]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - arch/arm/mm/dma-mapping.c
ARM: 8909/1: make unexported items static
[mirror_ubuntu-kernels.git] / arch / arm / mm / dma-mapping.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
0ddbccd1 3 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
4 *
5 * Copyright (C) 2000-2004 Russell King
6 *
1da177e4
LT
7 * DMA uncached mapping support.
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
36d0fd21 11#include <linux/genalloc.h>
5a0e3ad6 12#include <linux/gfp.h>
1da177e4
LT
13#include <linux/errno.h>
14#include <linux/list.h>
15#include <linux/init.h>
16#include <linux/device.h>
249baa54 17#include <linux/dma-direct.h>
1da177e4 18#include <linux/dma-mapping.h>
ad3c7b18 19#include <linux/dma-noncoherent.h>
c7909509 20#include <linux/dma-contiguous.h>
39af22a7 21#include <linux/highmem.h>
c7909509 22#include <linux/memblock.h>
99d1717d 23#include <linux/slab.h>
4ce63fcd 24#include <linux/iommu.h>
e9da6e99 25#include <linux/io.h>
4ce63fcd 26#include <linux/vmalloc.h>
158e8bfe 27#include <linux/sizes.h>
a254129e 28#include <linux/cma.h>
1da177e4 29
23759dc6 30#include <asm/memory.h>
43377453 31#include <asm/highmem.h>
1da177e4 32#include <asm/cacheflush.h>
1da177e4 33#include <asm/tlbflush.h>
99d1717d 34#include <asm/mach/arch.h>
4ce63fcd 35#include <asm/dma-iommu.h>
c7909509
MS
36#include <asm/mach/map.h>
37#include <asm/system_info.h>
38#include <asm/dma-contiguous.h>
0e0d26e7 39#include <xen/swiotlb-xen.h>
37134cd5 40
1234e3fd 41#include "dma.h"
022ae537
RK
42#include "mm.h"
43
b4268676
RV
44struct arm_dma_alloc_args {
45 struct device *dev;
46 size_t size;
47 gfp_t gfp;
48 pgprot_t prot;
49 const void *caller;
50 bool want_vaddr;
f1270896 51 int coherent_flag;
b4268676
RV
52};
53
54struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60};
61
f1270896
GC
62#define NORMAL 0
63#define COHERENT 1
64
b4268676
RV
65struct arm_dma_allocator {
66 void *(*alloc)(struct arm_dma_alloc_args *args,
67 struct page **ret_page);
68 void (*free)(struct arm_dma_free_args *args);
69};
70
19e6e5e5
RV
71struct arm_dma_buffer {
72 struct list_head list;
73 void *virt;
b4268676 74 struct arm_dma_allocator *allocator;
19e6e5e5
RV
75};
76
77static LIST_HEAD(arm_dma_bufs);
78static DEFINE_SPINLOCK(arm_dma_bufs_lock);
79
80static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
81{
82 struct arm_dma_buffer *buf, *found = NULL;
83 unsigned long flags;
84
85 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
86 list_for_each_entry(buf, &arm_dma_bufs, list) {
87 if (buf->virt == virt) {
88 list_del(&buf->list);
89 found = buf;
90 break;
91 }
92 }
93 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
94 return found;
95}
96
15237e1f
MS
97/*
98 * The DMA API is built upon the notion of "buffer ownership". A buffer
99 * is either exclusively owned by the CPU (and therefore may be accessed
100 * by it) or exclusively owned by the DMA device. These helper functions
101 * represent the transitions between these two ownership states.
102 *
103 * Note, however, that on later ARMs, this notion does not work due to
104 * speculative prefetches. We model our approach on the assumption that
105 * the CPU does do speculative prefetches, which means we clean caches
106 * before transfers and delay cache invalidation until transfer completion.
107 *
15237e1f 108 */
51fde349 109static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 110 size_t, enum dma_data_direction);
51fde349 111static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
112 size_t, enum dma_data_direction);
113
2dc6a016
MS
114/**
115 * arm_dma_map_page - map a portion of a page for streaming DMA
116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117 * @page: page that buffer resides in
118 * @offset: offset into page for start of buffer
119 * @size: size of buffer to map
120 * @dir: DMA transfer direction
121 *
122 * Ensure that any data held in the cache is appropriately discarded
123 * or written back.
124 *
125 * The device owns this memory once this call has completed. The CPU
126 * can regain ownership by calling dma_unmap_page().
127 */
51fde349 128static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016 129 unsigned long offset, size_t size, enum dma_data_direction dir,
00085f1e 130 unsigned long attrs)
2dc6a016 131{
00085f1e 132 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
51fde349
MS
133 __dma_page_cpu_to_dev(page, offset, size, dir);
134 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
135}
136
dd37e940
RH
137static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
138 unsigned long offset, size_t size, enum dma_data_direction dir,
00085f1e 139 unsigned long attrs)
dd37e940
RH
140{
141 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
142}
143
2dc6a016
MS
144/**
145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147 * @handle: DMA address of buffer
148 * @size: size of buffer (same as passed to dma_map_page)
149 * @dir: DMA transfer direction (same as passed to dma_map_page)
150 *
151 * Unmap a page streaming mode DMA translation. The handle and size
152 * must match what was provided in the previous dma_map_page() call.
153 * All other usages are undefined.
154 *
155 * After this call, reads by the CPU to the buffer are guaranteed to see
156 * whatever the device wrote there.
157 */
51fde349 158static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
00085f1e 159 size_t size, enum dma_data_direction dir, unsigned long attrs)
2dc6a016 160{
00085f1e 161 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
51fde349
MS
162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
163 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
164}
165
51fde349 166static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
167 dma_addr_t handle, size_t size, enum dma_data_direction dir)
168{
169 unsigned int offset = handle & (PAGE_SIZE - 1);
170 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 171 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
172}
173
51fde349 174static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
175 dma_addr_t handle, size_t size, enum dma_data_direction dir)
176{
177 unsigned int offset = handle & (PAGE_SIZE - 1);
178 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 179 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
180}
181
5299709d 182const struct dma_map_ops arm_dma_ops = {
f99d6034
MS
183 .alloc = arm_dma_alloc,
184 .free = arm_dma_free,
185 .mmap = arm_dma_mmap,
dc2832e1 186 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
187 .map_page = arm_dma_map_page,
188 .unmap_page = arm_dma_unmap_page,
189 .map_sg = arm_dma_map_sg,
190 .unmap_sg = arm_dma_unmap_sg,
cfced786 191 .map_resource = dma_direct_map_resource,
2dc6a016
MS
192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
193 .sync_single_for_device = arm_dma_sync_single_for_device,
194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
195 .sync_sg_for_device = arm_dma_sync_sg_for_device,
418a7a7e 196 .dma_supported = arm_dma_supported,
249baa54 197 .get_required_mask = dma_direct_get_required_mask,
2dc6a016
MS
198};
199EXPORT_SYMBOL(arm_dma_ops);
200
dd37e940 201static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
00085f1e 202 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
dd37e940 203static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
00085f1e 204 dma_addr_t handle, unsigned long attrs);
55af8a91
ML
205static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
206 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 207 unsigned long attrs);
dd37e940 208
5299709d 209const struct dma_map_ops arm_coherent_dma_ops = {
dd37e940
RH
210 .alloc = arm_coherent_dma_alloc,
211 .free = arm_coherent_dma_free,
55af8a91 212 .mmap = arm_coherent_dma_mmap,
dd37e940
RH
213 .get_sgtable = arm_dma_get_sgtable,
214 .map_page = arm_coherent_dma_map_page,
215 .map_sg = arm_dma_map_sg,
cfced786 216 .map_resource = dma_direct_map_resource,
418a7a7e 217 .dma_supported = arm_dma_supported,
249baa54 218 .get_required_mask = dma_direct_get_required_mask,
dd37e940
RH
219};
220EXPORT_SYMBOL(arm_coherent_dma_ops);
221
9f28cde0
RK
222static int __dma_supported(struct device *dev, u64 mask, bool warn)
223{
ab746573 224 unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
9f28cde0
RK
225
226 /*
227 * Translate the device's DMA mask to a PFN limit. This
228 * PFN number includes the page which we can DMA to.
229 */
230 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
231 if (warn)
232 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
233 mask,
234 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
235 max_dma_pfn + 1);
236 return 0;
237 }
238
239 return 1;
240}
241
ab6494f0
CM
242static u64 get_coherent_dma_mask(struct device *dev)
243{
4dcfa600 244 u64 mask = (u64)DMA_BIT_MASK(32);
ab6494f0
CM
245
246 if (dev) {
247 mask = dev->coherent_dma_mask;
248
249 /*
250 * Sanity check the DMA mask - it must be non-zero, and
251 * must be able to be satisfied by a DMA allocation.
252 */
253 if (mask == 0) {
254 dev_warn(dev, "coherent DMA mask is unset\n");
255 return 0;
256 }
257
9f28cde0 258 if (!__dma_supported(dev, mask, true))
ab6494f0 259 return 0;
ab6494f0 260 }
1da177e4 261
ab6494f0
CM
262 return mask;
263}
264
f1270896 265static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
c7909509 266{
c7909509
MS
267 /*
268 * Ensure that the allocated pages are zeroed, and that any data
269 * lurking in the kernel direct-mapped region is invalidated.
270 */
9848e48f
MS
271 if (PageHighMem(page)) {
272 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
273 phys_addr_t end = base + size;
274 while (size > 0) {
275 void *ptr = kmap_atomic(page);
276 memset(ptr, 0, PAGE_SIZE);
f1270896
GC
277 if (coherent_flag != COHERENT)
278 dmac_flush_range(ptr, ptr + PAGE_SIZE);
9848e48f
MS
279 kunmap_atomic(ptr);
280 page++;
281 size -= PAGE_SIZE;
282 }
f1270896
GC
283 if (coherent_flag != COHERENT)
284 outer_flush_range(base, end);
9848e48f
MS
285 } else {
286 void *ptr = page_address(page);
4ce63fcd 287 memset(ptr, 0, size);
f1270896
GC
288 if (coherent_flag != COHERENT) {
289 dmac_flush_range(ptr, ptr + size);
290 outer_flush_range(__pa(ptr), __pa(ptr) + size);
291 }
4ce63fcd 292 }
c7909509
MS
293}
294
7a9a32a9
RK
295/*
296 * Allocate a DMA buffer for 'dev' of size 'size' using the
297 * specified gfp mask. Note that 'size' must be page aligned.
298 */
f1270896
GC
299static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
300 gfp_t gfp, int coherent_flag)
7a9a32a9
RK
301{
302 unsigned long order = get_order(size);
303 struct page *page, *p, *e;
7a9a32a9
RK
304
305 page = alloc_pages(gfp, order);
306 if (!page)
307 return NULL;
308
309 /*
310 * Now split the huge page and free the excess pages
311 */
312 split_page(page, order);
313 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
314 __free_page(p);
315
f1270896 316 __dma_clear_buffer(page, size, coherent_flag);
7a9a32a9
RK
317
318 return page;
319}
320
321/*
322 * Free a DMA buffer. 'size' must be page aligned.
323 */
324static void __dma_free_buffer(struct page *page, size_t size)
325{
326 struct page *e = page + (size >> PAGE_SHIFT);
327
328 while (page < e) {
329 __free_page(page);
330 page++;
331 }
332}
333
e9da6e99 334static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 335 pgprot_t prot, struct page **ret_page,
f1270896 336 const void *caller, bool want_vaddr,
712c604d 337 int coherent_flag, gfp_t gfp);
99d1717d 338
e9da6e99
MS
339static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
340 pgprot_t prot, struct page **ret_page,
6e8266e3 341 const void *caller, bool want_vaddr);
99d1717d 342
6e5267aa 343#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
b337e1c4 344static struct gen_pool *atomic_pool __ro_after_init;
6e5267aa 345
b337e1c4 346static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
c7909509
MS
347
348static int __init early_coherent_pool(char *p)
349{
36d0fd21 350 atomic_pool_size = memparse(p, &p);
c7909509
MS
351 return 0;
352}
353early_param("coherent_pool", early_coherent_pool);
354
355/*
356 * Initialise the coherent pool for atomic allocations.
357 */
e9da6e99 358static int __init atomic_pool_init(void)
c7909509 359{
71b55663 360 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
9d1400cf 361 gfp_t gfp = GFP_KERNEL | GFP_DMA;
c7909509
MS
362 struct page *page;
363 void *ptr;
c7909509 364
36d0fd21
LA
365 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
366 if (!atomic_pool)
367 goto out;
f1270896
GC
368 /*
369 * The atomic pool is only used for non-coherent allocations
370 * so we must pass NORMAL for coherent_flag.
371 */
e464ef16 372 if (dev_get_cma_area(NULL))
36d0fd21 373 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
712c604d
LS
374 &page, atomic_pool_init, true, NORMAL,
375 GFP_KERNEL);
e9da6e99 376 else
36d0fd21 377 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
6e8266e3 378 &page, atomic_pool_init, true);
c7909509 379 if (ptr) {
36d0fd21
LA
380 int ret;
381
382 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
383 page_to_phys(page),
384 atomic_pool_size, -1);
385 if (ret)
386 goto destroy_genpool;
387
388 gen_pool_set_algo(atomic_pool,
389 gen_pool_first_fit_order_align,
acb62448 390 NULL);
bf31c5e0 391 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
36d0fd21 392 atomic_pool_size / 1024);
c7909509
MS
393 return 0;
394 }
ec10665c 395
36d0fd21
LA
396destroy_genpool:
397 gen_pool_destroy(atomic_pool);
398 atomic_pool = NULL;
399out:
bf31c5e0 400 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
36d0fd21 401 atomic_pool_size / 1024);
c7909509
MS
402 return -ENOMEM;
403}
404/*
405 * CMA is activated by core_initcall, so we must be called after it.
406 */
e9da6e99 407postcore_initcall(atomic_pool_init);
c7909509
MS
408
409struct dma_contig_early_reserve {
410 phys_addr_t base;
411 unsigned long size;
412};
413
414static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
415
416static int dma_mmu_remap_num __initdata;
417
418void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
419{
420 dma_mmu_remap[dma_mmu_remap_num].base = base;
421 dma_mmu_remap[dma_mmu_remap_num].size = size;
422 dma_mmu_remap_num++;
423}
424
425void __init dma_contiguous_remap(void)
426{
427 int i;
428 for (i = 0; i < dma_mmu_remap_num; i++) {
429 phys_addr_t start = dma_mmu_remap[i].base;
430 phys_addr_t end = start + dma_mmu_remap[i].size;
431 struct map_desc map;
432 unsigned long addr;
433
434 if (end > arm_lowmem_limit)
435 end = arm_lowmem_limit;
436 if (start >= end)
39f78e70 437 continue;
c7909509
MS
438
439 map.pfn = __phys_to_pfn(start);
440 map.virtual = __phys_to_virt(start);
441 map.length = end - start;
442 map.type = MT_MEMORY_DMA_READY;
443
444 /*
6b076991
RK
445 * Clear previous low-memory mapping to ensure that the
446 * TLB does not see any conflicting entries, then flush
447 * the TLB of the old entries before creating new mappings.
448 *
449 * This ensures that any speculatively loaded TLB entries
450 * (even though they may be rare) can not cause any problems,
451 * and ensures that this code is architecturally compliant.
c7909509
MS
452 */
453 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 454 addr += PMD_SIZE)
c7909509
MS
455 pmd_clear(pmd_off_k(addr));
456
6b076991
RK
457 flush_tlb_kernel_range(__phys_to_virt(start),
458 __phys_to_virt(end));
459
d883c6cf 460 iotable_init(&map, 1);
c7909509
MS
461 }
462}
463
8b1e0f81 464static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
c7909509
MS
465{
466 struct page *page = virt_to_page(addr);
467 pgprot_t prot = *(pgprot_t *)data;
468
469 set_pte_ext(pte, mk_pte(page, prot), 0);
470 return 0;
471}
472
473static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
474{
475 unsigned long start = (unsigned long) page_address(page);
476 unsigned end = start + size;
477
478 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
479 flush_tlb_kernel_range(start, end);
480}
481
482static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
483 pgprot_t prot, struct page **ret_page,
6e8266e3 484 const void *caller, bool want_vaddr)
c7909509
MS
485{
486 struct page *page;
6e8266e3 487 void *ptr = NULL;
f1270896
GC
488 /*
489 * __alloc_remap_buffer is only called when the device is
490 * non-coherent
491 */
492 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
c7909509
MS
493 if (!page)
494 return NULL;
6e8266e3
CC
495 if (!want_vaddr)
496 goto out;
c7909509 497
78406ff5 498 ptr = dma_common_contiguous_remap(page, size, prot, caller);
c7909509
MS
499 if (!ptr) {
500 __dma_free_buffer(page, size);
501 return NULL;
502 }
503
6e8266e3 504 out:
c7909509
MS
505 *ret_page = page;
506 return ptr;
507}
508
e9da6e99 509static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 510{
36d0fd21 511 unsigned long val;
e9da6e99 512 void *ptr = NULL;
c7909509 513
36d0fd21 514 if (!atomic_pool) {
e9da6e99 515 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
516 return NULL;
517 }
518
36d0fd21
LA
519 val = gen_pool_alloc(atomic_pool, size);
520 if (val) {
521 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
522
523 *ret_page = phys_to_page(phys);
524 ptr = (void *)val;
c7909509 525 }
e9da6e99
MS
526
527 return ptr;
c7909509
MS
528}
529
21d0a759
HD
530static bool __in_atomic_pool(void *start, size_t size)
531{
36d0fd21 532 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
21d0a759
HD
533}
534
e9da6e99 535static int __free_from_pool(void *start, size_t size)
c7909509 536{
21d0a759 537 if (!__in_atomic_pool(start, size))
c7909509
MS
538 return 0;
539
36d0fd21 540 gen_pool_free(atomic_pool, (unsigned long)start, size);
e9da6e99 541
c7909509
MS
542 return 1;
543}
544
545static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 546 pgprot_t prot, struct page **ret_page,
f1270896 547 const void *caller, bool want_vaddr,
712c604d 548 int coherent_flag, gfp_t gfp)
c7909509
MS
549{
550 unsigned long order = get_order(size);
551 size_t count = size >> PAGE_SHIFT;
552 struct page *page;
6e8266e3 553 void *ptr = NULL;
c7909509 554
d834c5ab 555 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
c7909509
MS
556 if (!page)
557 return NULL;
558
f1270896 559 __dma_clear_buffer(page, size, coherent_flag);
c7909509 560
6e8266e3
CC
561 if (!want_vaddr)
562 goto out;
563
9848e48f 564 if (PageHighMem(page)) {
78406ff5 565 ptr = dma_common_contiguous_remap(page, size, prot, caller);
9848e48f
MS
566 if (!ptr) {
567 dma_release_from_contiguous(dev, page, count);
568 return NULL;
569 }
570 } else {
571 __dma_remap(page, size, prot);
572 ptr = page_address(page);
573 }
6e8266e3
CC
574
575 out:
c7909509 576 *ret_page = page;
9848e48f 577 return ptr;
c7909509
MS
578}
579
580static void __free_from_contiguous(struct device *dev, struct page *page,
6e8266e3 581 void *cpu_addr, size_t size, bool want_vaddr)
c7909509 582{
6e8266e3
CC
583 if (want_vaddr) {
584 if (PageHighMem(page))
78406ff5 585 dma_common_free_remap(cpu_addr, size);
6e8266e3
CC
586 else
587 __dma_remap(page, size, PAGE_KERNEL);
588 }
c7909509
MS
589 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
590}
591
00085f1e 592static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
f99d6034 593{
00085f1e
KK
594 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
595 pgprot_writecombine(prot) :
596 pgprot_dmacoherent(prot);
f99d6034
MS
597 return prot;
598}
599
c7909509
MS
600static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
601 struct page **ret_page)
ab6494f0 602{
c7909509 603 struct page *page;
f1270896
GC
604 /* __alloc_simple_buffer is only called when the device is coherent */
605 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
c7909509
MS
606 if (!page)
607 return NULL;
608
609 *ret_page = page;
610 return page_address(page);
611}
612
b4268676
RV
613static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
614 struct page **ret_page)
615{
616 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
617 ret_page);
618}
c7909509 619
b4268676
RV
620static void simple_allocator_free(struct arm_dma_free_args *args)
621{
622 __dma_free_buffer(args->page, args->size);
623}
624
625static struct arm_dma_allocator simple_allocator = {
626 .alloc = simple_allocator_alloc,
627 .free = simple_allocator_free,
628};
629
630static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
631 struct page **ret_page)
632{
633 return __alloc_from_contiguous(args->dev, args->size, args->prot,
634 ret_page, args->caller,
712c604d
LS
635 args->want_vaddr, args->coherent_flag,
636 args->gfp);
b4268676
RV
637}
638
639static void cma_allocator_free(struct arm_dma_free_args *args)
640{
641 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
642 args->size, args->want_vaddr);
643}
644
645static struct arm_dma_allocator cma_allocator = {
646 .alloc = cma_allocator_alloc,
647 .free = cma_allocator_free,
648};
649
650static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
651 struct page **ret_page)
652{
653 return __alloc_from_pool(args->size, ret_page);
654}
655
656static void pool_allocator_free(struct arm_dma_free_args *args)
657{
658 __free_from_pool(args->cpu_addr, args->size);
659}
660
661static struct arm_dma_allocator pool_allocator = {
662 .alloc = pool_allocator_alloc,
663 .free = pool_allocator_free,
664};
665
666static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
667 struct page **ret_page)
668{
669 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
670 args->prot, ret_page, args->caller,
671 args->want_vaddr);
672}
673
674static void remap_allocator_free(struct arm_dma_free_args *args)
675{
676 if (args->want_vaddr)
78406ff5 677 dma_common_free_remap(args->cpu_addr, args->size);
b4268676
RV
678
679 __dma_free_buffer(args->page, args->size);
680}
681
682static struct arm_dma_allocator remap_allocator = {
683 .alloc = remap_allocator_alloc,
684 .free = remap_allocator_free,
685};
c7909509
MS
686
687static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
6e8266e3 688 gfp_t gfp, pgprot_t prot, bool is_coherent,
00085f1e 689 unsigned long attrs, const void *caller)
c7909509
MS
690{
691 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 692 struct page *page = NULL;
31ebf944 693 void *addr;
b4268676 694 bool allowblock, cma;
19e6e5e5 695 struct arm_dma_buffer *buf;
b4268676
RV
696 struct arm_dma_alloc_args args = {
697 .dev = dev,
698 .size = PAGE_ALIGN(size),
699 .gfp = gfp,
700 .prot = prot,
701 .caller = caller,
00085f1e 702 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
f1270896 703 .coherent_flag = is_coherent ? COHERENT : NORMAL,
b4268676 704 };
ab6494f0 705
c7909509
MS
706#ifdef CONFIG_DMA_API_DEBUG
707 u64 limit = (mask + 1) & ~mask;
708 if (limit && size >= limit) {
709 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
710 size, mask);
711 return NULL;
712 }
713#endif
714
715 if (!mask)
716 return NULL;
717
9c18fcf7
AC
718 buf = kzalloc(sizeof(*buf),
719 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
19e6e5e5
RV
720 if (!buf)
721 return NULL;
722
c7909509
MS
723 if (mask < 0xffffffffULL)
724 gfp |= GFP_DMA;
725
ea2e7057
SB
726 /*
727 * Following is a work-around (a.k.a. hack) to prevent pages
728 * with __GFP_COMP being passed to split_page() which cannot
729 * handle them. The real problem is that this flag probably
730 * should be 0 on ARM as it is not supported on this
731 * platform; see CONFIG_HUGETLBFS.
732 */
733 gfp &= ~(__GFP_COMP);
b4268676 734 args.gfp = gfp;
ea2e7057 735
72fd97bf 736 *handle = DMA_MAPPING_ERROR;
b4268676
RV
737 allowblock = gfpflags_allow_blocking(gfp);
738 cma = allowblock ? dev_get_cma_area(dev) : false;
739
740 if (cma)
741 buf->allocator = &cma_allocator;
1655cf88 742 else if (is_coherent)
b4268676
RV
743 buf->allocator = &simple_allocator;
744 else if (allowblock)
745 buf->allocator = &remap_allocator;
31ebf944 746 else
b4268676
RV
747 buf->allocator = &pool_allocator;
748
749 addr = buf->allocator->alloc(&args, &page);
695ae0af 750
19e6e5e5
RV
751 if (page) {
752 unsigned long flags;
753
9eedd963 754 *handle = pfn_to_dma(dev, page_to_pfn(page));
b4268676 755 buf->virt = args.want_vaddr ? addr : page;
19e6e5e5
RV
756
757 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
758 list_add(&buf->list, &arm_dma_bufs);
759 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
760 } else {
761 kfree(buf);
762 }
695ae0af 763
b4268676 764 return args.want_vaddr ? addr : page;
31ebf944 765}
1da177e4
LT
766
767/*
768 * Allocate DMA-coherent memory space and return both the kernel remapped
769 * virtual and bus address for that space.
770 */
f99d6034 771void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
00085f1e 772 gfp_t gfp, unsigned long attrs)
1da177e4 773{
0ea1ec71 774 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1fe53268 775
dd37e940 776 return __dma_alloc(dev, size, handle, gfp, prot, false,
6e8266e3 777 attrs, __builtin_return_address(0));
dd37e940
RH
778}
779
780static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
00085f1e 781 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
dd37e940 782{
21caf3a7 783 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
6e8266e3 784 attrs, __builtin_return_address(0));
1da177e4 785}
1da177e4 786
55af8a91 787static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
f99d6034 788 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 789 unsigned long attrs)
1da177e4 790{
c2a3831d 791 int ret = -ENXIO;
a70c3ee3 792 unsigned long nr_vma_pages = vma_pages(vma);
50262a4b 793 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 794 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
795 unsigned long off = vma->vm_pgoff;
796
43fc509c 797 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
47142f07
MS
798 return ret;
799
50262a4b
MS
800 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
801 ret = remap_pfn_range(vma, vma->vm_start,
802 pfn + off,
803 vma->vm_end - vma->vm_start,
804 vma->vm_page_prot);
805 }
1da177e4
LT
806
807 return ret;
808}
809
55af8a91
ML
810/*
811 * Create userspace mapping for the DMA-coherent memory.
812 */
813static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
814 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 815 unsigned long attrs)
55af8a91
ML
816{
817 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
818}
819
820int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
821 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 822 unsigned long attrs)
55af8a91 823{
55af8a91 824 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
55af8a91
ML
825 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
826}
827
1da177e4 828/*
c7909509 829 * Free a buffer as defined by the above mapping.
1da177e4 830 */
dd37e940 831static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
00085f1e 832 dma_addr_t handle, unsigned long attrs,
dd37e940 833 bool is_coherent)
1da177e4 834{
c7909509 835 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
19e6e5e5 836 struct arm_dma_buffer *buf;
b4268676
RV
837 struct arm_dma_free_args args = {
838 .dev = dev,
839 .size = PAGE_ALIGN(size),
840 .cpu_addr = cpu_addr,
841 .page = page,
00085f1e 842 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
b4268676 843 };
19e6e5e5
RV
844
845 buf = arm_dma_buffer_find(cpu_addr);
846 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
847 return;
5edf71ae 848
b4268676 849 buf->allocator->free(&args);
19e6e5e5 850 kfree(buf);
1da177e4 851}
afd1a321 852
dd37e940 853void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
00085f1e 854 dma_addr_t handle, unsigned long attrs)
dd37e940
RH
855{
856 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
857}
858
859static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
00085f1e 860 dma_addr_t handle, unsigned long attrs)
dd37e940
RH
861{
862 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
863}
864
dc2832e1
MS
865int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
866 void *cpu_addr, dma_addr_t handle, size_t size,
00085f1e 867 unsigned long attrs)
dc2832e1 868{
916a008b
RK
869 unsigned long pfn = dma_to_pfn(dev, handle);
870 struct page *page;
dc2832e1
MS
871 int ret;
872
916a008b
RK
873 /* If the PFN is not valid, we do not have a struct page */
874 if (!pfn_valid(pfn))
875 return -ENXIO;
876
877 page = pfn_to_page(pfn);
878
dc2832e1
MS
879 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
880 if (unlikely(ret))
881 return ret;
882
883 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
884 return 0;
885}
886
4ea0d737 887static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
888 size_t size, enum dma_data_direction dir,
889 void (*op)(const void *, size_t, int))
43377453 890{
15653371
RK
891 unsigned long pfn;
892 size_t left = size;
893
894 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
895 offset %= PAGE_SIZE;
896
43377453
NP
897 /*
898 * A single sg entry may refer to multiple physically contiguous
899 * pages. But we still need to process highmem pages individually.
900 * If highmem is not configured then the bulk of this loop gets
901 * optimized out.
902 */
43377453
NP
903 do {
904 size_t len = left;
93f1d629
RK
905 void *vaddr;
906
15653371
RK
907 page = pfn_to_page(pfn);
908
93f1d629 909 if (PageHighMem(page)) {
15653371 910 if (len + offset > PAGE_SIZE)
93f1d629 911 len = PAGE_SIZE - offset;
dd0f67f4
JK
912
913 if (cache_is_vipt_nonaliasing()) {
39af22a7 914 vaddr = kmap_atomic(page);
7e5a69e8 915 op(vaddr + offset, len, dir);
39af22a7 916 kunmap_atomic(vaddr);
dd0f67f4
JK
917 } else {
918 vaddr = kmap_high_get(page);
919 if (vaddr) {
920 op(vaddr + offset, len, dir);
921 kunmap_high(page);
922 }
43377453 923 }
93f1d629
RK
924 } else {
925 vaddr = page_address(page) + offset;
a9c9147e 926 op(vaddr, len, dir);
43377453 927 }
43377453 928 offset = 0;
15653371 929 pfn++;
43377453
NP
930 left -= len;
931 } while (left);
932}
4ea0d737 933
51fde349
MS
934/*
935 * Make an area consistent for devices.
936 * Note: Drivers should NOT use this function directly, as it will break
937 * platforms with CONFIG_DMABOUNCE.
938 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
939 */
940static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
941 size_t size, enum dma_data_direction dir)
942{
2161c248 943 phys_addr_t paddr;
65af191a 944
a9c9147e 945 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
946
947 paddr = page_to_phys(page) + off;
2ffe2da3
RK
948 if (dir == DMA_FROM_DEVICE) {
949 outer_inv_range(paddr, paddr + size);
950 } else {
951 outer_clean_range(paddr, paddr + size);
952 }
953 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 954}
4ea0d737 955
51fde349 956static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
957 size_t size, enum dma_data_direction dir)
958{
2161c248 959 phys_addr_t paddr = page_to_phys(page) + off;
2ffe2da3
RK
960
961 /* FIXME: non-speculating: not required */
deace4a6
RK
962 /* in any case, don't bother invalidating if DMA to device */
963 if (dir != DMA_TO_DEVICE) {
2ffe2da3
RK
964 outer_inv_range(paddr, paddr + size);
965
deace4a6
RK
966 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
967 }
c0177800
CM
968
969 /*
b2a234ed 970 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 971 */
b2a234ed
ML
972 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
973 unsigned long pfn;
974 size_t left = size;
975
976 pfn = page_to_pfn(page) + off / PAGE_SIZE;
977 off %= PAGE_SIZE;
978 if (off) {
979 pfn++;
980 left -= PAGE_SIZE - off;
981 }
982 while (left >= PAGE_SIZE) {
983 page = pfn_to_page(pfn++);
984 set_bit(PG_dcache_clean, &page->flags);
985 left -= PAGE_SIZE;
986 }
987 }
4ea0d737 988}
43377453 989
afd1a321 990/**
2a550e73 991 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
992 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
993 * @sg: list of buffers
994 * @nents: number of buffers to map
995 * @dir: DMA transfer direction
996 *
997 * Map a set of buffers described by scatterlist in streaming mode for DMA.
998 * This is the scatter-gather version of the dma_map_single interface.
999 * Here the scatter gather list elements are each tagged with the
1000 * appropriate dma address and length. They are obtained via
1001 * sg_dma_{address,length}.
1002 *
1003 * Device ownership issues as mentioned for dma_map_single are the same
1004 * here.
1005 */
2dc6a016 1006int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e 1007 enum dma_data_direction dir, unsigned long attrs)
afd1a321 1008{
5299709d 1009 const struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 1010 struct scatterlist *s;
01135d92 1011 int i, j;
afd1a321
RK
1012
1013 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
1014#ifdef CONFIG_NEED_SG_DMA_LENGTH
1015 s->dma_length = s->length;
1016#endif
2a550e73
MS
1017 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1018 s->length, dir, attrs);
01135d92
RK
1019 if (dma_mapping_error(dev, s->dma_address))
1020 goto bad_mapping;
afd1a321 1021 }
afd1a321 1022 return nents;
01135d92
RK
1023
1024 bad_mapping:
1025 for_each_sg(sg, s, i, j)
2a550e73 1026 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 1027 return 0;
afd1a321 1028}
afd1a321
RK
1029
1030/**
2a550e73 1031 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
1032 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1033 * @sg: list of buffers
0adfca6f 1034 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
1035 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1036 *
1037 * Unmap a set of streaming mode DMA translations. Again, CPU access
1038 * rules concerning calls here are the same as for dma_unmap_single().
1039 */
2dc6a016 1040void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e 1041 enum dma_data_direction dir, unsigned long attrs)
afd1a321 1042{
5299709d 1043 const struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 1044 struct scatterlist *s;
01135d92 1045
01135d92 1046 int i;
24056f52 1047
01135d92 1048 for_each_sg(sg, s, nents, i)
2a550e73 1049 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 1050}
afd1a321
RK
1051
1052/**
2a550e73 1053 * arm_dma_sync_sg_for_cpu
afd1a321
RK
1054 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1055 * @sg: list of buffers
1056 * @nents: number of buffers to map (returned from dma_map_sg)
1057 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1058 */
2dc6a016 1059void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1060 int nents, enum dma_data_direction dir)
1061{
5299709d 1062 const struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1063 struct scatterlist *s;
1064 int i;
1065
2a550e73
MS
1066 for_each_sg(sg, s, nents, i)
1067 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1068 dir);
afd1a321 1069}
afd1a321
RK
1070
1071/**
2a550e73 1072 * arm_dma_sync_sg_for_device
afd1a321
RK
1073 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1074 * @sg: list of buffers
1075 * @nents: number of buffers to map (returned from dma_map_sg)
1076 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1077 */
2dc6a016 1078void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1079 int nents, enum dma_data_direction dir)
1080{
5299709d 1081 const struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1082 struct scatterlist *s;
1083 int i;
1084
2a550e73
MS
1085 for_each_sg(sg, s, nents, i)
1086 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1087 dir);
afd1a321 1088}
24056f52 1089
022ae537
RK
1090/*
1091 * Return whether the given device DMA address mask can be supported
1092 * properly. For example, if your device can only drive the low 24-bits
1093 * during bus mastering, then you would pass 0x00ffffff as the mask
1094 * to this function.
1095 */
418a7a7e 1096int arm_dma_supported(struct device *dev, u64 mask)
022ae537 1097{
9f28cde0 1098 return __dma_supported(dev, mask, false);
022ae537 1099}
022ae537 1100
1874619a
TR
1101static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1102{
ad3c7b18
CH
1103 /*
1104 * When CONFIG_ARM_LPAE is set, physical address can extend above
1105 * 32-bits, which then can't be addressed by devices that only support
1106 * 32-bit DMA.
1107 * Use the generic dma-direct / swiotlb ops code in that case, as that
1108 * handles bounce buffering for us.
ad3c7b18
CH
1109 */
1110 if (IS_ENABLED(CONFIG_ARM_LPAE))
1111 return NULL;
1874619a
TR
1112 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1113}
1114
4ce63fcd
MS
1115#ifdef CONFIG_ARM_DMA_USE_IOMMU
1116
7d2822df
S
1117static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1118{
1119 int prot = 0;
1120
1121 if (attrs & DMA_ATTR_PRIVILEGED)
1122 prot |= IOMMU_PRIV;
1123
1124 switch (dir) {
1125 case DMA_BIDIRECTIONAL:
1126 return prot | IOMMU_READ | IOMMU_WRITE;
1127 case DMA_TO_DEVICE:
1128 return prot | IOMMU_READ;
1129 case DMA_FROM_DEVICE:
1130 return prot | IOMMU_WRITE;
1131 default:
1132 return prot;
1133 }
1134}
1135
4ce63fcd
MS
1136/* IOMMU */
1137
4d852ef8
AH
1138static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1139
4ce63fcd
MS
1140static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1141 size_t size)
1142{
1143 unsigned int order = get_order(size);
1144 unsigned int align = 0;
1145 unsigned int count, start;
006f841d 1146 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1147 unsigned long flags;
4d852ef8
AH
1148 dma_addr_t iova;
1149 int i;
4ce63fcd 1150
60460abf
SWK
1151 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1152 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1153
68efd7d2
MS
1154 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1155 align = (1 << order) - 1;
4ce63fcd
MS
1156
1157 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8
AH
1158 for (i = 0; i < mapping->nr_bitmaps; i++) {
1159 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1160 mapping->bits, 0, count, align);
1161
1162 if (start > mapping->bits)
1163 continue;
1164
1165 bitmap_set(mapping->bitmaps[i], start, count);
1166 break;
4ce63fcd
MS
1167 }
1168
4d852ef8
AH
1169 /*
1170 * No unused range found. Try to extend the existing mapping
1171 * and perform a second attempt to reserve an IO virtual
1172 * address range of size bytes.
1173 */
1174 if (i == mapping->nr_bitmaps) {
1175 if (extend_iommu_mapping(mapping)) {
1176 spin_unlock_irqrestore(&mapping->lock, flags);
72fd97bf 1177 return DMA_MAPPING_ERROR;
4d852ef8
AH
1178 }
1179
1180 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1181 mapping->bits, 0, count, align);
1182
1183 if (start > mapping->bits) {
1184 spin_unlock_irqrestore(&mapping->lock, flags);
72fd97bf 1185 return DMA_MAPPING_ERROR;
4d852ef8
AH
1186 }
1187
1188 bitmap_set(mapping->bitmaps[i], start, count);
1189 }
4ce63fcd
MS
1190 spin_unlock_irqrestore(&mapping->lock, flags);
1191
006f841d 1192 iova = mapping->base + (mapping_size * i);
68efd7d2 1193 iova += start << PAGE_SHIFT;
4d852ef8
AH
1194
1195 return iova;
4ce63fcd
MS
1196}
1197
1198static inline void __free_iova(struct dma_iommu_mapping *mapping,
1199 dma_addr_t addr, size_t size)
1200{
4d852ef8 1201 unsigned int start, count;
006f841d 1202 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1203 unsigned long flags;
4d852ef8
AH
1204 dma_addr_t bitmap_base;
1205 u32 bitmap_index;
1206
1207 if (!size)
1208 return;
1209
006f841d 1210 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
4d852ef8
AH
1211 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1212
006f841d 1213 bitmap_base = mapping->base + mapping_size * bitmap_index;
4d852ef8 1214
68efd7d2 1215 start = (addr - bitmap_base) >> PAGE_SHIFT;
4d852ef8 1216
006f841d 1217 if (addr + size > bitmap_base + mapping_size) {
4d852ef8
AH
1218 /*
1219 * The address range to be freed reaches into the iova
1220 * range of the next bitmap. This should not happen as
1221 * we don't allow this in __alloc_iova (at the
1222 * moment).
1223 */
1224 BUG();
1225 } else
68efd7d2 1226 count = size >> PAGE_SHIFT;
4ce63fcd
MS
1227
1228 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8 1229 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
4ce63fcd
MS
1230 spin_unlock_irqrestore(&mapping->lock, flags);
1231}
1232
33298ef6
DA
1233/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1234static const int iommu_order_array[] = { 9, 8, 4, 0 };
1235
549a17e4 1236static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
00085f1e 1237 gfp_t gfp, unsigned long attrs,
f1270896 1238 int coherent_flag)
4ce63fcd
MS
1239{
1240 struct page **pages;
1241 int count = size >> PAGE_SHIFT;
1242 int array_size = count * sizeof(struct page *);
1243 int i = 0;
33298ef6 1244 int order_idx = 0;
4ce63fcd
MS
1245
1246 if (array_size <= PAGE_SIZE)
23be7fda 1247 pages = kzalloc(array_size, GFP_KERNEL);
4ce63fcd
MS
1248 else
1249 pages = vzalloc(array_size);
1250 if (!pages)
1251 return NULL;
1252
00085f1e 1253 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
549a17e4
MS
1254 {
1255 unsigned long order = get_order(size);
1256 struct page *page;
1257
d834c5ab
MS
1258 page = dma_alloc_from_contiguous(dev, count, order,
1259 gfp & __GFP_NOWARN);
549a17e4
MS
1260 if (!page)
1261 goto error;
1262
f1270896 1263 __dma_clear_buffer(page, size, coherent_flag);
549a17e4
MS
1264
1265 for (i = 0; i < count; i++)
1266 pages[i] = page + i;
1267
1268 return pages;
1269 }
1270
14d3ae2e 1271 /* Go straight to 4K chunks if caller says it's OK. */
00085f1e 1272 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
14d3ae2e
DA
1273 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1274
f8669bef
MS
1275 /*
1276 * IOMMU can map any pages, so himem can also be used here
1277 */
1278 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1279
4ce63fcd 1280 while (count) {
49f28aa6
TF
1281 int j, order;
1282
33298ef6
DA
1283 order = iommu_order_array[order_idx];
1284
1285 /* Drop down when we get small */
1286 if (__fls(count) < order) {
1287 order_idx++;
1288 continue;
49f28aa6 1289 }
4ce63fcd 1290
33298ef6
DA
1291 if (order) {
1292 /* See if it's easy to allocate a high-order chunk */
1293 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1294
1295 /* Go down a notch at first sign of pressure */
1296 if (!pages[i]) {
1297 order_idx++;
1298 continue;
1299 }
1300 } else {
49f28aa6
TF
1301 pages[i] = alloc_pages(gfp, 0);
1302 if (!pages[i])
1303 goto error;
1304 }
4ce63fcd 1305
5a796eeb 1306 if (order) {
4ce63fcd 1307 split_page(pages[i], order);
5a796eeb
HD
1308 j = 1 << order;
1309 while (--j)
1310 pages[i + j] = pages[i] + j;
1311 }
4ce63fcd 1312
f1270896 1313 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
4ce63fcd
MS
1314 i += 1 << order;
1315 count -= 1 << order;
1316 }
1317
1318 return pages;
1319error:
9fa8af91 1320 while (i--)
4ce63fcd
MS
1321 if (pages[i])
1322 __free_pages(pages[i], 0);
1d5cfdb0 1323 kvfree(pages);
4ce63fcd
MS
1324 return NULL;
1325}
1326
549a17e4 1327static int __iommu_free_buffer(struct device *dev, struct page **pages,
00085f1e 1328 size_t size, unsigned long attrs)
4ce63fcd
MS
1329{
1330 int count = size >> PAGE_SHIFT;
4ce63fcd 1331 int i;
549a17e4 1332
00085f1e 1333 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
549a17e4
MS
1334 dma_release_from_contiguous(dev, pages[0], count);
1335 } else {
1336 for (i = 0; i < count; i++)
1337 if (pages[i])
1338 __free_pages(pages[i], 0);
1339 }
1340
1d5cfdb0 1341 kvfree(pages);
4ce63fcd
MS
1342 return 0;
1343}
1344
4ce63fcd
MS
1345/*
1346 * Create a mapping in device IO address space for specified pages
1347 */
1348static dma_addr_t
7d2822df
S
1349__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1350 unsigned long attrs)
4ce63fcd 1351{
89cfdb19 1352 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1353 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1354 dma_addr_t dma_addr, iova;
90cde558 1355 int i;
4ce63fcd
MS
1356
1357 dma_addr = __alloc_iova(mapping, size);
72fd97bf 1358 if (dma_addr == DMA_MAPPING_ERROR)
4ce63fcd
MS
1359 return dma_addr;
1360
1361 iova = dma_addr;
1362 for (i = 0; i < count; ) {
90cde558
AP
1363 int ret;
1364
4ce63fcd
MS
1365 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1366 phys_addr_t phys = page_to_phys(pages[i]);
1367 unsigned int len, j;
1368
1369 for (j = i + 1; j < count; j++, next_pfn++)
1370 if (page_to_pfn(pages[j]) != next_pfn)
1371 break;
1372
1373 len = (j - i) << PAGE_SHIFT;
c9b24996 1374 ret = iommu_map(mapping->domain, iova, phys, len,
7d2822df 1375 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
4ce63fcd
MS
1376 if (ret < 0)
1377 goto fail;
1378 iova += len;
1379 i = j;
1380 }
1381 return dma_addr;
1382fail:
1383 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1384 __free_iova(mapping, dma_addr, size);
72fd97bf 1385 return DMA_MAPPING_ERROR;
4ce63fcd
MS
1386}
1387
1388static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1389{
89cfdb19 1390 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1391
1392 /*
1393 * add optional in-page offset from iova to size and align
1394 * result to page size
1395 */
1396 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1397 iova &= PAGE_MASK;
1398
1399 iommu_unmap(mapping->domain, iova, size);
1400 __free_iova(mapping, iova, size);
1401 return 0;
1402}
1403
665bad7b
HD
1404static struct page **__atomic_get_pages(void *addr)
1405{
36d0fd21
LA
1406 struct page *page;
1407 phys_addr_t phys;
1408
1409 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1410 page = phys_to_page(phys);
665bad7b 1411
36d0fd21 1412 return (struct page **)page;
665bad7b
HD
1413}
1414
00085f1e 1415static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
e9da6e99 1416{
665bad7b
HD
1417 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1418 return __atomic_get_pages(cpu_addr);
1419
00085f1e 1420 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
955c757e
MS
1421 return cpu_addr;
1422
5cf45379 1423 return dma_common_find_pages(cpu_addr);
e9da6e99
MS
1424}
1425
56506822 1426static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
7d2822df
S
1427 dma_addr_t *handle, int coherent_flag,
1428 unsigned long attrs)
479ed93a
HD
1429{
1430 struct page *page;
1431 void *addr;
1432
56506822
GC
1433 if (coherent_flag == COHERENT)
1434 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1435 else
1436 addr = __alloc_from_pool(size, &page);
479ed93a
HD
1437 if (!addr)
1438 return NULL;
1439
7d2822df 1440 *handle = __iommu_create_mapping(dev, &page, size, attrs);
72fd97bf 1441 if (*handle == DMA_MAPPING_ERROR)
479ed93a
HD
1442 goto err_mapping;
1443
1444 return addr;
1445
1446err_mapping:
1447 __free_from_pool(addr, size);
1448 return NULL;
1449}
1450
d5898291 1451static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
56506822 1452 dma_addr_t handle, size_t size, int coherent_flag)
479ed93a
HD
1453{
1454 __iommu_remove_mapping(dev, handle, size);
56506822
GC
1455 if (coherent_flag == COHERENT)
1456 __dma_free_buffer(virt_to_page(cpu_addr), size);
1457 else
1458 __free_from_pool(cpu_addr, size);
479ed93a
HD
1459}
1460
56506822 1461static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
00085f1e 1462 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
56506822 1463 int coherent_flag)
4ce63fcd 1464{
71b55663 1465 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
4ce63fcd
MS
1466 struct page **pages;
1467 void *addr = NULL;
1468
72fd97bf 1469 *handle = DMA_MAPPING_ERROR;
4ce63fcd
MS
1470 size = PAGE_ALIGN(size);
1471
56506822
GC
1472 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1473 return __iommu_alloc_simple(dev, size, gfp, handle,
7d2822df 1474 coherent_flag, attrs);
479ed93a 1475
5b91a98c
RZ
1476 /*
1477 * Following is a work-around (a.k.a. hack) to prevent pages
1478 * with __GFP_COMP being passed to split_page() which cannot
1479 * handle them. The real problem is that this flag probably
1480 * should be 0 on ARM as it is not supported on this
1481 * platform; see CONFIG_HUGETLBFS.
1482 */
1483 gfp &= ~(__GFP_COMP);
1484
56506822 1485 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
4ce63fcd
MS
1486 if (!pages)
1487 return NULL;
1488
7d2822df 1489 *handle = __iommu_create_mapping(dev, pages, size, attrs);
72fd97bf 1490 if (*handle == DMA_MAPPING_ERROR)
4ce63fcd
MS
1491 goto err_buffer;
1492
00085f1e 1493 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
955c757e
MS
1494 return pages;
1495
78406ff5 1496 addr = dma_common_pages_remap(pages, size, prot,
e9da6e99 1497 __builtin_return_address(0));
4ce63fcd
MS
1498 if (!addr)
1499 goto err_mapping;
1500
1501 return addr;
1502
1503err_mapping:
1504 __iommu_remove_mapping(dev, *handle, size);
1505err_buffer:
549a17e4 1506 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1507 return NULL;
1508}
1509
56506822 1510static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
00085f1e 1511 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
56506822
GC
1512{
1513 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1514}
1515
1516static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
00085f1e 1517 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
56506822
GC
1518{
1519 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1520}
1521
1522static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
4ce63fcd 1523 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 1524 unsigned long attrs)
4ce63fcd 1525{
955c757e 1526 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
371f0f08 1527 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
6248461d 1528 int err;
4ce63fcd 1529
e9da6e99
MS
1530 if (!pages)
1531 return -ENXIO;
4ce63fcd 1532
6248461d 1533 if (vma->vm_pgoff >= nr_pages)
371f0f08
MS
1534 return -ENXIO;
1535
6248461d
SJ
1536 err = vm_map_pages(vma, pages, nr_pages);
1537 if (err)
1538 pr_err("Remapping memory failed: %d\n", err);
7e312103 1539
6248461d 1540 return err;
4ce63fcd 1541}
56506822
GC
1542static int arm_iommu_mmap_attrs(struct device *dev,
1543 struct vm_area_struct *vma, void *cpu_addr,
00085f1e 1544 dma_addr_t dma_addr, size_t size, unsigned long attrs)
56506822
GC
1545{
1546 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1547
1548 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1549}
1550
1551static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1552 struct vm_area_struct *vma, void *cpu_addr,
00085f1e 1553 dma_addr_t dma_addr, size_t size, unsigned long attrs)
56506822
GC
1554{
1555 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1556}
4ce63fcd
MS
1557
1558/*
1559 * free a page as defined by the above mapping.
1560 * Must not be called with IRQs disabled.
1561 */
17fe8684 1562static void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
00085f1e 1563 dma_addr_t handle, unsigned long attrs, int coherent_flag)
4ce63fcd 1564{
836bfa0d 1565 struct page **pages;
4ce63fcd
MS
1566 size = PAGE_ALIGN(size);
1567
56506822
GC
1568 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1569 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
e9da6e99 1570 return;
4ce63fcd 1571 }
e9da6e99 1572
836bfa0d
YC
1573 pages = __iommu_get_pages(cpu_addr, attrs);
1574 if (!pages) {
1575 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1576 return;
1577 }
1578
fe9041c2 1579 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
51231740 1580 dma_common_free_remap(cpu_addr, size);
e9da6e99
MS
1581
1582 __iommu_remove_mapping(dev, handle, size);
549a17e4 1583 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1584}
1585
17fe8684
BD
1586static void arm_iommu_free_attrs(struct device *dev, size_t size,
1587 void *cpu_addr, dma_addr_t handle,
1588 unsigned long attrs)
56506822
GC
1589{
1590 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1591}
1592
17fe8684 1593static void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
00085f1e 1594 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
56506822
GC
1595{
1596 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1597}
1598
dc2832e1
MS
1599static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1600 void *cpu_addr, dma_addr_t dma_addr,
00085f1e 1601 size_t size, unsigned long attrs)
dc2832e1
MS
1602{
1603 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1604 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1605
1606 if (!pages)
1607 return -ENXIO;
1608
1609 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1610 GFP_KERNEL);
4ce63fcd
MS
1611}
1612
1613/*
1614 * Map a part of the scatter-gather list into contiguous io address space
1615 */
1616static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1617 size_t size, dma_addr_t *handle,
00085f1e 1618 enum dma_data_direction dir, unsigned long attrs,
0fa478df 1619 bool is_coherent)
4ce63fcd 1620{
89cfdb19 1621 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1622 dma_addr_t iova, iova_base;
1623 int ret = 0;
1624 unsigned int count;
1625 struct scatterlist *s;
c9b24996 1626 int prot;
4ce63fcd
MS
1627
1628 size = PAGE_ALIGN(size);
72fd97bf 1629 *handle = DMA_MAPPING_ERROR;
4ce63fcd
MS
1630
1631 iova_base = iova = __alloc_iova(mapping, size);
72fd97bf 1632 if (iova == DMA_MAPPING_ERROR)
4ce63fcd
MS
1633 return -ENOMEM;
1634
1635 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
3e6110fd 1636 phys_addr_t phys = page_to_phys(sg_page(s));
4ce63fcd
MS
1637 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1638
00085f1e 1639 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
4ce63fcd
MS
1640 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1641
7d2822df 1642 prot = __dma_info_to_prot(dir, attrs);
c9b24996
AH
1643
1644 ret = iommu_map(mapping->domain, iova, phys, len, prot);
4ce63fcd
MS
1645 if (ret < 0)
1646 goto fail;
1647 count += len >> PAGE_SHIFT;
1648 iova += len;
1649 }
1650 *handle = iova_base;
1651
1652 return 0;
1653fail:
1654 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1655 __free_iova(mapping, iova_base, size);
1656 return ret;
1657}
1658
0fa478df 1659static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e 1660 enum dma_data_direction dir, unsigned long attrs,
0fa478df 1661 bool is_coherent)
4ce63fcd
MS
1662{
1663 struct scatterlist *s = sg, *dma = sg, *start = sg;
1664 int i, count = 0;
1665 unsigned int offset = s->offset;
1666 unsigned int size = s->offset + s->length;
1667 unsigned int max = dma_get_max_seg_size(dev);
1668
1669 for (i = 1; i < nents; i++) {
1670 s = sg_next(s);
1671
72fd97bf 1672 s->dma_address = DMA_MAPPING_ERROR;
4ce63fcd
MS
1673 s->dma_length = 0;
1674
1675 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1676 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1677 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1678 goto bad_mapping;
1679
1680 dma->dma_address += offset;
1681 dma->dma_length = size - offset;
1682
1683 size = offset = s->offset;
1684 start = s;
1685 dma = sg_next(dma);
1686 count += 1;
1687 }
1688 size += s->length;
1689 }
0fa478df
RH
1690 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1691 is_coherent) < 0)
4ce63fcd
MS
1692 goto bad_mapping;
1693
1694 dma->dma_address += offset;
1695 dma->dma_length = size - offset;
1696
1697 return count+1;
1698
1699bad_mapping:
1700 for_each_sg(sg, s, count, i)
1701 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1702 return 0;
1703}
1704
1705/**
0fa478df 1706 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1707 * @dev: valid struct device pointer
1708 * @sg: list of buffers
0fa478df
RH
1709 * @nents: number of buffers to map
1710 * @dir: DMA transfer direction
4ce63fcd 1711 *
0fa478df
RH
1712 * Map a set of i/o coherent buffers described by scatterlist in streaming
1713 * mode for DMA. The scatter gather list elements are merged together (if
1714 * possible) and tagged with the appropriate dma address and length. They are
1715 * obtained via sg_dma_{address,length}.
4ce63fcd 1716 */
17fe8684 1717static int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
00085f1e 1718 int nents, enum dma_data_direction dir, unsigned long attrs)
0fa478df
RH
1719{
1720 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1721}
1722
1723/**
1724 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1725 * @dev: valid struct device pointer
1726 * @sg: list of buffers
1727 * @nents: number of buffers to map
1728 * @dir: DMA transfer direction
1729 *
1730 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1731 * The scatter gather list elements are merged together (if possible) and
1732 * tagged with the appropriate dma address and length. They are obtained via
1733 * sg_dma_{address,length}.
1734 */
17fe8684 1735static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
00085f1e 1736 int nents, enum dma_data_direction dir, unsigned long attrs)
0fa478df
RH
1737{
1738 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1739}
1740
1741static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
00085f1e
KK
1742 int nents, enum dma_data_direction dir,
1743 unsigned long attrs, bool is_coherent)
4ce63fcd
MS
1744{
1745 struct scatterlist *s;
1746 int i;
1747
1748 for_each_sg(sg, s, nents, i) {
1749 if (sg_dma_len(s))
1750 __iommu_remove_mapping(dev, sg_dma_address(s),
1751 sg_dma_len(s));
00085f1e 1752 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
4ce63fcd
MS
1753 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1754 s->length, dir);
1755 }
1756}
1757
0fa478df
RH
1758/**
1759 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1760 * @dev: valid struct device pointer
1761 * @sg: list of buffers
1762 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1763 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1764 *
1765 * Unmap a set of streaming mode DMA translations. Again, CPU access
1766 * rules concerning calls here are the same as for dma_unmap_single().
1767 */
17fe8684
BD
1768static void arm_coherent_iommu_unmap_sg(struct device *dev,
1769 struct scatterlist *sg, int nents, enum dma_data_direction dir,
00085f1e 1770 unsigned long attrs)
0fa478df
RH
1771{
1772 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1773}
1774
1775/**
1776 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1777 * @dev: valid struct device pointer
1778 * @sg: list of buffers
1779 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1780 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1781 *
1782 * Unmap a set of streaming mode DMA translations. Again, CPU access
1783 * rules concerning calls here are the same as for dma_unmap_single().
1784 */
17fe8684
BD
1785static void arm_iommu_unmap_sg(struct device *dev,
1786 struct scatterlist *sg, int nents,
1787 enum dma_data_direction dir,
1788 unsigned long attrs)
0fa478df
RH
1789{
1790 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1791}
1792
4ce63fcd
MS
1793/**
1794 * arm_iommu_sync_sg_for_cpu
1795 * @dev: valid struct device pointer
1796 * @sg: list of buffers
1797 * @nents: number of buffers to map (returned from dma_map_sg)
1798 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1799 */
17fe8684
BD
1800static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1801 struct scatterlist *sg,
4ce63fcd
MS
1802 int nents, enum dma_data_direction dir)
1803{
1804 struct scatterlist *s;
1805 int i;
1806
1807 for_each_sg(sg, s, nents, i)
0fa478df 1808 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1809
1810}
1811
1812/**
1813 * arm_iommu_sync_sg_for_device
1814 * @dev: valid struct device pointer
1815 * @sg: list of buffers
1816 * @nents: number of buffers to map (returned from dma_map_sg)
1817 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1818 */
17fe8684
BD
1819static void arm_iommu_sync_sg_for_device(struct device *dev,
1820 struct scatterlist *sg,
4ce63fcd
MS
1821 int nents, enum dma_data_direction dir)
1822{
1823 struct scatterlist *s;
1824 int i;
1825
1826 for_each_sg(sg, s, nents, i)
0fa478df 1827 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1828}
1829
1830
1831/**
0fa478df 1832 * arm_coherent_iommu_map_page
4ce63fcd
MS
1833 * @dev: valid struct device pointer
1834 * @page: page that buffer resides in
1835 * @offset: offset into page for start of buffer
1836 * @size: size of buffer to map
1837 * @dir: DMA transfer direction
1838 *
0fa478df 1839 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1840 */
0fa478df 1841static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd 1842 unsigned long offset, size_t size, enum dma_data_direction dir,
00085f1e 1843 unsigned long attrs)
4ce63fcd 1844{
89cfdb19 1845 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd 1846 dma_addr_t dma_addr;
13987d68 1847 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1848
4ce63fcd 1849 dma_addr = __alloc_iova(mapping, len);
72fd97bf 1850 if (dma_addr == DMA_MAPPING_ERROR)
4ce63fcd
MS
1851 return dma_addr;
1852
7d2822df 1853 prot = __dma_info_to_prot(dir, attrs);
13987d68
WD
1854
1855 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
4ce63fcd
MS
1856 if (ret < 0)
1857 goto fail;
1858
1859 return dma_addr + offset;
1860fail:
1861 __free_iova(mapping, dma_addr, len);
72fd97bf 1862 return DMA_MAPPING_ERROR;
4ce63fcd
MS
1863}
1864
0fa478df
RH
1865/**
1866 * arm_iommu_map_page
1867 * @dev: valid struct device pointer
1868 * @page: page that buffer resides in
1869 * @offset: offset into page for start of buffer
1870 * @size: size of buffer to map
1871 * @dir: DMA transfer direction
1872 *
1873 * IOMMU aware version of arm_dma_map_page()
1874 */
1875static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1876 unsigned long offset, size_t size, enum dma_data_direction dir,
00085f1e 1877 unsigned long attrs)
0fa478df 1878{
00085f1e 1879 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
0fa478df
RH
1880 __dma_page_cpu_to_dev(page, offset, size, dir);
1881
1882 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1883}
1884
1885/**
1886 * arm_coherent_iommu_unmap_page
1887 * @dev: valid struct device pointer
1888 * @handle: DMA address of buffer
1889 * @size: size of buffer (same as passed to dma_map_page)
1890 * @dir: DMA transfer direction (same as passed to dma_map_page)
1891 *
1892 * Coherent IOMMU aware version of arm_dma_unmap_page()
1893 */
1894static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
00085f1e 1895 size_t size, enum dma_data_direction dir, unsigned long attrs)
0fa478df 1896{
89cfdb19 1897 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
0fa478df 1898 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1899 int offset = handle & ~PAGE_MASK;
1900 int len = PAGE_ALIGN(size + offset);
1901
1902 if (!iova)
1903 return;
1904
1905 iommu_unmap(mapping->domain, iova, len);
1906 __free_iova(mapping, iova, len);
1907}
1908
4ce63fcd
MS
1909/**
1910 * arm_iommu_unmap_page
1911 * @dev: valid struct device pointer
1912 * @handle: DMA address of buffer
1913 * @size: size of buffer (same as passed to dma_map_page)
1914 * @dir: DMA transfer direction (same as passed to dma_map_page)
1915 *
1916 * IOMMU aware version of arm_dma_unmap_page()
1917 */
1918static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
00085f1e 1919 size_t size, enum dma_data_direction dir, unsigned long attrs)
4ce63fcd 1920{
89cfdb19 1921 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1922 dma_addr_t iova = handle & PAGE_MASK;
1923 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1924 int offset = handle & ~PAGE_MASK;
1925 int len = PAGE_ALIGN(size + offset);
1926
1927 if (!iova)
1928 return;
1929
00085f1e 1930 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
4ce63fcd
MS
1931 __dma_page_dev_to_cpu(page, offset, size, dir);
1932
1933 iommu_unmap(mapping->domain, iova, len);
1934 __free_iova(mapping, iova, len);
1935}
1936
24ed5d2c
NS
1937/**
1938 * arm_iommu_map_resource - map a device resource for DMA
1939 * @dev: valid struct device pointer
1940 * @phys_addr: physical address of resource
1941 * @size: size of resource to map
1942 * @dir: DMA transfer direction
1943 */
1944static dma_addr_t arm_iommu_map_resource(struct device *dev,
1945 phys_addr_t phys_addr, size_t size,
1946 enum dma_data_direction dir, unsigned long attrs)
1947{
1948 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1949 dma_addr_t dma_addr;
1950 int ret, prot;
1951 phys_addr_t addr = phys_addr & PAGE_MASK;
1952 unsigned int offset = phys_addr & ~PAGE_MASK;
1953 size_t len = PAGE_ALIGN(size + offset);
1954
1955 dma_addr = __alloc_iova(mapping, len);
72fd97bf 1956 if (dma_addr == DMA_MAPPING_ERROR)
24ed5d2c
NS
1957 return dma_addr;
1958
7d2822df 1959 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
24ed5d2c
NS
1960
1961 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1962 if (ret < 0)
1963 goto fail;
1964
1965 return dma_addr + offset;
1966fail:
1967 __free_iova(mapping, dma_addr, len);
72fd97bf 1968 return DMA_MAPPING_ERROR;
24ed5d2c
NS
1969}
1970
1971/**
1972 * arm_iommu_unmap_resource - unmap a device DMA resource
1973 * @dev: valid struct device pointer
1974 * @dma_handle: DMA address to resource
1975 * @size: size of resource to map
1976 * @dir: DMA transfer direction
1977 */
1978static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1979 size_t size, enum dma_data_direction dir,
1980 unsigned long attrs)
1981{
1982 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1983 dma_addr_t iova = dma_handle & PAGE_MASK;
1984 unsigned int offset = dma_handle & ~PAGE_MASK;
1985 size_t len = PAGE_ALIGN(size + offset);
1986
1987 if (!iova)
1988 return;
1989
1990 iommu_unmap(mapping->domain, iova, len);
1991 __free_iova(mapping, iova, len);
1992}
1993
4ce63fcd
MS
1994static void arm_iommu_sync_single_for_cpu(struct device *dev,
1995 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1996{
89cfdb19 1997 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1998 dma_addr_t iova = handle & PAGE_MASK;
1999 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2000 unsigned int offset = handle & ~PAGE_MASK;
2001
2002 if (!iova)
2003 return;
2004
0fa478df 2005 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
2006}
2007
2008static void arm_iommu_sync_single_for_device(struct device *dev,
2009 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2010{
89cfdb19 2011 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
2012 dma_addr_t iova = handle & PAGE_MASK;
2013 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2014 unsigned int offset = handle & ~PAGE_MASK;
2015
2016 if (!iova)
2017 return;
2018
2019 __dma_page_cpu_to_dev(page, offset, size, dir);
2020}
2021
17fe8684 2022static const struct dma_map_ops iommu_ops = {
4ce63fcd
MS
2023 .alloc = arm_iommu_alloc_attrs,
2024 .free = arm_iommu_free_attrs,
2025 .mmap = arm_iommu_mmap_attrs,
dc2832e1 2026 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
2027
2028 .map_page = arm_iommu_map_page,
2029 .unmap_page = arm_iommu_unmap_page,
2030 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2031 .sync_single_for_device = arm_iommu_sync_single_for_device,
2032
2033 .map_sg = arm_iommu_map_sg,
2034 .unmap_sg = arm_iommu_unmap_sg,
2035 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2036 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
24ed5d2c
NS
2037
2038 .map_resource = arm_iommu_map_resource,
2039 .unmap_resource = arm_iommu_unmap_resource,
9eef8b8c 2040
418a7a7e 2041 .dma_supported = arm_dma_supported,
4ce63fcd
MS
2042};
2043
17fe8684 2044static const struct dma_map_ops iommu_coherent_ops = {
56506822
GC
2045 .alloc = arm_coherent_iommu_alloc_attrs,
2046 .free = arm_coherent_iommu_free_attrs,
2047 .mmap = arm_coherent_iommu_mmap_attrs,
0fa478df
RH
2048 .get_sgtable = arm_iommu_get_sgtable,
2049
2050 .map_page = arm_coherent_iommu_map_page,
2051 .unmap_page = arm_coherent_iommu_unmap_page,
2052
2053 .map_sg = arm_coherent_iommu_map_sg,
2054 .unmap_sg = arm_coherent_iommu_unmap_sg,
24ed5d2c
NS
2055
2056 .map_resource = arm_iommu_map_resource,
2057 .unmap_resource = arm_iommu_unmap_resource,
9eef8b8c 2058
418a7a7e 2059 .dma_supported = arm_dma_supported,
0fa478df
RH
2060};
2061
4ce63fcd
MS
2062/**
2063 * arm_iommu_create_mapping
2064 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2065 * @base: start address of the valid IO address space
68efd7d2 2066 * @size: maximum size of the valid IO address space
4ce63fcd
MS
2067 *
2068 * Creates a mapping structure which holds information about used/unused
2069 * IO address ranges, which is required to perform memory allocation and
2070 * mapping with IOMMU aware functions.
2071 *
2072 * The client device need to be attached to the mapping with
2073 * arm_iommu_attach_device function.
2074 */
2075struct dma_iommu_mapping *
1424532b 2076arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
4ce63fcd 2077{
68efd7d2
MS
2078 unsigned int bits = size >> PAGE_SHIFT;
2079 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
4ce63fcd 2080 struct dma_iommu_mapping *mapping;
68efd7d2 2081 int extensions = 1;
4ce63fcd
MS
2082 int err = -ENOMEM;
2083
1424532b
MS
2084 /* currently only 32-bit DMA address space is supported */
2085 if (size > DMA_BIT_MASK(32) + 1)
2086 return ERR_PTR(-ERANGE);
2087
68efd7d2 2088 if (!bitmap_size)
4ce63fcd
MS
2089 return ERR_PTR(-EINVAL);
2090
68efd7d2
MS
2091 if (bitmap_size > PAGE_SIZE) {
2092 extensions = bitmap_size / PAGE_SIZE;
2093 bitmap_size = PAGE_SIZE;
2094 }
2095
4ce63fcd
MS
2096 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2097 if (!mapping)
2098 goto err;
2099
68efd7d2 2100 mapping->bitmap_size = bitmap_size;
6396bb22
KC
2101 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2102 GFP_KERNEL);
4d852ef8 2103 if (!mapping->bitmaps)
4ce63fcd
MS
2104 goto err2;
2105
68efd7d2 2106 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
4d852ef8
AH
2107 if (!mapping->bitmaps[0])
2108 goto err3;
2109
2110 mapping->nr_bitmaps = 1;
2111 mapping->extensions = extensions;
4ce63fcd 2112 mapping->base = base;
68efd7d2 2113 mapping->bits = BITS_PER_BYTE * bitmap_size;
4d852ef8 2114
4ce63fcd
MS
2115 spin_lock_init(&mapping->lock);
2116
2117 mapping->domain = iommu_domain_alloc(bus);
2118 if (!mapping->domain)
4d852ef8 2119 goto err4;
4ce63fcd
MS
2120
2121 kref_init(&mapping->kref);
2122 return mapping;
4d852ef8
AH
2123err4:
2124 kfree(mapping->bitmaps[0]);
4ce63fcd 2125err3:
4d852ef8 2126 kfree(mapping->bitmaps);
4ce63fcd
MS
2127err2:
2128 kfree(mapping);
2129err:
2130 return ERR_PTR(err);
2131}
18177d12 2132EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
2133
2134static void release_iommu_mapping(struct kref *kref)
2135{
4d852ef8 2136 int i;
4ce63fcd
MS
2137 struct dma_iommu_mapping *mapping =
2138 container_of(kref, struct dma_iommu_mapping, kref);
2139
2140 iommu_domain_free(mapping->domain);
4d852ef8
AH
2141 for (i = 0; i < mapping->nr_bitmaps; i++)
2142 kfree(mapping->bitmaps[i]);
2143 kfree(mapping->bitmaps);
4ce63fcd
MS
2144 kfree(mapping);
2145}
2146
4d852ef8
AH
2147static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2148{
2149 int next_bitmap;
2150
462859aa 2151 if (mapping->nr_bitmaps >= mapping->extensions)
4d852ef8
AH
2152 return -EINVAL;
2153
2154 next_bitmap = mapping->nr_bitmaps;
2155 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2156 GFP_ATOMIC);
2157 if (!mapping->bitmaps[next_bitmap])
2158 return -ENOMEM;
2159
2160 mapping->nr_bitmaps++;
2161
2162 return 0;
2163}
2164
4ce63fcd
MS
2165void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2166{
2167 if (mapping)
2168 kref_put(&mapping->kref, release_iommu_mapping);
2169}
18177d12 2170EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd 2171
eab8d653
LP
2172static int __arm_iommu_attach_device(struct device *dev,
2173 struct dma_iommu_mapping *mapping)
2174{
2175 int err;
2176
2177 err = iommu_attach_device(mapping->domain, dev);
2178 if (err)
2179 return err;
2180
2181 kref_get(&mapping->kref);
89cfdb19 2182 to_dma_iommu_mapping(dev) = mapping;
eab8d653
LP
2183
2184 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2185 return 0;
2186}
2187
4ce63fcd
MS
2188/**
2189 * arm_iommu_attach_device
2190 * @dev: valid struct device pointer
2191 * @mapping: io address space mapping structure (returned from
2192 * arm_iommu_create_mapping)
2193 *
eab8d653
LP
2194 * Attaches specified io address space mapping to the provided device.
2195 * This replaces the dma operations (dma_map_ops pointer) with the
2196 * IOMMU aware version.
2197 *
4bb25789
WD
2198 * More than one client might be attached to the same io address space
2199 * mapping.
4ce63fcd
MS
2200 */
2201int arm_iommu_attach_device(struct device *dev,
2202 struct dma_iommu_mapping *mapping)
2203{
2204 int err;
2205
eab8d653 2206 err = __arm_iommu_attach_device(dev, mapping);
4ce63fcd
MS
2207 if (err)
2208 return err;
2209
eab8d653 2210 set_dma_ops(dev, &iommu_ops);
4ce63fcd
MS
2211 return 0;
2212}
18177d12 2213EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 2214
d3e01c51
S
2215/**
2216 * arm_iommu_detach_device
2217 * @dev: valid struct device pointer
2218 *
2219 * Detaches the provided device from a previously attached map.
4a4d68fc 2220 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
d3e01c51
S
2221 */
2222void arm_iommu_detach_device(struct device *dev)
6fe36758
HD
2223{
2224 struct dma_iommu_mapping *mapping;
2225
2226 mapping = to_dma_iommu_mapping(dev);
2227 if (!mapping) {
2228 dev_warn(dev, "Not attached\n");
2229 return;
2230 }
2231
2232 iommu_detach_device(mapping->domain, dev);
2233 kref_put(&mapping->kref, release_iommu_mapping);
89cfdb19 2234 to_dma_iommu_mapping(dev) = NULL;
1874619a 2235 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
6fe36758
HD
2236
2237 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2238}
18177d12 2239EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 2240
5299709d 2241static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
4bb25789
WD
2242{
2243 return coherent ? &iommu_coherent_ops : &iommu_ops;
2244}
2245
2246static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
53c92d79 2247 const struct iommu_ops *iommu)
4bb25789
WD
2248{
2249 struct dma_iommu_mapping *mapping;
2250
2251 if (!iommu)
2252 return false;
2253
2254 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2255 if (IS_ERR(mapping)) {
2256 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2257 size, dev_name(dev));
2258 return false;
2259 }
2260
eab8d653 2261 if (__arm_iommu_attach_device(dev, mapping)) {
4bb25789
WD
2262 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2263 dev_name(dev));
2264 arm_iommu_release_mapping(mapping);
2265 return false;
2266 }
2267
2268 return true;
2269}
2270
2271static void arm_teardown_iommu_dma_ops(struct device *dev)
2272{
89cfdb19 2273 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4bb25789 2274
c2273a18
WD
2275 if (!mapping)
2276 return;
2277
d3e01c51 2278 arm_iommu_detach_device(dev);
4bb25789
WD
2279 arm_iommu_release_mapping(mapping);
2280}
2281
2282#else
2283
2284static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
53c92d79 2285 const struct iommu_ops *iommu)
4bb25789
WD
2286{
2287 return false;
2288}
2289
2290static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2291
2292#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2293
2294#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2295
4bb25789 2296void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
53c92d79 2297 const struct iommu_ops *iommu, bool coherent)
4bb25789 2298{
5299709d 2299 const struct dma_map_ops *dma_ops;
4bb25789 2300
6f51ee70 2301 dev->archdata.dma_coherent = coherent;
ad3c7b18
CH
2302#ifdef CONFIG_SWIOTLB
2303 dev->dma_coherent = coherent;
2304#endif
26b37b94
LP
2305
2306 /*
2307 * Don't override the dma_ops if they have already been set. Ideally
2308 * this should be the only location where dma_ops are set, remove this
2309 * check when all other callers of set_dma_ops will have disappeared.
2310 */
2311 if (dev->dma_ops)
2312 return;
2313
4bb25789
WD
2314 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2315 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2316 else
2317 dma_ops = arm_get_dma_map_ops(coherent);
2318
2319 set_dma_ops(dev, dma_ops);
e0586326
SS
2320
2321#ifdef CONFIG_XEN
8e23c82c 2322 if (xen_initial_domain())
0e0d26e7 2323 dev->dma_ops = &xen_swiotlb_dma_ops;
e0586326 2324#endif
a93a121a 2325 dev->archdata.dma_ops_setup = true;
4bb25789
WD
2326}
2327
2328void arch_teardown_dma_ops(struct device *dev)
2329{
a93a121a
LP
2330 if (!dev->archdata.dma_ops_setup)
2331 return;
2332
4bb25789 2333 arm_teardown_iommu_dma_ops(dev);
fc67e6f1
RM
2334 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2335 set_dma_ops(dev, NULL);
4bb25789 2336}
ad3c7b18
CH
2337
2338#ifdef CONFIG_SWIOTLB
2339void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
2340 size_t size, enum dma_data_direction dir)
2341{
2342 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2343 size, dir);
2344}
2345
2346void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
2347 size_t size, enum dma_data_direction dir)
2348{
2349 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2350 size, dir);
2351}
2352
2353long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
2354 dma_addr_t dma_addr)
2355{
2356 return dma_to_pfn(dev, dma_addr);
2357}
2358
ad3c7b18
CH
2359void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2360 gfp_t gfp, unsigned long attrs)
2361{
2362 return __dma_alloc(dev, size, dma_handle, gfp,
2363 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2364 attrs, __builtin_return_address(0));
2365}
2366
2367void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2368 dma_addr_t dma_handle, unsigned long attrs)
2369{
2370 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2371}
2372#endif /* CONFIG_SWIOTLB */