]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm/kernel/kprobes.c
ARM: Rename the shared kprobes/uprobe return value enum
[mirror_ubuntu-artful-kernel.git] / arch / arm / kernel / kprobes.c
CommitLineData
24ba613c
AS
1/*
2 * arch/arm/kernel/kprobes.c
3 *
4 * Kprobes on ARM
5 *
6 * Abhishek Sagar <sagar.abhishek@gmail.com>
7 * Copyright (C) 2006, 2007 Motorola Inc.
8 *
9 * Nicolas Pitre <nico@marvell.com>
10 * Copyright (C) 2007 Marvell Ltd.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 */
21
22#include <linux/kernel.h>
23#include <linux/kprobes.h>
24#include <linux/module.h>
5a0e3ad6 25#include <linux/slab.h>
2003b7af 26#include <linux/stop_machine.h>
24ba613c
AS
27#include <linux/stringify.h>
28#include <asm/traps.h>
29#include <asm/cacheflush.h>
21254ebc
DL
30#include <linux/percpu.h>
31#include <linux/bug.h>
24ba613c 32
221bf15f 33#include "kprobes.h"
b21d55e9 34#include "patch.h"
221bf15f 35
24ba613c
AS
36#define MIN_STACK_SIZE(addr) \
37 min((unsigned long)MAX_STACK_SIZE, \
38 (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
39
aceb487a 40#define flush_insns(addr, size) \
24ba613c
AS
41 flush_icache_range((unsigned long)(addr), \
42 (unsigned long)(addr) + \
aceb487a 43 (size))
24ba613c
AS
44
45/* Used as a marker in ARM_pc to note when we're in a jprobe. */
46#define JPROBE_MAGIC_ADDR 0xffffffff
47
48DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
49DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
50
51
52int __kprobes arch_prepare_kprobe(struct kprobe *p)
53{
54 kprobe_opcode_t insn;
55 kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
56 unsigned long addr = (unsigned long)p->addr;
e2960317 57 bool thumb;
24371707 58 kprobe_decode_insn_t *decode_insn;
3e6cd394 59 const union decode_action *actions;
24ba613c
AS
60 int is;
61
24371707 62 if (in_exception_text(addr))
24ba613c
AS
63 return -EINVAL;
64
24371707 65#ifdef CONFIG_THUMB2_KERNEL
e2960317 66 thumb = true;
24371707
JM
67 addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
68 insn = ((u16 *)addr)[0];
69 if (is_wide_instruction(insn)) {
70 insn <<= 16;
71 insn |= ((u16 *)addr)[1];
72 decode_insn = thumb32_kprobe_decode_insn;
3e6cd394
DL
73 actions = kprobes_t32_actions;
74 } else {
24371707 75 decode_insn = thumb16_kprobe_decode_insn;
3e6cd394
DL
76 actions = kprobes_t16_actions;
77 }
24371707 78#else /* !CONFIG_THUMB2_KERNEL */
e2960317 79 thumb = false;
24371707
JM
80 if (addr & 0x3)
81 return -EINVAL;
24ba613c 82 insn = *p->addr;
24371707 83 decode_insn = arm_kprobe_decode_insn;
3e6cd394 84 actions = kprobes_arm_actions;
24371707
JM
85#endif
86
24ba613c
AS
87 p->opcode = insn;
88 p->ainsn.insn = tmp_insn;
89
3e6cd394 90 switch ((*decode_insn)(insn, &p->ainsn, actions)) {
24ba613c
AS
91 case INSN_REJECTED: /* not supported */
92 return -EINVAL;
93
94 case INSN_GOOD: /* instruction uses slot */
95 p->ainsn.insn = get_insn_slot();
96 if (!p->ainsn.insn)
97 return -ENOMEM;
98 for (is = 0; is < MAX_INSN_SIZE; ++is)
99 p->ainsn.insn[is] = tmp_insn[is];
aceb487a
JM
100 flush_insns(p->ainsn.insn,
101 sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
e2960317
JM
102 p->ainsn.insn_fn = (kprobe_insn_fn_t *)
103 ((uintptr_t)p->ainsn.insn | thumb);
24ba613c
AS
104 break;
105
106 case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
107 p->ainsn.insn = NULL;
108 break;
109 }
110
111 return 0;
112}
113
114void __kprobes arch_arm_kprobe(struct kprobe *p)
115{
b21d55e9
RV
116 unsigned int brkp;
117 void *addr;
118
119 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
120 /* Remove any Thumb flag */
121 addr = (void *)((uintptr_t)p->addr & ~1);
122
123 if (is_wide_instruction(p->opcode))
124 brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
125 else
126 brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
aceb487a 127 } else {
b21d55e9 128 kprobe_opcode_t insn = p->opcode;
24ba613c 129
b21d55e9
RV
130 addr = p->addr;
131 brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
aceb487a 132
b21d55e9
RV
133 if (insn >= 0xe0000000)
134 brkp |= 0xe0000000; /* Unconditional instruction */
135 else
136 brkp |= insn & 0xf0000000; /* Copy condition from insn */
137 }
aceb487a 138
b21d55e9
RV
139 patch_text(addr, brkp);
140}
aceb487a 141
2003b7af
FR
142/*
143 * The actual disarming is done here on each CPU and synchronized using
144 * stop_machine. This synchronization is necessary on SMP to avoid removing
145 * a probe between the moment the 'Undefined Instruction' exception is raised
146 * and the moment the exception handler reads the faulting instruction from
aceb487a
JM
147 * memory. It is also needed to atomically set the two half-words of a 32-bit
148 * Thumb breakpoint.
2003b7af
FR
149 */
150int __kprobes __arch_disarm_kprobe(void *p)
151{
152 struct kprobe *kp = p;
b21d55e9 153 void *addr = (void *)((uintptr_t)kp->addr & ~1);
aceb487a 154
b21d55e9 155 __patch_text(addr, kp->opcode);
aceb487a 156
2003b7af
FR
157 return 0;
158}
159
24ba613c
AS
160void __kprobes arch_disarm_kprobe(struct kprobe *p)
161{
0b5f9c00 162 stop_machine(__arch_disarm_kprobe, p, cpu_online_mask);
24ba613c
AS
163}
164
165void __kprobes arch_remove_kprobe(struct kprobe *p)
166{
167 if (p->ainsn.insn) {
24ba613c 168 free_insn_slot(p->ainsn.insn, 0);
24ba613c
AS
169 p->ainsn.insn = NULL;
170 }
171}
172
173static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
174{
175 kcb->prev_kprobe.kp = kprobe_running();
176 kcb->prev_kprobe.status = kcb->kprobe_status;
177}
178
179static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
180{
1436c1aa 181 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
24ba613c
AS
182 kcb->kprobe_status = kcb->prev_kprobe.status;
183}
184
185static void __kprobes set_current_kprobe(struct kprobe *p)
186{
1436c1aa 187 __this_cpu_write(current_kprobe, p);
24ba613c
AS
188}
189
3cca6c24
JM
190static void __kprobes
191singlestep_skip(struct kprobe *p, struct pt_regs *regs)
192{
193#ifdef CONFIG_THUMB2_KERNEL
194 regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
195 if (is_wide_instruction(p->opcode))
196 regs->ARM_pc += 4;
197 else
198 regs->ARM_pc += 2;
199#else
200 regs->ARM_pc += 4;
201#endif
202}
203
c6a7d97d
JM
204static inline void __kprobes
205singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
24ba613c 206{
7579f4b3 207 p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
24ba613c
AS
208}
209
210/*
211 * Called with IRQs disabled. IRQs must remain disabled from that point
212 * all the way until processing this kprobe is complete. The current
213 * kprobes implementation cannot process more than one nested level of
214 * kprobe, and that level is reserved for user kprobe handlers, so we can't
215 * risk encountering a new kprobe in an interrupt handler.
216 */
217void __kprobes kprobe_handler(struct pt_regs *regs)
218{
219 struct kprobe *p, *cur;
220 struct kprobe_ctlblk *kcb;
24ba613c
AS
221
222 kcb = get_kprobe_ctlblk();
223 cur = kprobe_running();
aceb487a
JM
224
225#ifdef CONFIG_THUMB2_KERNEL
226 /*
227 * First look for a probe which was registered using an address with
228 * bit 0 set, this is the usual situation for pointers to Thumb code.
229 * If not found, fallback to looking for one with bit 0 clear.
230 */
231 p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
232 if (!p)
233 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
234
235#else /* ! CONFIG_THUMB2_KERNEL */
236 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
237#endif
24ba613c
AS
238
239 if (p) {
240 if (cur) {
241 /* Kprobe is pending, so we're recursing. */
242 switch (kcb->kprobe_status) {
243 case KPROBE_HIT_ACTIVE:
244 case KPROBE_HIT_SSDONE:
245 /* A pre- or post-handler probe got us here. */
246 kprobes_inc_nmissed_count(p);
247 save_previous_kprobe(kcb);
248 set_current_kprobe(p);
249 kcb->kprobe_status = KPROBE_REENTER;
250 singlestep(p, regs, kcb);
251 restore_previous_kprobe(kcb);
252 break;
253 default:
254 /* impossible cases */
255 BUG();
256 }
3cca6c24
JM
257 } else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
258 /* Probe hit and conditional execution check ok. */
24ba613c
AS
259 set_current_kprobe(p);
260 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
261
262 /*
263 * If we have no pre-handler or it returned 0, we
264 * continue with normal processing. If we have a
265 * pre-handler and it returned non-zero, it prepped
266 * for calling the break_handler below on re-entry,
267 * so get out doing nothing more here.
268 */
269 if (!p->pre_handler || !p->pre_handler(p, regs)) {
270 kcb->kprobe_status = KPROBE_HIT_SS;
271 singlestep(p, regs, kcb);
272 if (p->post_handler) {
273 kcb->kprobe_status = KPROBE_HIT_SSDONE;
274 p->post_handler(p, regs, 0);
275 }
276 reset_current_kprobe();
277 }
3cca6c24
JM
278 } else {
279 /*
280 * Probe hit but conditional execution check failed,
281 * so just skip the instruction and continue as if
282 * nothing had happened.
283 */
284 singlestep_skip(p, regs);
24ba613c
AS
285 }
286 } else if (cur) {
287 /* We probably hit a jprobe. Call its break handler. */
288 if (cur->break_handler && cur->break_handler(cur, regs)) {
289 kcb->kprobe_status = KPROBE_HIT_SS;
290 singlestep(cur, regs, kcb);
291 if (cur->post_handler) {
292 kcb->kprobe_status = KPROBE_HIT_SSDONE;
293 cur->post_handler(cur, regs, 0);
294 }
295 }
296 reset_current_kprobe();
297 } else {
298 /*
299 * The probe was removed and a race is in progress.
300 * There is nothing we can do about it. Let's restart
301 * the instruction. By the time we can restart, the
302 * real instruction will be there.
303 */
304 }
305}
306
3305a607 307static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
24ba613c 308{
3305a607
NP
309 unsigned long flags;
310 local_irq_save(flags);
24ba613c 311 kprobe_handler(regs);
3305a607 312 local_irq_restore(flags);
24ba613c
AS
313 return 0;
314}
315
316int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
317{
318 struct kprobe *cur = kprobe_running();
319 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
320
321 switch (kcb->kprobe_status) {
322 case KPROBE_HIT_SS:
323 case KPROBE_REENTER:
324 /*
325 * We are here because the instruction being single
326 * stepped caused a page fault. We reset the current
327 * kprobe and the PC to point back to the probe address
328 * and allow the page fault handler to continue as a
329 * normal page fault.
330 */
331 regs->ARM_pc = (long)cur->addr;
332 if (kcb->kprobe_status == KPROBE_REENTER) {
333 restore_previous_kprobe(kcb);
334 } else {
335 reset_current_kprobe();
336 }
337 break;
338
339 case KPROBE_HIT_ACTIVE:
340 case KPROBE_HIT_SSDONE:
341 /*
342 * We increment the nmissed count for accounting,
343 * we can also use npre/npostfault count for accounting
344 * these specific fault cases.
345 */
346 kprobes_inc_nmissed_count(cur);
347
348 /*
349 * We come here because instructions in the pre/post
350 * handler caused the page_fault, this could happen
351 * if handler tries to access user space by
352 * copy_from_user(), get_user() etc. Let the
353 * user-specified handler try to fix it.
354 */
355 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
356 return 1;
357 break;
358
359 default:
360 break;
361 }
362
363 return 0;
364}
365
366int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
367 unsigned long val, void *data)
368{
369 /*
370 * notify_die() is currently never called on ARM,
371 * so this callback is currently empty.
372 */
373 return NOTIFY_DONE;
374}
375
376/*
377 * When a retprobed function returns, trampoline_handler() is called,
378 * calling the kretprobe's handler. We construct a struct pt_regs to
379 * give a view of registers r0-r11 to the user return-handler. This is
380 * not a complete pt_regs structure, but that should be plenty sufficient
381 * for kretprobe handlers which should normally be interested in r0 only
382 * anyway.
383 */
e0773410 384void __naked __kprobes kretprobe_trampoline(void)
24ba613c
AS
385{
386 __asm__ __volatile__ (
387 "stmdb sp!, {r0 - r11} \n\t"
388 "mov r0, sp \n\t"
389 "bl trampoline_handler \n\t"
390 "mov lr, r0 \n\t"
391 "ldmia sp!, {r0 - r11} \n\t"
de419840
JM
392#ifdef CONFIG_THUMB2_KERNEL
393 "bx lr \n\t"
394#else
24ba613c 395 "mov pc, lr \n\t"
de419840 396#endif
24ba613c
AS
397 : : : "memory");
398}
399
400/* Called from kretprobe_trampoline */
401static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
402{
403 struct kretprobe_instance *ri = NULL;
404 struct hlist_head *head, empty_rp;
b67bfe0d 405 struct hlist_node *tmp;
24ba613c
AS
406 unsigned long flags, orig_ret_address = 0;
407 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
408
409 INIT_HLIST_HEAD(&empty_rp);
ef53d9c5 410 kretprobe_hash_lock(current, &head, &flags);
24ba613c
AS
411
412 /*
413 * It is possible to have multiple instances associated with a given
414 * task either because multiple functions in the call path have
415 * a return probe installed on them, and/or more than one return
416 * probe was registered for a target function.
417 *
418 * We can handle this because:
419 * - instances are always inserted at the head of the list
420 * - when multiple return probes are registered for the same
421 * function, the first instance's ret_addr will point to the
422 * real return address, and all the rest will point to
423 * kretprobe_trampoline
424 */
b67bfe0d 425 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
24ba613c
AS
426 if (ri->task != current)
427 /* another task is sharing our hash bucket */
428 continue;
429
430 if (ri->rp && ri->rp->handler) {
1436c1aa 431 __this_cpu_write(current_kprobe, &ri->rp->kp);
24ba613c
AS
432 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
433 ri->rp->handler(ri, regs);
1436c1aa 434 __this_cpu_write(current_kprobe, NULL);
24ba613c
AS
435 }
436
437 orig_ret_address = (unsigned long)ri->ret_addr;
438 recycle_rp_inst(ri, &empty_rp);
439
440 if (orig_ret_address != trampoline_address)
441 /*
442 * This is the real return address. Any other
443 * instances associated with this task are for
444 * other calls deeper on the call stack
445 */
446 break;
447 }
448
449 kretprobe_assert(ri, orig_ret_address, trampoline_address);
ef53d9c5 450 kretprobe_hash_unlock(current, &flags);
24ba613c 451
b67bfe0d 452 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
24ba613c
AS
453 hlist_del(&ri->hlist);
454 kfree(ri);
455 }
456
457 return (void *)orig_ret_address;
458}
459
24ba613c
AS
460void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
461 struct pt_regs *regs)
462{
463 ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
464
465 /* Replace the return addr with trampoline addr. */
466 regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
467}
468
469int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
470{
471 struct jprobe *jp = container_of(p, struct jprobe, kp);
472 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
473 long sp_addr = regs->ARM_sp;
de419840 474 long cpsr;
24ba613c
AS
475
476 kcb->jprobe_saved_regs = *regs;
477 memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
478 regs->ARM_pc = (long)jp->entry;
de419840
JM
479
480 cpsr = regs->ARM_cpsr | PSR_I_BIT;
481#ifdef CONFIG_THUMB2_KERNEL
482 /* Set correct Thumb state in cpsr */
483 if (regs->ARM_pc & 1)
484 cpsr |= PSR_T_BIT;
485 else
486 cpsr &= ~PSR_T_BIT;
487#endif
488 regs->ARM_cpsr = cpsr;
489
24ba613c
AS
490 preempt_disable();
491 return 1;
492}
493
494void __kprobes jprobe_return(void)
495{
496 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
497
498 __asm__ __volatile__ (
499 /*
500 * Setup an empty pt_regs. Fill SP and PC fields as
501 * they're needed by longjmp_break_handler.
782a0fd1
MW
502 *
503 * We allocate some slack between the original SP and start of
504 * our fabricated regs. To be precise we want to have worst case
505 * covered which is STMFD with all 16 regs so we allocate 2 *
506 * sizeof(struct_pt_regs)).
507 *
508 * This is to prevent any simulated instruction from writing
509 * over the regs when they are accessing the stack.
24ba613c 510 */
de419840
JM
511#ifdef CONFIG_THUMB2_KERNEL
512 "sub r0, %0, %1 \n\t"
513 "mov sp, r0 \n\t"
514#else
24ba613c 515 "sub sp, %0, %1 \n\t"
de419840 516#endif
24ba613c
AS
517 "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
518 "str %0, [sp, %2] \n\t"
519 "str r0, [sp, %3] \n\t"
520 "mov r0, sp \n\t"
521 "bl kprobe_handler \n\t"
522
523 /*
524 * Return to the context saved by setjmp_pre_handler
525 * and restored by longjmp_break_handler.
526 */
de419840
JM
527#ifdef CONFIG_THUMB2_KERNEL
528 "ldr lr, [sp, %2] \n\t" /* lr = saved sp */
529 "ldrd r0, r1, [sp, %5] \n\t" /* r0,r1 = saved lr,pc */
530 "ldr r2, [sp, %4] \n\t" /* r2 = saved psr */
531 "stmdb lr!, {r0, r1, r2} \n\t" /* push saved lr and */
532 /* rfe context */
533 "ldmia sp, {r0 - r12} \n\t"
534 "mov sp, lr \n\t"
535 "ldr lr, [sp], #4 \n\t"
536 "rfeia sp! \n\t"
537#else
24ba613c
AS
538 "ldr r0, [sp, %4] \n\t"
539 "msr cpsr_cxsf, r0 \n\t"
540 "ldmia sp, {r0 - pc} \n\t"
de419840 541#endif
24ba613c
AS
542 :
543 : "r" (kcb->jprobe_saved_regs.ARM_sp),
782a0fd1 544 "I" (sizeof(struct pt_regs) * 2),
24ba613c
AS
545 "J" (offsetof(struct pt_regs, ARM_sp)),
546 "J" (offsetof(struct pt_regs, ARM_pc)),
de419840
JM
547 "J" (offsetof(struct pt_regs, ARM_cpsr)),
548 "J" (offsetof(struct pt_regs, ARM_lr))
24ba613c
AS
549 : "memory", "cc");
550}
551
552int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
553{
554 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
555 long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
556 long orig_sp = regs->ARM_sp;
557 struct jprobe *jp = container_of(p, struct jprobe, kp);
558
559 if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
560 if (orig_sp != stack_addr) {
561 struct pt_regs *saved_regs =
562 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
563 printk("current sp %lx does not match saved sp %lx\n",
564 orig_sp, stack_addr);
565 printk("Saved registers for jprobe %p\n", jp);
566 show_regs(saved_regs);
567 printk("Current registers\n");
568 show_regs(regs);
569 BUG();
570 }
571 *regs = kcb->jprobe_saved_regs;
572 memcpy((void *)stack_addr, kcb->jprobes_stack,
573 MIN_STACK_SIZE(stack_addr));
574 preempt_enable_no_resched();
575 return 1;
576 }
577 return 0;
578}
579
b24061fa
NP
580int __kprobes arch_trampoline_kprobe(struct kprobe *p)
581{
582 return 0;
583}
584
aceb487a
JM
585#ifdef CONFIG_THUMB2_KERNEL
586
587static struct undef_hook kprobes_thumb16_break_hook = {
588 .instr_mask = 0xffff,
589 .instr_val = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
590 .cpsr_mask = MODE_MASK,
591 .cpsr_val = SVC_MODE,
592 .fn = kprobe_trap_handler,
593};
594
595static struct undef_hook kprobes_thumb32_break_hook = {
596 .instr_mask = 0xffffffff,
597 .instr_val = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
598 .cpsr_mask = MODE_MASK,
599 .cpsr_val = SVC_MODE,
600 .fn = kprobe_trap_handler,
601};
602
603#else /* !CONFIG_THUMB2_KERNEL */
604
605static struct undef_hook kprobes_arm_break_hook = {
3b269455 606 .instr_mask = 0x0fffffff,
aceb487a 607 .instr_val = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
24ba613c
AS
608 .cpsr_mask = MODE_MASK,
609 .cpsr_val = SVC_MODE,
610 .fn = kprobe_trap_handler,
611};
612
aceb487a
JM
613#endif /* !CONFIG_THUMB2_KERNEL */
614
24ba613c
AS
615int __init arch_init_kprobes()
616{
eb73ea97 617 arm_probes_decode_init();
aceb487a
JM
618#ifdef CONFIG_THUMB2_KERNEL
619 register_undef_hook(&kprobes_thumb16_break_hook);
620 register_undef_hook(&kprobes_thumb32_break_hook);
621#else
622 register_undef_hook(&kprobes_arm_break_hook);
623#endif
24ba613c
AS
624 return 0;
625}