]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/arm/include/asm/dma-mapping.h
[ARM] dma: Reduce to one dma_sync_sg_* implementation
[mirror_ubuntu-jammy-kernel.git] / arch / arm / include / asm / dma-mapping.h
CommitLineData
1da177e4
LT
1#ifndef ASMARM_DMA_MAPPING_H
2#define ASMARM_DMA_MAPPING_H
3
4#ifdef __KERNEL__
5
98ed7d4b 6#include <linux/mm_types.h>
dee9ba82 7#include <linux/scatterlist.h>
1da177e4 8
1fe53268 9#include <asm-generic/dma-coherent.h>
98ed7d4b
RK
10#include <asm/memory.h>
11
12/*
13 * page_to_dma/dma_to_virt/virt_to_dma are architecture private functions
14 * used internally by the DMA-mapping API to provide DMA addresses. They
15 * must not be used by drivers.
16 */
17#ifndef __arch_page_to_dma
18static inline dma_addr_t page_to_dma(struct device *dev, struct page *page)
19{
20 return (dma_addr_t)__virt_to_bus((unsigned long)page_address(page));
21}
22
23static inline void *dma_to_virt(struct device *dev, dma_addr_t addr)
24{
25 return (void *)__bus_to_virt(addr);
26}
27
28static inline dma_addr_t virt_to_dma(struct device *dev, void *addr)
29{
30 return (dma_addr_t)__virt_to_bus((unsigned long)(addr));
31}
32#else
33static inline dma_addr_t page_to_dma(struct device *dev, struct page *page)
34{
35 return __arch_page_to_dma(dev, page);
36}
37
38static inline void *dma_to_virt(struct device *dev, dma_addr_t addr)
39{
40 return __arch_dma_to_virt(dev, addr);
41}
42
43static inline dma_addr_t virt_to_dma(struct device *dev, void *addr)
44{
45 return __arch_virt_to_dma(dev, addr);
46}
47#endif
1fe53268 48
1da177e4
LT
49/*
50 * DMA-consistent mapping functions. These allocate/free a region of
51 * uncached, unwrite-buffered mapped memory space for use with DMA
52 * devices. This is the "generic" version. The PCI specific version
53 * is in pci.h
105ef9a0
DW
54 *
55 * Note: Drivers should NOT use this function directly, as it will break
56 * platforms with CONFIG_DMABOUNCE.
57 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1da177e4 58 */
84aa462e 59extern void dma_cache_maint(const void *kaddr, size_t size, int rw);
1da177e4
LT
60
61/*
62 * Return whether the given device DMA address mask can be supported
63 * properly. For example, if your device can only drive the low 24-bits
64 * during bus mastering, then you would pass 0x00ffffff as the mask
65 * to this function.
7a228aaa 66 *
67 * FIXME: This should really be a platform specific issue - we should
68 * return false if GFP_DMA allocations may not satisfy the supplied 'mask'.
1da177e4
LT
69 */
70static inline int dma_supported(struct device *dev, u64 mask)
71{
72 return dev->dma_mask && *dev->dma_mask != 0;
73}
74
75static inline int dma_set_mask(struct device *dev, u64 dma_mask)
76{
77 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
78 return -EIO;
79
80 *dev->dma_mask = dma_mask;
81
82 return 0;
83}
84
85static inline int dma_get_cache_alignment(void)
86{
87 return 32;
88}
89
f67637ee 90static inline int dma_is_consistent(struct device *dev, dma_addr_t handle)
1da177e4 91{
23759dc6 92 return !!arch_is_coherent();
1da177e4
LT
93}
94
95/*
96 * DMA errors are defined by all-bits-set in the DMA address.
97 */
8d8bb39b 98static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
1da177e4
LT
99{
100 return dma_addr == ~0;
101}
102
f454aa6b
RK
103/*
104 * Dummy noncoherent implementation. We don't provide a dma_cache_sync
105 * function so drivers using this API are highlighted with build warnings.
106 */
107static inline void *
108dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
109{
110 return NULL;
111}
112
113static inline void
114dma_free_noncoherent(struct device *dev, size_t size, void *cpu_addr,
115 dma_addr_t handle)
116{
117}
118
1da177e4
LT
119/**
120 * dma_alloc_coherent - allocate consistent memory for DMA
121 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
122 * @size: required memory size
123 * @handle: bus-specific DMA address
124 *
125 * Allocate some uncached, unbuffered memory for a device for
126 * performing DMA. This function allocates pages, and will
127 * return the CPU-viewed address, and sets @handle to be the
128 * device-viewed address.
129 */
130extern void *
f9e3214a 131dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp);
1da177e4
LT
132
133/**
134 * dma_free_coherent - free memory allocated by dma_alloc_coherent
135 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
136 * @size: size of memory originally requested in dma_alloc_coherent
137 * @cpu_addr: CPU-view address returned from dma_alloc_coherent
138 * @handle: device-view address returned from dma_alloc_coherent
139 *
140 * Free (and unmap) a DMA buffer previously allocated by
141 * dma_alloc_coherent().
142 *
143 * References to memory and mappings associated with cpu_addr/handle
144 * during and after this call executing are illegal.
145 */
146extern void
147dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
148 dma_addr_t handle);
149
150/**
151 * dma_mmap_coherent - map a coherent DMA allocation into user space
152 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
153 * @vma: vm_area_struct describing requested user mapping
154 * @cpu_addr: kernel CPU-view address returned from dma_alloc_coherent
155 * @handle: device-view address returned from dma_alloc_coherent
156 * @size: size of memory originally requested in dma_alloc_coherent
157 *
158 * Map a coherent DMA buffer previously allocated by dma_alloc_coherent
159 * into user space. The coherent DMA buffer must not be freed by the
160 * driver until the user space mapping has been released.
161 */
162int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
163 void *cpu_addr, dma_addr_t handle, size_t size);
164
165
166/**
167 * dma_alloc_writecombine - allocate writecombining memory for DMA
168 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
169 * @size: required memory size
170 * @handle: bus-specific DMA address
171 *
172 * Allocate some uncached, buffered memory for a device for
173 * performing DMA. This function allocates pages, and will
174 * return the CPU-viewed address, and sets @handle to be the
175 * device-viewed address.
176 */
177extern void *
f9e3214a 178dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp);
1da177e4
LT
179
180#define dma_free_writecombine(dev,size,cpu_addr,handle) \
181 dma_free_coherent(dev,size,cpu_addr,handle)
182
183int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
184 void *cpu_addr, dma_addr_t handle, size_t size);
185
186
187/**
188 * dma_map_single - map a single buffer for streaming DMA
189 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
190 * @cpu_addr: CPU direct mapped address of buffer
191 * @size: size of buffer to map
192 * @dir: DMA transfer direction
193 *
194 * Ensure that any data held in the cache is appropriately discarded
195 * or written back.
196 *
197 * The device owns this memory once this call has completed. The CPU
198 * can regain ownership by calling dma_unmap_single() or
199 * dma_sync_single_for_cpu().
200 */
201#ifndef CONFIG_DMABOUNCE
202static inline dma_addr_t
203dma_map_single(struct device *dev, void *cpu_addr, size_t size,
204 enum dma_data_direction dir)
205{
23759dc6 206 if (!arch_is_coherent())
84aa462e 207 dma_cache_maint(cpu_addr, size, dir);
23759dc6 208
98ed7d4b 209 return virt_to_dma(dev, cpu_addr);
1da177e4
LT
210}
211#else
212extern dma_addr_t dma_map_single(struct device *,void *, size_t, enum dma_data_direction);
213#endif
214
215/**
216 * dma_map_page - map a portion of a page for streaming DMA
217 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
218 * @page: page that buffer resides in
219 * @offset: offset into page for start of buffer
220 * @size: size of buffer to map
221 * @dir: DMA transfer direction
222 *
223 * Ensure that any data held in the cache is appropriately discarded
224 * or written back.
225 *
226 * The device owns this memory once this call has completed. The CPU
227 * can regain ownership by calling dma_unmap_page() or
228 * dma_sync_single_for_cpu().
229 */
56f55f8b 230#ifndef CONFIG_DMABOUNCE
1da177e4
LT
231static inline dma_addr_t
232dma_map_page(struct device *dev, struct page *page,
233 unsigned long offset, size_t size,
234 enum dma_data_direction dir)
235{
56f55f8b
RK
236 if (!arch_is_coherent())
237 dma_cache_maint(page_address(page) + offset, size, dir);
238
239 return page_to_dma(dev, page) + offset;
1da177e4 240}
56f55f8b
RK
241#else
242extern dma_addr_t dma_map_page(struct device *dev, struct page *page,
243 unsigned long offset, size_t size,
244 enum dma_data_direction dir);
245#endif
1da177e4
LT
246
247/**
248 * dma_unmap_single - unmap a single buffer previously mapped
249 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
250 * @handle: DMA address of buffer
251 * @size: size of buffer to map
252 * @dir: DMA transfer direction
253 *
254 * Unmap a single streaming mode DMA translation. The handle and size
255 * must match what was provided in the previous dma_map_single() call.
256 * All other usages are undefined.
257 *
258 * After this call, reads by the CPU to the buffer are guaranteed to see
259 * whatever the device wrote there.
260 */
261#ifndef CONFIG_DMABOUNCE
262static inline void
263dma_unmap_single(struct device *dev, dma_addr_t handle, size_t size,
264 enum dma_data_direction dir)
265{
266 /* nothing to do */
267}
268#else
269extern void dma_unmap_single(struct device *, dma_addr_t, size_t, enum dma_data_direction);
270#endif
271
272/**
273 * dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
274 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
275 * @handle: DMA address of buffer
276 * @size: size of buffer to map
277 * @dir: DMA transfer direction
278 *
279 * Unmap a single streaming mode DMA translation. The handle and size
280 * must match what was provided in the previous dma_map_single() call.
281 * All other usages are undefined.
282 *
283 * After this call, reads by the CPU to the buffer are guaranteed to see
284 * whatever the device wrote there.
285 */
286static inline void
287dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
288 enum dma_data_direction dir)
289{
98ed7d4b 290 dma_unmap_single(dev, handle, size, dir);
1da177e4
LT
291}
292
1da177e4 293/**
9dd42868 294 * dma_sync_single_range_for_cpu
1da177e4
LT
295 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
296 * @handle: DMA address of buffer
9dd42868
RK
297 * @offset: offset of region to start sync
298 * @size: size of region to sync
299 * @dir: DMA transfer direction (same as passed to dma_map_single)
1da177e4
LT
300 *
301 * Make physical memory consistent for a single streaming mode DMA
302 * translation after a transfer.
303 *
304 * If you perform a dma_map_single() but wish to interrogate the
305 * buffer using the cpu, yet do not wish to teardown the PCI dma
306 * mapping, you must call this function before doing so. At the
307 * next point you give the PCI dma address back to the card, you
308 * must first the perform a dma_sync_for_device, and then the
309 * device again owns the buffer.
310 */
311#ifndef CONFIG_DMABOUNCE
312static inline void
9dd42868
RK
313dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t handle,
314 unsigned long offset, size_t size,
315 enum dma_data_direction dir)
1da177e4 316{
23759dc6 317 if (!arch_is_coherent())
9dd42868 318 dma_cache_maint(dma_to_virt(dev, handle) + offset, size, dir);
1da177e4
LT
319}
320
321static inline void
9dd42868
RK
322dma_sync_single_range_for_device(struct device *dev, dma_addr_t handle,
323 unsigned long offset, size_t size,
324 enum dma_data_direction dir)
1da177e4 325{
23759dc6 326 if (!arch_is_coherent())
9dd42868 327 dma_cache_maint(dma_to_virt(dev, handle) + offset, size, dir);
1da177e4
LT
328}
329#else
9dd42868
RK
330extern void dma_sync_single_range_for_cpu(struct device *, dma_addr_t, unsigned long, size_t, enum dma_data_direction);
331extern void dma_sync_single_range_for_device(struct device *, dma_addr_t, unsigned long, size_t, enum dma_data_direction);
1da177e4
LT
332#endif
333
9dd42868
RK
334static inline void
335dma_sync_single_for_cpu(struct device *dev, dma_addr_t handle, size_t size,
336 enum dma_data_direction dir)
337{
338 dma_sync_single_range_for_cpu(dev, handle, 0, size, dir);
339}
340
341static inline void
342dma_sync_single_for_device(struct device *dev, dma_addr_t handle, size_t size,
343 enum dma_data_direction dir)
344{
345 dma_sync_single_range_for_device(dev, handle, 0, size, dir);
346}
347
afd1a321
RK
348/*
349 * The scatter list versions of the above methods.
1da177e4 350 */
afd1a321
RK
351extern int dma_map_sg(struct device *, struct scatterlist *, int, enum dma_data_direction);
352extern void dma_unmap_sg(struct device *, struct scatterlist *, int, enum dma_data_direction);
1da177e4
LT
353extern void dma_sync_sg_for_cpu(struct device*, struct scatterlist*, int, enum dma_data_direction);
354extern void dma_sync_sg_for_device(struct device*, struct scatterlist*, int, enum dma_data_direction);
afd1a321 355
1da177e4
LT
356
357#ifdef CONFIG_DMABOUNCE
358/*
359 * For SA-1111, IXP425, and ADI systems the dma-mapping functions are "magic"
360 * and utilize bounce buffers as needed to work around limited DMA windows.
361 *
362 * On the SA-1111, a bug limits DMA to only certain regions of RAM.
363 * On the IXP425, the PCI inbound window is 64MB (256MB total RAM)
3a4fa0a2 364 * On some ADI engineering systems, PCI inbound window is 32MB (12MB total RAM)
1da177e4
LT
365 *
366 * The following are helper functions used by the dmabounce subystem
367 *
368 */
369
370/**
371 * dmabounce_register_dev
372 *
373 * @dev: valid struct device pointer
374 * @small_buf_size: size of buffers to use with small buffer pool
375 * @large_buf_size: size of buffers to use with large buffer pool (can be 0)
376 *
377 * This function should be called by low-level platform code to register
378 * a device as requireing DMA buffer bouncing. The function will allocate
379 * appropriate DMA pools for the device.
380 *
381 */
382extern int dmabounce_register_dev(struct device *, unsigned long, unsigned long);
383
384/**
385 * dmabounce_unregister_dev
386 *
387 * @dev: valid struct device pointer
388 *
389 * This function should be called by low-level platform code when device
390 * that was previously registered with dmabounce_register_dev is removed
391 * from the system.
392 *
393 */
394extern void dmabounce_unregister_dev(struct device *);
395
396/**
397 * dma_needs_bounce
398 *
399 * @dev: valid struct device pointer
400 * @dma_handle: dma_handle of unbounced buffer
401 * @size: size of region being mapped
402 *
403 * Platforms that utilize the dmabounce mechanism must implement
404 * this function.
405 *
406 * The dmabounce routines call this function whenever a dma-mapping
407 * is requested to determine whether a given buffer needs to be bounced
59c51591 408 * or not. The function must return 0 if the buffer is OK for
1da177e4
LT
409 * DMA access and 1 if the buffer needs to be bounced.
410 *
411 */
412extern int dma_needs_bounce(struct device*, dma_addr_t, size_t);
2638b4db
RK
413
414/*
415 * Private functions
416 */
417int dmabounce_sync_for_cpu(struct device *, dma_addr_t, unsigned long,
418 size_t, enum dma_data_direction);
419int dmabounce_sync_for_device(struct device *, dma_addr_t, unsigned long,
420 size_t, enum dma_data_direction);
421#else
422#define dmabounce_sync_for_cpu(dev,dma,off,sz,dir) (1)
423#define dmabounce_sync_for_device(dev,dma,off,sz,dir) (1)
1da177e4
LT
424#endif /* CONFIG_DMABOUNCE */
425
426#endif /* __KERNEL__ */
427#endif