]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/arm/kvm/coproc.c
ARM: KVM: force cache clean on page fault when caches are off
[mirror_ubuntu-zesty-kernel.git] / arch / arm / kvm / coproc.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
5b3e5e5b 19#include <linux/mm.h>
749cf76c 20#include <linux/kvm_host.h>
1138245c 21#include <linux/uaccess.h>
5b3e5e5b
CD
22#include <asm/kvm_arm.h>
23#include <asm/kvm_host.h>
24#include <asm/kvm_emulate.h>
25#include <asm/kvm_coproc.h>
26#include <asm/cacheflush.h>
27#include <asm/cputype.h>
28#include <trace/events/kvm.h>
4fe21e4c
RR
29#include <asm/vfp.h>
30#include "../vfp/vfpinstr.h"
749cf76c 31
5b3e5e5b
CD
32#include "trace.h"
33#include "coproc.h"
34
35
36/******************************************************************************
37 * Co-processor emulation
38 *****************************************************************************/
39
c27581ed
CD
40/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
41static u32 cache_levels;
42
43/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
44#define CSSELR_MAX 12
45
5b3e5e5b
CD
46int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
47{
48 kvm_inject_undefined(vcpu);
49 return 1;
50}
51
52int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
53{
54 /*
55 * We can get here, if the host has been built without VFPv3 support,
56 * but the guest attempted a floating point operation.
57 */
58 kvm_inject_undefined(vcpu);
59 return 1;
60}
61
62int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
63{
64 kvm_inject_undefined(vcpu);
65 return 1;
66}
67
68int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
69{
70 kvm_inject_undefined(vcpu);
71 return 1;
72}
73
e8c2d99f
JA
74static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
75{
76 /*
2d1d841b
MZ
77 * Compute guest MPIDR. We build a virtual cluster out of the
78 * vcpu_id, but we read the 'U' bit from the underlying
79 * hardware directly.
e8c2d99f 80 */
2d1d841b
MZ
81 vcpu->arch.cp15[c0_MPIDR] = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
82 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
83 (vcpu->vcpu_id & 3));
e8c2d99f
JA
84}
85
86/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
87static bool access_actlr(struct kvm_vcpu *vcpu,
88 const struct coproc_params *p,
89 const struct coproc_reg *r)
90{
91 if (p->is_write)
92 return ignore_write(vcpu, p);
93
94 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
95 return true;
96}
97
98/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
99static bool access_cbar(struct kvm_vcpu *vcpu,
100 const struct coproc_params *p,
101 const struct coproc_reg *r)
102{
103 if (p->is_write)
104 return write_to_read_only(vcpu, p);
105 return read_zero(vcpu, p);
106}
107
108/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
109static bool access_l2ctlr(struct kvm_vcpu *vcpu,
110 const struct coproc_params *p,
111 const struct coproc_reg *r)
112{
113 if (p->is_write)
114 return ignore_write(vcpu, p);
115
116 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
117 return true;
118}
119
120static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
121{
122 u32 l2ctlr, ncores;
123
124 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
125 l2ctlr &= ~(3 << 24);
126 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
9cbb6d96
MZ
127 /* How many cores in the current cluster and the next ones */
128 ncores -= (vcpu->vcpu_id & ~3);
129 /* Cap it to the maximum number of cores in a single cluster */
130 ncores = min(ncores, 3U);
e8c2d99f
JA
131 l2ctlr |= (ncores & 3) << 24;
132
133 vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
134}
135
136static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
137{
138 u32 actlr;
139
140 /* ACTLR contains SMP bit: make sure you create all cpus first! */
141 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
142 /* Make the SMP bit consistent with the guest configuration */
143 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
144 actlr |= 1U << 6;
145 else
146 actlr &= ~(1U << 6);
147
148 vcpu->arch.cp15[c1_ACTLR] = actlr;
149}
150
151/*
152 * TRM entries: A7:4.3.50, A15:4.3.49
153 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
154 */
155static bool access_l2ectlr(struct kvm_vcpu *vcpu,
156 const struct coproc_params *p,
157 const struct coproc_reg *r)
158{
159 if (p->is_write)
160 return ignore_write(vcpu, p);
161
162 *vcpu_reg(vcpu, p->Rt1) = 0;
163 return true;
164}
165
5b3e5e5b
CD
166/* See note at ARM ARM B1.14.4 */
167static bool access_dcsw(struct kvm_vcpu *vcpu,
168 const struct coproc_params *p,
169 const struct coproc_reg *r)
170{
db730d8d 171 unsigned long val;
5b3e5e5b
CD
172 int cpu;
173
5b3e5e5b
CD
174 if (!p->is_write)
175 return read_from_write_only(vcpu, p);
176
15bbc1b2
MZ
177 cpu = get_cpu();
178
5b3e5e5b
CD
179 cpumask_setall(&vcpu->arch.require_dcache_flush);
180 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
181
182 /* If we were already preempted, take the long way around */
183 if (cpu != vcpu->arch.last_pcpu) {
184 flush_cache_all();
185 goto done;
186 }
187
188 val = *vcpu_reg(vcpu, p->Rt1);
189
190 switch (p->CRm) {
191 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
192 case 14: /* DCCISW */
193 asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
194 break;
195
196 case 10: /* DCCSW */
197 asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
198 break;
199 }
200
201done:
202 put_cpu();
203
204 return true;
205}
206
207/*
208 * We could trap ID_DFR0 and tell the guest we don't support performance
209 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
210 * NAKed, so it will read the PMCR anyway.
211 *
212 * Therefore we tell the guest we have 0 counters. Unfortunately, we
213 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
214 * all PM registers, which doesn't crash the guest kernel at least.
215 */
216static bool pm_fake(struct kvm_vcpu *vcpu,
217 const struct coproc_params *p,
218 const struct coproc_reg *r)
219{
220 if (p->is_write)
221 return ignore_write(vcpu, p);
222 else
223 return read_zero(vcpu, p);
224}
225
226#define access_pmcr pm_fake
227#define access_pmcntenset pm_fake
228#define access_pmcntenclr pm_fake
229#define access_pmovsr pm_fake
230#define access_pmselr pm_fake
231#define access_pmceid0 pm_fake
232#define access_pmceid1 pm_fake
233#define access_pmccntr pm_fake
234#define access_pmxevtyper pm_fake
235#define access_pmxevcntr pm_fake
236#define access_pmuserenr pm_fake
237#define access_pmintenset pm_fake
238#define access_pmintenclr pm_fake
239
240/* Architected CP15 registers.
240e99cb
CD
241 * CRn denotes the primary register number, but is copied to the CRm in the
242 * user space API for 64-bit register access in line with the terminology used
243 * in the ARM ARM.
244 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
245 * registers preceding 32-bit ones.
5b3e5e5b
CD
246 */
247static const struct coproc_reg cp15_regs[] = {
e8c2d99f
JA
248 /* MPIDR: we use VMPIDR for guest access. */
249 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
250 NULL, reset_mpidr, c0_MPIDR },
251
5b3e5e5b
CD
252 /* CSSELR: swapped by interrupt.S. */
253 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
254 NULL, reset_unknown, c0_CSSELR },
255
e8c2d99f
JA
256 /* ACTLR: trapped by HCR.TAC bit. */
257 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
258 access_actlr, reset_actlr, c1_ACTLR },
259
260 /* CPACR: swapped by interrupt.S. */
261 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
262 NULL, reset_val, c1_CPACR, 0x00000000 },
263
5b3e5e5b 264 /* TTBR0/TTBR1: swapped by interrupt.S. */
240e99cb
CD
265 { CRm64( 2), Op1( 0), is64, NULL, reset_unknown64, c2_TTBR0 },
266 { CRm64( 2), Op1( 1), is64, NULL, reset_unknown64, c2_TTBR1 },
5b3e5e5b
CD
267
268 /* TTBCR: swapped by interrupt.S. */
269 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
270 NULL, reset_val, c2_TTBCR, 0x00000000 },
271
272 /* DACR: swapped by interrupt.S. */
273 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
274 NULL, reset_unknown, c3_DACR },
275
276 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
277 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
278 NULL, reset_unknown, c5_DFSR },
279 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
280 NULL, reset_unknown, c5_IFSR },
281 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
282 NULL, reset_unknown, c5_ADFSR },
283 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
284 NULL, reset_unknown, c5_AIFSR },
285
286 /* DFAR/IFAR: swapped by interrupt.S. */
287 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
288 NULL, reset_unknown, c6_DFAR },
289 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
290 NULL, reset_unknown, c6_IFAR },
6a077e4a
MZ
291
292 /* PAR swapped by interrupt.S */
240e99cb 293 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
6a077e4a 294
5b3e5e5b
CD
295 /*
296 * DC{C,I,CI}SW operations:
297 */
298 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
299 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
300 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
e8c2d99f
JA
301 /*
302 * L2CTLR access (guest wants to know #CPUs).
303 */
304 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
305 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
306 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
307
5b3e5e5b
CD
308 /*
309 * Dummy performance monitor implementation.
310 */
311 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
312 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
313 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
314 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
315 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
316 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
317 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
318 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
319 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
320 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
321 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
322 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
323 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
324
325 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
326 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
327 NULL, reset_unknown, c10_PRRR},
328 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
329 NULL, reset_unknown, c10_NMRR},
330
331 /* VBAR: swapped by interrupt.S. */
332 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
333 NULL, reset_val, c12_VBAR, 0x00000000 },
334
335 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
336 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
337 NULL, reset_val, c13_CID, 0x00000000 },
338 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
339 NULL, reset_unknown, c13_TID_URW },
340 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
341 NULL, reset_unknown, c13_TID_URO },
342 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
343 NULL, reset_unknown, c13_TID_PRIV },
c7e3ba64
MZ
344
345 /* CNTKCTL: swapped by interrupt.S. */
346 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
347 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
e8c2d99f
JA
348
349 /* The Configuration Base Address Register. */
350 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
5b3e5e5b
CD
351};
352
353/* Target specific emulation tables */
354static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
355
356void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
357{
e8c2d99f
JA
358 unsigned int i;
359
360 for (i = 1; i < table->num; i++)
361 BUG_ON(cmp_reg(&table->table[i-1],
362 &table->table[i]) >= 0);
363
5b3e5e5b
CD
364 target_tables[table->target] = table;
365}
366
367/* Get specific register table for this target. */
368static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
369{
370 struct kvm_coproc_target_table *table;
371
372 table = target_tables[target];
373 *num = table->num;
374 return table->table;
375}
376
377static const struct coproc_reg *find_reg(const struct coproc_params *params,
378 const struct coproc_reg table[],
379 unsigned int num)
380{
381 unsigned int i;
382
383 for (i = 0; i < num; i++) {
384 const struct coproc_reg *r = &table[i];
385
386 if (params->is_64bit != r->is_64)
387 continue;
388 if (params->CRn != r->CRn)
389 continue;
390 if (params->CRm != r->CRm)
391 continue;
392 if (params->Op1 != r->Op1)
393 continue;
394 if (params->Op2 != r->Op2)
395 continue;
396
397 return r;
398 }
399 return NULL;
400}
401
402static int emulate_cp15(struct kvm_vcpu *vcpu,
403 const struct coproc_params *params)
404{
405 size_t num;
406 const struct coproc_reg *table, *r;
407
408 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
409 params->CRm, params->Op2, params->is_write);
410
411 table = get_target_table(vcpu->arch.target, &num);
412
413 /* Search target-specific then generic table. */
414 r = find_reg(params, table, num);
415 if (!r)
416 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
417
418 if (likely(r)) {
419 /* If we don't have an accessor, we should never get here! */
420 BUG_ON(!r->access);
421
422 if (likely(r->access(vcpu, params, r))) {
423 /* Skip instruction, since it was emulated */
23b415d6 424 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
5b3e5e5b
CD
425 return 1;
426 }
427 /* If access function fails, it should complain. */
428 } else {
db730d8d 429 kvm_err("Unsupported guest CP15 access at: %08lx\n",
5b3e5e5b
CD
430 *vcpu_pc(vcpu));
431 print_cp_instr(params);
432 }
433 kvm_inject_undefined(vcpu);
434 return 1;
435}
436
437/**
438 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
439 * @vcpu: The VCPU pointer
440 * @run: The kvm_run struct
441 */
442int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
443{
444 struct coproc_params params;
445
7393b599
MZ
446 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
447 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
448 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
5b3e5e5b
CD
449 params.is_64bit = true;
450
7393b599 451 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
5b3e5e5b 452 params.Op2 = 0;
7393b599 453 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
5b3e5e5b
CD
454 params.CRn = 0;
455
456 return emulate_cp15(vcpu, &params);
457}
458
459static void reset_coproc_regs(struct kvm_vcpu *vcpu,
460 const struct coproc_reg *table, size_t num)
461{
462 unsigned long i;
463
464 for (i = 0; i < num; i++)
465 if (table[i].reset)
466 table[i].reset(vcpu, &table[i]);
467}
468
469/**
470 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
471 * @vcpu: The VCPU pointer
472 * @run: The kvm_run struct
473 */
474int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
475{
476 struct coproc_params params;
477
7393b599
MZ
478 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
479 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
480 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
5b3e5e5b
CD
481 params.is_64bit = false;
482
7393b599
MZ
483 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
484 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
485 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
5b3e5e5b
CD
486 params.Rt2 = 0;
487
488 return emulate_cp15(vcpu, &params);
489}
490
1138245c
CD
491/******************************************************************************
492 * Userspace API
493 *****************************************************************************/
494
495static bool index_to_params(u64 id, struct coproc_params *params)
496{
497 switch (id & KVM_REG_SIZE_MASK) {
498 case KVM_REG_SIZE_U32:
499 /* Any unused index bits means it's not valid. */
500 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
501 | KVM_REG_ARM_COPROC_MASK
502 | KVM_REG_ARM_32_CRN_MASK
503 | KVM_REG_ARM_CRM_MASK
504 | KVM_REG_ARM_OPC1_MASK
505 | KVM_REG_ARM_32_OPC2_MASK))
506 return false;
507
508 params->is_64bit = false;
509 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
510 >> KVM_REG_ARM_32_CRN_SHIFT);
511 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
512 >> KVM_REG_ARM_CRM_SHIFT);
513 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
514 >> KVM_REG_ARM_OPC1_SHIFT);
515 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
516 >> KVM_REG_ARM_32_OPC2_SHIFT);
517 return true;
518 case KVM_REG_SIZE_U64:
519 /* Any unused index bits means it's not valid. */
520 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
521 | KVM_REG_ARM_COPROC_MASK
522 | KVM_REG_ARM_CRM_MASK
523 | KVM_REG_ARM_OPC1_MASK))
524 return false;
525 params->is_64bit = true;
240e99cb
CD
526 /* CRm to CRn: see cp15_to_index for details */
527 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
1138245c
CD
528 >> KVM_REG_ARM_CRM_SHIFT);
529 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
530 >> KVM_REG_ARM_OPC1_SHIFT);
531 params->Op2 = 0;
240e99cb 532 params->CRm = 0;
1138245c
CD
533 return true;
534 default:
535 return false;
536 }
537}
538
539/* Decode an index value, and find the cp15 coproc_reg entry. */
540static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
541 u64 id)
542{
543 size_t num;
544 const struct coproc_reg *table, *r;
545 struct coproc_params params;
546
547 /* We only do cp15 for now. */
548 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
549 return NULL;
550
551 if (!index_to_params(id, &params))
552 return NULL;
553
554 table = get_target_table(vcpu->arch.target, &num);
555 r = find_reg(&params, table, num);
556 if (!r)
557 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
558
559 /* Not saved in the cp15 array? */
560 if (r && !r->reg)
561 r = NULL;
562
563 return r;
564}
565
566/*
567 * These are the invariant cp15 registers: we let the guest see the host
568 * versions of these, so they're part of the guest state.
569 *
570 * A future CPU may provide a mechanism to present different values to
571 * the guest, or a future kvm may trap them.
572 */
573/* Unfortunately, there's no register-argument for mrc, so generate. */
574#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
575 static void get_##name(struct kvm_vcpu *v, \
576 const struct coproc_reg *r) \
577 { \
578 u32 val; \
579 \
580 asm volatile("mrc p15, " __stringify(op1) \
581 ", %0, c" __stringify(crn) \
582 ", c" __stringify(crm) \
583 ", " __stringify(op2) "\n" : "=r" (val)); \
584 ((struct coproc_reg *)r)->val = val; \
585 }
586
587FUNCTION_FOR32(0, 0, 0, 0, MIDR)
588FUNCTION_FOR32(0, 0, 0, 1, CTR)
589FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
590FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
591FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
592FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
593FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
594FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
595FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
596FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
597FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
598FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
599FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
600FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
601FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
602FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
603FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
604FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
605FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
606FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
607FUNCTION_FOR32(0, 0, 1, 7, AIDR)
608
609/* ->val is filled in by kvm_invariant_coproc_table_init() */
610static struct coproc_reg invariant_cp15[] = {
611 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
612 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
613 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
614 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
615 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
616
617 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
618 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
619 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
620 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
621 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
622 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
623 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
624 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
625
626 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
627 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
628 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
629 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
630 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
631 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
632
633 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
634 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
635};
636
637static int reg_from_user(void *val, const void __user *uaddr, u64 id)
638{
639 /* This Just Works because we are little endian. */
640 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
641 return -EFAULT;
642 return 0;
643}
644
645static int reg_to_user(void __user *uaddr, const void *val, u64 id)
646{
647 /* This Just Works because we are little endian. */
648 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
649 return -EFAULT;
650 return 0;
651}
652
653static int get_invariant_cp15(u64 id, void __user *uaddr)
654{
655 struct coproc_params params;
656 const struct coproc_reg *r;
657
658 if (!index_to_params(id, &params))
659 return -ENOENT;
660
661 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
662 if (!r)
663 return -ENOENT;
664
665 return reg_to_user(uaddr, &r->val, id);
666}
667
668static int set_invariant_cp15(u64 id, void __user *uaddr)
669{
670 struct coproc_params params;
671 const struct coproc_reg *r;
672 int err;
673 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
674
675 if (!index_to_params(id, &params))
676 return -ENOENT;
677 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
678 if (!r)
679 return -ENOENT;
680
681 err = reg_from_user(&val, uaddr, id);
682 if (err)
683 return err;
684
685 /* This is what we mean by invariant: you can't change it. */
686 if (r->val != val)
687 return -EINVAL;
688
689 return 0;
690}
691
c27581ed
CD
692static bool is_valid_cache(u32 val)
693{
694 u32 level, ctype;
695
696 if (val >= CSSELR_MAX)
697 return -ENOENT;
698
699 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
700 level = (val >> 1);
701 ctype = (cache_levels >> (level * 3)) & 7;
702
703 switch (ctype) {
704 case 0: /* No cache */
705 return false;
706 case 1: /* Instruction cache only */
707 return (val & 1);
708 case 2: /* Data cache only */
709 case 4: /* Unified cache */
710 return !(val & 1);
711 case 3: /* Separate instruction and data caches */
712 return true;
713 default: /* Reserved: we can't know instruction or data. */
714 return false;
715 }
716}
717
718/* Which cache CCSIDR represents depends on CSSELR value. */
719static u32 get_ccsidr(u32 csselr)
720{
721 u32 ccsidr;
722
723 /* Make sure noone else changes CSSELR during this! */
724 local_irq_disable();
725 /* Put value into CSSELR */
726 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
727 isb();
728 /* Read result out of CCSIDR */
729 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
730 local_irq_enable();
731
732 return ccsidr;
733}
734
735static int demux_c15_get(u64 id, void __user *uaddr)
736{
737 u32 val;
738 u32 __user *uval = uaddr;
739
740 /* Fail if we have unknown bits set. */
741 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
742 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
743 return -ENOENT;
744
745 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
746 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
747 if (KVM_REG_SIZE(id) != 4)
748 return -ENOENT;
749 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
750 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
751 if (!is_valid_cache(val))
752 return -ENOENT;
753
754 return put_user(get_ccsidr(val), uval);
755 default:
756 return -ENOENT;
757 }
758}
759
760static int demux_c15_set(u64 id, void __user *uaddr)
761{
762 u32 val, newval;
763 u32 __user *uval = uaddr;
764
765 /* Fail if we have unknown bits set. */
766 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
767 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
768 return -ENOENT;
769
770 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
771 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
772 if (KVM_REG_SIZE(id) != 4)
773 return -ENOENT;
774 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
775 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
776 if (!is_valid_cache(val))
777 return -ENOENT;
778
779 if (get_user(newval, uval))
780 return -EFAULT;
781
782 /* This is also invariant: you can't change it. */
783 if (newval != get_ccsidr(val))
784 return -EINVAL;
785 return 0;
786 default:
787 return -ENOENT;
788 }
789}
790
4fe21e4c
RR
791#ifdef CONFIG_VFPv3
792static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
793 KVM_REG_ARM_VFP_FPSCR,
794 KVM_REG_ARM_VFP_FPINST,
795 KVM_REG_ARM_VFP_FPINST2,
796 KVM_REG_ARM_VFP_MVFR0,
797 KVM_REG_ARM_VFP_MVFR1,
798 KVM_REG_ARM_VFP_FPSID };
799
800static unsigned int num_fp_regs(void)
801{
802 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
803 return 32;
804 else
805 return 16;
806}
807
808static unsigned int num_vfp_regs(void)
809{
810 /* Normal FP regs + control regs. */
811 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
812}
813
814static int copy_vfp_regids(u64 __user *uindices)
815{
816 unsigned int i;
817 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
818 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
819
820 for (i = 0; i < num_fp_regs(); i++) {
821 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
822 uindices))
823 return -EFAULT;
824 uindices++;
825 }
826
827 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
828 if (put_user(u32reg | vfp_sysregs[i], uindices))
829 return -EFAULT;
830 uindices++;
831 }
832
833 return num_vfp_regs();
834}
835
836static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
837{
838 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
839 u32 val;
840
841 /* Fail if we have unknown bits set. */
842 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
843 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
844 return -ENOENT;
845
846 if (vfpid < num_fp_regs()) {
847 if (KVM_REG_SIZE(id) != 8)
848 return -ENOENT;
849 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
850 id);
851 }
852
853 /* FP control registers are all 32 bit. */
854 if (KVM_REG_SIZE(id) != 4)
855 return -ENOENT;
856
857 switch (vfpid) {
858 case KVM_REG_ARM_VFP_FPEXC:
859 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
860 case KVM_REG_ARM_VFP_FPSCR:
861 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
862 case KVM_REG_ARM_VFP_FPINST:
863 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
864 case KVM_REG_ARM_VFP_FPINST2:
865 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
866 case KVM_REG_ARM_VFP_MVFR0:
867 val = fmrx(MVFR0);
868 return reg_to_user(uaddr, &val, id);
869 case KVM_REG_ARM_VFP_MVFR1:
870 val = fmrx(MVFR1);
871 return reg_to_user(uaddr, &val, id);
872 case KVM_REG_ARM_VFP_FPSID:
873 val = fmrx(FPSID);
874 return reg_to_user(uaddr, &val, id);
875 default:
876 return -ENOENT;
877 }
878}
879
880static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
881{
882 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
883 u32 val;
884
885 /* Fail if we have unknown bits set. */
886 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
887 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
888 return -ENOENT;
889
890 if (vfpid < num_fp_regs()) {
891 if (KVM_REG_SIZE(id) != 8)
892 return -ENOENT;
893 return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
894 uaddr, id);
895 }
896
897 /* FP control registers are all 32 bit. */
898 if (KVM_REG_SIZE(id) != 4)
899 return -ENOENT;
900
901 switch (vfpid) {
902 case KVM_REG_ARM_VFP_FPEXC:
903 return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
904 case KVM_REG_ARM_VFP_FPSCR:
905 return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
906 case KVM_REG_ARM_VFP_FPINST:
907 return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
908 case KVM_REG_ARM_VFP_FPINST2:
909 return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
910 /* These are invariant. */
911 case KVM_REG_ARM_VFP_MVFR0:
912 if (reg_from_user(&val, uaddr, id))
913 return -EFAULT;
914 if (val != fmrx(MVFR0))
915 return -EINVAL;
916 return 0;
917 case KVM_REG_ARM_VFP_MVFR1:
918 if (reg_from_user(&val, uaddr, id))
919 return -EFAULT;
920 if (val != fmrx(MVFR1))
921 return -EINVAL;
922 return 0;
923 case KVM_REG_ARM_VFP_FPSID:
924 if (reg_from_user(&val, uaddr, id))
925 return -EFAULT;
926 if (val != fmrx(FPSID))
927 return -EINVAL;
928 return 0;
929 default:
930 return -ENOENT;
931 }
932}
933#else /* !CONFIG_VFPv3 */
934static unsigned int num_vfp_regs(void)
935{
936 return 0;
937}
938
939static int copy_vfp_regids(u64 __user *uindices)
940{
941 return 0;
942}
943
944static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
945{
946 return -ENOENT;
947}
948
949static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
950{
951 return -ENOENT;
952}
953#endif /* !CONFIG_VFPv3 */
954
1138245c
CD
955int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
956{
957 const struct coproc_reg *r;
958 void __user *uaddr = (void __user *)(long)reg->addr;
959
c27581ed
CD
960 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
961 return demux_c15_get(reg->id, uaddr);
962
4fe21e4c
RR
963 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
964 return vfp_get_reg(vcpu, reg->id, uaddr);
965
1138245c
CD
966 r = index_to_coproc_reg(vcpu, reg->id);
967 if (!r)
968 return get_invariant_cp15(reg->id, uaddr);
969
970 /* Note: copies two regs if size is 64 bit. */
971 return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
972}
973
974int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
975{
976 const struct coproc_reg *r;
977 void __user *uaddr = (void __user *)(long)reg->addr;
978
c27581ed
CD
979 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
980 return demux_c15_set(reg->id, uaddr);
981
4fe21e4c
RR
982 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
983 return vfp_set_reg(vcpu, reg->id, uaddr);
984
1138245c
CD
985 r = index_to_coproc_reg(vcpu, reg->id);
986 if (!r)
987 return set_invariant_cp15(reg->id, uaddr);
988
989 /* Note: copies two regs if size is 64 bit */
990 return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
991}
992
c27581ed
CD
993static unsigned int num_demux_regs(void)
994{
995 unsigned int i, count = 0;
996
997 for (i = 0; i < CSSELR_MAX; i++)
998 if (is_valid_cache(i))
999 count++;
1000
1001 return count;
1002}
1003
1004static int write_demux_regids(u64 __user *uindices)
1005{
1006 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1007 unsigned int i;
1008
1009 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1010 for (i = 0; i < CSSELR_MAX; i++) {
1011 if (!is_valid_cache(i))
1012 continue;
1013 if (put_user(val | i, uindices))
1014 return -EFAULT;
1015 uindices++;
1016 }
1017 return 0;
1018}
1019
1138245c
CD
1020static u64 cp15_to_index(const struct coproc_reg *reg)
1021{
1022 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1023 if (reg->is_64) {
1024 val |= KVM_REG_SIZE_U64;
1025 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
240e99cb
CD
1026 /*
1027 * CRn always denotes the primary coproc. reg. nr. for the
1028 * in-kernel representation, but the user space API uses the
1029 * CRm for the encoding, because it is modelled after the
1030 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1031 * B3-1445
1032 */
1033 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1138245c
CD
1034 } else {
1035 val |= KVM_REG_SIZE_U32;
1036 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1037 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1038 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1039 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1040 }
1041 return val;
1042}
1043
1044static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1045{
1046 if (!*uind)
1047 return true;
1048
1049 if (put_user(cp15_to_index(reg), *uind))
1050 return false;
1051
1052 (*uind)++;
1053 return true;
1054}
1055
1056/* Assumed ordered tables, see kvm_coproc_table_init. */
1057static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1058{
1059 const struct coproc_reg *i1, *i2, *end1, *end2;
1060 unsigned int total = 0;
1061 size_t num;
1062
1063 /* We check for duplicates here, to allow arch-specific overrides. */
1064 i1 = get_target_table(vcpu->arch.target, &num);
1065 end1 = i1 + num;
1066 i2 = cp15_regs;
1067 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1068
1069 BUG_ON(i1 == end1 || i2 == end2);
1070
1071 /* Walk carefully, as both tables may refer to the same register. */
1072 while (i1 || i2) {
1073 int cmp = cmp_reg(i1, i2);
1074 /* target-specific overrides generic entry. */
1075 if (cmp <= 0) {
1076 /* Ignore registers we trap but don't save. */
1077 if (i1->reg) {
1078 if (!copy_reg_to_user(i1, &uind))
1079 return -EFAULT;
1080 total++;
1081 }
1082 } else {
1083 /* Ignore registers we trap but don't save. */
1084 if (i2->reg) {
1085 if (!copy_reg_to_user(i2, &uind))
1086 return -EFAULT;
1087 total++;
1088 }
1089 }
1090
1091 if (cmp <= 0 && ++i1 == end1)
1092 i1 = NULL;
1093 if (cmp >= 0 && ++i2 == end2)
1094 i2 = NULL;
1095 }
1096 return total;
1097}
1098
1099unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1100{
1101 return ARRAY_SIZE(invariant_cp15)
c27581ed 1102 + num_demux_regs()
4fe21e4c 1103 + num_vfp_regs()
1138245c
CD
1104 + walk_cp15(vcpu, (u64 __user *)NULL);
1105}
1106
1107int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1108{
1109 unsigned int i;
1110 int err;
1111
1112 /* Then give them all the invariant registers' indices. */
1113 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1114 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1115 return -EFAULT;
1116 uindices++;
1117 }
1118
1119 err = walk_cp15(vcpu, uindices);
c27581ed
CD
1120 if (err < 0)
1121 return err;
1122 uindices += err;
1123
4fe21e4c
RR
1124 err = copy_vfp_regids(uindices);
1125 if (err < 0)
1126 return err;
1127 uindices += err;
1128
c27581ed 1129 return write_demux_regids(uindices);
1138245c
CD
1130}
1131
5b3e5e5b
CD
1132void kvm_coproc_table_init(void)
1133{
1134 unsigned int i;
1135
1136 /* Make sure tables are unique and in order. */
1137 for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
1138 BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
1138245c
CD
1139
1140 /* We abuse the reset function to overwrite the table itself. */
1141 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1142 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
c27581ed
CD
1143
1144 /*
1145 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1146 *
1147 * If software reads the Cache Type fields from Ctype1
1148 * upwards, once it has seen a value of 0b000, no caches
1149 * exist at further-out levels of the hierarchy. So, for
1150 * example, if Ctype3 is the first Cache Type field with a
1151 * value of 0b000, the values of Ctype4 to Ctype7 must be
1152 * ignored.
1153 */
1154 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1155 for (i = 0; i < 7; i++)
1156 if (((cache_levels >> (i*3)) & 7) == 0)
1157 break;
1158 /* Clear all higher bits. */
1159 cache_levels &= (1 << (i*3))-1;
5b3e5e5b
CD
1160}
1161
1162/**
1163 * kvm_reset_coprocs - sets cp15 registers to reset value
1164 * @vcpu: The VCPU pointer
1165 *
1166 * This function finds the right table above and sets the registers on the
1167 * virtual CPU struct to their architecturally defined reset values.
1168 */
749cf76c
CD
1169void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1170{
5b3e5e5b
CD
1171 size_t num;
1172 const struct coproc_reg *table;
1173
1174 /* Catch someone adding a register without putting in reset entry. */
1175 memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
1176
1177 /* Generic chip reset first (so target could override). */
1178 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1179
1180 table = get_target_table(vcpu->arch.target, &num);
1181 reset_coproc_regs(vcpu, table, num);
1182
1183 for (num = 1; num < NR_CP15_REGS; num++)
1184 if (vcpu->arch.cp15[num] == 0x42424242)
1185 panic("Didn't reset vcpu->arch.cp15[%zi]", num);
749cf76c 1186}