]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm/kvm/mmu.c
arm: KVM: Don't return PSCI_INVAL if waitqueue is inactive
[mirror_ubuntu-artful-kernel.git] / arch / arm / kvm / mmu.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
342cd0ab
CD
18
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
ad361f09 22#include <linux/hugetlb.h>
45e96ea6 23#include <trace/events/kvm.h>
342cd0ab 24#include <asm/pgalloc.h>
94f8e641 25#include <asm/cacheflush.h>
342cd0ab
CD
26#include <asm/kvm_arm.h>
27#include <asm/kvm_mmu.h>
45e96ea6 28#include <asm/kvm_mmio.h>
d5d8184d 29#include <asm/kvm_asm.h>
94f8e641 30#include <asm/kvm_emulate.h>
d5d8184d
CD
31
32#include "trace.h"
342cd0ab
CD
33
34extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
5a677ce0 36static pgd_t *boot_hyp_pgd;
2fb41059 37static pgd_t *hyp_pgd;
342cd0ab
CD
38static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
5a677ce0
MZ
40static void *init_bounce_page;
41static unsigned long hyp_idmap_start;
42static unsigned long hyp_idmap_end;
43static phys_addr_t hyp_idmap_vector;
44
9b5fdb97 45#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
ad361f09 46
48762767 47static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
d5d8184d 48{
d4cb9df5
MZ
49 /*
50 * This function also gets called when dealing with HYP page
51 * tables. As HYP doesn't have an associated struct kvm (and
52 * the HYP page tables are fairly static), we don't do
53 * anything there.
54 */
55 if (kvm)
56 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
d5d8184d
CD
57}
58
d5d8184d
CD
59static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
60 int min, int max)
61{
62 void *page;
63
64 BUG_ON(max > KVM_NR_MEM_OBJS);
65 if (cache->nobjs >= min)
66 return 0;
67 while (cache->nobjs < max) {
68 page = (void *)__get_free_page(PGALLOC_GFP);
69 if (!page)
70 return -ENOMEM;
71 cache->objects[cache->nobjs++] = page;
72 }
73 return 0;
74}
75
76static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
77{
78 while (mc->nobjs)
79 free_page((unsigned long)mc->objects[--mc->nobjs]);
80}
81
82static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
83{
84 void *p;
85
86 BUG_ON(!mc || !mc->nobjs);
87 p = mc->objects[--mc->nobjs];
88 return p;
89}
90
979acd5e
MZ
91static bool page_empty(void *ptr)
92{
93 struct page *ptr_page = virt_to_page(ptr);
94 return page_count(ptr_page) == 1;
95}
96
d4cb9df5 97static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
342cd0ab 98{
ad361f09
CD
99 if (pud_huge(*pud)) {
100 pud_clear(pud);
101 kvm_tlb_flush_vmid_ipa(kvm, addr);
102 } else {
103 pmd_t *pmd_table = pmd_offset(pud, 0);
104 pud_clear(pud);
105 kvm_tlb_flush_vmid_ipa(kvm, addr);
106 pmd_free(NULL, pmd_table);
107 }
4f728276
MZ
108 put_page(virt_to_page(pud));
109}
342cd0ab 110
d4cb9df5 111static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
4f728276 112{
ad361f09
CD
113 if (kvm_pmd_huge(*pmd)) {
114 pmd_clear(pmd);
115 kvm_tlb_flush_vmid_ipa(kvm, addr);
116 } else {
117 pte_t *pte_table = pte_offset_kernel(pmd, 0);
118 pmd_clear(pmd);
119 kvm_tlb_flush_vmid_ipa(kvm, addr);
120 pte_free_kernel(NULL, pte_table);
121 }
4f728276
MZ
122 put_page(virt_to_page(pmd));
123}
124
d4cb9df5 125static void clear_pte_entry(struct kvm *kvm, pte_t *pte, phys_addr_t addr)
4f728276
MZ
126{
127 if (pte_present(*pte)) {
128 kvm_set_pte(pte, __pte(0));
129 put_page(virt_to_page(pte));
d4cb9df5 130 kvm_tlb_flush_vmid_ipa(kvm, addr);
342cd0ab
CD
131 }
132}
133
d4cb9df5
MZ
134static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
135 unsigned long long start, u64 size)
000d3996
MZ
136{
137 pgd_t *pgd;
138 pud_t *pud;
139 pmd_t *pmd;
4f728276
MZ
140 pte_t *pte;
141 unsigned long long addr = start, end = start + size;
d3840b26 142 u64 next;
000d3996 143
4f728276
MZ
144 while (addr < end) {
145 pgd = pgdp + pgd_index(addr);
146 pud = pud_offset(pgd, addr);
147 if (pud_none(*pud)) {
d3840b26 148 addr = pud_addr_end(addr, end);
4f728276
MZ
149 continue;
150 }
000d3996 151
ad361f09
CD
152 if (pud_huge(*pud)) {
153 /*
154 * If we are dealing with a huge pud, just clear it and
155 * move on.
156 */
157 clear_pud_entry(kvm, pud, addr);
158 addr = pud_addr_end(addr, end);
159 continue;
160 }
161
4f728276
MZ
162 pmd = pmd_offset(pud, addr);
163 if (pmd_none(*pmd)) {
d3840b26 164 addr = pmd_addr_end(addr, end);
4f728276
MZ
165 continue;
166 }
000d3996 167
ad361f09
CD
168 if (!kvm_pmd_huge(*pmd)) {
169 pte = pte_offset_kernel(pmd, addr);
170 clear_pte_entry(kvm, pte, addr);
171 next = addr + PAGE_SIZE;
172 }
4f728276 173
ad361f09
CD
174 /*
175 * If the pmd entry is to be cleared, walk back up the ladder
176 */
177 if (kvm_pmd_huge(*pmd) || page_empty(pte)) {
d4cb9df5 178 clear_pmd_entry(kvm, pmd, addr);
d3840b26 179 next = pmd_addr_end(addr, end);
979acd5e 180 if (page_empty(pmd) && !page_empty(pud)) {
d4cb9df5 181 clear_pud_entry(kvm, pud, addr);
d3840b26 182 next = pud_addr_end(addr, end);
4f728276
MZ
183 }
184 }
185
d3840b26 186 addr = next;
4f728276 187 }
000d3996
MZ
188}
189
d157f4a5
MZ
190/**
191 * free_boot_hyp_pgd - free HYP boot page tables
192 *
193 * Free the HYP boot page tables. The bounce page is also freed.
194 */
195void free_boot_hyp_pgd(void)
196{
197 mutex_lock(&kvm_hyp_pgd_mutex);
198
199 if (boot_hyp_pgd) {
d4cb9df5
MZ
200 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
201 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
d157f4a5
MZ
202 kfree(boot_hyp_pgd);
203 boot_hyp_pgd = NULL;
204 }
205
206 if (hyp_pgd)
d4cb9df5 207 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
d157f4a5
MZ
208
209 kfree(init_bounce_page);
210 init_bounce_page = NULL;
211
212 mutex_unlock(&kvm_hyp_pgd_mutex);
213}
214
342cd0ab 215/**
4f728276 216 * free_hyp_pgds - free Hyp-mode page tables
342cd0ab 217 *
5a677ce0
MZ
218 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
219 * therefore contains either mappings in the kernel memory area (above
220 * PAGE_OFFSET), or device mappings in the vmalloc range (from
221 * VMALLOC_START to VMALLOC_END).
222 *
223 * boot_hyp_pgd should only map two pages for the init code.
342cd0ab 224 */
4f728276 225void free_hyp_pgds(void)
342cd0ab 226{
342cd0ab
CD
227 unsigned long addr;
228
d157f4a5 229 free_boot_hyp_pgd();
4f728276 230
d157f4a5 231 mutex_lock(&kvm_hyp_pgd_mutex);
5a677ce0 232
4f728276
MZ
233 if (hyp_pgd) {
234 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
d4cb9df5 235 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
4f728276 236 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
d4cb9df5
MZ
237 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
238
4f728276 239 kfree(hyp_pgd);
d157f4a5 240 hyp_pgd = NULL;
4f728276
MZ
241 }
242
342cd0ab
CD
243 mutex_unlock(&kvm_hyp_pgd_mutex);
244}
245
246static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
6060df84
MZ
247 unsigned long end, unsigned long pfn,
248 pgprot_t prot)
342cd0ab
CD
249{
250 pte_t *pte;
251 unsigned long addr;
342cd0ab 252
3562c76d
MZ
253 addr = start;
254 do {
6060df84
MZ
255 pte = pte_offset_kernel(pmd, addr);
256 kvm_set_pte(pte, pfn_pte(pfn, prot));
4f728276 257 get_page(virt_to_page(pte));
5a677ce0 258 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
6060df84 259 pfn++;
3562c76d 260 } while (addr += PAGE_SIZE, addr != end);
342cd0ab
CD
261}
262
263static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
6060df84
MZ
264 unsigned long end, unsigned long pfn,
265 pgprot_t prot)
342cd0ab
CD
266{
267 pmd_t *pmd;
268 pte_t *pte;
269 unsigned long addr, next;
270
3562c76d
MZ
271 addr = start;
272 do {
6060df84 273 pmd = pmd_offset(pud, addr);
342cd0ab
CD
274
275 BUG_ON(pmd_sect(*pmd));
276
277 if (pmd_none(*pmd)) {
6060df84 278 pte = pte_alloc_one_kernel(NULL, addr);
342cd0ab
CD
279 if (!pte) {
280 kvm_err("Cannot allocate Hyp pte\n");
281 return -ENOMEM;
282 }
283 pmd_populate_kernel(NULL, pmd, pte);
4f728276 284 get_page(virt_to_page(pmd));
5a677ce0 285 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
342cd0ab
CD
286 }
287
288 next = pmd_addr_end(addr, end);
289
6060df84
MZ
290 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
291 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 292 } while (addr = next, addr != end);
342cd0ab
CD
293
294 return 0;
295}
296
6060df84
MZ
297static int __create_hyp_mappings(pgd_t *pgdp,
298 unsigned long start, unsigned long end,
299 unsigned long pfn, pgprot_t prot)
342cd0ab 300{
342cd0ab
CD
301 pgd_t *pgd;
302 pud_t *pud;
303 pmd_t *pmd;
304 unsigned long addr, next;
305 int err = 0;
306
342cd0ab 307 mutex_lock(&kvm_hyp_pgd_mutex);
3562c76d
MZ
308 addr = start & PAGE_MASK;
309 end = PAGE_ALIGN(end);
310 do {
6060df84
MZ
311 pgd = pgdp + pgd_index(addr);
312 pud = pud_offset(pgd, addr);
342cd0ab
CD
313
314 if (pud_none_or_clear_bad(pud)) {
6060df84 315 pmd = pmd_alloc_one(NULL, addr);
342cd0ab
CD
316 if (!pmd) {
317 kvm_err("Cannot allocate Hyp pmd\n");
318 err = -ENOMEM;
319 goto out;
320 }
321 pud_populate(NULL, pud, pmd);
4f728276 322 get_page(virt_to_page(pud));
5a677ce0 323 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
342cd0ab
CD
324 }
325
326 next = pgd_addr_end(addr, end);
6060df84 327 err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
342cd0ab
CD
328 if (err)
329 goto out;
6060df84 330 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 331 } while (addr = next, addr != end);
342cd0ab
CD
332out:
333 mutex_unlock(&kvm_hyp_pgd_mutex);
334 return err;
335}
336
40c2729b
CD
337static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
338{
339 if (!is_vmalloc_addr(kaddr)) {
340 BUG_ON(!virt_addr_valid(kaddr));
341 return __pa(kaddr);
342 } else {
343 return page_to_phys(vmalloc_to_page(kaddr)) +
344 offset_in_page(kaddr);
345 }
346}
347
342cd0ab 348/**
06e8c3b0 349 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
342cd0ab
CD
350 * @from: The virtual kernel start address of the range
351 * @to: The virtual kernel end address of the range (exclusive)
352 *
06e8c3b0
MZ
353 * The same virtual address as the kernel virtual address is also used
354 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
355 * physical pages.
342cd0ab
CD
356 */
357int create_hyp_mappings(void *from, void *to)
358{
40c2729b
CD
359 phys_addr_t phys_addr;
360 unsigned long virt_addr;
6060df84
MZ
361 unsigned long start = KERN_TO_HYP((unsigned long)from);
362 unsigned long end = KERN_TO_HYP((unsigned long)to);
363
40c2729b
CD
364 start = start & PAGE_MASK;
365 end = PAGE_ALIGN(end);
6060df84 366
40c2729b
CD
367 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
368 int err;
6060df84 369
40c2729b
CD
370 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
371 err = __create_hyp_mappings(hyp_pgd, virt_addr,
372 virt_addr + PAGE_SIZE,
373 __phys_to_pfn(phys_addr),
374 PAGE_HYP);
375 if (err)
376 return err;
377 }
378
379 return 0;
342cd0ab
CD
380}
381
382/**
06e8c3b0
MZ
383 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
384 * @from: The kernel start VA of the range
385 * @to: The kernel end VA of the range (exclusive)
6060df84 386 * @phys_addr: The physical start address which gets mapped
06e8c3b0
MZ
387 *
388 * The resulting HYP VA is the same as the kernel VA, modulo
389 * HYP_PAGE_OFFSET.
342cd0ab 390 */
6060df84 391int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
342cd0ab 392{
6060df84
MZ
393 unsigned long start = KERN_TO_HYP((unsigned long)from);
394 unsigned long end = KERN_TO_HYP((unsigned long)to);
395
396 /* Check for a valid kernel IO mapping */
397 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
398 return -EINVAL;
399
400 return __create_hyp_mappings(hyp_pgd, start, end,
401 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
342cd0ab
CD
402}
403
d5d8184d
CD
404/**
405 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
406 * @kvm: The KVM struct pointer for the VM.
407 *
408 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
409 * support either full 40-bit input addresses or limited to 32-bit input
410 * addresses). Clears the allocated pages.
411 *
412 * Note we don't need locking here as this is only called when the VM is
413 * created, which can only be done once.
414 */
415int kvm_alloc_stage2_pgd(struct kvm *kvm)
416{
417 pgd_t *pgd;
418
419 if (kvm->arch.pgd != NULL) {
420 kvm_err("kvm_arch already initialized?\n");
421 return -EINVAL;
422 }
423
424 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
425 if (!pgd)
426 return -ENOMEM;
427
d5d8184d 428 memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
c62ee2b2 429 kvm_clean_pgd(pgd);
d5d8184d
CD
430 kvm->arch.pgd = pgd;
431
432 return 0;
433}
434
d5d8184d
CD
435/**
436 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
437 * @kvm: The VM pointer
438 * @start: The intermediate physical base address of the range to unmap
439 * @size: The size of the area to unmap
440 *
441 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
442 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
443 * destroying the VM), otherwise another faulting VCPU may come in and mess
444 * with things behind our backs.
445 */
446static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
447{
d4cb9df5 448 unmap_range(kvm, kvm->arch.pgd, start, size);
d5d8184d
CD
449}
450
451/**
452 * kvm_free_stage2_pgd - free all stage-2 tables
453 * @kvm: The KVM struct pointer for the VM.
454 *
455 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
456 * underlying level-2 and level-3 tables before freeing the actual level-1 table
457 * and setting the struct pointer to NULL.
458 *
459 * Note we don't need locking here as this is only called when the VM is
460 * destroyed, which can only be done once.
461 */
462void kvm_free_stage2_pgd(struct kvm *kvm)
463{
464 if (kvm->arch.pgd == NULL)
465 return;
466
467 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
468 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
469 kvm->arch.pgd = NULL;
470}
471
ad361f09
CD
472static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
473 phys_addr_t addr)
d5d8184d
CD
474{
475 pgd_t *pgd;
476 pud_t *pud;
477 pmd_t *pmd;
d5d8184d 478
d5d8184d
CD
479 pgd = kvm->arch.pgd + pgd_index(addr);
480 pud = pud_offset(pgd, addr);
481 if (pud_none(*pud)) {
482 if (!cache)
ad361f09 483 return NULL;
d5d8184d
CD
484 pmd = mmu_memory_cache_alloc(cache);
485 pud_populate(NULL, pud, pmd);
d5d8184d 486 get_page(virt_to_page(pud));
c62ee2b2
MZ
487 }
488
ad361f09
CD
489 return pmd_offset(pud, addr);
490}
491
492static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
493 *cache, phys_addr_t addr, const pmd_t *new_pmd)
494{
495 pmd_t *pmd, old_pmd;
496
497 pmd = stage2_get_pmd(kvm, cache, addr);
498 VM_BUG_ON(!pmd);
d5d8184d 499
ad361f09
CD
500 /*
501 * Mapping in huge pages should only happen through a fault. If a
502 * page is merged into a transparent huge page, the individual
503 * subpages of that huge page should be unmapped through MMU
504 * notifiers before we get here.
505 *
506 * Merging of CompoundPages is not supported; they should become
507 * splitting first, unmapped, merged, and mapped back in on-demand.
508 */
509 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
510
511 old_pmd = *pmd;
512 kvm_set_pmd(pmd, *new_pmd);
513 if (pmd_present(old_pmd))
514 kvm_tlb_flush_vmid_ipa(kvm, addr);
515 else
516 get_page(virt_to_page(pmd));
517 return 0;
518}
519
520static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
521 phys_addr_t addr, const pte_t *new_pte, bool iomap)
522{
523 pmd_t *pmd;
524 pte_t *pte, old_pte;
525
526 /* Create stage-2 page table mapping - Level 1 */
527 pmd = stage2_get_pmd(kvm, cache, addr);
528 if (!pmd) {
529 /*
530 * Ignore calls from kvm_set_spte_hva for unallocated
531 * address ranges.
532 */
533 return 0;
534 }
535
536 /* Create stage-2 page mappings - Level 2 */
d5d8184d
CD
537 if (pmd_none(*pmd)) {
538 if (!cache)
539 return 0; /* ignore calls from kvm_set_spte_hva */
540 pte = mmu_memory_cache_alloc(cache);
c62ee2b2 541 kvm_clean_pte(pte);
d5d8184d 542 pmd_populate_kernel(NULL, pmd, pte);
d5d8184d 543 get_page(virt_to_page(pmd));
c62ee2b2
MZ
544 }
545
546 pte = pte_offset_kernel(pmd, addr);
d5d8184d
CD
547
548 if (iomap && pte_present(*pte))
549 return -EFAULT;
550
551 /* Create 2nd stage page table mapping - Level 3 */
552 old_pte = *pte;
553 kvm_set_pte(pte, *new_pte);
554 if (pte_present(old_pte))
48762767 555 kvm_tlb_flush_vmid_ipa(kvm, addr);
d5d8184d
CD
556 else
557 get_page(virt_to_page(pte));
558
559 return 0;
560}
561
562/**
563 * kvm_phys_addr_ioremap - map a device range to guest IPA
564 *
565 * @kvm: The KVM pointer
566 * @guest_ipa: The IPA at which to insert the mapping
567 * @pa: The physical address of the device
568 * @size: The size of the mapping
569 */
570int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
571 phys_addr_t pa, unsigned long size)
572{
573 phys_addr_t addr, end;
574 int ret = 0;
575 unsigned long pfn;
576 struct kvm_mmu_memory_cache cache = { 0, };
577
578 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
579 pfn = __phys_to_pfn(pa);
580
581 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
c62ee2b2 582 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
d5d8184d
CD
583
584 ret = mmu_topup_memory_cache(&cache, 2, 2);
585 if (ret)
586 goto out;
587 spin_lock(&kvm->mmu_lock);
588 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
589 spin_unlock(&kvm->mmu_lock);
590 if (ret)
591 goto out;
592
593 pfn++;
594 }
595
596out:
597 mmu_free_memory_cache(&cache);
598 return ret;
599}
600
9b5fdb97
CD
601static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
602{
603 pfn_t pfn = *pfnp;
604 gfn_t gfn = *ipap >> PAGE_SHIFT;
605
606 if (PageTransCompound(pfn_to_page(pfn))) {
607 unsigned long mask;
608 /*
609 * The address we faulted on is backed by a transparent huge
610 * page. However, because we map the compound huge page and
611 * not the individual tail page, we need to transfer the
612 * refcount to the head page. We have to be careful that the
613 * THP doesn't start to split while we are adjusting the
614 * refcounts.
615 *
616 * We are sure this doesn't happen, because mmu_notifier_retry
617 * was successful and we are holding the mmu_lock, so if this
618 * THP is trying to split, it will be blocked in the mmu
619 * notifier before touching any of the pages, specifically
620 * before being able to call __split_huge_page_refcount().
621 *
622 * We can therefore safely transfer the refcount from PG_tail
623 * to PG_head and switch the pfn from a tail page to the head
624 * page accordingly.
625 */
626 mask = PTRS_PER_PMD - 1;
627 VM_BUG_ON((gfn & mask) != (pfn & mask));
628 if (pfn & mask) {
629 *ipap &= PMD_MASK;
630 kvm_release_pfn_clean(pfn);
631 pfn &= ~mask;
632 kvm_get_pfn(pfn);
633 *pfnp = pfn;
634 }
635
636 return true;
637 }
638
639 return false;
640}
641
94f8e641 642static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
ad361f09 643 struct kvm_memory_slot *memslot,
94f8e641
CD
644 unsigned long fault_status)
645{
94f8e641 646 int ret;
9b5fdb97 647 bool write_fault, writable, hugetlb = false, force_pte = false;
94f8e641 648 unsigned long mmu_seq;
ad361f09
CD
649 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
650 unsigned long hva = gfn_to_hva(vcpu->kvm, gfn);
651 struct kvm *kvm = vcpu->kvm;
94f8e641 652 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
ad361f09
CD
653 struct vm_area_struct *vma;
654 pfn_t pfn;
94f8e641 655
7393b599 656 write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
94f8e641
CD
657 if (fault_status == FSC_PERM && !write_fault) {
658 kvm_err("Unexpected L2 read permission error\n");
659 return -EFAULT;
660 }
661
ad361f09
CD
662 /* Let's check if we will get back a huge page backed by hugetlbfs */
663 down_read(&current->mm->mmap_sem);
664 vma = find_vma_intersection(current->mm, hva, hva + 1);
665 if (is_vm_hugetlb_page(vma)) {
666 hugetlb = true;
667 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
9b5fdb97
CD
668 } else {
669 /*
670 * Pages belonging to VMAs not aligned to the PMD mapping
671 * granularity cannot be mapped using block descriptors even
672 * if the pages belong to a THP for the process, because the
673 * stage-2 block descriptor will cover more than a single THP
674 * and we loose atomicity for unmapping, updates, and splits
675 * of the THP or other pages in the stage-2 block range.
676 */
677 if (vma->vm_start & ~PMD_MASK)
678 force_pte = true;
ad361f09
CD
679 }
680 up_read(&current->mm->mmap_sem);
681
94f8e641
CD
682 /* We need minimum second+third level pages */
683 ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
684 if (ret)
685 return ret;
686
687 mmu_seq = vcpu->kvm->mmu_notifier_seq;
688 /*
689 * Ensure the read of mmu_notifier_seq happens before we call
690 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
691 * the page we just got a reference to gets unmapped before we have a
692 * chance to grab the mmu_lock, which ensure that if the page gets
693 * unmapped afterwards, the call to kvm_unmap_hva will take it away
694 * from us again properly. This smp_rmb() interacts with the smp_wmb()
695 * in kvm_mmu_notifier_invalidate_<page|range_end>.
696 */
697 smp_rmb();
698
ad361f09 699 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
94f8e641
CD
700 if (is_error_pfn(pfn))
701 return -EFAULT;
702
ad361f09
CD
703 spin_lock(&kvm->mmu_lock);
704 if (mmu_notifier_retry(kvm, mmu_seq))
94f8e641 705 goto out_unlock;
9b5fdb97
CD
706 if (!hugetlb && !force_pte)
707 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
ad361f09
CD
708
709 if (hugetlb) {
710 pmd_t new_pmd = pfn_pmd(pfn, PAGE_S2);
711 new_pmd = pmd_mkhuge(new_pmd);
712 if (writable) {
713 kvm_set_s2pmd_writable(&new_pmd);
714 kvm_set_pfn_dirty(pfn);
715 }
716 coherent_icache_guest_page(kvm, hva & PMD_MASK, PMD_SIZE);
717 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
718 } else {
719 pte_t new_pte = pfn_pte(pfn, PAGE_S2);
720 if (writable) {
721 kvm_set_s2pte_writable(&new_pte);
722 kvm_set_pfn_dirty(pfn);
723 }
724 coherent_icache_guest_page(kvm, hva, PAGE_SIZE);
725 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, false);
94f8e641 726 }
ad361f09 727
94f8e641
CD
728
729out_unlock:
ad361f09 730 spin_unlock(&kvm->mmu_lock);
94f8e641 731 kvm_release_pfn_clean(pfn);
ad361f09 732 return ret;
94f8e641
CD
733}
734
735/**
736 * kvm_handle_guest_abort - handles all 2nd stage aborts
737 * @vcpu: the VCPU pointer
738 * @run: the kvm_run structure
739 *
740 * Any abort that gets to the host is almost guaranteed to be caused by a
741 * missing second stage translation table entry, which can mean that either the
742 * guest simply needs more memory and we must allocate an appropriate page or it
743 * can mean that the guest tried to access I/O memory, which is emulated by user
744 * space. The distinction is based on the IPA causing the fault and whether this
745 * memory region has been registered as standard RAM by user space.
746 */
342cd0ab
CD
747int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
748{
94f8e641
CD
749 unsigned long fault_status;
750 phys_addr_t fault_ipa;
751 struct kvm_memory_slot *memslot;
752 bool is_iabt;
753 gfn_t gfn;
754 int ret, idx;
755
52d1dba9 756 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
7393b599 757 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
94f8e641 758
7393b599
MZ
759 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
760 kvm_vcpu_get_hfar(vcpu), fault_ipa);
94f8e641
CD
761
762 /* Check the stage-2 fault is trans. fault or write fault */
1cc287dd 763 fault_status = kvm_vcpu_trap_get_fault(vcpu);
94f8e641 764 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
52d1dba9
MZ
765 kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
766 kvm_vcpu_trap_get_class(vcpu), fault_status);
94f8e641
CD
767 return -EFAULT;
768 }
769
770 idx = srcu_read_lock(&vcpu->kvm->srcu);
771
772 gfn = fault_ipa >> PAGE_SHIFT;
773 if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
774 if (is_iabt) {
775 /* Prefetch Abort on I/O address */
7393b599 776 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
94f8e641
CD
777 ret = 1;
778 goto out_unlock;
779 }
780
781 if (fault_status != FSC_FAULT) {
782 kvm_err("Unsupported fault status on io memory: %#lx\n",
783 fault_status);
784 ret = -EFAULT;
785 goto out_unlock;
786 }
787
cfe3950c
MZ
788 /*
789 * The IPA is reported as [MAX:12], so we need to
790 * complement it with the bottom 12 bits from the
791 * faulting VA. This is always 12 bits, irrespective
792 * of the page size.
793 */
794 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
45e96ea6 795 ret = io_mem_abort(vcpu, run, fault_ipa);
94f8e641
CD
796 goto out_unlock;
797 }
798
799 memslot = gfn_to_memslot(vcpu->kvm, gfn);
94f8e641 800
ad361f09 801 ret = user_mem_abort(vcpu, fault_ipa, memslot, fault_status);
94f8e641
CD
802 if (ret == 0)
803 ret = 1;
804out_unlock:
805 srcu_read_unlock(&vcpu->kvm->srcu, idx);
806 return ret;
342cd0ab
CD
807}
808
d5d8184d
CD
809static void handle_hva_to_gpa(struct kvm *kvm,
810 unsigned long start,
811 unsigned long end,
812 void (*handler)(struct kvm *kvm,
813 gpa_t gpa, void *data),
814 void *data)
815{
816 struct kvm_memslots *slots;
817 struct kvm_memory_slot *memslot;
818
819 slots = kvm_memslots(kvm);
820
821 /* we only care about the pages that the guest sees */
822 kvm_for_each_memslot(memslot, slots) {
823 unsigned long hva_start, hva_end;
824 gfn_t gfn, gfn_end;
825
826 hva_start = max(start, memslot->userspace_addr);
827 hva_end = min(end, memslot->userspace_addr +
828 (memslot->npages << PAGE_SHIFT));
829 if (hva_start >= hva_end)
830 continue;
831
832 /*
833 * {gfn(page) | page intersects with [hva_start, hva_end)} =
834 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
835 */
836 gfn = hva_to_gfn_memslot(hva_start, memslot);
837 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
838
839 for (; gfn < gfn_end; ++gfn) {
840 gpa_t gpa = gfn << PAGE_SHIFT;
841 handler(kvm, gpa, data);
842 }
843 }
844}
845
846static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
847{
848 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
d5d8184d
CD
849}
850
851int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
852{
853 unsigned long end = hva + PAGE_SIZE;
854
855 if (!kvm->arch.pgd)
856 return 0;
857
858 trace_kvm_unmap_hva(hva);
859 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
860 return 0;
861}
862
863int kvm_unmap_hva_range(struct kvm *kvm,
864 unsigned long start, unsigned long end)
865{
866 if (!kvm->arch.pgd)
867 return 0;
868
869 trace_kvm_unmap_hva_range(start, end);
870 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
871 return 0;
872}
873
874static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
875{
876 pte_t *pte = (pte_t *)data;
877
878 stage2_set_pte(kvm, NULL, gpa, pte, false);
879}
880
881
882void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
883{
884 unsigned long end = hva + PAGE_SIZE;
885 pte_t stage2_pte;
886
887 if (!kvm->arch.pgd)
888 return;
889
890 trace_kvm_set_spte_hva(hva);
891 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
892 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
893}
894
895void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
896{
897 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
898}
899
342cd0ab
CD
900phys_addr_t kvm_mmu_get_httbr(void)
901{
342cd0ab
CD
902 return virt_to_phys(hyp_pgd);
903}
904
5a677ce0
MZ
905phys_addr_t kvm_mmu_get_boot_httbr(void)
906{
907 return virt_to_phys(boot_hyp_pgd);
908}
909
910phys_addr_t kvm_get_idmap_vector(void)
911{
912 return hyp_idmap_vector;
913}
914
342cd0ab
CD
915int kvm_mmu_init(void)
916{
2fb41059
MZ
917 int err;
918
4fda342c
SS
919 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
920 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
921 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
5a677ce0
MZ
922
923 if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
924 /*
925 * Our init code is crossing a page boundary. Allocate
926 * a bounce page, copy the code over and use that.
927 */
928 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
929 phys_addr_t phys_base;
930
931 init_bounce_page = kmalloc(PAGE_SIZE, GFP_KERNEL);
932 if (!init_bounce_page) {
933 kvm_err("Couldn't allocate HYP init bounce page\n");
934 err = -ENOMEM;
935 goto out;
936 }
937
938 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
939 /*
940 * Warning: the code we just copied to the bounce page
941 * must be flushed to the point of coherency.
942 * Otherwise, the data may be sitting in L2, and HYP
943 * mode won't be able to observe it as it runs with
944 * caches off at that point.
945 */
946 kvm_flush_dcache_to_poc(init_bounce_page, len);
947
4fda342c 948 phys_base = kvm_virt_to_phys(init_bounce_page);
5a677ce0
MZ
949 hyp_idmap_vector += phys_base - hyp_idmap_start;
950 hyp_idmap_start = phys_base;
951 hyp_idmap_end = phys_base + len;
952
953 kvm_info("Using HYP init bounce page @%lx\n",
954 (unsigned long)phys_base);
955 }
956
2fb41059 957 hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
5a677ce0
MZ
958 boot_hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
959 if (!hyp_pgd || !boot_hyp_pgd) {
d5d8184d 960 kvm_err("Hyp mode PGD not allocated\n");
2fb41059
MZ
961 err = -ENOMEM;
962 goto out;
963 }
964
965 /* Create the idmap in the boot page tables */
966 err = __create_hyp_mappings(boot_hyp_pgd,
967 hyp_idmap_start, hyp_idmap_end,
968 __phys_to_pfn(hyp_idmap_start),
969 PAGE_HYP);
970
971 if (err) {
972 kvm_err("Failed to idmap %lx-%lx\n",
973 hyp_idmap_start, hyp_idmap_end);
974 goto out;
d5d8184d
CD
975 }
976
5a677ce0
MZ
977 /* Map the very same page at the trampoline VA */
978 err = __create_hyp_mappings(boot_hyp_pgd,
979 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
980 __phys_to_pfn(hyp_idmap_start),
981 PAGE_HYP);
982 if (err) {
983 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
984 TRAMPOLINE_VA);
985 goto out;
986 }
987
988 /* Map the same page again into the runtime page tables */
989 err = __create_hyp_mappings(hyp_pgd,
990 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
991 __phys_to_pfn(hyp_idmap_start),
992 PAGE_HYP);
993 if (err) {
994 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
995 TRAMPOLINE_VA);
996 goto out;
997 }
998
d5d8184d 999 return 0;
2fb41059 1000out:
4f728276 1001 free_hyp_pgds();
2fb41059 1002 return err;
342cd0ab 1003}