]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/arm/kvm/coproc.c
ARM: KVM: arch_timers: Add guest timer core support
[mirror_ubuntu-zesty-kernel.git] / arch / arm / kvm / coproc.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
5b3e5e5b 19#include <linux/mm.h>
749cf76c 20#include <linux/kvm_host.h>
1138245c 21#include <linux/uaccess.h>
5b3e5e5b
CD
22#include <asm/kvm_arm.h>
23#include <asm/kvm_host.h>
24#include <asm/kvm_emulate.h>
25#include <asm/kvm_coproc.h>
26#include <asm/cacheflush.h>
27#include <asm/cputype.h>
28#include <trace/events/kvm.h>
4fe21e4c
RR
29#include <asm/vfp.h>
30#include "../vfp/vfpinstr.h"
749cf76c 31
5b3e5e5b
CD
32#include "trace.h"
33#include "coproc.h"
34
35
36/******************************************************************************
37 * Co-processor emulation
38 *****************************************************************************/
39
c27581ed
CD
40/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
41static u32 cache_levels;
42
43/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
44#define CSSELR_MAX 12
45
5b3e5e5b
CD
46int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
47{
48 kvm_inject_undefined(vcpu);
49 return 1;
50}
51
52int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
53{
54 /*
55 * We can get here, if the host has been built without VFPv3 support,
56 * but the guest attempted a floating point operation.
57 */
58 kvm_inject_undefined(vcpu);
59 return 1;
60}
61
62int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
63{
64 kvm_inject_undefined(vcpu);
65 return 1;
66}
67
68int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
69{
70 kvm_inject_undefined(vcpu);
71 return 1;
72}
73
74/* See note at ARM ARM B1.14.4 */
75static bool access_dcsw(struct kvm_vcpu *vcpu,
76 const struct coproc_params *p,
77 const struct coproc_reg *r)
78{
79 u32 val;
80 int cpu;
81
82 cpu = get_cpu();
83
84 if (!p->is_write)
85 return read_from_write_only(vcpu, p);
86
87 cpumask_setall(&vcpu->arch.require_dcache_flush);
88 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
89
90 /* If we were already preempted, take the long way around */
91 if (cpu != vcpu->arch.last_pcpu) {
92 flush_cache_all();
93 goto done;
94 }
95
96 val = *vcpu_reg(vcpu, p->Rt1);
97
98 switch (p->CRm) {
99 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
100 case 14: /* DCCISW */
101 asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
102 break;
103
104 case 10: /* DCCSW */
105 asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
106 break;
107 }
108
109done:
110 put_cpu();
111
112 return true;
113}
114
115/*
116 * We could trap ID_DFR0 and tell the guest we don't support performance
117 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
118 * NAKed, so it will read the PMCR anyway.
119 *
120 * Therefore we tell the guest we have 0 counters. Unfortunately, we
121 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
122 * all PM registers, which doesn't crash the guest kernel at least.
123 */
124static bool pm_fake(struct kvm_vcpu *vcpu,
125 const struct coproc_params *p,
126 const struct coproc_reg *r)
127{
128 if (p->is_write)
129 return ignore_write(vcpu, p);
130 else
131 return read_zero(vcpu, p);
132}
133
134#define access_pmcr pm_fake
135#define access_pmcntenset pm_fake
136#define access_pmcntenclr pm_fake
137#define access_pmovsr pm_fake
138#define access_pmselr pm_fake
139#define access_pmceid0 pm_fake
140#define access_pmceid1 pm_fake
141#define access_pmccntr pm_fake
142#define access_pmxevtyper pm_fake
143#define access_pmxevcntr pm_fake
144#define access_pmuserenr pm_fake
145#define access_pmintenset pm_fake
146#define access_pmintenclr pm_fake
147
148/* Architected CP15 registers.
149 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2
150 */
151static const struct coproc_reg cp15_regs[] = {
152 /* CSSELR: swapped by interrupt.S. */
153 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
154 NULL, reset_unknown, c0_CSSELR },
155
156 /* TTBR0/TTBR1: swapped by interrupt.S. */
157 { CRm( 2), Op1( 0), is64, NULL, reset_unknown64, c2_TTBR0 },
158 { CRm( 2), Op1( 1), is64, NULL, reset_unknown64, c2_TTBR1 },
159
160 /* TTBCR: swapped by interrupt.S. */
161 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
162 NULL, reset_val, c2_TTBCR, 0x00000000 },
163
164 /* DACR: swapped by interrupt.S. */
165 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
166 NULL, reset_unknown, c3_DACR },
167
168 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
169 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
170 NULL, reset_unknown, c5_DFSR },
171 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
172 NULL, reset_unknown, c5_IFSR },
173 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
174 NULL, reset_unknown, c5_ADFSR },
175 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
176 NULL, reset_unknown, c5_AIFSR },
177
178 /* DFAR/IFAR: swapped by interrupt.S. */
179 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
180 NULL, reset_unknown, c6_DFAR },
181 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
182 NULL, reset_unknown, c6_IFAR },
183 /*
184 * DC{C,I,CI}SW operations:
185 */
186 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
187 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
188 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
189 /*
190 * Dummy performance monitor implementation.
191 */
192 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
193 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
194 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
195 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
196 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
197 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
198 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
199 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
200 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
201 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
202 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
203 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
204 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
205
206 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
207 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
208 NULL, reset_unknown, c10_PRRR},
209 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
210 NULL, reset_unknown, c10_NMRR},
211
212 /* VBAR: swapped by interrupt.S. */
213 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
214 NULL, reset_val, c12_VBAR, 0x00000000 },
215
216 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
217 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
218 NULL, reset_val, c13_CID, 0x00000000 },
219 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
220 NULL, reset_unknown, c13_TID_URW },
221 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
222 NULL, reset_unknown, c13_TID_URO },
223 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
224 NULL, reset_unknown, c13_TID_PRIV },
225};
226
227/* Target specific emulation tables */
228static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
229
230void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
231{
232 target_tables[table->target] = table;
233}
234
235/* Get specific register table for this target. */
236static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
237{
238 struct kvm_coproc_target_table *table;
239
240 table = target_tables[target];
241 *num = table->num;
242 return table->table;
243}
244
245static const struct coproc_reg *find_reg(const struct coproc_params *params,
246 const struct coproc_reg table[],
247 unsigned int num)
248{
249 unsigned int i;
250
251 for (i = 0; i < num; i++) {
252 const struct coproc_reg *r = &table[i];
253
254 if (params->is_64bit != r->is_64)
255 continue;
256 if (params->CRn != r->CRn)
257 continue;
258 if (params->CRm != r->CRm)
259 continue;
260 if (params->Op1 != r->Op1)
261 continue;
262 if (params->Op2 != r->Op2)
263 continue;
264
265 return r;
266 }
267 return NULL;
268}
269
270static int emulate_cp15(struct kvm_vcpu *vcpu,
271 const struct coproc_params *params)
272{
273 size_t num;
274 const struct coproc_reg *table, *r;
275
276 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
277 params->CRm, params->Op2, params->is_write);
278
279 table = get_target_table(vcpu->arch.target, &num);
280
281 /* Search target-specific then generic table. */
282 r = find_reg(params, table, num);
283 if (!r)
284 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
285
286 if (likely(r)) {
287 /* If we don't have an accessor, we should never get here! */
288 BUG_ON(!r->access);
289
290 if (likely(r->access(vcpu, params, r))) {
291 /* Skip instruction, since it was emulated */
292 kvm_skip_instr(vcpu, (vcpu->arch.hsr >> 25) & 1);
293 return 1;
294 }
295 /* If access function fails, it should complain. */
296 } else {
297 kvm_err("Unsupported guest CP15 access at: %08x\n",
298 *vcpu_pc(vcpu));
299 print_cp_instr(params);
300 }
301 kvm_inject_undefined(vcpu);
302 return 1;
303}
304
305/**
306 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
307 * @vcpu: The VCPU pointer
308 * @run: The kvm_run struct
309 */
310int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
311{
312 struct coproc_params params;
313
314 params.CRm = (vcpu->arch.hsr >> 1) & 0xf;
315 params.Rt1 = (vcpu->arch.hsr >> 5) & 0xf;
316 params.is_write = ((vcpu->arch.hsr & 1) == 0);
317 params.is_64bit = true;
318
319 params.Op1 = (vcpu->arch.hsr >> 16) & 0xf;
320 params.Op2 = 0;
321 params.Rt2 = (vcpu->arch.hsr >> 10) & 0xf;
322 params.CRn = 0;
323
324 return emulate_cp15(vcpu, &params);
325}
326
327static void reset_coproc_regs(struct kvm_vcpu *vcpu,
328 const struct coproc_reg *table, size_t num)
329{
330 unsigned long i;
331
332 for (i = 0; i < num; i++)
333 if (table[i].reset)
334 table[i].reset(vcpu, &table[i]);
335}
336
337/**
338 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
339 * @vcpu: The VCPU pointer
340 * @run: The kvm_run struct
341 */
342int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
343{
344 struct coproc_params params;
345
346 params.CRm = (vcpu->arch.hsr >> 1) & 0xf;
347 params.Rt1 = (vcpu->arch.hsr >> 5) & 0xf;
348 params.is_write = ((vcpu->arch.hsr & 1) == 0);
349 params.is_64bit = false;
350
351 params.CRn = (vcpu->arch.hsr >> 10) & 0xf;
352 params.Op1 = (vcpu->arch.hsr >> 14) & 0x7;
353 params.Op2 = (vcpu->arch.hsr >> 17) & 0x7;
354 params.Rt2 = 0;
355
356 return emulate_cp15(vcpu, &params);
357}
358
1138245c
CD
359/******************************************************************************
360 * Userspace API
361 *****************************************************************************/
362
363static bool index_to_params(u64 id, struct coproc_params *params)
364{
365 switch (id & KVM_REG_SIZE_MASK) {
366 case KVM_REG_SIZE_U32:
367 /* Any unused index bits means it's not valid. */
368 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
369 | KVM_REG_ARM_COPROC_MASK
370 | KVM_REG_ARM_32_CRN_MASK
371 | KVM_REG_ARM_CRM_MASK
372 | KVM_REG_ARM_OPC1_MASK
373 | KVM_REG_ARM_32_OPC2_MASK))
374 return false;
375
376 params->is_64bit = false;
377 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
378 >> KVM_REG_ARM_32_CRN_SHIFT);
379 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
380 >> KVM_REG_ARM_CRM_SHIFT);
381 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
382 >> KVM_REG_ARM_OPC1_SHIFT);
383 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
384 >> KVM_REG_ARM_32_OPC2_SHIFT);
385 return true;
386 case KVM_REG_SIZE_U64:
387 /* Any unused index bits means it's not valid. */
388 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
389 | KVM_REG_ARM_COPROC_MASK
390 | KVM_REG_ARM_CRM_MASK
391 | KVM_REG_ARM_OPC1_MASK))
392 return false;
393 params->is_64bit = true;
394 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
395 >> KVM_REG_ARM_CRM_SHIFT);
396 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
397 >> KVM_REG_ARM_OPC1_SHIFT);
398 params->Op2 = 0;
399 params->CRn = 0;
400 return true;
401 default:
402 return false;
403 }
404}
405
406/* Decode an index value, and find the cp15 coproc_reg entry. */
407static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
408 u64 id)
409{
410 size_t num;
411 const struct coproc_reg *table, *r;
412 struct coproc_params params;
413
414 /* We only do cp15 for now. */
415 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
416 return NULL;
417
418 if (!index_to_params(id, &params))
419 return NULL;
420
421 table = get_target_table(vcpu->arch.target, &num);
422 r = find_reg(&params, table, num);
423 if (!r)
424 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
425
426 /* Not saved in the cp15 array? */
427 if (r && !r->reg)
428 r = NULL;
429
430 return r;
431}
432
433/*
434 * These are the invariant cp15 registers: we let the guest see the host
435 * versions of these, so they're part of the guest state.
436 *
437 * A future CPU may provide a mechanism to present different values to
438 * the guest, or a future kvm may trap them.
439 */
440/* Unfortunately, there's no register-argument for mrc, so generate. */
441#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
442 static void get_##name(struct kvm_vcpu *v, \
443 const struct coproc_reg *r) \
444 { \
445 u32 val; \
446 \
447 asm volatile("mrc p15, " __stringify(op1) \
448 ", %0, c" __stringify(crn) \
449 ", c" __stringify(crm) \
450 ", " __stringify(op2) "\n" : "=r" (val)); \
451 ((struct coproc_reg *)r)->val = val; \
452 }
453
454FUNCTION_FOR32(0, 0, 0, 0, MIDR)
455FUNCTION_FOR32(0, 0, 0, 1, CTR)
456FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
457FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
458FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
459FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
460FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
461FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
462FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
463FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
464FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
465FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
466FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
467FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
468FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
469FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
470FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
471FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
472FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
473FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
474FUNCTION_FOR32(0, 0, 1, 7, AIDR)
475
476/* ->val is filled in by kvm_invariant_coproc_table_init() */
477static struct coproc_reg invariant_cp15[] = {
478 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
479 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
480 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
481 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
482 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
483
484 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
485 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
486 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
487 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
488 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
489 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
490 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
491 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
492
493 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
494 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
495 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
496 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
497 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
498 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
499
500 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
501 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
502};
503
504static int reg_from_user(void *val, const void __user *uaddr, u64 id)
505{
506 /* This Just Works because we are little endian. */
507 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
508 return -EFAULT;
509 return 0;
510}
511
512static int reg_to_user(void __user *uaddr, const void *val, u64 id)
513{
514 /* This Just Works because we are little endian. */
515 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
516 return -EFAULT;
517 return 0;
518}
519
520static int get_invariant_cp15(u64 id, void __user *uaddr)
521{
522 struct coproc_params params;
523 const struct coproc_reg *r;
524
525 if (!index_to_params(id, &params))
526 return -ENOENT;
527
528 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
529 if (!r)
530 return -ENOENT;
531
532 return reg_to_user(uaddr, &r->val, id);
533}
534
535static int set_invariant_cp15(u64 id, void __user *uaddr)
536{
537 struct coproc_params params;
538 const struct coproc_reg *r;
539 int err;
540 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
541
542 if (!index_to_params(id, &params))
543 return -ENOENT;
544 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
545 if (!r)
546 return -ENOENT;
547
548 err = reg_from_user(&val, uaddr, id);
549 if (err)
550 return err;
551
552 /* This is what we mean by invariant: you can't change it. */
553 if (r->val != val)
554 return -EINVAL;
555
556 return 0;
557}
558
c27581ed
CD
559static bool is_valid_cache(u32 val)
560{
561 u32 level, ctype;
562
563 if (val >= CSSELR_MAX)
564 return -ENOENT;
565
566 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
567 level = (val >> 1);
568 ctype = (cache_levels >> (level * 3)) & 7;
569
570 switch (ctype) {
571 case 0: /* No cache */
572 return false;
573 case 1: /* Instruction cache only */
574 return (val & 1);
575 case 2: /* Data cache only */
576 case 4: /* Unified cache */
577 return !(val & 1);
578 case 3: /* Separate instruction and data caches */
579 return true;
580 default: /* Reserved: we can't know instruction or data. */
581 return false;
582 }
583}
584
585/* Which cache CCSIDR represents depends on CSSELR value. */
586static u32 get_ccsidr(u32 csselr)
587{
588 u32 ccsidr;
589
590 /* Make sure noone else changes CSSELR during this! */
591 local_irq_disable();
592 /* Put value into CSSELR */
593 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
594 isb();
595 /* Read result out of CCSIDR */
596 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
597 local_irq_enable();
598
599 return ccsidr;
600}
601
602static int demux_c15_get(u64 id, void __user *uaddr)
603{
604 u32 val;
605 u32 __user *uval = uaddr;
606
607 /* Fail if we have unknown bits set. */
608 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
609 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
610 return -ENOENT;
611
612 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
613 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
614 if (KVM_REG_SIZE(id) != 4)
615 return -ENOENT;
616 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
617 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
618 if (!is_valid_cache(val))
619 return -ENOENT;
620
621 return put_user(get_ccsidr(val), uval);
622 default:
623 return -ENOENT;
624 }
625}
626
627static int demux_c15_set(u64 id, void __user *uaddr)
628{
629 u32 val, newval;
630 u32 __user *uval = uaddr;
631
632 /* Fail if we have unknown bits set. */
633 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
634 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
635 return -ENOENT;
636
637 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
638 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
639 if (KVM_REG_SIZE(id) != 4)
640 return -ENOENT;
641 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
642 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
643 if (!is_valid_cache(val))
644 return -ENOENT;
645
646 if (get_user(newval, uval))
647 return -EFAULT;
648
649 /* This is also invariant: you can't change it. */
650 if (newval != get_ccsidr(val))
651 return -EINVAL;
652 return 0;
653 default:
654 return -ENOENT;
655 }
656}
657
4fe21e4c
RR
658#ifdef CONFIG_VFPv3
659static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
660 KVM_REG_ARM_VFP_FPSCR,
661 KVM_REG_ARM_VFP_FPINST,
662 KVM_REG_ARM_VFP_FPINST2,
663 KVM_REG_ARM_VFP_MVFR0,
664 KVM_REG_ARM_VFP_MVFR1,
665 KVM_REG_ARM_VFP_FPSID };
666
667static unsigned int num_fp_regs(void)
668{
669 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
670 return 32;
671 else
672 return 16;
673}
674
675static unsigned int num_vfp_regs(void)
676{
677 /* Normal FP regs + control regs. */
678 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
679}
680
681static int copy_vfp_regids(u64 __user *uindices)
682{
683 unsigned int i;
684 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
685 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
686
687 for (i = 0; i < num_fp_regs(); i++) {
688 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
689 uindices))
690 return -EFAULT;
691 uindices++;
692 }
693
694 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
695 if (put_user(u32reg | vfp_sysregs[i], uindices))
696 return -EFAULT;
697 uindices++;
698 }
699
700 return num_vfp_regs();
701}
702
703static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
704{
705 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
706 u32 val;
707
708 /* Fail if we have unknown bits set. */
709 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
710 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
711 return -ENOENT;
712
713 if (vfpid < num_fp_regs()) {
714 if (KVM_REG_SIZE(id) != 8)
715 return -ENOENT;
716 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
717 id);
718 }
719
720 /* FP control registers are all 32 bit. */
721 if (KVM_REG_SIZE(id) != 4)
722 return -ENOENT;
723
724 switch (vfpid) {
725 case KVM_REG_ARM_VFP_FPEXC:
726 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
727 case KVM_REG_ARM_VFP_FPSCR:
728 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
729 case KVM_REG_ARM_VFP_FPINST:
730 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
731 case KVM_REG_ARM_VFP_FPINST2:
732 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
733 case KVM_REG_ARM_VFP_MVFR0:
734 val = fmrx(MVFR0);
735 return reg_to_user(uaddr, &val, id);
736 case KVM_REG_ARM_VFP_MVFR1:
737 val = fmrx(MVFR1);
738 return reg_to_user(uaddr, &val, id);
739 case KVM_REG_ARM_VFP_FPSID:
740 val = fmrx(FPSID);
741 return reg_to_user(uaddr, &val, id);
742 default:
743 return -ENOENT;
744 }
745}
746
747static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
748{
749 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
750 u32 val;
751
752 /* Fail if we have unknown bits set. */
753 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
754 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
755 return -ENOENT;
756
757 if (vfpid < num_fp_regs()) {
758 if (KVM_REG_SIZE(id) != 8)
759 return -ENOENT;
760 return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
761 uaddr, id);
762 }
763
764 /* FP control registers are all 32 bit. */
765 if (KVM_REG_SIZE(id) != 4)
766 return -ENOENT;
767
768 switch (vfpid) {
769 case KVM_REG_ARM_VFP_FPEXC:
770 return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
771 case KVM_REG_ARM_VFP_FPSCR:
772 return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
773 case KVM_REG_ARM_VFP_FPINST:
774 return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
775 case KVM_REG_ARM_VFP_FPINST2:
776 return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
777 /* These are invariant. */
778 case KVM_REG_ARM_VFP_MVFR0:
779 if (reg_from_user(&val, uaddr, id))
780 return -EFAULT;
781 if (val != fmrx(MVFR0))
782 return -EINVAL;
783 return 0;
784 case KVM_REG_ARM_VFP_MVFR1:
785 if (reg_from_user(&val, uaddr, id))
786 return -EFAULT;
787 if (val != fmrx(MVFR1))
788 return -EINVAL;
789 return 0;
790 case KVM_REG_ARM_VFP_FPSID:
791 if (reg_from_user(&val, uaddr, id))
792 return -EFAULT;
793 if (val != fmrx(FPSID))
794 return -EINVAL;
795 return 0;
796 default:
797 return -ENOENT;
798 }
799}
800#else /* !CONFIG_VFPv3 */
801static unsigned int num_vfp_regs(void)
802{
803 return 0;
804}
805
806static int copy_vfp_regids(u64 __user *uindices)
807{
808 return 0;
809}
810
811static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
812{
813 return -ENOENT;
814}
815
816static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
817{
818 return -ENOENT;
819}
820#endif /* !CONFIG_VFPv3 */
821
1138245c
CD
822int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
823{
824 const struct coproc_reg *r;
825 void __user *uaddr = (void __user *)(long)reg->addr;
826
c27581ed
CD
827 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
828 return demux_c15_get(reg->id, uaddr);
829
4fe21e4c
RR
830 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
831 return vfp_get_reg(vcpu, reg->id, uaddr);
832
1138245c
CD
833 r = index_to_coproc_reg(vcpu, reg->id);
834 if (!r)
835 return get_invariant_cp15(reg->id, uaddr);
836
837 /* Note: copies two regs if size is 64 bit. */
838 return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
839}
840
841int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
842{
843 const struct coproc_reg *r;
844 void __user *uaddr = (void __user *)(long)reg->addr;
845
c27581ed
CD
846 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
847 return demux_c15_set(reg->id, uaddr);
848
4fe21e4c
RR
849 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
850 return vfp_set_reg(vcpu, reg->id, uaddr);
851
1138245c
CD
852 r = index_to_coproc_reg(vcpu, reg->id);
853 if (!r)
854 return set_invariant_cp15(reg->id, uaddr);
855
856 /* Note: copies two regs if size is 64 bit */
857 return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
858}
859
c27581ed
CD
860static unsigned int num_demux_regs(void)
861{
862 unsigned int i, count = 0;
863
864 for (i = 0; i < CSSELR_MAX; i++)
865 if (is_valid_cache(i))
866 count++;
867
868 return count;
869}
870
871static int write_demux_regids(u64 __user *uindices)
872{
873 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
874 unsigned int i;
875
876 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
877 for (i = 0; i < CSSELR_MAX; i++) {
878 if (!is_valid_cache(i))
879 continue;
880 if (put_user(val | i, uindices))
881 return -EFAULT;
882 uindices++;
883 }
884 return 0;
885}
886
1138245c
CD
887static u64 cp15_to_index(const struct coproc_reg *reg)
888{
889 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
890 if (reg->is_64) {
891 val |= KVM_REG_SIZE_U64;
892 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
893 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
894 } else {
895 val |= KVM_REG_SIZE_U32;
896 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
897 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
898 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
899 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
900 }
901 return val;
902}
903
904static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
905{
906 if (!*uind)
907 return true;
908
909 if (put_user(cp15_to_index(reg), *uind))
910 return false;
911
912 (*uind)++;
913 return true;
914}
915
916/* Assumed ordered tables, see kvm_coproc_table_init. */
917static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
918{
919 const struct coproc_reg *i1, *i2, *end1, *end2;
920 unsigned int total = 0;
921 size_t num;
922
923 /* We check for duplicates here, to allow arch-specific overrides. */
924 i1 = get_target_table(vcpu->arch.target, &num);
925 end1 = i1 + num;
926 i2 = cp15_regs;
927 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
928
929 BUG_ON(i1 == end1 || i2 == end2);
930
931 /* Walk carefully, as both tables may refer to the same register. */
932 while (i1 || i2) {
933 int cmp = cmp_reg(i1, i2);
934 /* target-specific overrides generic entry. */
935 if (cmp <= 0) {
936 /* Ignore registers we trap but don't save. */
937 if (i1->reg) {
938 if (!copy_reg_to_user(i1, &uind))
939 return -EFAULT;
940 total++;
941 }
942 } else {
943 /* Ignore registers we trap but don't save. */
944 if (i2->reg) {
945 if (!copy_reg_to_user(i2, &uind))
946 return -EFAULT;
947 total++;
948 }
949 }
950
951 if (cmp <= 0 && ++i1 == end1)
952 i1 = NULL;
953 if (cmp >= 0 && ++i2 == end2)
954 i2 = NULL;
955 }
956 return total;
957}
958
959unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
960{
961 return ARRAY_SIZE(invariant_cp15)
c27581ed 962 + num_demux_regs()
4fe21e4c 963 + num_vfp_regs()
1138245c
CD
964 + walk_cp15(vcpu, (u64 __user *)NULL);
965}
966
967int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
968{
969 unsigned int i;
970 int err;
971
972 /* Then give them all the invariant registers' indices. */
973 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
974 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
975 return -EFAULT;
976 uindices++;
977 }
978
979 err = walk_cp15(vcpu, uindices);
c27581ed
CD
980 if (err < 0)
981 return err;
982 uindices += err;
983
4fe21e4c
RR
984 err = copy_vfp_regids(uindices);
985 if (err < 0)
986 return err;
987 uindices += err;
988
c27581ed 989 return write_demux_regids(uindices);
1138245c
CD
990}
991
5b3e5e5b
CD
992void kvm_coproc_table_init(void)
993{
994 unsigned int i;
995
996 /* Make sure tables are unique and in order. */
997 for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
998 BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
1138245c
CD
999
1000 /* We abuse the reset function to overwrite the table itself. */
1001 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1002 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
c27581ed
CD
1003
1004 /*
1005 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1006 *
1007 * If software reads the Cache Type fields from Ctype1
1008 * upwards, once it has seen a value of 0b000, no caches
1009 * exist at further-out levels of the hierarchy. So, for
1010 * example, if Ctype3 is the first Cache Type field with a
1011 * value of 0b000, the values of Ctype4 to Ctype7 must be
1012 * ignored.
1013 */
1014 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1015 for (i = 0; i < 7; i++)
1016 if (((cache_levels >> (i*3)) & 7) == 0)
1017 break;
1018 /* Clear all higher bits. */
1019 cache_levels &= (1 << (i*3))-1;
5b3e5e5b
CD
1020}
1021
1022/**
1023 * kvm_reset_coprocs - sets cp15 registers to reset value
1024 * @vcpu: The VCPU pointer
1025 *
1026 * This function finds the right table above and sets the registers on the
1027 * virtual CPU struct to their architecturally defined reset values.
1028 */
749cf76c
CD
1029void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1030{
5b3e5e5b
CD
1031 size_t num;
1032 const struct coproc_reg *table;
1033
1034 /* Catch someone adding a register without putting in reset entry. */
1035 memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
1036
1037 /* Generic chip reset first (so target could override). */
1038 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1039
1040 table = get_target_table(vcpu->arch.target, &num);
1041 reset_coproc_regs(vcpu, table, num);
1042
1043 for (num = 1; num < NR_CP15_REGS; num++)
1044 if (vcpu->arch.cp15[num] == 0x42424242)
1045 panic("Didn't reset vcpu->arch.cp15[%zi]", num);
749cf76c 1046}