]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/arm/mach-omap/time.c
[PATCH] ARM: 2798/1: OMAP update 2/11: Change ARM Kconfig to support omap1 and omap2
[mirror_ubuntu-bionic-kernel.git] / arch / arm / mach-omap / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/arm/mach-omap/time.c
3 *
4 * OMAP Timers
5 *
6 * Copyright (C) 2004 Nokia Corporation
b3402cf5 7 * Partial timer rewrite and additional dynamic tick timer support by
1da177e4
LT
8 * Tony Lindgen <tony@atomide.com> and
9 * Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
10 *
11 * MPU timer code based on the older MPU timer code for OMAP
12 * Copyright (C) 2000 RidgeRun, Inc.
13 * Author: Greg Lonnon <glonnon@ridgerun.com>
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
23 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
26 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
27 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36#include <linux/config.h>
37#include <linux/kernel.h>
38#include <linux/init.h>
39#include <linux/delay.h>
40#include <linux/interrupt.h>
41#include <linux/sched.h>
42#include <linux/spinlock.h>
43
44#include <asm/system.h>
45#include <asm/hardware.h>
46#include <asm/io.h>
47#include <asm/leds.h>
48#include <asm/irq.h>
49#include <asm/mach/irq.h>
50#include <asm/mach/time.h>
51
52struct sys_timer omap_timer;
53
54#ifdef CONFIG_OMAP_MPU_TIMER
55
56/*
57 * ---------------------------------------------------------------------------
58 * MPU timer
59 * ---------------------------------------------------------------------------
60 */
61#define OMAP_MPU_TIMER1_BASE (0xfffec500)
62#define OMAP_MPU_TIMER2_BASE (0xfffec600)
63#define OMAP_MPU_TIMER3_BASE (0xfffec700)
64#define OMAP_MPU_TIMER_BASE OMAP_MPU_TIMER1_BASE
65#define OMAP_MPU_TIMER_OFFSET 0x100
66
67#define MPU_TIMER_FREE (1 << 6)
68#define MPU_TIMER_CLOCK_ENABLE (1 << 5)
69#define MPU_TIMER_AR (1 << 1)
70#define MPU_TIMER_ST (1 << 0)
71
72/* cycles to nsec conversions taken from arch/i386/kernel/timers/timer_tsc.c,
73 * converted to use kHz by Kevin Hilman */
74/* convert from cycles(64bits) => nanoseconds (64bits)
75 * basic equation:
76 * ns = cycles / (freq / ns_per_sec)
77 * ns = cycles * (ns_per_sec / freq)
78 * ns = cycles * (10^9 / (cpu_khz * 10^3))
79 * ns = cycles * (10^6 / cpu_khz)
80 *
81 * Then we use scaling math (suggested by george at mvista.com) to get:
82 * ns = cycles * (10^6 * SC / cpu_khz / SC
83 * ns = cycles * cyc2ns_scale / SC
84 *
85 * And since SC is a constant power of two, we can convert the div
86 * into a shift.
87 * -johnstul at us.ibm.com "math is hard, lets go shopping!"
88 */
89static unsigned long cyc2ns_scale;
90#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
91
92static inline void set_cyc2ns_scale(unsigned long cpu_khz)
93{
94 cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
95}
96
97static inline unsigned long long cycles_2_ns(unsigned long long cyc)
98{
99 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
100}
101
102/*
103 * MPU_TICKS_PER_SEC must be an even number, otherwise machinecycles_to_usecs
104 * will break. On P2, the timer count rate is 6.5 MHz after programming PTV
105 * with 0. This divides the 13MHz input by 2, and is undocumented.
106 */
107#ifdef CONFIG_MACH_OMAP_PERSEUS2
108/* REVISIT: This ifdef construct should be replaced by a query to clock
109 * framework to see if timer base frequency is 12.0, 13.0 or 19.2 MHz.
110 */
111#define MPU_TICKS_PER_SEC (13000000 / 2)
112#else
113#define MPU_TICKS_PER_SEC (12000000 / 2)
114#endif
115
116#define MPU_TIMER_TICK_PERIOD ((MPU_TICKS_PER_SEC / HZ) - 1)
117
118typedef struct {
119 u32 cntl; /* CNTL_TIMER, R/W */
120 u32 load_tim; /* LOAD_TIM, W */
121 u32 read_tim; /* READ_TIM, R */
122} omap_mpu_timer_regs_t;
123
124#define omap_mpu_timer_base(n) \
125((volatile omap_mpu_timer_regs_t*)IO_ADDRESS(OMAP_MPU_TIMER_BASE + \
126 (n)*OMAP_MPU_TIMER_OFFSET))
127
128static inline unsigned long omap_mpu_timer_read(int nr)
129{
130 volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
131 return timer->read_tim;
132}
133
134static inline void omap_mpu_timer_start(int nr, unsigned long load_val)
135{
136 volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
137
138 timer->cntl = MPU_TIMER_CLOCK_ENABLE;
139 udelay(1);
140 timer->load_tim = load_val;
141 udelay(1);
142 timer->cntl = (MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_AR | MPU_TIMER_ST);
143}
144
145unsigned long omap_mpu_timer_ticks_to_usecs(unsigned long nr_ticks)
146{
147 unsigned long long nsec;
148
149 nsec = cycles_2_ns((unsigned long long)nr_ticks);
150 return (unsigned long)nsec / 1000;
151}
152
153/*
154 * Last processed system timer interrupt
155 */
156static unsigned long omap_mpu_timer_last = 0;
157
158/*
159 * Returns elapsed usecs since last system timer interrupt
160 */
161static unsigned long omap_mpu_timer_gettimeoffset(void)
162{
163 unsigned long now = 0 - omap_mpu_timer_read(0);
164 unsigned long elapsed = now - omap_mpu_timer_last;
165
166 return omap_mpu_timer_ticks_to_usecs(elapsed);
167}
168
169/*
170 * Elapsed time between interrupts is calculated using timer0.
171 * Latency during the interrupt is calculated using timer1.
172 * Both timer0 and timer1 are counting at 6MHz (P2 6.5MHz).
173 */
174static irqreturn_t omap_mpu_timer_interrupt(int irq, void *dev_id,
175 struct pt_regs *regs)
176{
177 unsigned long now, latency;
178
179 write_seqlock(&xtime_lock);
180 now = 0 - omap_mpu_timer_read(0);
181 latency = MPU_TICKS_PER_SEC / HZ - omap_mpu_timer_read(1);
182 omap_mpu_timer_last = now - latency;
183 timer_tick(regs);
184 write_sequnlock(&xtime_lock);
185
186 return IRQ_HANDLED;
187}
188
189static struct irqaction omap_mpu_timer_irq = {
190 .name = "mpu timer",
09b8b5f8
RK
191 .flags = SA_INTERRUPT | SA_TIMER,
192 .handler = omap_mpu_timer_interrupt,
1da177e4
LT
193};
194
195static unsigned long omap_mpu_timer1_overflows;
196static irqreturn_t omap_mpu_timer1_interrupt(int irq, void *dev_id,
197 struct pt_regs *regs)
198{
199 omap_mpu_timer1_overflows++;
200 return IRQ_HANDLED;
201}
202
203static struct irqaction omap_mpu_timer1_irq = {
204 .name = "mpu timer1 overflow",
205 .flags = SA_INTERRUPT,
09b8b5f8 206 .handler = omap_mpu_timer1_interrupt,
1da177e4
LT
207};
208
209static __init void omap_init_mpu_timer(void)
210{
211 set_cyc2ns_scale(MPU_TICKS_PER_SEC / 1000);
212 omap_timer.offset = omap_mpu_timer_gettimeoffset;
213 setup_irq(INT_TIMER1, &omap_mpu_timer1_irq);
214 setup_irq(INT_TIMER2, &omap_mpu_timer_irq);
215 omap_mpu_timer_start(0, 0xffffffff);
216 omap_mpu_timer_start(1, MPU_TIMER_TICK_PERIOD);
217}
218
219/*
220 * Scheduler clock - returns current time in nanosec units.
221 */
222unsigned long long sched_clock(void)
223{
224 unsigned long ticks = 0 - omap_mpu_timer_read(0);
225 unsigned long long ticks64;
226
227 ticks64 = omap_mpu_timer1_overflows;
228 ticks64 <<= 32;
229 ticks64 |= ticks;
230
231 return cycles_2_ns(ticks64);
232}
233#endif /* CONFIG_OMAP_MPU_TIMER */
234
235#ifdef CONFIG_OMAP_32K_TIMER
236
237#ifdef CONFIG_ARCH_OMAP1510
238#error OMAP 32KHz timer does not currently work on 1510!
239#endif
240
241/*
242 * ---------------------------------------------------------------------------
243 * 32KHz OS timer
244 *
245 * This currently works only on 16xx, as 1510 does not have the continuous
246 * 32KHz synchronous timer. The 32KHz synchronous timer is used to keep track
247 * of time in addition to the 32KHz OS timer. Using only the 32KHz OS timer
248 * on 1510 would be possible, but the timer would not be as accurate as
249 * with the 32KHz synchronized timer.
250 * ---------------------------------------------------------------------------
251 */
252#define OMAP_32K_TIMER_BASE 0xfffb9000
253#define OMAP_32K_TIMER_CR 0x08
254#define OMAP_32K_TIMER_TVR 0x00
255#define OMAP_32K_TIMER_TCR 0x04
256
257#define OMAP_32K_TICKS_PER_HZ (32768 / HZ)
258
259/*
260 * TRM says 1 / HZ = ( TVR + 1) / 32768, so TRV = (32768 / HZ) - 1
261 * so with HZ = 100, TVR = 327.68.
262 */
263#define OMAP_32K_TIMER_TICK_PERIOD ((32768 / HZ) - 1)
1da177e4
LT
264#define TIMER_32K_SYNCHRONIZED 0xfffbc410
265
266#define JIFFIES_TO_HW_TICKS(nr_jiffies, clock_rate) \
267 (((nr_jiffies) * (clock_rate)) / HZ)
268
269static inline void omap_32k_timer_write(int val, int reg)
270{
271 omap_writew(val, reg + OMAP_32K_TIMER_BASE);
272}
273
274static inline unsigned long omap_32k_timer_read(int reg)
275{
276 return omap_readl(reg + OMAP_32K_TIMER_BASE) & 0xffffff;
277}
278
279/*
280 * The 32KHz synchronized timer is an additional timer on 16xx.
281 * It is always running.
282 */
283static inline unsigned long omap_32k_sync_timer_read(void)
284{
285 return omap_readl(TIMER_32K_SYNCHRONIZED);
286}
287
288static inline void omap_32k_timer_start(unsigned long load_val)
289{
290 omap_32k_timer_write(load_val, OMAP_32K_TIMER_TVR);
291 omap_32k_timer_write(0x0f, OMAP_32K_TIMER_CR);
292}
293
294static inline void omap_32k_timer_stop(void)
295{
296 omap_32k_timer_write(0x0, OMAP_32K_TIMER_CR);
297}
298
299/*
300 * Rounds down to nearest usec
301 */
302static inline unsigned long omap_32k_ticks_to_usecs(unsigned long ticks_32k)
303{
304 return (ticks_32k * 5*5*5*5*5*5) >> 9;
305}
306
307static unsigned long omap_32k_last_tick = 0;
308
309/*
310 * Returns elapsed usecs since last 32k timer interrupt
311 */
312static unsigned long omap_32k_timer_gettimeoffset(void)
313{
314 unsigned long now = omap_32k_sync_timer_read();
315 return omap_32k_ticks_to_usecs(now - omap_32k_last_tick);
316}
317
318/*
319 * Timer interrupt for 32KHz timer. When dynamic tick is enabled, this
320 * function is also called from other interrupts to remove latency
321 * issues with dynamic tick. In the dynamic tick case, we need to lock
322 * with irqsave.
323 */
324static irqreturn_t omap_32k_timer_interrupt(int irq, void *dev_id,
325 struct pt_regs *regs)
326{
327 unsigned long flags;
328 unsigned long now;
329
330 write_seqlock_irqsave(&xtime_lock, flags);
331 now = omap_32k_sync_timer_read();
332
333 while (now - omap_32k_last_tick >= OMAP_32K_TICKS_PER_HZ) {
334 omap_32k_last_tick += OMAP_32K_TICKS_PER_HZ;
335 timer_tick(regs);
336 }
337
338 /* Restart timer so we don't drift off due to modulo or dynamic tick.
339 * By default we program the next timer to be continuous to avoid
340 * latencies during high system load. During dynamic tick operation the
341 * continuous timer can be overridden from pm_idle to be longer.
342 */
343 omap_32k_timer_start(omap_32k_last_tick + OMAP_32K_TICKS_PER_HZ - now);
344 write_sequnlock_irqrestore(&xtime_lock, flags);
345
346 return IRQ_HANDLED;
347}
348
b3402cf5
TL
349#ifdef CONFIG_NO_IDLE_HZ
350/*
351 * Programs the next timer interrupt needed. Called when dynamic tick is
352 * enabled, and to reprogram the ticks to skip from pm_idle. Note that
353 * we can keep the timer continuous, and don't need to set it to run in
354 * one-shot mode. This is because the timer will get reprogrammed again
355 * after next interrupt.
356 */
357void omap_32k_timer_reprogram(unsigned long next_tick)
358{
359 omap_32k_timer_start(JIFFIES_TO_HW_TICKS(next_tick, 32768) + 1);
360}
361
362static struct irqaction omap_32k_timer_irq;
363extern struct timer_update_handler timer_update;
364
365static int omap_32k_timer_enable_dyn_tick(void)
366{
367 /* No need to reprogram timer, just use the next interrupt */
368 return 0;
369}
370
371static int omap_32k_timer_disable_dyn_tick(void)
372{
373 omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD);
374 return 0;
375}
376
377static struct dyn_tick_timer omap_dyn_tick_timer = {
378 .enable = omap_32k_timer_enable_dyn_tick,
379 .disable = omap_32k_timer_disable_dyn_tick,
380 .reprogram = omap_32k_timer_reprogram,
381 .handler = omap_32k_timer_interrupt,
382};
383#endif /* CONFIG_NO_IDLE_HZ */
384
1da177e4
LT
385static struct irqaction omap_32k_timer_irq = {
386 .name = "32KHz timer",
09b8b5f8
RK
387 .flags = SA_INTERRUPT | SA_TIMER,
388 .handler = omap_32k_timer_interrupt,
1da177e4
LT
389};
390
391static __init void omap_init_32k_timer(void)
392{
b3402cf5
TL
393
394#ifdef CONFIG_NO_IDLE_HZ
395 omap_timer.dyn_tick = &omap_dyn_tick_timer;
396#endif
397
1da177e4
LT
398 setup_irq(INT_OS_TIMER, &omap_32k_timer_irq);
399 omap_timer.offset = omap_32k_timer_gettimeoffset;
400 omap_32k_last_tick = omap_32k_sync_timer_read();
401 omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD);
402}
403#endif /* CONFIG_OMAP_32K_TIMER */
404
405/*
406 * ---------------------------------------------------------------------------
407 * Timer initialization
408 * ---------------------------------------------------------------------------
409 */
410void __init omap_timer_init(void)
411{
412#if defined(CONFIG_OMAP_MPU_TIMER)
413 omap_init_mpu_timer();
414#elif defined(CONFIG_OMAP_32K_TIMER)
415 omap_init_32k_timer();
416#else
417#error No system timer selected in Kconfig!
418#endif
419}
420
421struct sys_timer omap_timer = {
422 .init = omap_timer_init,
423 .offset = NULL, /* Initialized later */
424};