]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/arm/kernel/smp.c
[PATCH] ARM SMP: Rename cpu_present_mask to cpu_possible_map
[mirror_ubuntu-zesty-kernel.git] / arch / arm / kernel / smp.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/config.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/spinlock.h>
14#include <linux/sched.h>
15#include <linux/interrupt.h>
16#include <linux/cache.h>
17#include <linux/profile.h>
18#include <linux/errno.h>
19#include <linux/mm.h>
20#include <linux/cpu.h>
21#include <linux/smp.h>
22#include <linux/seq_file.h>
23
24#include <asm/atomic.h>
25#include <asm/cacheflush.h>
26#include <asm/cpu.h>
e65f38ed
RK
27#include <asm/mmu_context.h>
28#include <asm/pgtable.h>
29#include <asm/pgalloc.h>
1da177e4
LT
30#include <asm/processor.h>
31#include <asm/tlbflush.h>
32#include <asm/ptrace.h>
33
34/*
35 * bitmask of present and online CPUs.
36 * The present bitmask indicates that the CPU is physically present.
37 * The online bitmask indicates that the CPU is up and running.
38 */
d12734d1 39cpumask_t cpu_possible_map;
1da177e4
LT
40cpumask_t cpu_online_map;
41
e65f38ed
RK
42/*
43 * as from 2.5, kernels no longer have an init_tasks structure
44 * so we need some other way of telling a new secondary core
45 * where to place its SVC stack
46 */
47struct secondary_data secondary_data;
48
1da177e4
LT
49/*
50 * structures for inter-processor calls
51 * - A collection of single bit ipi messages.
52 */
53struct ipi_data {
54 spinlock_t lock;
55 unsigned long ipi_count;
56 unsigned long bits;
57};
58
59static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
60 .lock = SPIN_LOCK_UNLOCKED,
61};
62
63enum ipi_msg_type {
64 IPI_TIMER,
65 IPI_RESCHEDULE,
66 IPI_CALL_FUNC,
67 IPI_CPU_STOP,
68};
69
70struct smp_call_struct {
71 void (*func)(void *info);
72 void *info;
73 int wait;
74 cpumask_t pending;
75 cpumask_t unfinished;
76};
77
78static struct smp_call_struct * volatile smp_call_function_data;
79static DEFINE_SPINLOCK(smp_call_function_lock);
80
81int __init __cpu_up(unsigned int cpu)
82{
83 struct task_struct *idle;
e65f38ed
RK
84 pgd_t *pgd;
85 pmd_t *pmd;
1da177e4
LT
86 int ret;
87
88 /*
89 * Spawn a new process manually. Grab a pointer to
90 * its task struct so we can mess with it
91 */
92 idle = fork_idle(cpu);
93 if (IS_ERR(idle)) {
94 printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
95 return PTR_ERR(idle);
96 }
97
e65f38ed
RK
98 /*
99 * Allocate initial page tables to allow the new CPU to
100 * enable the MMU safely. This essentially means a set
101 * of our "standard" page tables, with the addition of
102 * a 1:1 mapping for the physical address of the kernel.
103 */
104 pgd = pgd_alloc(&init_mm);
105 pmd = pmd_offset(pgd, PHYS_OFFSET);
106 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
107 PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
108
109 /*
110 * We need to tell the secondary core where to find
111 * its stack and the page tables.
112 */
113 secondary_data.stack = (void *)idle->thread_info + THREAD_SIZE - 8;
114 secondary_data.pgdir = virt_to_phys(pgd);
115 wmb();
116
1da177e4
LT
117 /*
118 * Now bring the CPU into our world.
119 */
120 ret = boot_secondary(cpu, idle);
e65f38ed
RK
121 if (ret == 0) {
122 unsigned long timeout;
123
124 /*
125 * CPU was successfully started, wait for it
126 * to come online or time out.
127 */
128 timeout = jiffies + HZ;
129 while (time_before(jiffies, timeout)) {
130 if (cpu_online(cpu))
131 break;
132
133 udelay(10);
134 barrier();
135 }
136
137 if (!cpu_online(cpu))
138 ret = -EIO;
139 }
140
141 secondary_data.stack = 0;
142 secondary_data.pgdir = 0;
143
144 *pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
145 pgd_free(pgd);
146
1da177e4 147 if (ret) {
0908db22
RK
148 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
149
1da177e4
LT
150 /*
151 * FIXME: We need to clean up the new idle thread. --rmk
152 */
153 }
154
155 return ret;
156}
157
e65f38ed
RK
158/*
159 * This is the secondary CPU boot entry. We're using this CPUs
160 * idle thread stack, but a set of temporary page tables.
161 */
162asmlinkage void __init secondary_start_kernel(void)
163{
164 struct mm_struct *mm = &init_mm;
165 unsigned int cpu = smp_processor_id();
166
167 printk("CPU%u: Booted secondary processor\n", cpu);
168
169 /*
170 * All kernel threads share the same mm context; grab a
171 * reference and switch to it.
172 */
173 atomic_inc(&mm->mm_users);
174 atomic_inc(&mm->mm_count);
175 current->active_mm = mm;
176 cpu_set(cpu, mm->cpu_vm_mask);
177 cpu_switch_mm(mm->pgd, mm);
178 enter_lazy_tlb(mm, current);
179
180 cpu_init();
181
182 /*
183 * Give the platform a chance to do its own initialisation.
184 */
185 platform_secondary_init(cpu);
186
187 /*
188 * Enable local interrupts.
189 */
190 local_irq_enable();
191 local_fiq_enable();
192
193 calibrate_delay();
194
195 smp_store_cpu_info(cpu);
196
197 /*
198 * OK, now it's safe to let the boot CPU continue
199 */
200 cpu_set(cpu, cpu_online_map);
201
202 /*
203 * OK, it's off to the idle thread for us
204 */
205 cpu_idle();
206}
207
1da177e4
LT
208/*
209 * Called by both boot and secondaries to move global data into
210 * per-processor storage.
211 */
212void __init smp_store_cpu_info(unsigned int cpuid)
213{
214 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
215
216 cpu_info->loops_per_jiffy = loops_per_jiffy;
217}
218
219void __init smp_cpus_done(unsigned int max_cpus)
220{
221 int cpu;
222 unsigned long bogosum = 0;
223
224 for_each_online_cpu(cpu)
225 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
226
227 printk(KERN_INFO "SMP: Total of %d processors activated "
228 "(%lu.%02lu BogoMIPS).\n",
229 num_online_cpus(),
230 bogosum / (500000/HZ),
231 (bogosum / (5000/HZ)) % 100);
232}
233
234void __init smp_prepare_boot_cpu(void)
235{
236 unsigned int cpu = smp_processor_id();
237
d12734d1 238 cpu_set(cpu, cpu_possible_map);
1da177e4
LT
239 cpu_set(cpu, cpu_online_map);
240}
241
242static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
243{
244 unsigned long flags;
245 unsigned int cpu;
246
247 local_irq_save(flags);
248
249 for_each_cpu_mask(cpu, callmap) {
250 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
251
252 spin_lock(&ipi->lock);
253 ipi->bits |= 1 << msg;
254 spin_unlock(&ipi->lock);
255 }
256
257 /*
258 * Call the platform specific cross-CPU call function.
259 */
260 smp_cross_call(callmap);
261
262 local_irq_restore(flags);
263}
264
265/*
266 * You must not call this function with disabled interrupts, from a
267 * hardware interrupt handler, nor from a bottom half handler.
268 */
269int smp_call_function_on_cpu(void (*func)(void *info), void *info, int retry,
270 int wait, cpumask_t callmap)
271{
272 struct smp_call_struct data;
273 unsigned long timeout;
274 int ret = 0;
275
276 data.func = func;
277 data.info = info;
278 data.wait = wait;
279
280 cpu_clear(smp_processor_id(), callmap);
281 if (cpus_empty(callmap))
282 goto out;
283
284 data.pending = callmap;
285 if (wait)
286 data.unfinished = callmap;
287
288 /*
289 * try to get the mutex on smp_call_function_data
290 */
291 spin_lock(&smp_call_function_lock);
292 smp_call_function_data = &data;
293
294 send_ipi_message(callmap, IPI_CALL_FUNC);
295
296 timeout = jiffies + HZ;
297 while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
298 barrier();
299
300 /*
301 * did we time out?
302 */
303 if (!cpus_empty(data.pending)) {
304 /*
305 * this may be causing our panic - report it
306 */
307 printk(KERN_CRIT
308 "CPU%u: smp_call_function timeout for %p(%p)\n"
309 " callmap %lx pending %lx, %swait\n",
310 smp_processor_id(), func, info, callmap, data.pending,
311 wait ? "" : "no ");
312
313 /*
314 * TRACE
315 */
316 timeout = jiffies + (5 * HZ);
317 while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
318 barrier();
319
320 if (cpus_empty(data.pending))
321 printk(KERN_CRIT " RESOLVED\n");
322 else
323 printk(KERN_CRIT " STILL STUCK\n");
324 }
325
326 /*
327 * whatever happened, we're done with the data, so release it
328 */
329 smp_call_function_data = NULL;
330 spin_unlock(&smp_call_function_lock);
331
332 if (!cpus_empty(data.pending)) {
333 ret = -ETIMEDOUT;
334 goto out;
335 }
336
337 if (wait)
338 while (!cpus_empty(data.unfinished))
339 barrier();
340 out:
341
342 return 0;
343}
344
345int smp_call_function(void (*func)(void *info), void *info, int retry,
346 int wait)
347{
348 return smp_call_function_on_cpu(func, info, retry, wait,
349 cpu_online_map);
350}
351
352void show_ipi_list(struct seq_file *p)
353{
354 unsigned int cpu;
355
356 seq_puts(p, "IPI:");
357
358 for_each_online_cpu(cpu)
359 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
360
361 seq_putc(p, '\n');
362}
363
364static void ipi_timer(struct pt_regs *regs)
365{
366 int user = user_mode(regs);
367
368 irq_enter();
369 profile_tick(CPU_PROFILING, regs);
370 update_process_times(user);
371 irq_exit();
372}
373
374/*
375 * ipi_call_function - handle IPI from smp_call_function()
376 *
377 * Note that we copy data out of the cross-call structure and then
378 * let the caller know that we're here and have done with their data
379 */
380static void ipi_call_function(unsigned int cpu)
381{
382 struct smp_call_struct *data = smp_call_function_data;
383 void (*func)(void *info) = data->func;
384 void *info = data->info;
385 int wait = data->wait;
386
387 cpu_clear(cpu, data->pending);
388
389 func(info);
390
391 if (wait)
392 cpu_clear(cpu, data->unfinished);
393}
394
395static DEFINE_SPINLOCK(stop_lock);
396
397/*
398 * ipi_cpu_stop - handle IPI from smp_send_stop()
399 */
400static void ipi_cpu_stop(unsigned int cpu)
401{
402 spin_lock(&stop_lock);
403 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
404 dump_stack();
405 spin_unlock(&stop_lock);
406
407 cpu_clear(cpu, cpu_online_map);
408
409 local_fiq_disable();
410 local_irq_disable();
411
412 while (1)
413 cpu_relax();
414}
415
416/*
417 * Main handler for inter-processor interrupts
418 *
419 * For ARM, the ipimask now only identifies a single
420 * category of IPI (Bit 1 IPIs have been replaced by a
421 * different mechanism):
422 *
423 * Bit 0 - Inter-processor function call
424 */
425void do_IPI(struct pt_regs *regs)
426{
427 unsigned int cpu = smp_processor_id();
428 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
429
430 ipi->ipi_count++;
431
432 for (;;) {
433 unsigned long msgs;
434
435 spin_lock(&ipi->lock);
436 msgs = ipi->bits;
437 ipi->bits = 0;
438 spin_unlock(&ipi->lock);
439
440 if (!msgs)
441 break;
442
443 do {
444 unsigned nextmsg;
445
446 nextmsg = msgs & -msgs;
447 msgs &= ~nextmsg;
448 nextmsg = ffz(~nextmsg);
449
450 switch (nextmsg) {
451 case IPI_TIMER:
452 ipi_timer(regs);
453 break;
454
455 case IPI_RESCHEDULE:
456 /*
457 * nothing more to do - eveything is
458 * done on the interrupt return path
459 */
460 break;
461
462 case IPI_CALL_FUNC:
463 ipi_call_function(cpu);
464 break;
465
466 case IPI_CPU_STOP:
467 ipi_cpu_stop(cpu);
468 break;
469
470 default:
471 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
472 cpu, nextmsg);
473 break;
474 }
475 } while (msgs);
476 }
477}
478
479void smp_send_reschedule(int cpu)
480{
481 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
482}
483
484void smp_send_timer(void)
485{
486 cpumask_t mask = cpu_online_map;
487 cpu_clear(smp_processor_id(), mask);
488 send_ipi_message(mask, IPI_TIMER);
489}
490
491void smp_send_stop(void)
492{
493 cpumask_t mask = cpu_online_map;
494 cpu_clear(smp_processor_id(), mask);
495 send_ipi_message(mask, IPI_CPU_STOP);
496}
497
498/*
499 * not supported here
500 */
501int __init setup_profiling_timer(unsigned int multiplier)
502{
503 return -EINVAL;
504}
4b0ef3b1
RK
505
506static int
507on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
508 cpumask_t mask)
509{
510 int ret = 0;
511
512 preempt_disable();
513
514 ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
515 if (cpu_isset(smp_processor_id(), mask))
516 func(info);
517
518 preempt_enable();
519
520 return ret;
521}
522
523/**********************************************************************/
524
525/*
526 * TLB operations
527 */
528struct tlb_args {
529 struct vm_area_struct *ta_vma;
530 unsigned long ta_start;
531 unsigned long ta_end;
532};
533
534static inline void ipi_flush_tlb_all(void *ignored)
535{
536 local_flush_tlb_all();
537}
538
539static inline void ipi_flush_tlb_mm(void *arg)
540{
541 struct mm_struct *mm = (struct mm_struct *)arg;
542
543 local_flush_tlb_mm(mm);
544}
545
546static inline void ipi_flush_tlb_page(void *arg)
547{
548 struct tlb_args *ta = (struct tlb_args *)arg;
549
550 local_flush_tlb_page(ta->ta_vma, ta->ta_start);
551}
552
553static inline void ipi_flush_tlb_kernel_page(void *arg)
554{
555 struct tlb_args *ta = (struct tlb_args *)arg;
556
557 local_flush_tlb_kernel_page(ta->ta_start);
558}
559
560static inline void ipi_flush_tlb_range(void *arg)
561{
562 struct tlb_args *ta = (struct tlb_args *)arg;
563
564 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
565}
566
567static inline void ipi_flush_tlb_kernel_range(void *arg)
568{
569 struct tlb_args *ta = (struct tlb_args *)arg;
570
571 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
572}
573
574void flush_tlb_all(void)
575{
576 on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
577}
578
579void flush_tlb_mm(struct mm_struct *mm)
580{
581 cpumask_t mask = mm->cpu_vm_mask;
582
583 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
584}
585
586void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
587{
588 cpumask_t mask = vma->vm_mm->cpu_vm_mask;
589 struct tlb_args ta;
590
591 ta.ta_vma = vma;
592 ta.ta_start = uaddr;
593
594 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
595}
596
597void flush_tlb_kernel_page(unsigned long kaddr)
598{
599 struct tlb_args ta;
600
601 ta.ta_start = kaddr;
602
603 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
604}
605
606void flush_tlb_range(struct vm_area_struct *vma,
607 unsigned long start, unsigned long end)
608{
609 cpumask_t mask = vma->vm_mm->cpu_vm_mask;
610 struct tlb_args ta;
611
612 ta.ta_vma = vma;
613 ta.ta_start = start;
614 ta.ta_end = end;
615
616 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
617}
618
619void flush_tlb_kernel_range(unsigned long start, unsigned long end)
620{
621 struct tlb_args ta;
622
623 ta.ta_start = start;
624 ta.ta_end = end;
625
626 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);
627}