]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/arm/kvm/mmu.c
ARM: KVM: trap VM system registers until MMU and caches are ON
[mirror_ubuntu-zesty-kernel.git] / arch / arm / kvm / mmu.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
342cd0ab
CD
18
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
ad361f09 22#include <linux/hugetlb.h>
45e96ea6 23#include <trace/events/kvm.h>
342cd0ab 24#include <asm/pgalloc.h>
94f8e641 25#include <asm/cacheflush.h>
342cd0ab
CD
26#include <asm/kvm_arm.h>
27#include <asm/kvm_mmu.h>
45e96ea6 28#include <asm/kvm_mmio.h>
d5d8184d 29#include <asm/kvm_asm.h>
94f8e641 30#include <asm/kvm_emulate.h>
d5d8184d
CD
31
32#include "trace.h"
342cd0ab
CD
33
34extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
5a677ce0 36static pgd_t *boot_hyp_pgd;
2fb41059 37static pgd_t *hyp_pgd;
342cd0ab
CD
38static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
5a677ce0
MZ
40static void *init_bounce_page;
41static unsigned long hyp_idmap_start;
42static unsigned long hyp_idmap_end;
43static phys_addr_t hyp_idmap_vector;
44
9b5fdb97 45#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
ad361f09 46
48762767 47static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
d5d8184d 48{
d4cb9df5
MZ
49 /*
50 * This function also gets called when dealing with HYP page
51 * tables. As HYP doesn't have an associated struct kvm (and
52 * the HYP page tables are fairly static), we don't do
53 * anything there.
54 */
55 if (kvm)
56 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
d5d8184d
CD
57}
58
d5d8184d
CD
59static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
60 int min, int max)
61{
62 void *page;
63
64 BUG_ON(max > KVM_NR_MEM_OBJS);
65 if (cache->nobjs >= min)
66 return 0;
67 while (cache->nobjs < max) {
68 page = (void *)__get_free_page(PGALLOC_GFP);
69 if (!page)
70 return -ENOMEM;
71 cache->objects[cache->nobjs++] = page;
72 }
73 return 0;
74}
75
76static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
77{
78 while (mc->nobjs)
79 free_page((unsigned long)mc->objects[--mc->nobjs]);
80}
81
82static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
83{
84 void *p;
85
86 BUG_ON(!mc || !mc->nobjs);
87 p = mc->objects[--mc->nobjs];
88 return p;
89}
90
979acd5e
MZ
91static bool page_empty(void *ptr)
92{
93 struct page *ptr_page = virt_to_page(ptr);
94 return page_count(ptr_page) == 1;
95}
96
d4cb9df5 97static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
342cd0ab 98{
ad361f09
CD
99 if (pud_huge(*pud)) {
100 pud_clear(pud);
101 kvm_tlb_flush_vmid_ipa(kvm, addr);
102 } else {
103 pmd_t *pmd_table = pmd_offset(pud, 0);
104 pud_clear(pud);
105 kvm_tlb_flush_vmid_ipa(kvm, addr);
106 pmd_free(NULL, pmd_table);
107 }
4f728276
MZ
108 put_page(virt_to_page(pud));
109}
342cd0ab 110
d4cb9df5 111static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
4f728276 112{
ad361f09
CD
113 if (kvm_pmd_huge(*pmd)) {
114 pmd_clear(pmd);
115 kvm_tlb_flush_vmid_ipa(kvm, addr);
116 } else {
117 pte_t *pte_table = pte_offset_kernel(pmd, 0);
118 pmd_clear(pmd);
119 kvm_tlb_flush_vmid_ipa(kvm, addr);
120 pte_free_kernel(NULL, pte_table);
121 }
4f728276
MZ
122 put_page(virt_to_page(pmd));
123}
124
d4cb9df5 125static void clear_pte_entry(struct kvm *kvm, pte_t *pte, phys_addr_t addr)
4f728276
MZ
126{
127 if (pte_present(*pte)) {
128 kvm_set_pte(pte, __pte(0));
129 put_page(virt_to_page(pte));
d4cb9df5 130 kvm_tlb_flush_vmid_ipa(kvm, addr);
342cd0ab
CD
131 }
132}
133
d4cb9df5
MZ
134static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
135 unsigned long long start, u64 size)
000d3996
MZ
136{
137 pgd_t *pgd;
138 pud_t *pud;
139 pmd_t *pmd;
4f728276
MZ
140 pte_t *pte;
141 unsigned long long addr = start, end = start + size;
d3840b26 142 u64 next;
000d3996 143
4f728276
MZ
144 while (addr < end) {
145 pgd = pgdp + pgd_index(addr);
146 pud = pud_offset(pgd, addr);
147 if (pud_none(*pud)) {
a3c8bd31 148 addr = kvm_pud_addr_end(addr, end);
4f728276
MZ
149 continue;
150 }
000d3996 151
ad361f09
CD
152 if (pud_huge(*pud)) {
153 /*
154 * If we are dealing with a huge pud, just clear it and
155 * move on.
156 */
157 clear_pud_entry(kvm, pud, addr);
a3c8bd31 158 addr = kvm_pud_addr_end(addr, end);
ad361f09
CD
159 continue;
160 }
161
4f728276
MZ
162 pmd = pmd_offset(pud, addr);
163 if (pmd_none(*pmd)) {
a3c8bd31 164 addr = kvm_pmd_addr_end(addr, end);
4f728276
MZ
165 continue;
166 }
000d3996 167
ad361f09
CD
168 if (!kvm_pmd_huge(*pmd)) {
169 pte = pte_offset_kernel(pmd, addr);
170 clear_pte_entry(kvm, pte, addr);
171 next = addr + PAGE_SIZE;
172 }
4f728276 173
ad361f09
CD
174 /*
175 * If the pmd entry is to be cleared, walk back up the ladder
176 */
177 if (kvm_pmd_huge(*pmd) || page_empty(pte)) {
d4cb9df5 178 clear_pmd_entry(kvm, pmd, addr);
a3c8bd31 179 next = kvm_pmd_addr_end(addr, end);
979acd5e 180 if (page_empty(pmd) && !page_empty(pud)) {
d4cb9df5 181 clear_pud_entry(kvm, pud, addr);
a3c8bd31 182 next = kvm_pud_addr_end(addr, end);
4f728276
MZ
183 }
184 }
185
d3840b26 186 addr = next;
4f728276 187 }
000d3996
MZ
188}
189
9d218a1f
MZ
190static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
191 phys_addr_t addr, phys_addr_t end)
192{
193 pte_t *pte;
194
195 pte = pte_offset_kernel(pmd, addr);
196 do {
197 if (!pte_none(*pte)) {
198 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
199 kvm_flush_dcache_to_poc((void*)hva, PAGE_SIZE);
200 }
201 } while (pte++, addr += PAGE_SIZE, addr != end);
202}
203
204static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
205 phys_addr_t addr, phys_addr_t end)
206{
207 pmd_t *pmd;
208 phys_addr_t next;
209
210 pmd = pmd_offset(pud, addr);
211 do {
212 next = kvm_pmd_addr_end(addr, end);
213 if (!pmd_none(*pmd)) {
214 if (kvm_pmd_huge(*pmd)) {
215 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
216 kvm_flush_dcache_to_poc((void*)hva, PMD_SIZE);
217 } else {
218 stage2_flush_ptes(kvm, pmd, addr, next);
219 }
220 }
221 } while (pmd++, addr = next, addr != end);
222}
223
224static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
225 phys_addr_t addr, phys_addr_t end)
226{
227 pud_t *pud;
228 phys_addr_t next;
229
230 pud = pud_offset(pgd, addr);
231 do {
232 next = kvm_pud_addr_end(addr, end);
233 if (!pud_none(*pud)) {
234 if (pud_huge(*pud)) {
235 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
236 kvm_flush_dcache_to_poc((void*)hva, PUD_SIZE);
237 } else {
238 stage2_flush_pmds(kvm, pud, addr, next);
239 }
240 }
241 } while (pud++, addr = next, addr != end);
242}
243
244static void stage2_flush_memslot(struct kvm *kvm,
245 struct kvm_memory_slot *memslot)
246{
247 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
248 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
249 phys_addr_t next;
250 pgd_t *pgd;
251
252 pgd = kvm->arch.pgd + pgd_index(addr);
253 do {
254 next = kvm_pgd_addr_end(addr, end);
255 stage2_flush_puds(kvm, pgd, addr, next);
256 } while (pgd++, addr = next, addr != end);
257}
258
259/**
260 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
261 * @kvm: The struct kvm pointer
262 *
263 * Go through the stage 2 page tables and invalidate any cache lines
264 * backing memory already mapped to the VM.
265 */
266void stage2_flush_vm(struct kvm *kvm)
267{
268 struct kvm_memslots *slots;
269 struct kvm_memory_slot *memslot;
270 int idx;
271
272 idx = srcu_read_lock(&kvm->srcu);
273 spin_lock(&kvm->mmu_lock);
274
275 slots = kvm_memslots(kvm);
276 kvm_for_each_memslot(memslot, slots)
277 stage2_flush_memslot(kvm, memslot);
278
279 spin_unlock(&kvm->mmu_lock);
280 srcu_read_unlock(&kvm->srcu, idx);
281}
282
d157f4a5
MZ
283/**
284 * free_boot_hyp_pgd - free HYP boot page tables
285 *
286 * Free the HYP boot page tables. The bounce page is also freed.
287 */
288void free_boot_hyp_pgd(void)
289{
290 mutex_lock(&kvm_hyp_pgd_mutex);
291
292 if (boot_hyp_pgd) {
d4cb9df5
MZ
293 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
294 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
d157f4a5
MZ
295 kfree(boot_hyp_pgd);
296 boot_hyp_pgd = NULL;
297 }
298
299 if (hyp_pgd)
d4cb9df5 300 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
d157f4a5
MZ
301
302 kfree(init_bounce_page);
303 init_bounce_page = NULL;
304
305 mutex_unlock(&kvm_hyp_pgd_mutex);
306}
307
342cd0ab 308/**
4f728276 309 * free_hyp_pgds - free Hyp-mode page tables
342cd0ab 310 *
5a677ce0
MZ
311 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
312 * therefore contains either mappings in the kernel memory area (above
313 * PAGE_OFFSET), or device mappings in the vmalloc range (from
314 * VMALLOC_START to VMALLOC_END).
315 *
316 * boot_hyp_pgd should only map two pages for the init code.
342cd0ab 317 */
4f728276 318void free_hyp_pgds(void)
342cd0ab 319{
342cd0ab
CD
320 unsigned long addr;
321
d157f4a5 322 free_boot_hyp_pgd();
4f728276 323
d157f4a5 324 mutex_lock(&kvm_hyp_pgd_mutex);
5a677ce0 325
4f728276
MZ
326 if (hyp_pgd) {
327 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
d4cb9df5 328 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
4f728276 329 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
d4cb9df5
MZ
330 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
331
4f728276 332 kfree(hyp_pgd);
d157f4a5 333 hyp_pgd = NULL;
4f728276
MZ
334 }
335
342cd0ab
CD
336 mutex_unlock(&kvm_hyp_pgd_mutex);
337}
338
339static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
6060df84
MZ
340 unsigned long end, unsigned long pfn,
341 pgprot_t prot)
342cd0ab
CD
342{
343 pte_t *pte;
344 unsigned long addr;
342cd0ab 345
3562c76d
MZ
346 addr = start;
347 do {
6060df84
MZ
348 pte = pte_offset_kernel(pmd, addr);
349 kvm_set_pte(pte, pfn_pte(pfn, prot));
4f728276 350 get_page(virt_to_page(pte));
5a677ce0 351 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
6060df84 352 pfn++;
3562c76d 353 } while (addr += PAGE_SIZE, addr != end);
342cd0ab
CD
354}
355
356static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
6060df84
MZ
357 unsigned long end, unsigned long pfn,
358 pgprot_t prot)
342cd0ab
CD
359{
360 pmd_t *pmd;
361 pte_t *pte;
362 unsigned long addr, next;
363
3562c76d
MZ
364 addr = start;
365 do {
6060df84 366 pmd = pmd_offset(pud, addr);
342cd0ab
CD
367
368 BUG_ON(pmd_sect(*pmd));
369
370 if (pmd_none(*pmd)) {
6060df84 371 pte = pte_alloc_one_kernel(NULL, addr);
342cd0ab
CD
372 if (!pte) {
373 kvm_err("Cannot allocate Hyp pte\n");
374 return -ENOMEM;
375 }
376 pmd_populate_kernel(NULL, pmd, pte);
4f728276 377 get_page(virt_to_page(pmd));
5a677ce0 378 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
342cd0ab
CD
379 }
380
381 next = pmd_addr_end(addr, end);
382
6060df84
MZ
383 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
384 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 385 } while (addr = next, addr != end);
342cd0ab
CD
386
387 return 0;
388}
389
6060df84
MZ
390static int __create_hyp_mappings(pgd_t *pgdp,
391 unsigned long start, unsigned long end,
392 unsigned long pfn, pgprot_t prot)
342cd0ab 393{
342cd0ab
CD
394 pgd_t *pgd;
395 pud_t *pud;
396 pmd_t *pmd;
397 unsigned long addr, next;
398 int err = 0;
399
342cd0ab 400 mutex_lock(&kvm_hyp_pgd_mutex);
3562c76d
MZ
401 addr = start & PAGE_MASK;
402 end = PAGE_ALIGN(end);
403 do {
6060df84
MZ
404 pgd = pgdp + pgd_index(addr);
405 pud = pud_offset(pgd, addr);
342cd0ab
CD
406
407 if (pud_none_or_clear_bad(pud)) {
6060df84 408 pmd = pmd_alloc_one(NULL, addr);
342cd0ab
CD
409 if (!pmd) {
410 kvm_err("Cannot allocate Hyp pmd\n");
411 err = -ENOMEM;
412 goto out;
413 }
414 pud_populate(NULL, pud, pmd);
4f728276 415 get_page(virt_to_page(pud));
5a677ce0 416 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
342cd0ab
CD
417 }
418
419 next = pgd_addr_end(addr, end);
6060df84 420 err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
342cd0ab
CD
421 if (err)
422 goto out;
6060df84 423 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 424 } while (addr = next, addr != end);
342cd0ab
CD
425out:
426 mutex_unlock(&kvm_hyp_pgd_mutex);
427 return err;
428}
429
40c2729b
CD
430static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
431{
432 if (!is_vmalloc_addr(kaddr)) {
433 BUG_ON(!virt_addr_valid(kaddr));
434 return __pa(kaddr);
435 } else {
436 return page_to_phys(vmalloc_to_page(kaddr)) +
437 offset_in_page(kaddr);
438 }
439}
440
342cd0ab 441/**
06e8c3b0 442 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
342cd0ab
CD
443 * @from: The virtual kernel start address of the range
444 * @to: The virtual kernel end address of the range (exclusive)
445 *
06e8c3b0
MZ
446 * The same virtual address as the kernel virtual address is also used
447 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
448 * physical pages.
342cd0ab
CD
449 */
450int create_hyp_mappings(void *from, void *to)
451{
40c2729b
CD
452 phys_addr_t phys_addr;
453 unsigned long virt_addr;
6060df84
MZ
454 unsigned long start = KERN_TO_HYP((unsigned long)from);
455 unsigned long end = KERN_TO_HYP((unsigned long)to);
456
40c2729b
CD
457 start = start & PAGE_MASK;
458 end = PAGE_ALIGN(end);
6060df84 459
40c2729b
CD
460 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
461 int err;
6060df84 462
40c2729b
CD
463 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
464 err = __create_hyp_mappings(hyp_pgd, virt_addr,
465 virt_addr + PAGE_SIZE,
466 __phys_to_pfn(phys_addr),
467 PAGE_HYP);
468 if (err)
469 return err;
470 }
471
472 return 0;
342cd0ab
CD
473}
474
475/**
06e8c3b0
MZ
476 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
477 * @from: The kernel start VA of the range
478 * @to: The kernel end VA of the range (exclusive)
6060df84 479 * @phys_addr: The physical start address which gets mapped
06e8c3b0
MZ
480 *
481 * The resulting HYP VA is the same as the kernel VA, modulo
482 * HYP_PAGE_OFFSET.
342cd0ab 483 */
6060df84 484int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
342cd0ab 485{
6060df84
MZ
486 unsigned long start = KERN_TO_HYP((unsigned long)from);
487 unsigned long end = KERN_TO_HYP((unsigned long)to);
488
489 /* Check for a valid kernel IO mapping */
490 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
491 return -EINVAL;
492
493 return __create_hyp_mappings(hyp_pgd, start, end,
494 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
342cd0ab
CD
495}
496
d5d8184d
CD
497/**
498 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
499 * @kvm: The KVM struct pointer for the VM.
500 *
501 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
502 * support either full 40-bit input addresses or limited to 32-bit input
503 * addresses). Clears the allocated pages.
504 *
505 * Note we don't need locking here as this is only called when the VM is
506 * created, which can only be done once.
507 */
508int kvm_alloc_stage2_pgd(struct kvm *kvm)
509{
510 pgd_t *pgd;
511
512 if (kvm->arch.pgd != NULL) {
513 kvm_err("kvm_arch already initialized?\n");
514 return -EINVAL;
515 }
516
517 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
518 if (!pgd)
519 return -ENOMEM;
520
d5d8184d 521 memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
c62ee2b2 522 kvm_clean_pgd(pgd);
d5d8184d
CD
523 kvm->arch.pgd = pgd;
524
525 return 0;
526}
527
d5d8184d
CD
528/**
529 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
530 * @kvm: The VM pointer
531 * @start: The intermediate physical base address of the range to unmap
532 * @size: The size of the area to unmap
533 *
534 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
535 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
536 * destroying the VM), otherwise another faulting VCPU may come in and mess
537 * with things behind our backs.
538 */
539static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
540{
d4cb9df5 541 unmap_range(kvm, kvm->arch.pgd, start, size);
d5d8184d
CD
542}
543
544/**
545 * kvm_free_stage2_pgd - free all stage-2 tables
546 * @kvm: The KVM struct pointer for the VM.
547 *
548 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
549 * underlying level-2 and level-3 tables before freeing the actual level-1 table
550 * and setting the struct pointer to NULL.
551 *
552 * Note we don't need locking here as this is only called when the VM is
553 * destroyed, which can only be done once.
554 */
555void kvm_free_stage2_pgd(struct kvm *kvm)
556{
557 if (kvm->arch.pgd == NULL)
558 return;
559
560 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
561 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
562 kvm->arch.pgd = NULL;
563}
564
ad361f09
CD
565static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
566 phys_addr_t addr)
d5d8184d
CD
567{
568 pgd_t *pgd;
569 pud_t *pud;
570 pmd_t *pmd;
d5d8184d 571
d5d8184d
CD
572 pgd = kvm->arch.pgd + pgd_index(addr);
573 pud = pud_offset(pgd, addr);
574 if (pud_none(*pud)) {
575 if (!cache)
ad361f09 576 return NULL;
d5d8184d
CD
577 pmd = mmu_memory_cache_alloc(cache);
578 pud_populate(NULL, pud, pmd);
d5d8184d 579 get_page(virt_to_page(pud));
c62ee2b2
MZ
580 }
581
ad361f09
CD
582 return pmd_offset(pud, addr);
583}
584
585static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
586 *cache, phys_addr_t addr, const pmd_t *new_pmd)
587{
588 pmd_t *pmd, old_pmd;
589
590 pmd = stage2_get_pmd(kvm, cache, addr);
591 VM_BUG_ON(!pmd);
d5d8184d 592
ad361f09
CD
593 /*
594 * Mapping in huge pages should only happen through a fault. If a
595 * page is merged into a transparent huge page, the individual
596 * subpages of that huge page should be unmapped through MMU
597 * notifiers before we get here.
598 *
599 * Merging of CompoundPages is not supported; they should become
600 * splitting first, unmapped, merged, and mapped back in on-demand.
601 */
602 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
603
604 old_pmd = *pmd;
605 kvm_set_pmd(pmd, *new_pmd);
606 if (pmd_present(old_pmd))
607 kvm_tlb_flush_vmid_ipa(kvm, addr);
608 else
609 get_page(virt_to_page(pmd));
610 return 0;
611}
612
613static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
614 phys_addr_t addr, const pte_t *new_pte, bool iomap)
615{
616 pmd_t *pmd;
617 pte_t *pte, old_pte;
618
619 /* Create stage-2 page table mapping - Level 1 */
620 pmd = stage2_get_pmd(kvm, cache, addr);
621 if (!pmd) {
622 /*
623 * Ignore calls from kvm_set_spte_hva for unallocated
624 * address ranges.
625 */
626 return 0;
627 }
628
629 /* Create stage-2 page mappings - Level 2 */
d5d8184d
CD
630 if (pmd_none(*pmd)) {
631 if (!cache)
632 return 0; /* ignore calls from kvm_set_spte_hva */
633 pte = mmu_memory_cache_alloc(cache);
c62ee2b2 634 kvm_clean_pte(pte);
d5d8184d 635 pmd_populate_kernel(NULL, pmd, pte);
d5d8184d 636 get_page(virt_to_page(pmd));
c62ee2b2
MZ
637 }
638
639 pte = pte_offset_kernel(pmd, addr);
d5d8184d
CD
640
641 if (iomap && pte_present(*pte))
642 return -EFAULT;
643
644 /* Create 2nd stage page table mapping - Level 3 */
645 old_pte = *pte;
646 kvm_set_pte(pte, *new_pte);
647 if (pte_present(old_pte))
48762767 648 kvm_tlb_flush_vmid_ipa(kvm, addr);
d5d8184d
CD
649 else
650 get_page(virt_to_page(pte));
651
652 return 0;
653}
654
655/**
656 * kvm_phys_addr_ioremap - map a device range to guest IPA
657 *
658 * @kvm: The KVM pointer
659 * @guest_ipa: The IPA at which to insert the mapping
660 * @pa: The physical address of the device
661 * @size: The size of the mapping
662 */
663int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
664 phys_addr_t pa, unsigned long size)
665{
666 phys_addr_t addr, end;
667 int ret = 0;
668 unsigned long pfn;
669 struct kvm_mmu_memory_cache cache = { 0, };
670
671 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
672 pfn = __phys_to_pfn(pa);
673
674 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
c62ee2b2 675 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
d5d8184d
CD
676
677 ret = mmu_topup_memory_cache(&cache, 2, 2);
678 if (ret)
679 goto out;
680 spin_lock(&kvm->mmu_lock);
681 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
682 spin_unlock(&kvm->mmu_lock);
683 if (ret)
684 goto out;
685
686 pfn++;
687 }
688
689out:
690 mmu_free_memory_cache(&cache);
691 return ret;
692}
693
9b5fdb97
CD
694static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
695{
696 pfn_t pfn = *pfnp;
697 gfn_t gfn = *ipap >> PAGE_SHIFT;
698
699 if (PageTransCompound(pfn_to_page(pfn))) {
700 unsigned long mask;
701 /*
702 * The address we faulted on is backed by a transparent huge
703 * page. However, because we map the compound huge page and
704 * not the individual tail page, we need to transfer the
705 * refcount to the head page. We have to be careful that the
706 * THP doesn't start to split while we are adjusting the
707 * refcounts.
708 *
709 * We are sure this doesn't happen, because mmu_notifier_retry
710 * was successful and we are holding the mmu_lock, so if this
711 * THP is trying to split, it will be blocked in the mmu
712 * notifier before touching any of the pages, specifically
713 * before being able to call __split_huge_page_refcount().
714 *
715 * We can therefore safely transfer the refcount from PG_tail
716 * to PG_head and switch the pfn from a tail page to the head
717 * page accordingly.
718 */
719 mask = PTRS_PER_PMD - 1;
720 VM_BUG_ON((gfn & mask) != (pfn & mask));
721 if (pfn & mask) {
722 *ipap &= PMD_MASK;
723 kvm_release_pfn_clean(pfn);
724 pfn &= ~mask;
725 kvm_get_pfn(pfn);
726 *pfnp = pfn;
727 }
728
729 return true;
730 }
731
732 return false;
733}
734
94f8e641 735static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
ad361f09 736 struct kvm_memory_slot *memslot,
94f8e641
CD
737 unsigned long fault_status)
738{
94f8e641 739 int ret;
9b5fdb97 740 bool write_fault, writable, hugetlb = false, force_pte = false;
94f8e641 741 unsigned long mmu_seq;
ad361f09
CD
742 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
743 unsigned long hva = gfn_to_hva(vcpu->kvm, gfn);
744 struct kvm *kvm = vcpu->kvm;
94f8e641 745 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
ad361f09
CD
746 struct vm_area_struct *vma;
747 pfn_t pfn;
94f8e641 748
7393b599 749 write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
94f8e641
CD
750 if (fault_status == FSC_PERM && !write_fault) {
751 kvm_err("Unexpected L2 read permission error\n");
752 return -EFAULT;
753 }
754
ad361f09
CD
755 /* Let's check if we will get back a huge page backed by hugetlbfs */
756 down_read(&current->mm->mmap_sem);
757 vma = find_vma_intersection(current->mm, hva, hva + 1);
758 if (is_vm_hugetlb_page(vma)) {
759 hugetlb = true;
760 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
9b5fdb97
CD
761 } else {
762 /*
136d737f
MZ
763 * Pages belonging to memslots that don't have the same
764 * alignment for userspace and IPA cannot be mapped using
765 * block descriptors even if the pages belong to a THP for
766 * the process, because the stage-2 block descriptor will
767 * cover more than a single THP and we loose atomicity for
768 * unmapping, updates, and splits of the THP or other pages
769 * in the stage-2 block range.
9b5fdb97 770 */
136d737f
MZ
771 if ((memslot->userspace_addr & ~PMD_MASK) !=
772 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
9b5fdb97 773 force_pte = true;
ad361f09
CD
774 }
775 up_read(&current->mm->mmap_sem);
776
94f8e641
CD
777 /* We need minimum second+third level pages */
778 ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
779 if (ret)
780 return ret;
781
782 mmu_seq = vcpu->kvm->mmu_notifier_seq;
783 /*
784 * Ensure the read of mmu_notifier_seq happens before we call
785 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
786 * the page we just got a reference to gets unmapped before we have a
787 * chance to grab the mmu_lock, which ensure that if the page gets
788 * unmapped afterwards, the call to kvm_unmap_hva will take it away
789 * from us again properly. This smp_rmb() interacts with the smp_wmb()
790 * in kvm_mmu_notifier_invalidate_<page|range_end>.
791 */
792 smp_rmb();
793
ad361f09 794 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
94f8e641
CD
795 if (is_error_pfn(pfn))
796 return -EFAULT;
797
ad361f09
CD
798 spin_lock(&kvm->mmu_lock);
799 if (mmu_notifier_retry(kvm, mmu_seq))
94f8e641 800 goto out_unlock;
9b5fdb97
CD
801 if (!hugetlb && !force_pte)
802 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
ad361f09
CD
803
804 if (hugetlb) {
805 pmd_t new_pmd = pfn_pmd(pfn, PAGE_S2);
806 new_pmd = pmd_mkhuge(new_pmd);
807 if (writable) {
808 kvm_set_s2pmd_writable(&new_pmd);
809 kvm_set_pfn_dirty(pfn);
810 }
2d58b733 811 coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE);
ad361f09
CD
812 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
813 } else {
814 pte_t new_pte = pfn_pte(pfn, PAGE_S2);
815 if (writable) {
816 kvm_set_s2pte_writable(&new_pte);
817 kvm_set_pfn_dirty(pfn);
818 }
2d58b733 819 coherent_cache_guest_page(vcpu, hva, PAGE_SIZE);
ad361f09 820 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, false);
94f8e641 821 }
ad361f09 822
94f8e641
CD
823
824out_unlock:
ad361f09 825 spin_unlock(&kvm->mmu_lock);
94f8e641 826 kvm_release_pfn_clean(pfn);
ad361f09 827 return ret;
94f8e641
CD
828}
829
830/**
831 * kvm_handle_guest_abort - handles all 2nd stage aborts
832 * @vcpu: the VCPU pointer
833 * @run: the kvm_run structure
834 *
835 * Any abort that gets to the host is almost guaranteed to be caused by a
836 * missing second stage translation table entry, which can mean that either the
837 * guest simply needs more memory and we must allocate an appropriate page or it
838 * can mean that the guest tried to access I/O memory, which is emulated by user
839 * space. The distinction is based on the IPA causing the fault and whether this
840 * memory region has been registered as standard RAM by user space.
841 */
342cd0ab
CD
842int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
843{
94f8e641
CD
844 unsigned long fault_status;
845 phys_addr_t fault_ipa;
846 struct kvm_memory_slot *memslot;
847 bool is_iabt;
848 gfn_t gfn;
849 int ret, idx;
850
52d1dba9 851 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
7393b599 852 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
94f8e641 853
7393b599
MZ
854 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
855 kvm_vcpu_get_hfar(vcpu), fault_ipa);
94f8e641
CD
856
857 /* Check the stage-2 fault is trans. fault or write fault */
1cc287dd 858 fault_status = kvm_vcpu_trap_get_fault(vcpu);
94f8e641 859 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
52d1dba9
MZ
860 kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
861 kvm_vcpu_trap_get_class(vcpu), fault_status);
94f8e641
CD
862 return -EFAULT;
863 }
864
865 idx = srcu_read_lock(&vcpu->kvm->srcu);
866
867 gfn = fault_ipa >> PAGE_SHIFT;
868 if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
869 if (is_iabt) {
870 /* Prefetch Abort on I/O address */
7393b599 871 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
94f8e641
CD
872 ret = 1;
873 goto out_unlock;
874 }
875
876 if (fault_status != FSC_FAULT) {
877 kvm_err("Unsupported fault status on io memory: %#lx\n",
878 fault_status);
879 ret = -EFAULT;
880 goto out_unlock;
881 }
882
cfe3950c
MZ
883 /*
884 * The IPA is reported as [MAX:12], so we need to
885 * complement it with the bottom 12 bits from the
886 * faulting VA. This is always 12 bits, irrespective
887 * of the page size.
888 */
889 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
45e96ea6 890 ret = io_mem_abort(vcpu, run, fault_ipa);
94f8e641
CD
891 goto out_unlock;
892 }
893
894 memslot = gfn_to_memslot(vcpu->kvm, gfn);
94f8e641 895
ad361f09 896 ret = user_mem_abort(vcpu, fault_ipa, memslot, fault_status);
94f8e641
CD
897 if (ret == 0)
898 ret = 1;
899out_unlock:
900 srcu_read_unlock(&vcpu->kvm->srcu, idx);
901 return ret;
342cd0ab
CD
902}
903
d5d8184d
CD
904static void handle_hva_to_gpa(struct kvm *kvm,
905 unsigned long start,
906 unsigned long end,
907 void (*handler)(struct kvm *kvm,
908 gpa_t gpa, void *data),
909 void *data)
910{
911 struct kvm_memslots *slots;
912 struct kvm_memory_slot *memslot;
913
914 slots = kvm_memslots(kvm);
915
916 /* we only care about the pages that the guest sees */
917 kvm_for_each_memslot(memslot, slots) {
918 unsigned long hva_start, hva_end;
919 gfn_t gfn, gfn_end;
920
921 hva_start = max(start, memslot->userspace_addr);
922 hva_end = min(end, memslot->userspace_addr +
923 (memslot->npages << PAGE_SHIFT));
924 if (hva_start >= hva_end)
925 continue;
926
927 /*
928 * {gfn(page) | page intersects with [hva_start, hva_end)} =
929 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
930 */
931 gfn = hva_to_gfn_memslot(hva_start, memslot);
932 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
933
934 for (; gfn < gfn_end; ++gfn) {
935 gpa_t gpa = gfn << PAGE_SHIFT;
936 handler(kvm, gpa, data);
937 }
938 }
939}
940
941static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
942{
943 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
d5d8184d
CD
944}
945
946int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
947{
948 unsigned long end = hva + PAGE_SIZE;
949
950 if (!kvm->arch.pgd)
951 return 0;
952
953 trace_kvm_unmap_hva(hva);
954 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
955 return 0;
956}
957
958int kvm_unmap_hva_range(struct kvm *kvm,
959 unsigned long start, unsigned long end)
960{
961 if (!kvm->arch.pgd)
962 return 0;
963
964 trace_kvm_unmap_hva_range(start, end);
965 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
966 return 0;
967}
968
969static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
970{
971 pte_t *pte = (pte_t *)data;
972
973 stage2_set_pte(kvm, NULL, gpa, pte, false);
974}
975
976
977void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
978{
979 unsigned long end = hva + PAGE_SIZE;
980 pte_t stage2_pte;
981
982 if (!kvm->arch.pgd)
983 return;
984
985 trace_kvm_set_spte_hva(hva);
986 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
987 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
988}
989
990void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
991{
992 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
993}
994
342cd0ab
CD
995phys_addr_t kvm_mmu_get_httbr(void)
996{
342cd0ab
CD
997 return virt_to_phys(hyp_pgd);
998}
999
5a677ce0
MZ
1000phys_addr_t kvm_mmu_get_boot_httbr(void)
1001{
1002 return virt_to_phys(boot_hyp_pgd);
1003}
1004
1005phys_addr_t kvm_get_idmap_vector(void)
1006{
1007 return hyp_idmap_vector;
1008}
1009
342cd0ab
CD
1010int kvm_mmu_init(void)
1011{
2fb41059
MZ
1012 int err;
1013
4fda342c
SS
1014 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1015 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1016 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
5a677ce0
MZ
1017
1018 if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
1019 /*
1020 * Our init code is crossing a page boundary. Allocate
1021 * a bounce page, copy the code over and use that.
1022 */
1023 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
1024 phys_addr_t phys_base;
1025
1026 init_bounce_page = kmalloc(PAGE_SIZE, GFP_KERNEL);
1027 if (!init_bounce_page) {
1028 kvm_err("Couldn't allocate HYP init bounce page\n");
1029 err = -ENOMEM;
1030 goto out;
1031 }
1032
1033 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
1034 /*
1035 * Warning: the code we just copied to the bounce page
1036 * must be flushed to the point of coherency.
1037 * Otherwise, the data may be sitting in L2, and HYP
1038 * mode won't be able to observe it as it runs with
1039 * caches off at that point.
1040 */
1041 kvm_flush_dcache_to_poc(init_bounce_page, len);
1042
4fda342c 1043 phys_base = kvm_virt_to_phys(init_bounce_page);
5a677ce0
MZ
1044 hyp_idmap_vector += phys_base - hyp_idmap_start;
1045 hyp_idmap_start = phys_base;
1046 hyp_idmap_end = phys_base + len;
1047
1048 kvm_info("Using HYP init bounce page @%lx\n",
1049 (unsigned long)phys_base);
1050 }
1051
2fb41059 1052 hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
5a677ce0
MZ
1053 boot_hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
1054 if (!hyp_pgd || !boot_hyp_pgd) {
d5d8184d 1055 kvm_err("Hyp mode PGD not allocated\n");
2fb41059
MZ
1056 err = -ENOMEM;
1057 goto out;
1058 }
1059
1060 /* Create the idmap in the boot page tables */
1061 err = __create_hyp_mappings(boot_hyp_pgd,
1062 hyp_idmap_start, hyp_idmap_end,
1063 __phys_to_pfn(hyp_idmap_start),
1064 PAGE_HYP);
1065
1066 if (err) {
1067 kvm_err("Failed to idmap %lx-%lx\n",
1068 hyp_idmap_start, hyp_idmap_end);
1069 goto out;
d5d8184d
CD
1070 }
1071
5a677ce0
MZ
1072 /* Map the very same page at the trampoline VA */
1073 err = __create_hyp_mappings(boot_hyp_pgd,
1074 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1075 __phys_to_pfn(hyp_idmap_start),
1076 PAGE_HYP);
1077 if (err) {
1078 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1079 TRAMPOLINE_VA);
1080 goto out;
1081 }
1082
1083 /* Map the same page again into the runtime page tables */
1084 err = __create_hyp_mappings(hyp_pgd,
1085 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1086 __phys_to_pfn(hyp_idmap_start),
1087 PAGE_HYP);
1088 if (err) {
1089 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1090 TRAMPOLINE_VA);
1091 goto out;
1092 }
1093
d5d8184d 1094 return 0;
2fb41059 1095out:
4f728276 1096 free_hyp_pgds();
2fb41059 1097 return err;
342cd0ab 1098}