadow region 0 */
1841 edma_or_array2(j, EDMA_DRAE, 0, i >> 5,
1842 BIT(i & 0x1f));
1843
1844 setup_dma_interrupt(i,
1845 cc->intr_data[i].callback,
1846 cc->intr_data[i].data);
1847 }
1848 }
1849 }
1850
1851 return 0;
1852}
a850c427 1853#endif
a2b11751
DM
1854
1855static const struct dev_pm_ops edma_pm_ops = {
1856 SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL, edma_pm_resume)
1857};
1858
a4768d22 1859static struct platform_driver edma_driver = {
6cba4355
MP
1860 .driver = {
1861 .name = "edma",
a2b11751 1862 .pm = &edma_pm_ops,
6cba4355
MP
1863 .of_match_table = edma_of_ids,
1864 },
1865 .probe = edma_probe,
a4768d22
KH
1866};
1867
1868static int __init edma_init(void)
1869{
1870 return platform_driver_probe(&edma_driver, edma_probe);
1871}
1872arch_initcall(edma_init);
1873