]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/arm/kvm/arm.c
ARM: KVM: Initial VGIC infrastructure code
[mirror_ubuntu-zesty-kernel.git] / arch / arm / kvm / arm.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19#include <linux/errno.h>
20#include <linux/err.h>
21#include <linux/kvm_host.h>
22#include <linux/module.h>
23#include <linux/vmalloc.h>
24#include <linux/fs.h>
25#include <linux/mman.h>
26#include <linux/sched.h>
86ce8535 27#include <linux/kvm.h>
749cf76c
CD
28#include <trace/events/kvm.h>
29
30#define CREATE_TRACE_POINTS
31#include "trace.h"
32
33#include <asm/unified.h>
34#include <asm/uaccess.h>
35#include <asm/ptrace.h>
36#include <asm/mman.h>
37#include <asm/cputype.h>
342cd0ab 38#include <asm/tlbflush.h>
5b3e5e5b 39#include <asm/cacheflush.h>
342cd0ab
CD
40#include <asm/virt.h>
41#include <asm/kvm_arm.h>
42#include <asm/kvm_asm.h>
43#include <asm/kvm_mmu.h>
f7ed45be 44#include <asm/kvm_emulate.h>
5b3e5e5b 45#include <asm/kvm_coproc.h>
aa024c2f 46#include <asm/kvm_psci.h>
5b3e5e5b 47#include <asm/opcodes.h>
749cf76c
CD
48
49#ifdef REQUIRES_VIRT
50__asm__(".arch_extension virt");
51#endif
52
342cd0ab
CD
53static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54static struct vfp_hard_struct __percpu *kvm_host_vfp_state;
55static unsigned long hyp_default_vectors;
56
1638a12d
MZ
57/* Per-CPU variable containing the currently running vcpu. */
58static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
f7ed45be
CD
60/* The VMID used in the VTTBR */
61static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62static u8 kvm_next_vmid;
63static DEFINE_SPINLOCK(kvm_vmid_lock);
342cd0ab 64
1a89dd91
MZ
65static bool vgic_present;
66
1638a12d
MZ
67static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
68{
69 BUG_ON(preemptible());
70 __get_cpu_var(kvm_arm_running_vcpu) = vcpu;
71}
72
73/**
74 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
75 * Must be called from non-preemptible context
76 */
77struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
78{
79 BUG_ON(preemptible());
80 return __get_cpu_var(kvm_arm_running_vcpu);
81}
82
83/**
84 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
85 */
86struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
87{
88 return &kvm_arm_running_vcpu;
89}
90
749cf76c
CD
91int kvm_arch_hardware_enable(void *garbage)
92{
93 return 0;
94}
95
96int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97{
98 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99}
100
101void kvm_arch_hardware_disable(void *garbage)
102{
103}
104
105int kvm_arch_hardware_setup(void)
106{
107 return 0;
108}
109
110void kvm_arch_hardware_unsetup(void)
111{
112}
113
114void kvm_arch_check_processor_compat(void *rtn)
115{
116 *(int *)rtn = 0;
117}
118
119void kvm_arch_sync_events(struct kvm *kvm)
120{
121}
122
d5d8184d
CD
123/**
124 * kvm_arch_init_vm - initializes a VM data structure
125 * @kvm: pointer to the KVM struct
126 */
749cf76c
CD
127int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
128{
d5d8184d
CD
129 int ret = 0;
130
749cf76c
CD
131 if (type)
132 return -EINVAL;
133
d5d8184d
CD
134 ret = kvm_alloc_stage2_pgd(kvm);
135 if (ret)
136 goto out_fail_alloc;
137
138 ret = create_hyp_mappings(kvm, kvm + 1);
139 if (ret)
140 goto out_free_stage2_pgd;
141
142 /* Mark the initial VMID generation invalid */
143 kvm->arch.vmid_gen = 0;
144
145 return ret;
146out_free_stage2_pgd:
147 kvm_free_stage2_pgd(kvm);
148out_fail_alloc:
149 return ret;
749cf76c
CD
150}
151
152int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153{
154 return VM_FAULT_SIGBUS;
155}
156
157void kvm_arch_free_memslot(struct kvm_memory_slot *free,
158 struct kvm_memory_slot *dont)
159{
160}
161
162int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
163{
164 return 0;
165}
166
d5d8184d
CD
167/**
168 * kvm_arch_destroy_vm - destroy the VM data structure
169 * @kvm: pointer to the KVM struct
170 */
749cf76c
CD
171void kvm_arch_destroy_vm(struct kvm *kvm)
172{
173 int i;
174
d5d8184d
CD
175 kvm_free_stage2_pgd(kvm);
176
749cf76c
CD
177 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
178 if (kvm->vcpus[i]) {
179 kvm_arch_vcpu_free(kvm->vcpus[i]);
180 kvm->vcpus[i] = NULL;
181 }
182 }
183}
184
185int kvm_dev_ioctl_check_extension(long ext)
186{
187 int r;
188 switch (ext) {
1a89dd91
MZ
189 case KVM_CAP_IRQCHIP:
190 r = vgic_present;
191 break;
749cf76c
CD
192 case KVM_CAP_USER_MEMORY:
193 case KVM_CAP_SYNC_MMU:
194 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
195 case KVM_CAP_ONE_REG:
aa024c2f 196 case KVM_CAP_ARM_PSCI:
749cf76c
CD
197 r = 1;
198 break;
199 case KVM_CAP_COALESCED_MMIO:
200 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
201 break;
3401d546
CD
202 case KVM_CAP_ARM_SET_DEVICE_ADDR:
203 r = 1;
749cf76c
CD
204 case KVM_CAP_NR_VCPUS:
205 r = num_online_cpus();
206 break;
207 case KVM_CAP_MAX_VCPUS:
208 r = KVM_MAX_VCPUS;
209 break;
210 default:
211 r = 0;
212 break;
213 }
214 return r;
215}
216
217long kvm_arch_dev_ioctl(struct file *filp,
218 unsigned int ioctl, unsigned long arg)
219{
220 return -EINVAL;
221}
222
223int kvm_arch_set_memory_region(struct kvm *kvm,
224 struct kvm_userspace_memory_region *mem,
225 struct kvm_memory_slot old,
226 int user_alloc)
227{
228 return 0;
229}
230
231int kvm_arch_prepare_memory_region(struct kvm *kvm,
232 struct kvm_memory_slot *memslot,
233 struct kvm_memory_slot old,
234 struct kvm_userspace_memory_region *mem,
235 int user_alloc)
236{
237 return 0;
238}
239
240void kvm_arch_commit_memory_region(struct kvm *kvm,
241 struct kvm_userspace_memory_region *mem,
242 struct kvm_memory_slot old,
243 int user_alloc)
244{
245}
246
247void kvm_arch_flush_shadow_all(struct kvm *kvm)
248{
249}
250
251void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
252 struct kvm_memory_slot *slot)
253{
254}
255
256struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
257{
258 int err;
259 struct kvm_vcpu *vcpu;
260
261 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
262 if (!vcpu) {
263 err = -ENOMEM;
264 goto out;
265 }
266
267 err = kvm_vcpu_init(vcpu, kvm, id);
268 if (err)
269 goto free_vcpu;
270
d5d8184d
CD
271 err = create_hyp_mappings(vcpu, vcpu + 1);
272 if (err)
273 goto vcpu_uninit;
274
749cf76c 275 return vcpu;
d5d8184d
CD
276vcpu_uninit:
277 kvm_vcpu_uninit(vcpu);
749cf76c
CD
278free_vcpu:
279 kmem_cache_free(kvm_vcpu_cache, vcpu);
280out:
281 return ERR_PTR(err);
282}
283
284int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
285{
286 return 0;
287}
288
289void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
290{
d5d8184d
CD
291 kvm_mmu_free_memory_caches(vcpu);
292 kmem_cache_free(kvm_vcpu_cache, vcpu);
749cf76c
CD
293}
294
295void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
296{
297 kvm_arch_vcpu_free(vcpu);
298}
299
300int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
301{
302 return 0;
303}
304
305int __attribute_const__ kvm_target_cpu(void)
306{
307 unsigned long implementor = read_cpuid_implementor();
308 unsigned long part_number = read_cpuid_part_number();
309
310 if (implementor != ARM_CPU_IMP_ARM)
311 return -EINVAL;
312
313 switch (part_number) {
314 case ARM_CPU_PART_CORTEX_A15:
315 return KVM_ARM_TARGET_CORTEX_A15;
316 default:
317 return -EINVAL;
318 }
319}
320
321int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
322{
1a89dd91
MZ
323 int ret;
324
f7ed45be
CD
325 /* Force users to call KVM_ARM_VCPU_INIT */
326 vcpu->arch.target = -1;
1a89dd91
MZ
327
328 /* Set up VGIC */
329 ret = kvm_vgic_vcpu_init(vcpu);
330 if (ret)
331 return ret;
332
749cf76c
CD
333 return 0;
334}
335
336void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
337{
338}
339
340void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
341{
86ce8535 342 vcpu->cpu = cpu;
f7ed45be 343 vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state);
5b3e5e5b
CD
344
345 /*
346 * Check whether this vcpu requires the cache to be flushed on
347 * this physical CPU. This is a consequence of doing dcache
348 * operations by set/way on this vcpu. We do it here to be in
349 * a non-preemptible section.
350 */
351 if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
352 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
1638a12d
MZ
353
354 kvm_arm_set_running_vcpu(vcpu);
749cf76c
CD
355}
356
357void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
358{
1638a12d 359 kvm_arm_set_running_vcpu(NULL);
749cf76c
CD
360}
361
362int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
363 struct kvm_guest_debug *dbg)
364{
365 return -EINVAL;
366}
367
368
369int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
370 struct kvm_mp_state *mp_state)
371{
372 return -EINVAL;
373}
374
375int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
376 struct kvm_mp_state *mp_state)
377{
378 return -EINVAL;
379}
380
5b3e5e5b
CD
381/**
382 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
383 * @v: The VCPU pointer
384 *
385 * If the guest CPU is not waiting for interrupts or an interrupt line is
386 * asserted, the CPU is by definition runnable.
387 */
749cf76c
CD
388int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
389{
1a89dd91 390 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
749cf76c
CD
391}
392
f7ed45be
CD
393/* Just ensure a guest exit from a particular CPU */
394static void exit_vm_noop(void *info)
395{
396}
397
398void force_vm_exit(const cpumask_t *mask)
399{
400 smp_call_function_many(mask, exit_vm_noop, NULL, true);
401}
402
403/**
404 * need_new_vmid_gen - check that the VMID is still valid
405 * @kvm: The VM's VMID to checkt
406 *
407 * return true if there is a new generation of VMIDs being used
408 *
409 * The hardware supports only 256 values with the value zero reserved for the
410 * host, so we check if an assigned value belongs to a previous generation,
411 * which which requires us to assign a new value. If we're the first to use a
412 * VMID for the new generation, we must flush necessary caches and TLBs on all
413 * CPUs.
414 */
415static bool need_new_vmid_gen(struct kvm *kvm)
416{
417 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
418}
419
420/**
421 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
422 * @kvm The guest that we are about to run
423 *
424 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
425 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
426 * caches and TLBs.
427 */
428static void update_vttbr(struct kvm *kvm)
429{
430 phys_addr_t pgd_phys;
431 u64 vmid;
432
433 if (!need_new_vmid_gen(kvm))
434 return;
435
436 spin_lock(&kvm_vmid_lock);
437
438 /*
439 * We need to re-check the vmid_gen here to ensure that if another vcpu
440 * already allocated a valid vmid for this vm, then this vcpu should
441 * use the same vmid.
442 */
443 if (!need_new_vmid_gen(kvm)) {
444 spin_unlock(&kvm_vmid_lock);
445 return;
446 }
447
448 /* First user of a new VMID generation? */
449 if (unlikely(kvm_next_vmid == 0)) {
450 atomic64_inc(&kvm_vmid_gen);
451 kvm_next_vmid = 1;
452
453 /*
454 * On SMP we know no other CPUs can use this CPU's or each
455 * other's VMID after force_vm_exit returns since the
456 * kvm_vmid_lock blocks them from reentry to the guest.
457 */
458 force_vm_exit(cpu_all_mask);
459 /*
460 * Now broadcast TLB + ICACHE invalidation over the inner
461 * shareable domain to make sure all data structures are
462 * clean.
463 */
464 kvm_call_hyp(__kvm_flush_vm_context);
465 }
466
467 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
468 kvm->arch.vmid = kvm_next_vmid;
469 kvm_next_vmid++;
470
471 /* update vttbr to be used with the new vmid */
472 pgd_phys = virt_to_phys(kvm->arch.pgd);
473 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
474 kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
475 kvm->arch.vttbr |= vmid;
476
477 spin_unlock(&kvm_vmid_lock);
478}
479
5b3e5e5b
CD
480static int handle_svc_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
481{
482 /* SVC called from Hyp mode should never get here */
483 kvm_debug("SVC called from Hyp mode shouldn't go here\n");
484 BUG();
485 return -EINVAL; /* Squash warning */
486}
487
488static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run)
489{
490 trace_kvm_hvc(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0),
491 vcpu->arch.hsr & HSR_HVC_IMM_MASK);
492
aa024c2f
MZ
493 if (kvm_psci_call(vcpu))
494 return 1;
495
5b3e5e5b
CD
496 kvm_inject_undefined(vcpu);
497 return 1;
498}
499
500static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run)
501{
aa024c2f
MZ
502 if (kvm_psci_call(vcpu))
503 return 1;
504
5b3e5e5b
CD
505 kvm_inject_undefined(vcpu);
506 return 1;
507}
508
509static int handle_pabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
510{
511 /* The hypervisor should never cause aborts */
512 kvm_err("Prefetch Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
513 vcpu->arch.hxfar, vcpu->arch.hsr);
514 return -EFAULT;
515}
516
517static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
518{
519 /* This is either an error in the ws. code or an external abort */
520 kvm_err("Data Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
521 vcpu->arch.hxfar, vcpu->arch.hsr);
522 return -EFAULT;
523}
524
525typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
526static exit_handle_fn arm_exit_handlers[] = {
527 [HSR_EC_WFI] = kvm_handle_wfi,
528 [HSR_EC_CP15_32] = kvm_handle_cp15_32,
529 [HSR_EC_CP15_64] = kvm_handle_cp15_64,
530 [HSR_EC_CP14_MR] = kvm_handle_cp14_access,
531 [HSR_EC_CP14_LS] = kvm_handle_cp14_load_store,
532 [HSR_EC_CP14_64] = kvm_handle_cp14_access,
533 [HSR_EC_CP_0_13] = kvm_handle_cp_0_13_access,
534 [HSR_EC_CP10_ID] = kvm_handle_cp10_id,
535 [HSR_EC_SVC_HYP] = handle_svc_hyp,
536 [HSR_EC_HVC] = handle_hvc,
537 [HSR_EC_SMC] = handle_smc,
538 [HSR_EC_IABT] = kvm_handle_guest_abort,
539 [HSR_EC_IABT_HYP] = handle_pabt_hyp,
540 [HSR_EC_DABT] = kvm_handle_guest_abort,
541 [HSR_EC_DABT_HYP] = handle_dabt_hyp,
542};
543
544/*
545 * A conditional instruction is allowed to trap, even though it
546 * wouldn't be executed. So let's re-implement the hardware, in
547 * software!
548 */
549static bool kvm_condition_valid(struct kvm_vcpu *vcpu)
550{
551 unsigned long cpsr, cond, insn;
552
553 /*
554 * Exception Code 0 can only happen if we set HCR.TGE to 1, to
555 * catch undefined instructions, and then we won't get past
556 * the arm_exit_handlers test anyway.
557 */
558 BUG_ON(((vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT) == 0);
559
560 /* Top two bits non-zero? Unconditional. */
561 if (vcpu->arch.hsr >> 30)
562 return true;
563
564 cpsr = *vcpu_cpsr(vcpu);
565
566 /* Is condition field valid? */
567 if ((vcpu->arch.hsr & HSR_CV) >> HSR_CV_SHIFT)
568 cond = (vcpu->arch.hsr & HSR_COND) >> HSR_COND_SHIFT;
569 else {
570 /* This can happen in Thumb mode: examine IT state. */
571 unsigned long it;
572
573 it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3);
574
575 /* it == 0 => unconditional. */
576 if (it == 0)
577 return true;
578
579 /* The cond for this insn works out as the top 4 bits. */
580 cond = (it >> 4);
581 }
582
583 /* Shift makes it look like an ARM-mode instruction */
584 insn = cond << 28;
585 return arm_check_condition(insn, cpsr) != ARM_OPCODE_CONDTEST_FAIL;
586}
587
f7ed45be
CD
588/*
589 * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
590 * proper exit to QEMU.
591 */
592static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
593 int exception_index)
594{
5b3e5e5b
CD
595 unsigned long hsr_ec;
596
597 switch (exception_index) {
598 case ARM_EXCEPTION_IRQ:
599 return 1;
600 case ARM_EXCEPTION_UNDEFINED:
601 kvm_err("Undefined exception in Hyp mode at: %#08x\n",
602 vcpu->arch.hyp_pc);
603 BUG();
604 panic("KVM: Hypervisor undefined exception!\n");
605 case ARM_EXCEPTION_DATA_ABORT:
606 case ARM_EXCEPTION_PREF_ABORT:
607 case ARM_EXCEPTION_HVC:
608 hsr_ec = (vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT;
609
610 if (hsr_ec >= ARRAY_SIZE(arm_exit_handlers)
611 || !arm_exit_handlers[hsr_ec]) {
612 kvm_err("Unkown exception class: %#08lx, "
613 "hsr: %#08x\n", hsr_ec,
614 (unsigned int)vcpu->arch.hsr);
615 BUG();
616 }
617
618 /*
619 * See ARM ARM B1.14.1: "Hyp traps on instructions
620 * that fail their condition code check"
621 */
622 if (!kvm_condition_valid(vcpu)) {
623 bool is_wide = vcpu->arch.hsr & HSR_IL;
624 kvm_skip_instr(vcpu, is_wide);
625 return 1;
626 }
627
628 return arm_exit_handlers[hsr_ec](vcpu, run);
629 default:
630 kvm_pr_unimpl("Unsupported exception type: %d",
631 exception_index);
632 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
633 return 0;
634 }
f7ed45be
CD
635}
636
637static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
638{
639 if (likely(vcpu->arch.has_run_once))
640 return 0;
641
642 vcpu->arch.has_run_once = true;
aa024c2f
MZ
643
644 /*
645 * Handle the "start in power-off" case by calling into the
646 * PSCI code.
647 */
648 if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
649 *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
650 kvm_psci_call(vcpu);
651 }
652
f7ed45be
CD
653 return 0;
654}
655
aa024c2f
MZ
656static void vcpu_pause(struct kvm_vcpu *vcpu)
657{
658 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
659
660 wait_event_interruptible(*wq, !vcpu->arch.pause);
661}
662
f7ed45be
CD
663/**
664 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
665 * @vcpu: The VCPU pointer
666 * @run: The kvm_run structure pointer used for userspace state exchange
667 *
668 * This function is called through the VCPU_RUN ioctl called from user space. It
669 * will execute VM code in a loop until the time slice for the process is used
670 * or some emulation is needed from user space in which case the function will
671 * return with return value 0 and with the kvm_run structure filled in with the
672 * required data for the requested emulation.
673 */
749cf76c
CD
674int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
675{
f7ed45be
CD
676 int ret;
677 sigset_t sigsaved;
678
679 /* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */
680 if (unlikely(vcpu->arch.target < 0))
681 return -ENOEXEC;
682
683 ret = kvm_vcpu_first_run_init(vcpu);
684 if (ret)
685 return ret;
686
45e96ea6
CD
687 if (run->exit_reason == KVM_EXIT_MMIO) {
688 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
689 if (ret)
690 return ret;
691 }
692
f7ed45be
CD
693 if (vcpu->sigset_active)
694 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
695
696 ret = 1;
697 run->exit_reason = KVM_EXIT_UNKNOWN;
698 while (ret > 0) {
699 /*
700 * Check conditions before entering the guest
701 */
702 cond_resched();
703
704 update_vttbr(vcpu->kvm);
705
aa024c2f
MZ
706 if (vcpu->arch.pause)
707 vcpu_pause(vcpu);
708
1a89dd91
MZ
709 kvm_vgic_flush_hwstate(vcpu);
710
f7ed45be
CD
711 local_irq_disable();
712
713 /*
714 * Re-check atomic conditions
715 */
716 if (signal_pending(current)) {
717 ret = -EINTR;
718 run->exit_reason = KVM_EXIT_INTR;
719 }
720
721 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
722 local_irq_enable();
1a89dd91 723 kvm_vgic_sync_hwstate(vcpu);
f7ed45be
CD
724 continue;
725 }
726
727 /**************************************************************
728 * Enter the guest
729 */
730 trace_kvm_entry(*vcpu_pc(vcpu));
731 kvm_guest_enter();
732 vcpu->mode = IN_GUEST_MODE;
733
734 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
735
736 vcpu->mode = OUTSIDE_GUEST_MODE;
5b3e5e5b 737 vcpu->arch.last_pcpu = smp_processor_id();
f7ed45be
CD
738 kvm_guest_exit();
739 trace_kvm_exit(*vcpu_pc(vcpu));
740 /*
741 * We may have taken a host interrupt in HYP mode (ie
742 * while executing the guest). This interrupt is still
743 * pending, as we haven't serviced it yet!
744 *
745 * We're now back in SVC mode, with interrupts
746 * disabled. Enabling the interrupts now will have
747 * the effect of taking the interrupt again, in SVC
748 * mode this time.
749 */
750 local_irq_enable();
751
752 /*
753 * Back from guest
754 *************************************************************/
755
1a89dd91
MZ
756 kvm_vgic_sync_hwstate(vcpu);
757
f7ed45be
CD
758 ret = handle_exit(vcpu, run, ret);
759 }
760
761 if (vcpu->sigset_active)
762 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
763 return ret;
749cf76c
CD
764}
765
86ce8535
CD
766static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
767{
768 int bit_index;
769 bool set;
770 unsigned long *ptr;
771
772 if (number == KVM_ARM_IRQ_CPU_IRQ)
773 bit_index = __ffs(HCR_VI);
774 else /* KVM_ARM_IRQ_CPU_FIQ */
775 bit_index = __ffs(HCR_VF);
776
777 ptr = (unsigned long *)&vcpu->arch.irq_lines;
778 if (level)
779 set = test_and_set_bit(bit_index, ptr);
780 else
781 set = test_and_clear_bit(bit_index, ptr);
782
783 /*
784 * If we didn't change anything, no need to wake up or kick other CPUs
785 */
786 if (set == level)
787 return 0;
788
789 /*
790 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
791 * trigger a world-switch round on the running physical CPU to set the
792 * virtual IRQ/FIQ fields in the HCR appropriately.
793 */
794 kvm_vcpu_kick(vcpu);
795
796 return 0;
797}
798
799int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level)
800{
801 u32 irq = irq_level->irq;
802 unsigned int irq_type, vcpu_idx, irq_num;
803 int nrcpus = atomic_read(&kvm->online_vcpus);
804 struct kvm_vcpu *vcpu = NULL;
805 bool level = irq_level->level;
806
807 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
808 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
809 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
810
811 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
812
813 if (irq_type != KVM_ARM_IRQ_TYPE_CPU)
814 return -EINVAL;
815
816 if (vcpu_idx >= nrcpus)
817 return -EINVAL;
818
819 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
820 if (!vcpu)
821 return -EINVAL;
822
823 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
824 return -EINVAL;
825
826 return vcpu_interrupt_line(vcpu, irq_num, level);
827}
828
749cf76c
CD
829long kvm_arch_vcpu_ioctl(struct file *filp,
830 unsigned int ioctl, unsigned long arg)
831{
832 struct kvm_vcpu *vcpu = filp->private_data;
833 void __user *argp = (void __user *)arg;
834
835 switch (ioctl) {
836 case KVM_ARM_VCPU_INIT: {
837 struct kvm_vcpu_init init;
838
839 if (copy_from_user(&init, argp, sizeof(init)))
840 return -EFAULT;
841
842 return kvm_vcpu_set_target(vcpu, &init);
843
844 }
845 case KVM_SET_ONE_REG:
846 case KVM_GET_ONE_REG: {
847 struct kvm_one_reg reg;
848 if (copy_from_user(&reg, argp, sizeof(reg)))
849 return -EFAULT;
850 if (ioctl == KVM_SET_ONE_REG)
851 return kvm_arm_set_reg(vcpu, &reg);
852 else
853 return kvm_arm_get_reg(vcpu, &reg);
854 }
855 case KVM_GET_REG_LIST: {
856 struct kvm_reg_list __user *user_list = argp;
857 struct kvm_reg_list reg_list;
858 unsigned n;
859
860 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
861 return -EFAULT;
862 n = reg_list.n;
863 reg_list.n = kvm_arm_num_regs(vcpu);
864 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
865 return -EFAULT;
866 if (n < reg_list.n)
867 return -E2BIG;
868 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
869 }
870 default:
871 return -EINVAL;
872 }
873}
874
875int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
876{
877 return -EINVAL;
878}
879
3401d546
CD
880static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
881 struct kvm_arm_device_addr *dev_addr)
882{
883 return -ENODEV;
884}
885
749cf76c
CD
886long kvm_arch_vm_ioctl(struct file *filp,
887 unsigned int ioctl, unsigned long arg)
888{
3401d546
CD
889 struct kvm *kvm = filp->private_data;
890 void __user *argp = (void __user *)arg;
891
892 switch (ioctl) {
893 case KVM_ARM_SET_DEVICE_ADDR: {
894 struct kvm_arm_device_addr dev_addr;
895
896 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
897 return -EFAULT;
898 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
899 }
900 default:
901 return -EINVAL;
902 }
749cf76c
CD
903}
904
342cd0ab
CD
905static void cpu_init_hyp_mode(void *vector)
906{
907 unsigned long long pgd_ptr;
908 unsigned long pgd_low, pgd_high;
909 unsigned long hyp_stack_ptr;
910 unsigned long stack_page;
911 unsigned long vector_ptr;
912
913 /* Switch from the HYP stub to our own HYP init vector */
914 __hyp_set_vectors((unsigned long)vector);
915
916 pgd_ptr = (unsigned long long)kvm_mmu_get_httbr();
917 pgd_low = (pgd_ptr & ((1ULL << 32) - 1));
918 pgd_high = (pgd_ptr >> 32ULL);
919 stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
920 hyp_stack_ptr = stack_page + PAGE_SIZE;
921 vector_ptr = (unsigned long)__kvm_hyp_vector;
922
923 /*
924 * Call initialization code, and switch to the full blown
925 * HYP code. The init code doesn't need to preserve these registers as
926 * r1-r3 and r12 are already callee save according to the AAPCS.
927 * Note that we slightly misuse the prototype by casing the pgd_low to
928 * a void *.
929 */
930 kvm_call_hyp((void *)pgd_low, pgd_high, hyp_stack_ptr, vector_ptr);
931}
932
933/**
934 * Inits Hyp-mode on all online CPUs
935 */
936static int init_hyp_mode(void)
937{
938 phys_addr_t init_phys_addr;
939 int cpu;
940 int err = 0;
941
942 /*
943 * Allocate Hyp PGD and setup Hyp identity mapping
944 */
945 err = kvm_mmu_init();
946 if (err)
947 goto out_err;
948
949 /*
950 * It is probably enough to obtain the default on one
951 * CPU. It's unlikely to be different on the others.
952 */
953 hyp_default_vectors = __hyp_get_vectors();
954
955 /*
956 * Allocate stack pages for Hypervisor-mode
957 */
958 for_each_possible_cpu(cpu) {
959 unsigned long stack_page;
960
961 stack_page = __get_free_page(GFP_KERNEL);
962 if (!stack_page) {
963 err = -ENOMEM;
964 goto out_free_stack_pages;
965 }
966
967 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
968 }
969
970 /*
971 * Execute the init code on each CPU.
972 *
973 * Note: The stack is not mapped yet, so don't do anything else than
974 * initializing the hypervisor mode on each CPU using a local stack
975 * space for temporary storage.
976 */
977 init_phys_addr = virt_to_phys(__kvm_hyp_init);
978 for_each_online_cpu(cpu) {
979 smp_call_function_single(cpu, cpu_init_hyp_mode,
980 (void *)(long)init_phys_addr, 1);
981 }
982
983 /*
984 * Unmap the identity mapping
985 */
986 kvm_clear_hyp_idmap();
987
988 /*
989 * Map the Hyp-code called directly from the host
990 */
991 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
992 if (err) {
993 kvm_err("Cannot map world-switch code\n");
994 goto out_free_mappings;
995 }
996
997 /*
998 * Map the Hyp stack pages
999 */
1000 for_each_possible_cpu(cpu) {
1001 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1002 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1003
1004 if (err) {
1005 kvm_err("Cannot map hyp stack\n");
1006 goto out_free_mappings;
1007 }
1008 }
1009
1010 /*
1011 * Map the host VFP structures
1012 */
1013 kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct);
1014 if (!kvm_host_vfp_state) {
1015 err = -ENOMEM;
1016 kvm_err("Cannot allocate host VFP state\n");
1017 goto out_free_mappings;
1018 }
1019
1020 for_each_possible_cpu(cpu) {
1021 struct vfp_hard_struct *vfp;
1022
1023 vfp = per_cpu_ptr(kvm_host_vfp_state, cpu);
1024 err = create_hyp_mappings(vfp, vfp + 1);
1025
1026 if (err) {
1027 kvm_err("Cannot map host VFP state: %d\n", err);
1028 goto out_free_vfp;
1029 }
1030 }
1031
1a89dd91
MZ
1032 /*
1033 * Init HYP view of VGIC
1034 */
1035 err = kvm_vgic_hyp_init();
1036 if (err)
1037 goto out_free_vfp;
1038
342cd0ab
CD
1039 kvm_info("Hyp mode initialized successfully\n");
1040 return 0;
1041out_free_vfp:
1042 free_percpu(kvm_host_vfp_state);
1043out_free_mappings:
1044 free_hyp_pmds();
1045out_free_stack_pages:
1046 for_each_possible_cpu(cpu)
1047 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1048out_err:
1049 kvm_err("error initializing Hyp mode: %d\n", err);
1050 return err;
1051}
1052
1053/**
1054 * Initialize Hyp-mode and memory mappings on all CPUs.
1055 */
749cf76c
CD
1056int kvm_arch_init(void *opaque)
1057{
342cd0ab
CD
1058 int err;
1059
1060 if (!is_hyp_mode_available()) {
1061 kvm_err("HYP mode not available\n");
1062 return -ENODEV;
1063 }
1064
1065 if (kvm_target_cpu() < 0) {
1066 kvm_err("Target CPU not supported!\n");
1067 return -ENODEV;
1068 }
1069
1070 err = init_hyp_mode();
1071 if (err)
1072 goto out_err;
1073
5b3e5e5b 1074 kvm_coproc_table_init();
749cf76c 1075 return 0;
342cd0ab
CD
1076out_err:
1077 return err;
749cf76c
CD
1078}
1079
1080/* NOP: Compiling as a module not supported */
1081void kvm_arch_exit(void)
1082{
1083}
1084
1085static int arm_init(void)
1086{
1087 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1088 return rc;
1089}
1090
1091module_init(arm_init);