]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/arm/mach-bcm/platsmp.c
Merge tag 'acpi-extra-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / arch / arm / mach-bcm / platsmp.c
CommitLineData
9a5a110e 1/*
84320e1a 2 * Copyright (C) 2014-2015 Broadcom Corporation
9a5a110e
AE
3 * Copyright 2014 Linaro Limited
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
8 *
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
97890821
KH
15#include <linux/cpumask.h>
16#include <linux/delay.h>
9a5a110e 17#include <linux/errno.h>
97890821 18#include <linux/init.h>
9a5a110e 19#include <linux/io.h>
97890821 20#include <linux/jiffies.h>
9a5a110e 21#include <linux/of.h>
5fcf999a 22#include <linux/of_address.h>
9a5a110e 23#include <linux/sched.h>
97890821 24#include <linux/smp.h>
9a5a110e 25
97890821 26#include <asm/cacheflush.h>
9a5a110e
AE
27#include <asm/smp.h>
28#include <asm/smp_plat.h>
29#include <asm/smp_scu.h>
30
31/* Size of mapped Cortex A9 SCU address space */
32#define CORTEX_A9_SCU_SIZE 0x58
33
34#define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
35#define BOOT_ADDR_CPUID_MASK 0x3
36
37/* Name of device node property defining secondary boot register location */
38#define OF_SECONDARY_BOOT "secondary-boot-reg"
84320e1a 39#define MPIDR_CPUID_BITMASK 0x3
9a5a110e 40
9a5a110e
AE
41/*
42 * Enable the Cortex A9 Snoop Control Unit
43 *
44 * By the time this is called we already know there are multiple
45 * cores present. We assume we're running on a Cortex A9 processor,
46 * so any trouble getting the base address register or getting the
47 * SCU base is a problem.
48 *
49 * Return 0 if successful or an error code otherwise.
50 */
51static int __init scu_a9_enable(void)
52{
53 unsigned long config_base;
54 void __iomem *scu_base;
55
56 if (!scu_a9_has_base()) {
57 pr_err("no configuration base address register!\n");
58 return -ENXIO;
59 }
60
61 /* Config base address register value is zero for uniprocessor */
62 config_base = scu_a9_get_base();
63 if (!config_base) {
64 pr_err("hardware reports only one core\n");
65 return -ENOENT;
66 }
67
68 scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
69 if (!scu_base) {
70 pr_err("failed to remap config base (%lu/%u) for SCU\n",
71 config_base, CORTEX_A9_SCU_SIZE);
72 return -ENOMEM;
73 }
74
75 scu_enable(scu_base);
76
77 iounmap(scu_base); /* That's the last we'll need of this */
78
79 return 0;
80}
81
6585cb5a
CB
82static u32 secondary_boot_addr_for(unsigned int cpu)
83{
84 u32 secondary_boot_addr = 0;
85 struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
86
87 if (!cpu_node) {
88 pr_err("Failed to find device tree node for CPU%u\n", cpu);
89 return 0;
90 }
91
92 if (of_property_read_u32(cpu_node,
93 OF_SECONDARY_BOOT,
94 &secondary_boot_addr))
95 pr_err("required secondary boot register not specified for CPU%u\n",
96 cpu);
97
98 of_node_put(cpu_node);
99
100 return secondary_boot_addr;
101}
102
103static int nsp_write_lut(unsigned int cpu)
97890821
KH
104{
105 void __iomem *sku_rom_lut;
106 phys_addr_t secondary_startup_phy;
6585cb5a 107 const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
97890821 108
6585cb5a 109 if (!secondary_boot_addr)
97890821 110 return -EINVAL;
97890821
KH
111
112 sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
6585cb5a 113 sizeof(phys_addr_t));
97890821 114 if (!sku_rom_lut) {
6585cb5a 115 pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
97890821
KH
116 return -ENOMEM;
117 }
118
119 secondary_startup_phy = virt_to_phys(secondary_startup);
120 BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
121
122 writel_relaxed(secondary_startup_phy, sku_rom_lut);
123
124 /* Ensure the write is visible to the secondary core */
125 smp_wmb();
126
127 iounmap(sku_rom_lut);
128
129 return 0;
130}
131
9a5a110e
AE
132static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
133{
6585cb5a 134 const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
84320e1a 135
6585cb5a
CB
136 /* Enable the SCU on Cortex A9 based SoCs */
137 if (scu_a9_enable()) {
9a5a110e 138 /* Update the CPU present map to reflect uniprocessor mode */
6585cb5a 139 pr_warn("failed to enable A9 SCU - disabling SMP\n");
9a5a110e
AE
140 init_cpu_present(&only_cpu_0);
141 }
142}
143
144/*
145 * The ROM code has the secondary cores looping, waiting for an event.
146 * When an event occurs each core examines the bottom two bits of the
147 * secondary boot register. When a core finds those bits contain its
148 * own core id, it performs initialization, including computing its boot
149 * address by clearing the boot register value's bottom two bits. The
150 * core signals that it is beginning its execution by writing its boot
151 * address back to the secondary boot register, and finally jumps to
152 * that address.
153 *
154 * So to start a core executing we need to:
155 * - Encode the (hardware) CPU id with the bottom bits of the secondary
156 * start address.
157 * - Write that value into the secondary boot register.
158 * - Generate an event to wake up the secondary CPU(s).
159 * - Wait for the secondary boot register to be re-written, which
160 * indicates the secondary core has started.
161 */
84320e1a 162static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
9a5a110e
AE
163{
164 void __iomem *boot_reg;
165 phys_addr_t boot_func;
166 u64 start_clock;
167 u32 cpu_id;
168 u32 boot_val;
169 bool timeout = false;
6585cb5a 170 const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
9a5a110e
AE
171
172 cpu_id = cpu_logical_map(cpu);
173 if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
174 pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
175 return -EINVAL;
176 }
177
6585cb5a 178 if (!secondary_boot_addr)
9a5a110e 179 return -EINVAL;
9a5a110e 180
6585cb5a
CB
181 boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr,
182 sizeof(phys_addr_t));
9a5a110e
AE
183 if (!boot_reg) {
184 pr_err("unable to map boot register for cpu %u\n", cpu_id);
84320e1a 185 return -ENOMEM;
9a5a110e
AE
186 }
187
188 /*
189 * Secondary cores will start in secondary_startup(),
190 * defined in "arch/arm/kernel/head.S"
191 */
192 boot_func = virt_to_phys(secondary_startup);
193 BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
194 BUG_ON(boot_func > (phys_addr_t)U32_MAX);
195
196 /* The core to start is encoded in the low bits */
197 boot_val = (u32)boot_func | cpu_id;
198 writel_relaxed(boot_val, boot_reg);
199
200 sev();
201
202 /* The low bits will be cleared once the core has started */
203 start_clock = local_clock();
204 while (!timeout && readl_relaxed(boot_reg) == boot_val)
205 timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
206
207 iounmap(boot_reg);
208
209 if (!timeout)
210 return 0;
211
212 pr_err("timeout waiting for cpu %u to start\n", cpu_id);
213
84320e1a 214 return -ENXIO;
9a5a110e
AE
215}
216
5fcf999a
CB
217/* Cluster Dormant Control command to bring CPU into a running state */
218#define CDC_CMD 6
219#define CDC_CMD_OFFSET 0
220#define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu))
221
222/*
223 * BCM23550 has a Cluster Dormant Control block that keeps the core in
224 * idle state. A command needs to be sent to the block to bring the CPU
225 * into running state.
226 */
227static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
228{
229 void __iomem *cdc_base;
230 struct device_node *dn;
231 char *name;
232 int ret;
233
234 /* Make sure a CDC node exists before booting the
235 * secondary core.
236 */
237 name = "brcm,bcm23550-cdc";
238 dn = of_find_compatible_node(NULL, NULL, name);
239 if (!dn) {
240 pr_err("unable to find cdc node\n");
241 return -ENODEV;
242 }
243
244 cdc_base = of_iomap(dn, 0);
245 of_node_put(dn);
246
247 if (!cdc_base) {
248 pr_err("unable to remap cdc base register\n");
249 return -ENOMEM;
250 }
251
252 /* Boot the secondary core */
253 ret = kona_boot_secondary(cpu, idle);
254 if (ret)
255 goto out;
256
257 /* Bring this CPU to RUN state so that nIRQ nFIQ
258 * signals are unblocked.
259 */
260 writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
261
262out:
263 iounmap(cdc_base);
264
265 return ret;
266}
267
97890821
KH
268static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
269{
270 int ret;
271
272 /*
273 * After wake up, secondary core branches to the startup
274 * address programmed at SKU ROM LUT location.
275 */
6585cb5a 276 ret = nsp_write_lut(cpu);
97890821
KH
277 if (ret) {
278 pr_err("unable to write startup addr to SKU ROM LUT\n");
279 goto out;
280 }
281
282 /* Send a CPU wakeup interrupt to the secondary core */
283 arch_send_wakeup_ipi_mask(cpumask_of(cpu));
284
285out:
286 return ret;
287}
288
6585cb5a 289static const struct smp_operations kona_smp_ops __initconst = {
9a5a110e 290 .smp_prepare_cpus = bcm_smp_prepare_cpus,
84320e1a 291 .smp_boot_secondary = kona_boot_secondary,
9a5a110e
AE
292};
293CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
6585cb5a 294 &kona_smp_ops);
97890821 295
5fcf999a
CB
296static const struct smp_operations bcm23550_smp_ops __initconst = {
297 .smp_boot_secondary = bcm23550_boot_secondary,
298};
299CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
300 &bcm23550_smp_ops);
301
9480e085 302static const struct smp_operations nsp_smp_ops __initconst = {
97890821
KH
303 .smp_prepare_cpus = bcm_smp_prepare_cpus,
304 .smp_boot_secondary = nsp_boot_secondary,
305};
306CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);