]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm/kvm/mmu.c
ARM: KVM: prevent NULL pointer dereferences with KVM VCPU ioctl
[mirror_ubuntu-artful-kernel.git] / arch / arm / kvm / mmu.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
342cd0ab
CD
18
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
45e96ea6 22#include <trace/events/kvm.h>
342cd0ab 23#include <asm/pgalloc.h>
94f8e641 24#include <asm/cacheflush.h>
342cd0ab
CD
25#include <asm/kvm_arm.h>
26#include <asm/kvm_mmu.h>
45e96ea6 27#include <asm/kvm_mmio.h>
d5d8184d 28#include <asm/kvm_asm.h>
94f8e641 29#include <asm/kvm_emulate.h>
d5d8184d
CD
30
31#include "trace.h"
342cd0ab
CD
32
33extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
34
5a677ce0 35static pgd_t *boot_hyp_pgd;
2fb41059 36static pgd_t *hyp_pgd;
342cd0ab
CD
37static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
38
5a677ce0
MZ
39static void *init_bounce_page;
40static unsigned long hyp_idmap_start;
41static unsigned long hyp_idmap_end;
42static phys_addr_t hyp_idmap_vector;
43
48762767 44static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
d5d8184d 45{
48762767 46 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
d5d8184d
CD
47}
48
d5d8184d
CD
49static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
50 int min, int max)
51{
52 void *page;
53
54 BUG_ON(max > KVM_NR_MEM_OBJS);
55 if (cache->nobjs >= min)
56 return 0;
57 while (cache->nobjs < max) {
58 page = (void *)__get_free_page(PGALLOC_GFP);
59 if (!page)
60 return -ENOMEM;
61 cache->objects[cache->nobjs++] = page;
62 }
63 return 0;
64}
65
66static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
67{
68 while (mc->nobjs)
69 free_page((unsigned long)mc->objects[--mc->nobjs]);
70}
71
72static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
73{
74 void *p;
75
76 BUG_ON(!mc || !mc->nobjs);
77 p = mc->objects[--mc->nobjs];
78 return p;
79}
80
4f728276 81static void clear_pud_entry(pud_t *pud)
342cd0ab 82{
4f728276
MZ
83 pmd_t *pmd_table = pmd_offset(pud, 0);
84 pud_clear(pud);
85 pmd_free(NULL, pmd_table);
86 put_page(virt_to_page(pud));
87}
342cd0ab 88
4f728276
MZ
89static void clear_pmd_entry(pmd_t *pmd)
90{
91 pte_t *pte_table = pte_offset_kernel(pmd, 0);
92 pmd_clear(pmd);
93 pte_free_kernel(NULL, pte_table);
94 put_page(virt_to_page(pmd));
95}
96
97static bool pmd_empty(pmd_t *pmd)
98{
99 struct page *pmd_page = virt_to_page(pmd);
100 return page_count(pmd_page) == 1;
101}
102
103static void clear_pte_entry(pte_t *pte)
104{
105 if (pte_present(*pte)) {
106 kvm_set_pte(pte, __pte(0));
107 put_page(virt_to_page(pte));
342cd0ab
CD
108 }
109}
110
4f728276
MZ
111static bool pte_empty(pte_t *pte)
112{
113 struct page *pte_page = virt_to_page(pte);
114 return page_count(pte_page) == 1;
115}
116
117static void unmap_range(pgd_t *pgdp, unsigned long long start, u64 size)
000d3996
MZ
118{
119 pgd_t *pgd;
120 pud_t *pud;
121 pmd_t *pmd;
4f728276
MZ
122 pte_t *pte;
123 unsigned long long addr = start, end = start + size;
124 u64 range;
000d3996 125
4f728276
MZ
126 while (addr < end) {
127 pgd = pgdp + pgd_index(addr);
128 pud = pud_offset(pgd, addr);
129 if (pud_none(*pud)) {
130 addr += PUD_SIZE;
131 continue;
132 }
000d3996 133
4f728276
MZ
134 pmd = pmd_offset(pud, addr);
135 if (pmd_none(*pmd)) {
136 addr += PMD_SIZE;
137 continue;
138 }
000d3996 139
4f728276
MZ
140 pte = pte_offset_kernel(pmd, addr);
141 clear_pte_entry(pte);
142 range = PAGE_SIZE;
143
144 /* If we emptied the pte, walk back up the ladder */
145 if (pte_empty(pte)) {
146 clear_pmd_entry(pmd);
147 range = PMD_SIZE;
148 if (pmd_empty(pmd)) {
149 clear_pud_entry(pud);
150 range = PUD_SIZE;
151 }
152 }
153
154 addr += range;
155 }
000d3996
MZ
156}
157
d157f4a5
MZ
158/**
159 * free_boot_hyp_pgd - free HYP boot page tables
160 *
161 * Free the HYP boot page tables. The bounce page is also freed.
162 */
163void free_boot_hyp_pgd(void)
164{
165 mutex_lock(&kvm_hyp_pgd_mutex);
166
167 if (boot_hyp_pgd) {
168 unmap_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
169 unmap_range(boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
170 kfree(boot_hyp_pgd);
171 boot_hyp_pgd = NULL;
172 }
173
174 if (hyp_pgd)
175 unmap_range(hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
176
177 kfree(init_bounce_page);
178 init_bounce_page = NULL;
179
180 mutex_unlock(&kvm_hyp_pgd_mutex);
181}
182
342cd0ab 183/**
4f728276 184 * free_hyp_pgds - free Hyp-mode page tables
342cd0ab 185 *
5a677ce0
MZ
186 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
187 * therefore contains either mappings in the kernel memory area (above
188 * PAGE_OFFSET), or device mappings in the vmalloc range (from
189 * VMALLOC_START to VMALLOC_END).
190 *
191 * boot_hyp_pgd should only map two pages for the init code.
342cd0ab 192 */
4f728276 193void free_hyp_pgds(void)
342cd0ab 194{
342cd0ab
CD
195 unsigned long addr;
196
d157f4a5 197 free_boot_hyp_pgd();
4f728276 198
d157f4a5 199 mutex_lock(&kvm_hyp_pgd_mutex);
5a677ce0 200
4f728276
MZ
201 if (hyp_pgd) {
202 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
203 unmap_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
204 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
205 unmap_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
206 kfree(hyp_pgd);
d157f4a5 207 hyp_pgd = NULL;
4f728276
MZ
208 }
209
342cd0ab
CD
210 mutex_unlock(&kvm_hyp_pgd_mutex);
211}
212
213static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
6060df84
MZ
214 unsigned long end, unsigned long pfn,
215 pgprot_t prot)
342cd0ab
CD
216{
217 pte_t *pte;
218 unsigned long addr;
342cd0ab 219
3562c76d
MZ
220 addr = start;
221 do {
6060df84
MZ
222 pte = pte_offset_kernel(pmd, addr);
223 kvm_set_pte(pte, pfn_pte(pfn, prot));
4f728276 224 get_page(virt_to_page(pte));
5a677ce0 225 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
6060df84 226 pfn++;
3562c76d 227 } while (addr += PAGE_SIZE, addr != end);
342cd0ab
CD
228}
229
230static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
6060df84
MZ
231 unsigned long end, unsigned long pfn,
232 pgprot_t prot)
342cd0ab
CD
233{
234 pmd_t *pmd;
235 pte_t *pte;
236 unsigned long addr, next;
237
3562c76d
MZ
238 addr = start;
239 do {
6060df84 240 pmd = pmd_offset(pud, addr);
342cd0ab
CD
241
242 BUG_ON(pmd_sect(*pmd));
243
244 if (pmd_none(*pmd)) {
6060df84 245 pte = pte_alloc_one_kernel(NULL, addr);
342cd0ab
CD
246 if (!pte) {
247 kvm_err("Cannot allocate Hyp pte\n");
248 return -ENOMEM;
249 }
250 pmd_populate_kernel(NULL, pmd, pte);
4f728276 251 get_page(virt_to_page(pmd));
5a677ce0 252 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
342cd0ab
CD
253 }
254
255 next = pmd_addr_end(addr, end);
256
6060df84
MZ
257 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
258 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 259 } while (addr = next, addr != end);
342cd0ab
CD
260
261 return 0;
262}
263
6060df84
MZ
264static int __create_hyp_mappings(pgd_t *pgdp,
265 unsigned long start, unsigned long end,
266 unsigned long pfn, pgprot_t prot)
342cd0ab 267{
342cd0ab
CD
268 pgd_t *pgd;
269 pud_t *pud;
270 pmd_t *pmd;
271 unsigned long addr, next;
272 int err = 0;
273
342cd0ab 274 mutex_lock(&kvm_hyp_pgd_mutex);
3562c76d
MZ
275 addr = start & PAGE_MASK;
276 end = PAGE_ALIGN(end);
277 do {
6060df84
MZ
278 pgd = pgdp + pgd_index(addr);
279 pud = pud_offset(pgd, addr);
342cd0ab
CD
280
281 if (pud_none_or_clear_bad(pud)) {
6060df84 282 pmd = pmd_alloc_one(NULL, addr);
342cd0ab
CD
283 if (!pmd) {
284 kvm_err("Cannot allocate Hyp pmd\n");
285 err = -ENOMEM;
286 goto out;
287 }
288 pud_populate(NULL, pud, pmd);
4f728276 289 get_page(virt_to_page(pud));
5a677ce0 290 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
342cd0ab
CD
291 }
292
293 next = pgd_addr_end(addr, end);
6060df84 294 err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
342cd0ab
CD
295 if (err)
296 goto out;
6060df84 297 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 298 } while (addr = next, addr != end);
342cd0ab
CD
299out:
300 mutex_unlock(&kvm_hyp_pgd_mutex);
301 return err;
302}
303
304/**
06e8c3b0 305 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
342cd0ab
CD
306 * @from: The virtual kernel start address of the range
307 * @to: The virtual kernel end address of the range (exclusive)
308 *
06e8c3b0
MZ
309 * The same virtual address as the kernel virtual address is also used
310 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
311 * physical pages.
342cd0ab
CD
312 */
313int create_hyp_mappings(void *from, void *to)
314{
6060df84
MZ
315 unsigned long phys_addr = virt_to_phys(from);
316 unsigned long start = KERN_TO_HYP((unsigned long)from);
317 unsigned long end = KERN_TO_HYP((unsigned long)to);
318
319 /* Check for a valid kernel memory mapping */
320 if (!virt_addr_valid(from) || !virt_addr_valid(to - 1))
321 return -EINVAL;
322
323 return __create_hyp_mappings(hyp_pgd, start, end,
324 __phys_to_pfn(phys_addr), PAGE_HYP);
342cd0ab
CD
325}
326
327/**
06e8c3b0
MZ
328 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
329 * @from: The kernel start VA of the range
330 * @to: The kernel end VA of the range (exclusive)
6060df84 331 * @phys_addr: The physical start address which gets mapped
06e8c3b0
MZ
332 *
333 * The resulting HYP VA is the same as the kernel VA, modulo
334 * HYP_PAGE_OFFSET.
342cd0ab 335 */
6060df84 336int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
342cd0ab 337{
6060df84
MZ
338 unsigned long start = KERN_TO_HYP((unsigned long)from);
339 unsigned long end = KERN_TO_HYP((unsigned long)to);
340
341 /* Check for a valid kernel IO mapping */
342 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
343 return -EINVAL;
344
345 return __create_hyp_mappings(hyp_pgd, start, end,
346 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
342cd0ab
CD
347}
348
d5d8184d
CD
349/**
350 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
351 * @kvm: The KVM struct pointer for the VM.
352 *
353 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
354 * support either full 40-bit input addresses or limited to 32-bit input
355 * addresses). Clears the allocated pages.
356 *
357 * Note we don't need locking here as this is only called when the VM is
358 * created, which can only be done once.
359 */
360int kvm_alloc_stage2_pgd(struct kvm *kvm)
361{
362 pgd_t *pgd;
363
364 if (kvm->arch.pgd != NULL) {
365 kvm_err("kvm_arch already initialized?\n");
366 return -EINVAL;
367 }
368
369 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
370 if (!pgd)
371 return -ENOMEM;
372
373 /* stage-2 pgd must be aligned to its size */
374 VM_BUG_ON((unsigned long)pgd & (S2_PGD_SIZE - 1));
375
376 memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
c62ee2b2 377 kvm_clean_pgd(pgd);
d5d8184d
CD
378 kvm->arch.pgd = pgd;
379
380 return 0;
381}
382
d5d8184d
CD
383/**
384 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
385 * @kvm: The VM pointer
386 * @start: The intermediate physical base address of the range to unmap
387 * @size: The size of the area to unmap
388 *
389 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
390 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
391 * destroying the VM), otherwise another faulting VCPU may come in and mess
392 * with things behind our backs.
393 */
394static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
395{
4f728276 396 unmap_range(kvm->arch.pgd, start, size);
d5d8184d
CD
397}
398
399/**
400 * kvm_free_stage2_pgd - free all stage-2 tables
401 * @kvm: The KVM struct pointer for the VM.
402 *
403 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
404 * underlying level-2 and level-3 tables before freeing the actual level-1 table
405 * and setting the struct pointer to NULL.
406 *
407 * Note we don't need locking here as this is only called when the VM is
408 * destroyed, which can only be done once.
409 */
410void kvm_free_stage2_pgd(struct kvm *kvm)
411{
412 if (kvm->arch.pgd == NULL)
413 return;
414
415 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
416 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
417 kvm->arch.pgd = NULL;
418}
419
420
421static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
422 phys_addr_t addr, const pte_t *new_pte, bool iomap)
423{
424 pgd_t *pgd;
425 pud_t *pud;
426 pmd_t *pmd;
427 pte_t *pte, old_pte;
428
429 /* Create 2nd stage page table mapping - Level 1 */
430 pgd = kvm->arch.pgd + pgd_index(addr);
431 pud = pud_offset(pgd, addr);
432 if (pud_none(*pud)) {
433 if (!cache)
434 return 0; /* ignore calls from kvm_set_spte_hva */
435 pmd = mmu_memory_cache_alloc(cache);
436 pud_populate(NULL, pud, pmd);
d5d8184d 437 get_page(virt_to_page(pud));
c62ee2b2
MZ
438 }
439
440 pmd = pmd_offset(pud, addr);
d5d8184d
CD
441
442 /* Create 2nd stage page table mapping - Level 2 */
443 if (pmd_none(*pmd)) {
444 if (!cache)
445 return 0; /* ignore calls from kvm_set_spte_hva */
446 pte = mmu_memory_cache_alloc(cache);
c62ee2b2 447 kvm_clean_pte(pte);
d5d8184d 448 pmd_populate_kernel(NULL, pmd, pte);
d5d8184d 449 get_page(virt_to_page(pmd));
c62ee2b2
MZ
450 }
451
452 pte = pte_offset_kernel(pmd, addr);
d5d8184d
CD
453
454 if (iomap && pte_present(*pte))
455 return -EFAULT;
456
457 /* Create 2nd stage page table mapping - Level 3 */
458 old_pte = *pte;
459 kvm_set_pte(pte, *new_pte);
460 if (pte_present(old_pte))
48762767 461 kvm_tlb_flush_vmid_ipa(kvm, addr);
d5d8184d
CD
462 else
463 get_page(virt_to_page(pte));
464
465 return 0;
466}
467
468/**
469 * kvm_phys_addr_ioremap - map a device range to guest IPA
470 *
471 * @kvm: The KVM pointer
472 * @guest_ipa: The IPA at which to insert the mapping
473 * @pa: The physical address of the device
474 * @size: The size of the mapping
475 */
476int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
477 phys_addr_t pa, unsigned long size)
478{
479 phys_addr_t addr, end;
480 int ret = 0;
481 unsigned long pfn;
482 struct kvm_mmu_memory_cache cache = { 0, };
483
484 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
485 pfn = __phys_to_pfn(pa);
486
487 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
c62ee2b2
MZ
488 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
489 kvm_set_s2pte_writable(&pte);
d5d8184d
CD
490
491 ret = mmu_topup_memory_cache(&cache, 2, 2);
492 if (ret)
493 goto out;
494 spin_lock(&kvm->mmu_lock);
495 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
496 spin_unlock(&kvm->mmu_lock);
497 if (ret)
498 goto out;
499
500 pfn++;
501 }
502
503out:
504 mmu_free_memory_cache(&cache);
505 return ret;
506}
507
94f8e641
CD
508static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
509 gfn_t gfn, struct kvm_memory_slot *memslot,
510 unsigned long fault_status)
511{
512 pte_t new_pte;
513 pfn_t pfn;
514 int ret;
515 bool write_fault, writable;
516 unsigned long mmu_seq;
517 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
518
7393b599 519 write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
94f8e641
CD
520 if (fault_status == FSC_PERM && !write_fault) {
521 kvm_err("Unexpected L2 read permission error\n");
522 return -EFAULT;
523 }
524
525 /* We need minimum second+third level pages */
526 ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
527 if (ret)
528 return ret;
529
530 mmu_seq = vcpu->kvm->mmu_notifier_seq;
531 /*
532 * Ensure the read of mmu_notifier_seq happens before we call
533 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
534 * the page we just got a reference to gets unmapped before we have a
535 * chance to grab the mmu_lock, which ensure that if the page gets
536 * unmapped afterwards, the call to kvm_unmap_hva will take it away
537 * from us again properly. This smp_rmb() interacts with the smp_wmb()
538 * in kvm_mmu_notifier_invalidate_<page|range_end>.
539 */
540 smp_rmb();
541
542 pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable);
543 if (is_error_pfn(pfn))
544 return -EFAULT;
545
546 new_pte = pfn_pte(pfn, PAGE_S2);
547 coherent_icache_guest_page(vcpu->kvm, gfn);
548
549 spin_lock(&vcpu->kvm->mmu_lock);
550 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
551 goto out_unlock;
552 if (writable) {
c62ee2b2 553 kvm_set_s2pte_writable(&new_pte);
94f8e641
CD
554 kvm_set_pfn_dirty(pfn);
555 }
556 stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false);
557
558out_unlock:
559 spin_unlock(&vcpu->kvm->mmu_lock);
560 kvm_release_pfn_clean(pfn);
561 return 0;
562}
563
564/**
565 * kvm_handle_guest_abort - handles all 2nd stage aborts
566 * @vcpu: the VCPU pointer
567 * @run: the kvm_run structure
568 *
569 * Any abort that gets to the host is almost guaranteed to be caused by a
570 * missing second stage translation table entry, which can mean that either the
571 * guest simply needs more memory and we must allocate an appropriate page or it
572 * can mean that the guest tried to access I/O memory, which is emulated by user
573 * space. The distinction is based on the IPA causing the fault and whether this
574 * memory region has been registered as standard RAM by user space.
575 */
342cd0ab
CD
576int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
577{
94f8e641
CD
578 unsigned long fault_status;
579 phys_addr_t fault_ipa;
580 struct kvm_memory_slot *memslot;
581 bool is_iabt;
582 gfn_t gfn;
583 int ret, idx;
584
52d1dba9 585 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
7393b599 586 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
94f8e641 587
7393b599
MZ
588 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
589 kvm_vcpu_get_hfar(vcpu), fault_ipa);
94f8e641
CD
590
591 /* Check the stage-2 fault is trans. fault or write fault */
1cc287dd 592 fault_status = kvm_vcpu_trap_get_fault(vcpu);
94f8e641 593 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
52d1dba9
MZ
594 kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
595 kvm_vcpu_trap_get_class(vcpu), fault_status);
94f8e641
CD
596 return -EFAULT;
597 }
598
599 idx = srcu_read_lock(&vcpu->kvm->srcu);
600
601 gfn = fault_ipa >> PAGE_SHIFT;
602 if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
603 if (is_iabt) {
604 /* Prefetch Abort on I/O address */
7393b599 605 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
94f8e641
CD
606 ret = 1;
607 goto out_unlock;
608 }
609
610 if (fault_status != FSC_FAULT) {
611 kvm_err("Unsupported fault status on io memory: %#lx\n",
612 fault_status);
613 ret = -EFAULT;
614 goto out_unlock;
615 }
616
cfe3950c
MZ
617 /*
618 * The IPA is reported as [MAX:12], so we need to
619 * complement it with the bottom 12 bits from the
620 * faulting VA. This is always 12 bits, irrespective
621 * of the page size.
622 */
623 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
45e96ea6 624 ret = io_mem_abort(vcpu, run, fault_ipa);
94f8e641
CD
625 goto out_unlock;
626 }
627
628 memslot = gfn_to_memslot(vcpu->kvm, gfn);
94f8e641
CD
629
630 ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status);
631 if (ret == 0)
632 ret = 1;
633out_unlock:
634 srcu_read_unlock(&vcpu->kvm->srcu, idx);
635 return ret;
342cd0ab
CD
636}
637
d5d8184d
CD
638static void handle_hva_to_gpa(struct kvm *kvm,
639 unsigned long start,
640 unsigned long end,
641 void (*handler)(struct kvm *kvm,
642 gpa_t gpa, void *data),
643 void *data)
644{
645 struct kvm_memslots *slots;
646 struct kvm_memory_slot *memslot;
647
648 slots = kvm_memslots(kvm);
649
650 /* we only care about the pages that the guest sees */
651 kvm_for_each_memslot(memslot, slots) {
652 unsigned long hva_start, hva_end;
653 gfn_t gfn, gfn_end;
654
655 hva_start = max(start, memslot->userspace_addr);
656 hva_end = min(end, memslot->userspace_addr +
657 (memslot->npages << PAGE_SHIFT));
658 if (hva_start >= hva_end)
659 continue;
660
661 /*
662 * {gfn(page) | page intersects with [hva_start, hva_end)} =
663 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
664 */
665 gfn = hva_to_gfn_memslot(hva_start, memslot);
666 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
667
668 for (; gfn < gfn_end; ++gfn) {
669 gpa_t gpa = gfn << PAGE_SHIFT;
670 handler(kvm, gpa, data);
671 }
672 }
673}
674
675static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
676{
677 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
48762767 678 kvm_tlb_flush_vmid_ipa(kvm, gpa);
d5d8184d
CD
679}
680
681int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
682{
683 unsigned long end = hva + PAGE_SIZE;
684
685 if (!kvm->arch.pgd)
686 return 0;
687
688 trace_kvm_unmap_hva(hva);
689 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
690 return 0;
691}
692
693int kvm_unmap_hva_range(struct kvm *kvm,
694 unsigned long start, unsigned long end)
695{
696 if (!kvm->arch.pgd)
697 return 0;
698
699 trace_kvm_unmap_hva_range(start, end);
700 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
701 return 0;
702}
703
704static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
705{
706 pte_t *pte = (pte_t *)data;
707
708 stage2_set_pte(kvm, NULL, gpa, pte, false);
709}
710
711
712void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
713{
714 unsigned long end = hva + PAGE_SIZE;
715 pte_t stage2_pte;
716
717 if (!kvm->arch.pgd)
718 return;
719
720 trace_kvm_set_spte_hva(hva);
721 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
722 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
723}
724
725void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
726{
727 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
728}
729
342cd0ab
CD
730phys_addr_t kvm_mmu_get_httbr(void)
731{
342cd0ab
CD
732 return virt_to_phys(hyp_pgd);
733}
734
5a677ce0
MZ
735phys_addr_t kvm_mmu_get_boot_httbr(void)
736{
737 return virt_to_phys(boot_hyp_pgd);
738}
739
740phys_addr_t kvm_get_idmap_vector(void)
741{
742 return hyp_idmap_vector;
743}
744
342cd0ab
CD
745int kvm_mmu_init(void)
746{
2fb41059
MZ
747 int err;
748
5a677ce0
MZ
749 hyp_idmap_start = virt_to_phys(__hyp_idmap_text_start);
750 hyp_idmap_end = virt_to_phys(__hyp_idmap_text_end);
751 hyp_idmap_vector = virt_to_phys(__kvm_hyp_init);
752
753 if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
754 /*
755 * Our init code is crossing a page boundary. Allocate
756 * a bounce page, copy the code over and use that.
757 */
758 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
759 phys_addr_t phys_base;
760
761 init_bounce_page = kmalloc(PAGE_SIZE, GFP_KERNEL);
762 if (!init_bounce_page) {
763 kvm_err("Couldn't allocate HYP init bounce page\n");
764 err = -ENOMEM;
765 goto out;
766 }
767
768 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
769 /*
770 * Warning: the code we just copied to the bounce page
771 * must be flushed to the point of coherency.
772 * Otherwise, the data may be sitting in L2, and HYP
773 * mode won't be able to observe it as it runs with
774 * caches off at that point.
775 */
776 kvm_flush_dcache_to_poc(init_bounce_page, len);
777
778 phys_base = virt_to_phys(init_bounce_page);
779 hyp_idmap_vector += phys_base - hyp_idmap_start;
780 hyp_idmap_start = phys_base;
781 hyp_idmap_end = phys_base + len;
782
783 kvm_info("Using HYP init bounce page @%lx\n",
784 (unsigned long)phys_base);
785 }
786
2fb41059 787 hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
5a677ce0
MZ
788 boot_hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
789 if (!hyp_pgd || !boot_hyp_pgd) {
d5d8184d 790 kvm_err("Hyp mode PGD not allocated\n");
2fb41059
MZ
791 err = -ENOMEM;
792 goto out;
793 }
794
795 /* Create the idmap in the boot page tables */
796 err = __create_hyp_mappings(boot_hyp_pgd,
797 hyp_idmap_start, hyp_idmap_end,
798 __phys_to_pfn(hyp_idmap_start),
799 PAGE_HYP);
800
801 if (err) {
802 kvm_err("Failed to idmap %lx-%lx\n",
803 hyp_idmap_start, hyp_idmap_end);
804 goto out;
d5d8184d
CD
805 }
806
5a677ce0
MZ
807 /* Map the very same page at the trampoline VA */
808 err = __create_hyp_mappings(boot_hyp_pgd,
809 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
810 __phys_to_pfn(hyp_idmap_start),
811 PAGE_HYP);
812 if (err) {
813 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
814 TRAMPOLINE_VA);
815 goto out;
816 }
817
818 /* Map the same page again into the runtime page tables */
819 err = __create_hyp_mappings(hyp_pgd,
820 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
821 __phys_to_pfn(hyp_idmap_start),
822 PAGE_HYP);
823 if (err) {
824 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
825 TRAMPOLINE_VA);
826 goto out;
827 }
828
d5d8184d 829 return 0;
2fb41059 830out:
4f728276 831 free_hyp_pgds();
2fb41059 832 return err;
342cd0ab 833}