]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/arm/kvm/coproc.c
ARM: KVM: Fix MPIDR computing to support virtual clusters
[mirror_ubuntu-zesty-kernel.git] / arch / arm / kvm / coproc.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
5b3e5e5b 19#include <linux/mm.h>
749cf76c 20#include <linux/kvm_host.h>
1138245c 21#include <linux/uaccess.h>
5b3e5e5b
CD
22#include <asm/kvm_arm.h>
23#include <asm/kvm_host.h>
24#include <asm/kvm_emulate.h>
25#include <asm/kvm_coproc.h>
26#include <asm/cacheflush.h>
27#include <asm/cputype.h>
28#include <trace/events/kvm.h>
4fe21e4c
RR
29#include <asm/vfp.h>
30#include "../vfp/vfpinstr.h"
749cf76c 31
5b3e5e5b
CD
32#include "trace.h"
33#include "coproc.h"
34
35
36/******************************************************************************
37 * Co-processor emulation
38 *****************************************************************************/
39
c27581ed
CD
40/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
41static u32 cache_levels;
42
43/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
44#define CSSELR_MAX 12
45
5b3e5e5b
CD
46int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
47{
48 kvm_inject_undefined(vcpu);
49 return 1;
50}
51
52int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
53{
54 /*
55 * We can get here, if the host has been built without VFPv3 support,
56 * but the guest attempted a floating point operation.
57 */
58 kvm_inject_undefined(vcpu);
59 return 1;
60}
61
62int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
63{
64 kvm_inject_undefined(vcpu);
65 return 1;
66}
67
68int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
69{
70 kvm_inject_undefined(vcpu);
71 return 1;
72}
73
e8c2d99f
JA
74static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
75{
76 /*
2d1d841b
MZ
77 * Compute guest MPIDR. We build a virtual cluster out of the
78 * vcpu_id, but we read the 'U' bit from the underlying
79 * hardware directly.
e8c2d99f 80 */
2d1d841b
MZ
81 vcpu->arch.cp15[c0_MPIDR] = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
82 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
83 (vcpu->vcpu_id & 3));
e8c2d99f
JA
84}
85
86/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
87static bool access_actlr(struct kvm_vcpu *vcpu,
88 const struct coproc_params *p,
89 const struct coproc_reg *r)
90{
91 if (p->is_write)
92 return ignore_write(vcpu, p);
93
94 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
95 return true;
96}
97
98/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
99static bool access_cbar(struct kvm_vcpu *vcpu,
100 const struct coproc_params *p,
101 const struct coproc_reg *r)
102{
103 if (p->is_write)
104 return write_to_read_only(vcpu, p);
105 return read_zero(vcpu, p);
106}
107
108/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
109static bool access_l2ctlr(struct kvm_vcpu *vcpu,
110 const struct coproc_params *p,
111 const struct coproc_reg *r)
112{
113 if (p->is_write)
114 return ignore_write(vcpu, p);
115
116 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
117 return true;
118}
119
120static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
121{
122 u32 l2ctlr, ncores;
123
124 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
125 l2ctlr &= ~(3 << 24);
126 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
127 l2ctlr |= (ncores & 3) << 24;
128
129 vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
130}
131
132static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
133{
134 u32 actlr;
135
136 /* ACTLR contains SMP bit: make sure you create all cpus first! */
137 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
138 /* Make the SMP bit consistent with the guest configuration */
139 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
140 actlr |= 1U << 6;
141 else
142 actlr &= ~(1U << 6);
143
144 vcpu->arch.cp15[c1_ACTLR] = actlr;
145}
146
147/*
148 * TRM entries: A7:4.3.50, A15:4.3.49
149 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
150 */
151static bool access_l2ectlr(struct kvm_vcpu *vcpu,
152 const struct coproc_params *p,
153 const struct coproc_reg *r)
154{
155 if (p->is_write)
156 return ignore_write(vcpu, p);
157
158 *vcpu_reg(vcpu, p->Rt1) = 0;
159 return true;
160}
161
5b3e5e5b
CD
162/* See note at ARM ARM B1.14.4 */
163static bool access_dcsw(struct kvm_vcpu *vcpu,
164 const struct coproc_params *p,
165 const struct coproc_reg *r)
166{
db730d8d 167 unsigned long val;
5b3e5e5b
CD
168 int cpu;
169
5b3e5e5b
CD
170 if (!p->is_write)
171 return read_from_write_only(vcpu, p);
172
15bbc1b2
MZ
173 cpu = get_cpu();
174
5b3e5e5b
CD
175 cpumask_setall(&vcpu->arch.require_dcache_flush);
176 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
177
178 /* If we were already preempted, take the long way around */
179 if (cpu != vcpu->arch.last_pcpu) {
180 flush_cache_all();
181 goto done;
182 }
183
184 val = *vcpu_reg(vcpu, p->Rt1);
185
186 switch (p->CRm) {
187 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
188 case 14: /* DCCISW */
189 asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
190 break;
191
192 case 10: /* DCCSW */
193 asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
194 break;
195 }
196
197done:
198 put_cpu();
199
200 return true;
201}
202
203/*
204 * We could trap ID_DFR0 and tell the guest we don't support performance
205 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
206 * NAKed, so it will read the PMCR anyway.
207 *
208 * Therefore we tell the guest we have 0 counters. Unfortunately, we
209 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
210 * all PM registers, which doesn't crash the guest kernel at least.
211 */
212static bool pm_fake(struct kvm_vcpu *vcpu,
213 const struct coproc_params *p,
214 const struct coproc_reg *r)
215{
216 if (p->is_write)
217 return ignore_write(vcpu, p);
218 else
219 return read_zero(vcpu, p);
220}
221
222#define access_pmcr pm_fake
223#define access_pmcntenset pm_fake
224#define access_pmcntenclr pm_fake
225#define access_pmovsr pm_fake
226#define access_pmselr pm_fake
227#define access_pmceid0 pm_fake
228#define access_pmceid1 pm_fake
229#define access_pmccntr pm_fake
230#define access_pmxevtyper pm_fake
231#define access_pmxevcntr pm_fake
232#define access_pmuserenr pm_fake
233#define access_pmintenset pm_fake
234#define access_pmintenclr pm_fake
235
236/* Architected CP15 registers.
240e99cb
CD
237 * CRn denotes the primary register number, but is copied to the CRm in the
238 * user space API for 64-bit register access in line with the terminology used
239 * in the ARM ARM.
240 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
241 * registers preceding 32-bit ones.
5b3e5e5b
CD
242 */
243static const struct coproc_reg cp15_regs[] = {
e8c2d99f
JA
244 /* MPIDR: we use VMPIDR for guest access. */
245 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
246 NULL, reset_mpidr, c0_MPIDR },
247
5b3e5e5b
CD
248 /* CSSELR: swapped by interrupt.S. */
249 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
250 NULL, reset_unknown, c0_CSSELR },
251
e8c2d99f
JA
252 /* ACTLR: trapped by HCR.TAC bit. */
253 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
254 access_actlr, reset_actlr, c1_ACTLR },
255
256 /* CPACR: swapped by interrupt.S. */
257 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
258 NULL, reset_val, c1_CPACR, 0x00000000 },
259
5b3e5e5b 260 /* TTBR0/TTBR1: swapped by interrupt.S. */
240e99cb
CD
261 { CRm64( 2), Op1( 0), is64, NULL, reset_unknown64, c2_TTBR0 },
262 { CRm64( 2), Op1( 1), is64, NULL, reset_unknown64, c2_TTBR1 },
5b3e5e5b
CD
263
264 /* TTBCR: swapped by interrupt.S. */
265 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
266 NULL, reset_val, c2_TTBCR, 0x00000000 },
267
268 /* DACR: swapped by interrupt.S. */
269 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
270 NULL, reset_unknown, c3_DACR },
271
272 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
273 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
274 NULL, reset_unknown, c5_DFSR },
275 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
276 NULL, reset_unknown, c5_IFSR },
277 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
278 NULL, reset_unknown, c5_ADFSR },
279 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
280 NULL, reset_unknown, c5_AIFSR },
281
282 /* DFAR/IFAR: swapped by interrupt.S. */
283 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
284 NULL, reset_unknown, c6_DFAR },
285 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
286 NULL, reset_unknown, c6_IFAR },
6a077e4a
MZ
287
288 /* PAR swapped by interrupt.S */
240e99cb 289 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
6a077e4a 290
5b3e5e5b
CD
291 /*
292 * DC{C,I,CI}SW operations:
293 */
294 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
295 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
296 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
e8c2d99f
JA
297 /*
298 * L2CTLR access (guest wants to know #CPUs).
299 */
300 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
301 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
302 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
303
5b3e5e5b
CD
304 /*
305 * Dummy performance monitor implementation.
306 */
307 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
308 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
309 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
310 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
311 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
312 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
313 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
314 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
315 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
316 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
317 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
318 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
319 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
320
321 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
322 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
323 NULL, reset_unknown, c10_PRRR},
324 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
325 NULL, reset_unknown, c10_NMRR},
326
327 /* VBAR: swapped by interrupt.S. */
328 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
329 NULL, reset_val, c12_VBAR, 0x00000000 },
330
331 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
332 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
333 NULL, reset_val, c13_CID, 0x00000000 },
334 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
335 NULL, reset_unknown, c13_TID_URW },
336 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
337 NULL, reset_unknown, c13_TID_URO },
338 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
339 NULL, reset_unknown, c13_TID_PRIV },
c7e3ba64
MZ
340
341 /* CNTKCTL: swapped by interrupt.S. */
342 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
343 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
e8c2d99f
JA
344
345 /* The Configuration Base Address Register. */
346 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
5b3e5e5b
CD
347};
348
349/* Target specific emulation tables */
350static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
351
352void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
353{
e8c2d99f
JA
354 unsigned int i;
355
356 for (i = 1; i < table->num; i++)
357 BUG_ON(cmp_reg(&table->table[i-1],
358 &table->table[i]) >= 0);
359
5b3e5e5b
CD
360 target_tables[table->target] = table;
361}
362
363/* Get specific register table for this target. */
364static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
365{
366 struct kvm_coproc_target_table *table;
367
368 table = target_tables[target];
369 *num = table->num;
370 return table->table;
371}
372
373static const struct coproc_reg *find_reg(const struct coproc_params *params,
374 const struct coproc_reg table[],
375 unsigned int num)
376{
377 unsigned int i;
378
379 for (i = 0; i < num; i++) {
380 const struct coproc_reg *r = &table[i];
381
382 if (params->is_64bit != r->is_64)
383 continue;
384 if (params->CRn != r->CRn)
385 continue;
386 if (params->CRm != r->CRm)
387 continue;
388 if (params->Op1 != r->Op1)
389 continue;
390 if (params->Op2 != r->Op2)
391 continue;
392
393 return r;
394 }
395 return NULL;
396}
397
398static int emulate_cp15(struct kvm_vcpu *vcpu,
399 const struct coproc_params *params)
400{
401 size_t num;
402 const struct coproc_reg *table, *r;
403
404 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
405 params->CRm, params->Op2, params->is_write);
406
407 table = get_target_table(vcpu->arch.target, &num);
408
409 /* Search target-specific then generic table. */
410 r = find_reg(params, table, num);
411 if (!r)
412 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
413
414 if (likely(r)) {
415 /* If we don't have an accessor, we should never get here! */
416 BUG_ON(!r->access);
417
418 if (likely(r->access(vcpu, params, r))) {
419 /* Skip instruction, since it was emulated */
23b415d6 420 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
5b3e5e5b
CD
421 return 1;
422 }
423 /* If access function fails, it should complain. */
424 } else {
db730d8d 425 kvm_err("Unsupported guest CP15 access at: %08lx\n",
5b3e5e5b
CD
426 *vcpu_pc(vcpu));
427 print_cp_instr(params);
428 }
429 kvm_inject_undefined(vcpu);
430 return 1;
431}
432
433/**
434 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
435 * @vcpu: The VCPU pointer
436 * @run: The kvm_run struct
437 */
438int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
439{
440 struct coproc_params params;
441
7393b599
MZ
442 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
443 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
444 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
5b3e5e5b
CD
445 params.is_64bit = true;
446
7393b599 447 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
5b3e5e5b 448 params.Op2 = 0;
7393b599 449 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
5b3e5e5b
CD
450 params.CRn = 0;
451
452 return emulate_cp15(vcpu, &params);
453}
454
455static void reset_coproc_regs(struct kvm_vcpu *vcpu,
456 const struct coproc_reg *table, size_t num)
457{
458 unsigned long i;
459
460 for (i = 0; i < num; i++)
461 if (table[i].reset)
462 table[i].reset(vcpu, &table[i]);
463}
464
465/**
466 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
467 * @vcpu: The VCPU pointer
468 * @run: The kvm_run struct
469 */
470int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
471{
472 struct coproc_params params;
473
7393b599
MZ
474 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
475 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
476 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
5b3e5e5b
CD
477 params.is_64bit = false;
478
7393b599
MZ
479 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
480 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
481 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
5b3e5e5b
CD
482 params.Rt2 = 0;
483
484 return emulate_cp15(vcpu, &params);
485}
486
1138245c
CD
487/******************************************************************************
488 * Userspace API
489 *****************************************************************************/
490
491static bool index_to_params(u64 id, struct coproc_params *params)
492{
493 switch (id & KVM_REG_SIZE_MASK) {
494 case KVM_REG_SIZE_U32:
495 /* Any unused index bits means it's not valid. */
496 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
497 | KVM_REG_ARM_COPROC_MASK
498 | KVM_REG_ARM_32_CRN_MASK
499 | KVM_REG_ARM_CRM_MASK
500 | KVM_REG_ARM_OPC1_MASK
501 | KVM_REG_ARM_32_OPC2_MASK))
502 return false;
503
504 params->is_64bit = false;
505 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
506 >> KVM_REG_ARM_32_CRN_SHIFT);
507 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
508 >> KVM_REG_ARM_CRM_SHIFT);
509 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
510 >> KVM_REG_ARM_OPC1_SHIFT);
511 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
512 >> KVM_REG_ARM_32_OPC2_SHIFT);
513 return true;
514 case KVM_REG_SIZE_U64:
515 /* Any unused index bits means it's not valid. */
516 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
517 | KVM_REG_ARM_COPROC_MASK
518 | KVM_REG_ARM_CRM_MASK
519 | KVM_REG_ARM_OPC1_MASK))
520 return false;
521 params->is_64bit = true;
240e99cb
CD
522 /* CRm to CRn: see cp15_to_index for details */
523 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
1138245c
CD
524 >> KVM_REG_ARM_CRM_SHIFT);
525 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
526 >> KVM_REG_ARM_OPC1_SHIFT);
527 params->Op2 = 0;
240e99cb 528 params->CRm = 0;
1138245c
CD
529 return true;
530 default:
531 return false;
532 }
533}
534
535/* Decode an index value, and find the cp15 coproc_reg entry. */
536static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
537 u64 id)
538{
539 size_t num;
540 const struct coproc_reg *table, *r;
541 struct coproc_params params;
542
543 /* We only do cp15 for now. */
544 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
545 return NULL;
546
547 if (!index_to_params(id, &params))
548 return NULL;
549
550 table = get_target_table(vcpu->arch.target, &num);
551 r = find_reg(&params, table, num);
552 if (!r)
553 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
554
555 /* Not saved in the cp15 array? */
556 if (r && !r->reg)
557 r = NULL;
558
559 return r;
560}
561
562/*
563 * These are the invariant cp15 registers: we let the guest see the host
564 * versions of these, so they're part of the guest state.
565 *
566 * A future CPU may provide a mechanism to present different values to
567 * the guest, or a future kvm may trap them.
568 */
569/* Unfortunately, there's no register-argument for mrc, so generate. */
570#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
571 static void get_##name(struct kvm_vcpu *v, \
572 const struct coproc_reg *r) \
573 { \
574 u32 val; \
575 \
576 asm volatile("mrc p15, " __stringify(op1) \
577 ", %0, c" __stringify(crn) \
578 ", c" __stringify(crm) \
579 ", " __stringify(op2) "\n" : "=r" (val)); \
580 ((struct coproc_reg *)r)->val = val; \
581 }
582
583FUNCTION_FOR32(0, 0, 0, 0, MIDR)
584FUNCTION_FOR32(0, 0, 0, 1, CTR)
585FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
586FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
587FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
588FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
589FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
590FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
591FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
592FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
593FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
594FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
595FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
596FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
597FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
598FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
599FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
600FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
601FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
602FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
603FUNCTION_FOR32(0, 0, 1, 7, AIDR)
604
605/* ->val is filled in by kvm_invariant_coproc_table_init() */
606static struct coproc_reg invariant_cp15[] = {
607 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
608 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
609 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
610 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
611 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
612
613 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
614 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
615 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
616 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
617 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
618 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
619 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
620 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
621
622 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
623 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
624 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
625 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
626 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
627 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
628
629 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
630 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
631};
632
633static int reg_from_user(void *val, const void __user *uaddr, u64 id)
634{
635 /* This Just Works because we are little endian. */
636 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
637 return -EFAULT;
638 return 0;
639}
640
641static int reg_to_user(void __user *uaddr, const void *val, u64 id)
642{
643 /* This Just Works because we are little endian. */
644 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
645 return -EFAULT;
646 return 0;
647}
648
649static int get_invariant_cp15(u64 id, void __user *uaddr)
650{
651 struct coproc_params params;
652 const struct coproc_reg *r;
653
654 if (!index_to_params(id, &params))
655 return -ENOENT;
656
657 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
658 if (!r)
659 return -ENOENT;
660
661 return reg_to_user(uaddr, &r->val, id);
662}
663
664static int set_invariant_cp15(u64 id, void __user *uaddr)
665{
666 struct coproc_params params;
667 const struct coproc_reg *r;
668 int err;
669 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
670
671 if (!index_to_params(id, &params))
672 return -ENOENT;
673 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
674 if (!r)
675 return -ENOENT;
676
677 err = reg_from_user(&val, uaddr, id);
678 if (err)
679 return err;
680
681 /* This is what we mean by invariant: you can't change it. */
682 if (r->val != val)
683 return -EINVAL;
684
685 return 0;
686}
687
c27581ed
CD
688static bool is_valid_cache(u32 val)
689{
690 u32 level, ctype;
691
692 if (val >= CSSELR_MAX)
693 return -ENOENT;
694
695 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
696 level = (val >> 1);
697 ctype = (cache_levels >> (level * 3)) & 7;
698
699 switch (ctype) {
700 case 0: /* No cache */
701 return false;
702 case 1: /* Instruction cache only */
703 return (val & 1);
704 case 2: /* Data cache only */
705 case 4: /* Unified cache */
706 return !(val & 1);
707 case 3: /* Separate instruction and data caches */
708 return true;
709 default: /* Reserved: we can't know instruction or data. */
710 return false;
711 }
712}
713
714/* Which cache CCSIDR represents depends on CSSELR value. */
715static u32 get_ccsidr(u32 csselr)
716{
717 u32 ccsidr;
718
719 /* Make sure noone else changes CSSELR during this! */
720 local_irq_disable();
721 /* Put value into CSSELR */
722 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
723 isb();
724 /* Read result out of CCSIDR */
725 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
726 local_irq_enable();
727
728 return ccsidr;
729}
730
731static int demux_c15_get(u64 id, void __user *uaddr)
732{
733 u32 val;
734 u32 __user *uval = uaddr;
735
736 /* Fail if we have unknown bits set. */
737 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
738 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
739 return -ENOENT;
740
741 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
742 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
743 if (KVM_REG_SIZE(id) != 4)
744 return -ENOENT;
745 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
746 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
747 if (!is_valid_cache(val))
748 return -ENOENT;
749
750 return put_user(get_ccsidr(val), uval);
751 default:
752 return -ENOENT;
753 }
754}
755
756static int demux_c15_set(u64 id, void __user *uaddr)
757{
758 u32 val, newval;
759 u32 __user *uval = uaddr;
760
761 /* Fail if we have unknown bits set. */
762 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
763 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
764 return -ENOENT;
765
766 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
767 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
768 if (KVM_REG_SIZE(id) != 4)
769 return -ENOENT;
770 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
771 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
772 if (!is_valid_cache(val))
773 return -ENOENT;
774
775 if (get_user(newval, uval))
776 return -EFAULT;
777
778 /* This is also invariant: you can't change it. */
779 if (newval != get_ccsidr(val))
780 return -EINVAL;
781 return 0;
782 default:
783 return -ENOENT;
784 }
785}
786
4fe21e4c
RR
787#ifdef CONFIG_VFPv3
788static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
789 KVM_REG_ARM_VFP_FPSCR,
790 KVM_REG_ARM_VFP_FPINST,
791 KVM_REG_ARM_VFP_FPINST2,
792 KVM_REG_ARM_VFP_MVFR0,
793 KVM_REG_ARM_VFP_MVFR1,
794 KVM_REG_ARM_VFP_FPSID };
795
796static unsigned int num_fp_regs(void)
797{
798 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
799 return 32;
800 else
801 return 16;
802}
803
804static unsigned int num_vfp_regs(void)
805{
806 /* Normal FP regs + control regs. */
807 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
808}
809
810static int copy_vfp_regids(u64 __user *uindices)
811{
812 unsigned int i;
813 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
814 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
815
816 for (i = 0; i < num_fp_regs(); i++) {
817 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
818 uindices))
819 return -EFAULT;
820 uindices++;
821 }
822
823 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
824 if (put_user(u32reg | vfp_sysregs[i], uindices))
825 return -EFAULT;
826 uindices++;
827 }
828
829 return num_vfp_regs();
830}
831
832static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
833{
834 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
835 u32 val;
836
837 /* Fail if we have unknown bits set. */
838 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
839 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
840 return -ENOENT;
841
842 if (vfpid < num_fp_regs()) {
843 if (KVM_REG_SIZE(id) != 8)
844 return -ENOENT;
845 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
846 id);
847 }
848
849 /* FP control registers are all 32 bit. */
850 if (KVM_REG_SIZE(id) != 4)
851 return -ENOENT;
852
853 switch (vfpid) {
854 case KVM_REG_ARM_VFP_FPEXC:
855 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
856 case KVM_REG_ARM_VFP_FPSCR:
857 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
858 case KVM_REG_ARM_VFP_FPINST:
859 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
860 case KVM_REG_ARM_VFP_FPINST2:
861 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
862 case KVM_REG_ARM_VFP_MVFR0:
863 val = fmrx(MVFR0);
864 return reg_to_user(uaddr, &val, id);
865 case KVM_REG_ARM_VFP_MVFR1:
866 val = fmrx(MVFR1);
867 return reg_to_user(uaddr, &val, id);
868 case KVM_REG_ARM_VFP_FPSID:
869 val = fmrx(FPSID);
870 return reg_to_user(uaddr, &val, id);
871 default:
872 return -ENOENT;
873 }
874}
875
876static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
877{
878 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
879 u32 val;
880
881 /* Fail if we have unknown bits set. */
882 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
883 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
884 return -ENOENT;
885
886 if (vfpid < num_fp_regs()) {
887 if (KVM_REG_SIZE(id) != 8)
888 return -ENOENT;
889 return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
890 uaddr, id);
891 }
892
893 /* FP control registers are all 32 bit. */
894 if (KVM_REG_SIZE(id) != 4)
895 return -ENOENT;
896
897 switch (vfpid) {
898 case KVM_REG_ARM_VFP_FPEXC:
899 return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
900 case KVM_REG_ARM_VFP_FPSCR:
901 return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
902 case KVM_REG_ARM_VFP_FPINST:
903 return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
904 case KVM_REG_ARM_VFP_FPINST2:
905 return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
906 /* These are invariant. */
907 case KVM_REG_ARM_VFP_MVFR0:
908 if (reg_from_user(&val, uaddr, id))
909 return -EFAULT;
910 if (val != fmrx(MVFR0))
911 return -EINVAL;
912 return 0;
913 case KVM_REG_ARM_VFP_MVFR1:
914 if (reg_from_user(&val, uaddr, id))
915 return -EFAULT;
916 if (val != fmrx(MVFR1))
917 return -EINVAL;
918 return 0;
919 case KVM_REG_ARM_VFP_FPSID:
920 if (reg_from_user(&val, uaddr, id))
921 return -EFAULT;
922 if (val != fmrx(FPSID))
923 return -EINVAL;
924 return 0;
925 default:
926 return -ENOENT;
927 }
928}
929#else /* !CONFIG_VFPv3 */
930static unsigned int num_vfp_regs(void)
931{
932 return 0;
933}
934
935static int copy_vfp_regids(u64 __user *uindices)
936{
937 return 0;
938}
939
940static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
941{
942 return -ENOENT;
943}
944
945static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
946{
947 return -ENOENT;
948}
949#endif /* !CONFIG_VFPv3 */
950
1138245c
CD
951int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
952{
953 const struct coproc_reg *r;
954 void __user *uaddr = (void __user *)(long)reg->addr;
955
c27581ed
CD
956 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
957 return demux_c15_get(reg->id, uaddr);
958
4fe21e4c
RR
959 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
960 return vfp_get_reg(vcpu, reg->id, uaddr);
961
1138245c
CD
962 r = index_to_coproc_reg(vcpu, reg->id);
963 if (!r)
964 return get_invariant_cp15(reg->id, uaddr);
965
966 /* Note: copies two regs if size is 64 bit. */
967 return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
968}
969
970int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
971{
972 const struct coproc_reg *r;
973 void __user *uaddr = (void __user *)(long)reg->addr;
974
c27581ed
CD
975 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
976 return demux_c15_set(reg->id, uaddr);
977
4fe21e4c
RR
978 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
979 return vfp_set_reg(vcpu, reg->id, uaddr);
980
1138245c
CD
981 r = index_to_coproc_reg(vcpu, reg->id);
982 if (!r)
983 return set_invariant_cp15(reg->id, uaddr);
984
985 /* Note: copies two regs if size is 64 bit */
986 return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
987}
988
c27581ed
CD
989static unsigned int num_demux_regs(void)
990{
991 unsigned int i, count = 0;
992
993 for (i = 0; i < CSSELR_MAX; i++)
994 if (is_valid_cache(i))
995 count++;
996
997 return count;
998}
999
1000static int write_demux_regids(u64 __user *uindices)
1001{
1002 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1003 unsigned int i;
1004
1005 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1006 for (i = 0; i < CSSELR_MAX; i++) {
1007 if (!is_valid_cache(i))
1008 continue;
1009 if (put_user(val | i, uindices))
1010 return -EFAULT;
1011 uindices++;
1012 }
1013 return 0;
1014}
1015
1138245c
CD
1016static u64 cp15_to_index(const struct coproc_reg *reg)
1017{
1018 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1019 if (reg->is_64) {
1020 val |= KVM_REG_SIZE_U64;
1021 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
240e99cb
CD
1022 /*
1023 * CRn always denotes the primary coproc. reg. nr. for the
1024 * in-kernel representation, but the user space API uses the
1025 * CRm for the encoding, because it is modelled after the
1026 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1027 * B3-1445
1028 */
1029 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1138245c
CD
1030 } else {
1031 val |= KVM_REG_SIZE_U32;
1032 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1033 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1034 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1035 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1036 }
1037 return val;
1038}
1039
1040static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1041{
1042 if (!*uind)
1043 return true;
1044
1045 if (put_user(cp15_to_index(reg), *uind))
1046 return false;
1047
1048 (*uind)++;
1049 return true;
1050}
1051
1052/* Assumed ordered tables, see kvm_coproc_table_init. */
1053static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1054{
1055 const struct coproc_reg *i1, *i2, *end1, *end2;
1056 unsigned int total = 0;
1057 size_t num;
1058
1059 /* We check for duplicates here, to allow arch-specific overrides. */
1060 i1 = get_target_table(vcpu->arch.target, &num);
1061 end1 = i1 + num;
1062 i2 = cp15_regs;
1063 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1064
1065 BUG_ON(i1 == end1 || i2 == end2);
1066
1067 /* Walk carefully, as both tables may refer to the same register. */
1068 while (i1 || i2) {
1069 int cmp = cmp_reg(i1, i2);
1070 /* target-specific overrides generic entry. */
1071 if (cmp <= 0) {
1072 /* Ignore registers we trap but don't save. */
1073 if (i1->reg) {
1074 if (!copy_reg_to_user(i1, &uind))
1075 return -EFAULT;
1076 total++;
1077 }
1078 } else {
1079 /* Ignore registers we trap but don't save. */
1080 if (i2->reg) {
1081 if (!copy_reg_to_user(i2, &uind))
1082 return -EFAULT;
1083 total++;
1084 }
1085 }
1086
1087 if (cmp <= 0 && ++i1 == end1)
1088 i1 = NULL;
1089 if (cmp >= 0 && ++i2 == end2)
1090 i2 = NULL;
1091 }
1092 return total;
1093}
1094
1095unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1096{
1097 return ARRAY_SIZE(invariant_cp15)
c27581ed 1098 + num_demux_regs()
4fe21e4c 1099 + num_vfp_regs()
1138245c
CD
1100 + walk_cp15(vcpu, (u64 __user *)NULL);
1101}
1102
1103int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1104{
1105 unsigned int i;
1106 int err;
1107
1108 /* Then give them all the invariant registers' indices. */
1109 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1110 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1111 return -EFAULT;
1112 uindices++;
1113 }
1114
1115 err = walk_cp15(vcpu, uindices);
c27581ed
CD
1116 if (err < 0)
1117 return err;
1118 uindices += err;
1119
4fe21e4c
RR
1120 err = copy_vfp_regids(uindices);
1121 if (err < 0)
1122 return err;
1123 uindices += err;
1124
c27581ed 1125 return write_demux_regids(uindices);
1138245c
CD
1126}
1127
5b3e5e5b
CD
1128void kvm_coproc_table_init(void)
1129{
1130 unsigned int i;
1131
1132 /* Make sure tables are unique and in order. */
1133 for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
1134 BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
1138245c
CD
1135
1136 /* We abuse the reset function to overwrite the table itself. */
1137 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1138 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
c27581ed
CD
1139
1140 /*
1141 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1142 *
1143 * If software reads the Cache Type fields from Ctype1
1144 * upwards, once it has seen a value of 0b000, no caches
1145 * exist at further-out levels of the hierarchy. So, for
1146 * example, if Ctype3 is the first Cache Type field with a
1147 * value of 0b000, the values of Ctype4 to Ctype7 must be
1148 * ignored.
1149 */
1150 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1151 for (i = 0; i < 7; i++)
1152 if (((cache_levels >> (i*3)) & 7) == 0)
1153 break;
1154 /* Clear all higher bits. */
1155 cache_levels &= (1 << (i*3))-1;
5b3e5e5b
CD
1156}
1157
1158/**
1159 * kvm_reset_coprocs - sets cp15 registers to reset value
1160 * @vcpu: The VCPU pointer
1161 *
1162 * This function finds the right table above and sets the registers on the
1163 * virtual CPU struct to their architecturally defined reset values.
1164 */
749cf76c
CD
1165void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1166{
5b3e5e5b
CD
1167 size_t num;
1168 const struct coproc_reg *table;
1169
1170 /* Catch someone adding a register without putting in reset entry. */
1171 memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
1172
1173 /* Generic chip reset first (so target could override). */
1174 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1175
1176 table = get_target_table(vcpu->arch.target, &num);
1177 reset_coproc_regs(vcpu, table, num);
1178
1179 for (num = 1; num < NR_CP15_REGS; num++)
1180 if (vcpu->arch.cp15[num] == 0x42424242)
1181 panic("Didn't reset vcpu->arch.cp15[%zi]", num);
749cf76c 1182}