]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/arm/mm/dma-mapping.c
ARM: 8309/1: l2c: enforce use of cache-level property
[mirror_ubuntu-hirsute-kernel.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
11a5aa32 12#include <linux/bootmem.h>
1da177e4
LT
13#include <linux/module.h>
14#include <linux/mm.h>
36d0fd21 15#include <linux/genalloc.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
c7909509 22#include <linux/dma-contiguous.h>
39af22a7 23#include <linux/highmem.h>
c7909509 24#include <linux/memblock.h>
99d1717d 25#include <linux/slab.h>
4ce63fcd 26#include <linux/iommu.h>
e9da6e99 27#include <linux/io.h>
4ce63fcd 28#include <linux/vmalloc.h>
158e8bfe 29#include <linux/sizes.h>
a254129e 30#include <linux/cma.h>
1da177e4 31
23759dc6 32#include <asm/memory.h>
43377453 33#include <asm/highmem.h>
1da177e4 34#include <asm/cacheflush.h>
1da177e4 35#include <asm/tlbflush.h>
99d1717d 36#include <asm/mach/arch.h>
4ce63fcd 37#include <asm/dma-iommu.h>
c7909509
MS
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
37134cd5 41
022ae537
RK
42#include "mm.h"
43
15237e1f
MS
44/*
45 * The DMA API is built upon the notion of "buffer ownership". A buffer
46 * is either exclusively owned by the CPU (and therefore may be accessed
47 * by it) or exclusively owned by the DMA device. These helper functions
48 * represent the transitions between these two ownership states.
49 *
50 * Note, however, that on later ARMs, this notion does not work due to
51 * speculative prefetches. We model our approach on the assumption that
52 * the CPU does do speculative prefetches, which means we clean caches
53 * before transfers and delay cache invalidation until transfer completion.
54 *
15237e1f 55 */
51fde349 56static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 57 size_t, enum dma_data_direction);
51fde349 58static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
59 size_t, enum dma_data_direction);
60
2dc6a016
MS
61/**
62 * arm_dma_map_page - map a portion of a page for streaming DMA
63 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64 * @page: page that buffer resides in
65 * @offset: offset into page for start of buffer
66 * @size: size of buffer to map
67 * @dir: DMA transfer direction
68 *
69 * Ensure that any data held in the cache is appropriately discarded
70 * or written back.
71 *
72 * The device owns this memory once this call has completed. The CPU
73 * can regain ownership by calling dma_unmap_page().
74 */
51fde349 75static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
76 unsigned long offset, size_t size, enum dma_data_direction dir,
77 struct dma_attrs *attrs)
78{
dd37e940 79 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
80 __dma_page_cpu_to_dev(page, offset, size, dir);
81 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
82}
83
dd37e940
RH
84static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
85 unsigned long offset, size_t size, enum dma_data_direction dir,
86 struct dma_attrs *attrs)
87{
88 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
89}
90
2dc6a016
MS
91/**
92 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
93 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
94 * @handle: DMA address of buffer
95 * @size: size of buffer (same as passed to dma_map_page)
96 * @dir: DMA transfer direction (same as passed to dma_map_page)
97 *
98 * Unmap a page streaming mode DMA translation. The handle and size
99 * must match what was provided in the previous dma_map_page() call.
100 * All other usages are undefined.
101 *
102 * After this call, reads by the CPU to the buffer are guaranteed to see
103 * whatever the device wrote there.
104 */
51fde349 105static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
106 size_t size, enum dma_data_direction dir,
107 struct dma_attrs *attrs)
108{
dd37e940 109 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
110 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
111 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
112}
113
51fde349 114static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
115 dma_addr_t handle, size_t size, enum dma_data_direction dir)
116{
117 unsigned int offset = handle & (PAGE_SIZE - 1);
118 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 119 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
120}
121
51fde349 122static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
123 dma_addr_t handle, size_t size, enum dma_data_direction dir)
124{
125 unsigned int offset = handle & (PAGE_SIZE - 1);
126 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 127 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
128}
129
2dc6a016 130struct dma_map_ops arm_dma_ops = {
f99d6034
MS
131 .alloc = arm_dma_alloc,
132 .free = arm_dma_free,
133 .mmap = arm_dma_mmap,
dc2832e1 134 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
135 .map_page = arm_dma_map_page,
136 .unmap_page = arm_dma_unmap_page,
137 .map_sg = arm_dma_map_sg,
138 .unmap_sg = arm_dma_unmap_sg,
139 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
140 .sync_single_for_device = arm_dma_sync_single_for_device,
141 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
142 .sync_sg_for_device = arm_dma_sync_sg_for_device,
143 .set_dma_mask = arm_dma_set_mask,
144};
145EXPORT_SYMBOL(arm_dma_ops);
146
dd37e940
RH
147static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
148 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
149static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
150 dma_addr_t handle, struct dma_attrs *attrs);
151
152struct dma_map_ops arm_coherent_dma_ops = {
153 .alloc = arm_coherent_dma_alloc,
154 .free = arm_coherent_dma_free,
155 .mmap = arm_dma_mmap,
156 .get_sgtable = arm_dma_get_sgtable,
157 .map_page = arm_coherent_dma_map_page,
158 .map_sg = arm_dma_map_sg,
159 .set_dma_mask = arm_dma_set_mask,
160};
161EXPORT_SYMBOL(arm_coherent_dma_ops);
162
9f28cde0
RK
163static int __dma_supported(struct device *dev, u64 mask, bool warn)
164{
165 unsigned long max_dma_pfn;
166
167 /*
168 * If the mask allows for more memory than we can address,
169 * and we actually have that much memory, then we must
170 * indicate that DMA to this device is not supported.
171 */
172 if (sizeof(mask) != sizeof(dma_addr_t) &&
173 mask > (dma_addr_t)~0 &&
174 dma_to_pfn(dev, ~0) < max_pfn) {
175 if (warn) {
176 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
177 mask);
178 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
179 }
180 return 0;
181 }
182
183 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
184
185 /*
186 * Translate the device's DMA mask to a PFN limit. This
187 * PFN number includes the page which we can DMA to.
188 */
189 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
190 if (warn)
191 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
192 mask,
193 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
194 max_dma_pfn + 1);
195 return 0;
196 }
197
198 return 1;
199}
200
ab6494f0
CM
201static u64 get_coherent_dma_mask(struct device *dev)
202{
4dcfa600 203 u64 mask = (u64)DMA_BIT_MASK(32);
ab6494f0
CM
204
205 if (dev) {
206 mask = dev->coherent_dma_mask;
207
208 /*
209 * Sanity check the DMA mask - it must be non-zero, and
210 * must be able to be satisfied by a DMA allocation.
211 */
212 if (mask == 0) {
213 dev_warn(dev, "coherent DMA mask is unset\n");
214 return 0;
215 }
216
9f28cde0 217 if (!__dma_supported(dev, mask, true))
ab6494f0 218 return 0;
ab6494f0 219 }
1da177e4 220
ab6494f0
CM
221 return mask;
222}
223
c7909509
MS
224static void __dma_clear_buffer(struct page *page, size_t size)
225{
c7909509
MS
226 /*
227 * Ensure that the allocated pages are zeroed, and that any data
228 * lurking in the kernel direct-mapped region is invalidated.
229 */
9848e48f
MS
230 if (PageHighMem(page)) {
231 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
232 phys_addr_t end = base + size;
233 while (size > 0) {
234 void *ptr = kmap_atomic(page);
235 memset(ptr, 0, PAGE_SIZE);
236 dmac_flush_range(ptr, ptr + PAGE_SIZE);
237 kunmap_atomic(ptr);
238 page++;
239 size -= PAGE_SIZE;
240 }
241 outer_flush_range(base, end);
242 } else {
243 void *ptr = page_address(page);
4ce63fcd
MS
244 memset(ptr, 0, size);
245 dmac_flush_range(ptr, ptr + size);
246 outer_flush_range(__pa(ptr), __pa(ptr) + size);
247 }
c7909509
MS
248}
249
7a9a32a9
RK
250/*
251 * Allocate a DMA buffer for 'dev' of size 'size' using the
252 * specified gfp mask. Note that 'size' must be page aligned.
253 */
254static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
255{
256 unsigned long order = get_order(size);
257 struct page *page, *p, *e;
7a9a32a9
RK
258
259 page = alloc_pages(gfp, order);
260 if (!page)
261 return NULL;
262
263 /*
264 * Now split the huge page and free the excess pages
265 */
266 split_page(page, order);
267 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
268 __free_page(p);
269
c7909509 270 __dma_clear_buffer(page, size);
7a9a32a9
RK
271
272 return page;
273}
274
275/*
276 * Free a DMA buffer. 'size' must be page aligned.
277 */
278static void __dma_free_buffer(struct page *page, size_t size)
279{
280 struct page *e = page + (size >> PAGE_SHIFT);
281
282 while (page < e) {
283 __free_page(page);
284 page++;
285 }
286}
287
ab6494f0 288#ifdef CONFIG_MMU
a5e9d38b 289
e9da6e99 290static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 291 pgprot_t prot, struct page **ret_page,
6e8266e3 292 const void *caller, bool want_vaddr);
99d1717d 293
e9da6e99
MS
294static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
295 pgprot_t prot, struct page **ret_page,
6e8266e3 296 const void *caller, bool want_vaddr);
99d1717d 297
e9da6e99
MS
298static void *
299__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
300 const void *caller)
99d1717d 301{
e9da6e99
MS
302 /*
303 * DMA allocation can be mapped to user space, so lets
304 * set VM_USERMAP flags too.
305 */
513510dd
LA
306 return dma_common_contiguous_remap(page, size,
307 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 prot, caller);
99d1717d 309}
1da177e4 310
e9da6e99 311static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 312{
513510dd
LA
313 dma_common_free_remap(cpu_addr, size,
314 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
88c58f3b 315}
88c58f3b 316
6e5267aa 317#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
36d0fd21 318static struct gen_pool *atomic_pool;
6e5267aa 319
36d0fd21 320static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
c7909509
MS
321
322static int __init early_coherent_pool(char *p)
323{
36d0fd21 324 atomic_pool_size = memparse(p, &p);
c7909509
MS
325 return 0;
326}
327early_param("coherent_pool", early_coherent_pool);
328
6e5267aa
MS
329void __init init_dma_coherent_pool_size(unsigned long size)
330{
331 /*
332 * Catch any attempt to set the pool size too late.
333 */
36d0fd21 334 BUG_ON(atomic_pool);
6e5267aa
MS
335
336 /*
337 * Set architecture specific coherent pool size only if
338 * it has not been changed by kernel command line parameter.
339 */
36d0fd21
LA
340 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
341 atomic_pool_size = size;
6e5267aa
MS
342}
343
c7909509
MS
344/*
345 * Initialise the coherent pool for atomic allocations.
346 */
e9da6e99 347static int __init atomic_pool_init(void)
c7909509 348{
71b55663 349 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
9d1400cf 350 gfp_t gfp = GFP_KERNEL | GFP_DMA;
c7909509
MS
351 struct page *page;
352 void *ptr;
c7909509 353
36d0fd21
LA
354 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
355 if (!atomic_pool)
356 goto out;
6b3fe472 357
e464ef16 358 if (dev_get_cma_area(NULL))
36d0fd21 359 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
6e8266e3 360 &page, atomic_pool_init, true);
e9da6e99 361 else
36d0fd21 362 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
6e8266e3 363 &page, atomic_pool_init, true);
c7909509 364 if (ptr) {
36d0fd21
LA
365 int ret;
366
367 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
368 page_to_phys(page),
369 atomic_pool_size, -1);
370 if (ret)
371 goto destroy_genpool;
372
373 gen_pool_set_algo(atomic_pool,
374 gen_pool_first_fit_order_align,
375 (void *)PAGE_SHIFT);
376 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
377 atomic_pool_size / 1024);
c7909509
MS
378 return 0;
379 }
ec10665c 380
36d0fd21
LA
381destroy_genpool:
382 gen_pool_destroy(atomic_pool);
383 atomic_pool = NULL;
384out:
385 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
386 atomic_pool_size / 1024);
c7909509
MS
387 return -ENOMEM;
388}
389/*
390 * CMA is activated by core_initcall, so we must be called after it.
391 */
e9da6e99 392postcore_initcall(atomic_pool_init);
c7909509
MS
393
394struct dma_contig_early_reserve {
395 phys_addr_t base;
396 unsigned long size;
397};
398
399static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
400
401static int dma_mmu_remap_num __initdata;
402
403void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
404{
405 dma_mmu_remap[dma_mmu_remap_num].base = base;
406 dma_mmu_remap[dma_mmu_remap_num].size = size;
407 dma_mmu_remap_num++;
408}
409
410void __init dma_contiguous_remap(void)
411{
412 int i;
413 for (i = 0; i < dma_mmu_remap_num; i++) {
414 phys_addr_t start = dma_mmu_remap[i].base;
415 phys_addr_t end = start + dma_mmu_remap[i].size;
416 struct map_desc map;
417 unsigned long addr;
418
419 if (end > arm_lowmem_limit)
420 end = arm_lowmem_limit;
421 if (start >= end)
39f78e70 422 continue;
c7909509
MS
423
424 map.pfn = __phys_to_pfn(start);
425 map.virtual = __phys_to_virt(start);
426 map.length = end - start;
427 map.type = MT_MEMORY_DMA_READY;
428
429 /*
6b076991
RK
430 * Clear previous low-memory mapping to ensure that the
431 * TLB does not see any conflicting entries, then flush
432 * the TLB of the old entries before creating new mappings.
433 *
434 * This ensures that any speculatively loaded TLB entries
435 * (even though they may be rare) can not cause any problems,
436 * and ensures that this code is architecturally compliant.
c7909509
MS
437 */
438 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 439 addr += PMD_SIZE)
c7909509
MS
440 pmd_clear(pmd_off_k(addr));
441
6b076991
RK
442 flush_tlb_kernel_range(__phys_to_virt(start),
443 __phys_to_virt(end));
444
c7909509
MS
445 iotable_init(&map, 1);
446 }
447}
448
c7909509
MS
449static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
450 void *data)
451{
452 struct page *page = virt_to_page(addr);
453 pgprot_t prot = *(pgprot_t *)data;
454
455 set_pte_ext(pte, mk_pte(page, prot), 0);
456 return 0;
457}
458
459static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
460{
461 unsigned long start = (unsigned long) page_address(page);
462 unsigned end = start + size;
463
464 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
465 flush_tlb_kernel_range(start, end);
466}
467
468static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
469 pgprot_t prot, struct page **ret_page,
6e8266e3 470 const void *caller, bool want_vaddr)
c7909509
MS
471{
472 struct page *page;
6e8266e3 473 void *ptr = NULL;
c7909509
MS
474 page = __dma_alloc_buffer(dev, size, gfp);
475 if (!page)
476 return NULL;
6e8266e3
CC
477 if (!want_vaddr)
478 goto out;
c7909509
MS
479
480 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
481 if (!ptr) {
482 __dma_free_buffer(page, size);
483 return NULL;
484 }
485
6e8266e3 486 out:
c7909509
MS
487 *ret_page = page;
488 return ptr;
489}
490
e9da6e99 491static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 492{
36d0fd21 493 unsigned long val;
e9da6e99 494 void *ptr = NULL;
c7909509 495
36d0fd21 496 if (!atomic_pool) {
e9da6e99 497 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
498 return NULL;
499 }
500
36d0fd21
LA
501 val = gen_pool_alloc(atomic_pool, size);
502 if (val) {
503 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
504
505 *ret_page = phys_to_page(phys);
506 ptr = (void *)val;
c7909509 507 }
e9da6e99
MS
508
509 return ptr;
c7909509
MS
510}
511
21d0a759
HD
512static bool __in_atomic_pool(void *start, size_t size)
513{
36d0fd21 514 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
21d0a759
HD
515}
516
e9da6e99 517static int __free_from_pool(void *start, size_t size)
c7909509 518{
21d0a759 519 if (!__in_atomic_pool(start, size))
c7909509
MS
520 return 0;
521
36d0fd21 522 gen_pool_free(atomic_pool, (unsigned long)start, size);
e9da6e99 523
c7909509
MS
524 return 1;
525}
526
527static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 528 pgprot_t prot, struct page **ret_page,
6e8266e3 529 const void *caller, bool want_vaddr)
c7909509
MS
530{
531 unsigned long order = get_order(size);
532 size_t count = size >> PAGE_SHIFT;
533 struct page *page;
6e8266e3 534 void *ptr = NULL;
c7909509
MS
535
536 page = dma_alloc_from_contiguous(dev, count, order);
537 if (!page)
538 return NULL;
539
540 __dma_clear_buffer(page, size);
c7909509 541
6e8266e3
CC
542 if (!want_vaddr)
543 goto out;
544
9848e48f
MS
545 if (PageHighMem(page)) {
546 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
547 if (!ptr) {
548 dma_release_from_contiguous(dev, page, count);
549 return NULL;
550 }
551 } else {
552 __dma_remap(page, size, prot);
553 ptr = page_address(page);
554 }
6e8266e3
CC
555
556 out:
c7909509 557 *ret_page = page;
9848e48f 558 return ptr;
c7909509
MS
559}
560
561static void __free_from_contiguous(struct device *dev, struct page *page,
6e8266e3 562 void *cpu_addr, size_t size, bool want_vaddr)
c7909509 563{
6e8266e3
CC
564 if (want_vaddr) {
565 if (PageHighMem(page))
566 __dma_free_remap(cpu_addr, size);
567 else
568 __dma_remap(page, size, PAGE_KERNEL);
569 }
c7909509
MS
570 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
571}
572
f99d6034
MS
573static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
574{
575 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
576 pgprot_writecombine(prot) :
577 pgprot_dmacoherent(prot);
578 return prot;
579}
580
c7909509
MS
581#define nommu() 0
582
ab6494f0 583#else /* !CONFIG_MMU */
695ae0af 584
c7909509
MS
585#define nommu() 1
586
6e8266e3
CC
587#define __get_dma_pgprot(attrs, prot) __pgprot(0)
588#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
e9da6e99 589#define __alloc_from_pool(size, ret_page) NULL
6e8266e3 590#define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
c7909509 591#define __free_from_pool(cpu_addr, size) 0
6e8266e3 592#define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
c7909509 593#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
594
595#endif /* CONFIG_MMU */
596
c7909509
MS
597static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
598 struct page **ret_page)
ab6494f0 599{
c7909509
MS
600 struct page *page;
601 page = __dma_alloc_buffer(dev, size, gfp);
602 if (!page)
603 return NULL;
604
605 *ret_page = page;
606 return page_address(page);
607}
608
609
610
611static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
6e8266e3
CC
612 gfp_t gfp, pgprot_t prot, bool is_coherent,
613 struct dma_attrs *attrs, const void *caller)
c7909509
MS
614{
615 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 616 struct page *page = NULL;
31ebf944 617 void *addr;
6e8266e3 618 bool want_vaddr;
ab6494f0 619
c7909509
MS
620#ifdef CONFIG_DMA_API_DEBUG
621 u64 limit = (mask + 1) & ~mask;
622 if (limit && size >= limit) {
623 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
624 size, mask);
625 return NULL;
626 }
627#endif
628
629 if (!mask)
630 return NULL;
631
632 if (mask < 0xffffffffULL)
633 gfp |= GFP_DMA;
634
ea2e7057
SB
635 /*
636 * Following is a work-around (a.k.a. hack) to prevent pages
637 * with __GFP_COMP being passed to split_page() which cannot
638 * handle them. The real problem is that this flag probably
639 * should be 0 on ARM as it is not supported on this
640 * platform; see CONFIG_HUGETLBFS.
641 */
642 gfp &= ~(__GFP_COMP);
643
553ac788 644 *handle = DMA_ERROR_CODE;
04da5694 645 size = PAGE_ALIGN(size);
6e8266e3 646 want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
ab6494f0 647
dd37e940 648 if (is_coherent || nommu())
c7909509 649 addr = __alloc_simple_buffer(dev, size, gfp, &page);
633dc92a 650 else if (!(gfp & __GFP_WAIT))
e9da6e99 651 addr = __alloc_from_pool(size, &page);
e464ef16 652 else if (!dev_get_cma_area(dev))
6e8266e3 653 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller, want_vaddr);
31ebf944 654 else
6e8266e3 655 addr = __alloc_from_contiguous(dev, size, prot, &page, caller, want_vaddr);
695ae0af 656
6e8266e3 657 if (page)
9eedd963 658 *handle = pfn_to_dma(dev, page_to_pfn(page));
695ae0af 659
6e8266e3 660 return want_vaddr ? addr : page;
31ebf944 661}
1da177e4
LT
662
663/*
664 * Allocate DMA-coherent memory space and return both the kernel remapped
665 * virtual and bus address for that space.
666 */
f99d6034
MS
667void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
668 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 669{
0ea1ec71 670 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1fe53268
DB
671 void *memory;
672
673 if (dma_alloc_from_coherent(dev, size, handle, &memory))
674 return memory;
675
dd37e940 676 return __dma_alloc(dev, size, handle, gfp, prot, false,
6e8266e3 677 attrs, __builtin_return_address(0));
dd37e940
RH
678}
679
680static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
681 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
682{
0ea1ec71 683 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
dd37e940
RH
684 void *memory;
685
686 if (dma_alloc_from_coherent(dev, size, handle, &memory))
687 return memory;
688
689 return __dma_alloc(dev, size, handle, gfp, prot, true,
6e8266e3 690 attrs, __builtin_return_address(0));
1da177e4 691}
1da177e4
LT
692
693/*
f99d6034 694 * Create userspace mapping for the DMA-coherent memory.
1da177e4 695 */
f99d6034
MS
696int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
697 void *cpu_addr, dma_addr_t dma_addr, size_t size,
698 struct dma_attrs *attrs)
1da177e4 699{
ab6494f0
CM
700 int ret = -ENXIO;
701#ifdef CONFIG_MMU
50262a4b
MS
702 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
703 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 704 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
705 unsigned long off = vma->vm_pgoff;
706
f99d6034
MS
707 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
708
47142f07
MS
709 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
710 return ret;
711
50262a4b
MS
712 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
713 ret = remap_pfn_range(vma, vma->vm_start,
714 pfn + off,
715 vma->vm_end - vma->vm_start,
716 vma->vm_page_prot);
717 }
ab6494f0 718#endif /* CONFIG_MMU */
1da177e4
LT
719
720 return ret;
721}
722
1da177e4 723/*
c7909509 724 * Free a buffer as defined by the above mapping.
1da177e4 725 */
dd37e940
RH
726static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
727 dma_addr_t handle, struct dma_attrs *attrs,
728 bool is_coherent)
1da177e4 729{
c7909509 730 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
6e8266e3 731 bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
5edf71ae 732
1fe53268
DB
733 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
734 return;
735
3e82d012
RK
736 size = PAGE_ALIGN(size);
737
dd37e940 738 if (is_coherent || nommu()) {
c7909509 739 __dma_free_buffer(page, size);
d9e0d149
AK
740 } else if (__free_from_pool(cpu_addr, size)) {
741 return;
e464ef16 742 } else if (!dev_get_cma_area(dev)) {
6e8266e3
CC
743 if (want_vaddr)
744 __dma_free_remap(cpu_addr, size);
c7909509
MS
745 __dma_free_buffer(page, size);
746 } else {
c7909509
MS
747 /*
748 * Non-atomic allocations cannot be freed with IRQs disabled
749 */
750 WARN_ON(irqs_disabled());
6e8266e3 751 __free_from_contiguous(dev, page, cpu_addr, size, want_vaddr);
c7909509 752 }
1da177e4 753}
afd1a321 754
dd37e940
RH
755void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
756 dma_addr_t handle, struct dma_attrs *attrs)
757{
758 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
759}
760
761static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
762 dma_addr_t handle, struct dma_attrs *attrs)
763{
764 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
765}
766
dc2832e1
MS
767int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
768 void *cpu_addr, dma_addr_t handle, size_t size,
769 struct dma_attrs *attrs)
770{
771 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
772 int ret;
773
774 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
775 if (unlikely(ret))
776 return ret;
777
778 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
779 return 0;
780}
781
4ea0d737 782static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
783 size_t size, enum dma_data_direction dir,
784 void (*op)(const void *, size_t, int))
43377453 785{
15653371
RK
786 unsigned long pfn;
787 size_t left = size;
788
789 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
790 offset %= PAGE_SIZE;
791
43377453
NP
792 /*
793 * A single sg entry may refer to multiple physically contiguous
794 * pages. But we still need to process highmem pages individually.
795 * If highmem is not configured then the bulk of this loop gets
796 * optimized out.
797 */
43377453
NP
798 do {
799 size_t len = left;
93f1d629
RK
800 void *vaddr;
801
15653371
RK
802 page = pfn_to_page(pfn);
803
93f1d629 804 if (PageHighMem(page)) {
15653371 805 if (len + offset > PAGE_SIZE)
93f1d629 806 len = PAGE_SIZE - offset;
dd0f67f4
JK
807
808 if (cache_is_vipt_nonaliasing()) {
39af22a7 809 vaddr = kmap_atomic(page);
7e5a69e8 810 op(vaddr + offset, len, dir);
39af22a7 811 kunmap_atomic(vaddr);
dd0f67f4
JK
812 } else {
813 vaddr = kmap_high_get(page);
814 if (vaddr) {
815 op(vaddr + offset, len, dir);
816 kunmap_high(page);
817 }
43377453 818 }
93f1d629
RK
819 } else {
820 vaddr = page_address(page) + offset;
a9c9147e 821 op(vaddr, len, dir);
43377453 822 }
43377453 823 offset = 0;
15653371 824 pfn++;
43377453
NP
825 left -= len;
826 } while (left);
827}
4ea0d737 828
51fde349
MS
829/*
830 * Make an area consistent for devices.
831 * Note: Drivers should NOT use this function directly, as it will break
832 * platforms with CONFIG_DMABOUNCE.
833 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
834 */
835static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
836 size_t size, enum dma_data_direction dir)
837{
2161c248 838 phys_addr_t paddr;
65af191a 839
a9c9147e 840 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
841
842 paddr = page_to_phys(page) + off;
2ffe2da3
RK
843 if (dir == DMA_FROM_DEVICE) {
844 outer_inv_range(paddr, paddr + size);
845 } else {
846 outer_clean_range(paddr, paddr + size);
847 }
848 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 849}
4ea0d737 850
51fde349 851static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
852 size_t size, enum dma_data_direction dir)
853{
2161c248 854 phys_addr_t paddr = page_to_phys(page) + off;
2ffe2da3
RK
855
856 /* FIXME: non-speculating: not required */
deace4a6
RK
857 /* in any case, don't bother invalidating if DMA to device */
858 if (dir != DMA_TO_DEVICE) {
2ffe2da3
RK
859 outer_inv_range(paddr, paddr + size);
860
deace4a6
RK
861 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
862 }
c0177800
CM
863
864 /*
b2a234ed 865 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 866 */
b2a234ed
ML
867 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
868 unsigned long pfn;
869 size_t left = size;
870
871 pfn = page_to_pfn(page) + off / PAGE_SIZE;
872 off %= PAGE_SIZE;
873 if (off) {
874 pfn++;
875 left -= PAGE_SIZE - off;
876 }
877 while (left >= PAGE_SIZE) {
878 page = pfn_to_page(pfn++);
879 set_bit(PG_dcache_clean, &page->flags);
880 left -= PAGE_SIZE;
881 }
882 }
4ea0d737 883}
43377453 884
afd1a321 885/**
2a550e73 886 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
887 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
888 * @sg: list of buffers
889 * @nents: number of buffers to map
890 * @dir: DMA transfer direction
891 *
892 * Map a set of buffers described by scatterlist in streaming mode for DMA.
893 * This is the scatter-gather version of the dma_map_single interface.
894 * Here the scatter gather list elements are each tagged with the
895 * appropriate dma address and length. They are obtained via
896 * sg_dma_{address,length}.
897 *
898 * Device ownership issues as mentioned for dma_map_single are the same
899 * here.
900 */
2dc6a016
MS
901int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
902 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 903{
2a550e73 904 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 905 struct scatterlist *s;
01135d92 906 int i, j;
afd1a321
RK
907
908 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
909#ifdef CONFIG_NEED_SG_DMA_LENGTH
910 s->dma_length = s->length;
911#endif
2a550e73
MS
912 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
913 s->length, dir, attrs);
01135d92
RK
914 if (dma_mapping_error(dev, s->dma_address))
915 goto bad_mapping;
afd1a321 916 }
afd1a321 917 return nents;
01135d92
RK
918
919 bad_mapping:
920 for_each_sg(sg, s, i, j)
2a550e73 921 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 922 return 0;
afd1a321 923}
afd1a321
RK
924
925/**
2a550e73 926 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
927 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
928 * @sg: list of buffers
0adfca6f 929 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
930 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
931 *
932 * Unmap a set of streaming mode DMA translations. Again, CPU access
933 * rules concerning calls here are the same as for dma_unmap_single().
934 */
2dc6a016
MS
935void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
936 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 937{
2a550e73 938 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 939 struct scatterlist *s;
01135d92 940
01135d92 941 int i;
24056f52 942
01135d92 943 for_each_sg(sg, s, nents, i)
2a550e73 944 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 945}
afd1a321
RK
946
947/**
2a550e73 948 * arm_dma_sync_sg_for_cpu
afd1a321
RK
949 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
950 * @sg: list of buffers
951 * @nents: number of buffers to map (returned from dma_map_sg)
952 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
953 */
2dc6a016 954void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
955 int nents, enum dma_data_direction dir)
956{
2a550e73 957 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
958 struct scatterlist *s;
959 int i;
960
2a550e73
MS
961 for_each_sg(sg, s, nents, i)
962 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
963 dir);
afd1a321 964}
afd1a321
RK
965
966/**
2a550e73 967 * arm_dma_sync_sg_for_device
afd1a321
RK
968 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
969 * @sg: list of buffers
970 * @nents: number of buffers to map (returned from dma_map_sg)
971 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
972 */
2dc6a016 973void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
974 int nents, enum dma_data_direction dir)
975{
2a550e73 976 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
977 struct scatterlist *s;
978 int i;
979
2a550e73
MS
980 for_each_sg(sg, s, nents, i)
981 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
982 dir);
afd1a321 983}
24056f52 984
022ae537
RK
985/*
986 * Return whether the given device DMA address mask can be supported
987 * properly. For example, if your device can only drive the low 24-bits
988 * during bus mastering, then you would pass 0x00ffffff as the mask
989 * to this function.
990 */
991int dma_supported(struct device *dev, u64 mask)
992{
9f28cde0 993 return __dma_supported(dev, mask, false);
022ae537
RK
994}
995EXPORT_SYMBOL(dma_supported);
996
87b54e78 997int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
998{
999 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1000 return -EIO;
1001
022ae537 1002 *dev->dma_mask = dma_mask;
022ae537
RK
1003
1004 return 0;
1005}
022ae537 1006
24056f52
RK
1007#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1008
1009static int __init dma_debug_do_init(void)
1010{
1011 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1012 return 0;
1013}
1014fs_initcall(dma_debug_do_init);
4ce63fcd
MS
1015
1016#ifdef CONFIG_ARM_DMA_USE_IOMMU
1017
1018/* IOMMU */
1019
4d852ef8
AH
1020static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1021
4ce63fcd
MS
1022static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1023 size_t size)
1024{
1025 unsigned int order = get_order(size);
1026 unsigned int align = 0;
1027 unsigned int count, start;
006f841d 1028 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1029 unsigned long flags;
4d852ef8
AH
1030 dma_addr_t iova;
1031 int i;
4ce63fcd 1032
60460abf
SWK
1033 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1034 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1035
68efd7d2
MS
1036 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1037 align = (1 << order) - 1;
4ce63fcd
MS
1038
1039 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8
AH
1040 for (i = 0; i < mapping->nr_bitmaps; i++) {
1041 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1042 mapping->bits, 0, count, align);
1043
1044 if (start > mapping->bits)
1045 continue;
1046
1047 bitmap_set(mapping->bitmaps[i], start, count);
1048 break;
4ce63fcd
MS
1049 }
1050
4d852ef8
AH
1051 /*
1052 * No unused range found. Try to extend the existing mapping
1053 * and perform a second attempt to reserve an IO virtual
1054 * address range of size bytes.
1055 */
1056 if (i == mapping->nr_bitmaps) {
1057 if (extend_iommu_mapping(mapping)) {
1058 spin_unlock_irqrestore(&mapping->lock, flags);
1059 return DMA_ERROR_CODE;
1060 }
1061
1062 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1063 mapping->bits, 0, count, align);
1064
1065 if (start > mapping->bits) {
1066 spin_unlock_irqrestore(&mapping->lock, flags);
1067 return DMA_ERROR_CODE;
1068 }
1069
1070 bitmap_set(mapping->bitmaps[i], start, count);
1071 }
4ce63fcd
MS
1072 spin_unlock_irqrestore(&mapping->lock, flags);
1073
006f841d 1074 iova = mapping->base + (mapping_size * i);
68efd7d2 1075 iova += start << PAGE_SHIFT;
4d852ef8
AH
1076
1077 return iova;
4ce63fcd
MS
1078}
1079
1080static inline void __free_iova(struct dma_iommu_mapping *mapping,
1081 dma_addr_t addr, size_t size)
1082{
4d852ef8 1083 unsigned int start, count;
006f841d 1084 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1085 unsigned long flags;
4d852ef8
AH
1086 dma_addr_t bitmap_base;
1087 u32 bitmap_index;
1088
1089 if (!size)
1090 return;
1091
006f841d 1092 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
4d852ef8
AH
1093 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1094
006f841d 1095 bitmap_base = mapping->base + mapping_size * bitmap_index;
4d852ef8 1096
68efd7d2 1097 start = (addr - bitmap_base) >> PAGE_SHIFT;
4d852ef8 1098
006f841d 1099 if (addr + size > bitmap_base + mapping_size) {
4d852ef8
AH
1100 /*
1101 * The address range to be freed reaches into the iova
1102 * range of the next bitmap. This should not happen as
1103 * we don't allow this in __alloc_iova (at the
1104 * moment).
1105 */
1106 BUG();
1107 } else
68efd7d2 1108 count = size >> PAGE_SHIFT;
4ce63fcd
MS
1109
1110 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8 1111 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
4ce63fcd
MS
1112 spin_unlock_irqrestore(&mapping->lock, flags);
1113}
1114
549a17e4
MS
1115static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1116 gfp_t gfp, struct dma_attrs *attrs)
4ce63fcd
MS
1117{
1118 struct page **pages;
1119 int count = size >> PAGE_SHIFT;
1120 int array_size = count * sizeof(struct page *);
1121 int i = 0;
1122
1123 if (array_size <= PAGE_SIZE)
23be7fda 1124 pages = kzalloc(array_size, GFP_KERNEL);
4ce63fcd
MS
1125 else
1126 pages = vzalloc(array_size);
1127 if (!pages)
1128 return NULL;
1129
549a17e4
MS
1130 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1131 {
1132 unsigned long order = get_order(size);
1133 struct page *page;
1134
1135 page = dma_alloc_from_contiguous(dev, count, order);
1136 if (!page)
1137 goto error;
1138
1139 __dma_clear_buffer(page, size);
1140
1141 for (i = 0; i < count; i++)
1142 pages[i] = page + i;
1143
1144 return pages;
1145 }
1146
f8669bef
MS
1147 /*
1148 * IOMMU can map any pages, so himem can also be used here
1149 */
1150 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1151
4ce63fcd 1152 while (count) {
593f4735 1153 int j, order = __fls(count);
4ce63fcd 1154
f8669bef 1155 pages[i] = alloc_pages(gfp, order);
4ce63fcd 1156 while (!pages[i] && order)
f8669bef 1157 pages[i] = alloc_pages(gfp, --order);
4ce63fcd
MS
1158 if (!pages[i])
1159 goto error;
1160
5a796eeb 1161 if (order) {
4ce63fcd 1162 split_page(pages[i], order);
5a796eeb
HD
1163 j = 1 << order;
1164 while (--j)
1165 pages[i + j] = pages[i] + j;
1166 }
4ce63fcd
MS
1167
1168 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1169 i += 1 << order;
1170 count -= 1 << order;
1171 }
1172
1173 return pages;
1174error:
9fa8af91 1175 while (i--)
4ce63fcd
MS
1176 if (pages[i])
1177 __free_pages(pages[i], 0);
46c87852 1178 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1179 kfree(pages);
1180 else
1181 vfree(pages);
1182 return NULL;
1183}
1184
549a17e4
MS
1185static int __iommu_free_buffer(struct device *dev, struct page **pages,
1186 size_t size, struct dma_attrs *attrs)
4ce63fcd
MS
1187{
1188 int count = size >> PAGE_SHIFT;
1189 int array_size = count * sizeof(struct page *);
1190 int i;
549a17e4
MS
1191
1192 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1193 dma_release_from_contiguous(dev, pages[0], count);
1194 } else {
1195 for (i = 0; i < count; i++)
1196 if (pages[i])
1197 __free_pages(pages[i], 0);
1198 }
1199
46c87852 1200 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1201 kfree(pages);
1202 else
1203 vfree(pages);
1204 return 0;
1205}
1206
1207/*
1208 * Create a CPU mapping for a specified pages
1209 */
1210static void *
e9da6e99
MS
1211__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1212 const void *caller)
4ce63fcd 1213{
513510dd
LA
1214 return dma_common_pages_remap(pages, size,
1215 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
4ce63fcd
MS
1216}
1217
1218/*
1219 * Create a mapping in device IO address space for specified pages
1220 */
1221static dma_addr_t
1222__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1223{
1224 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1225 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1226 dma_addr_t dma_addr, iova;
1227 int i, ret = DMA_ERROR_CODE;
1228
1229 dma_addr = __alloc_iova(mapping, size);
1230 if (dma_addr == DMA_ERROR_CODE)
1231 return dma_addr;
1232
1233 iova = dma_addr;
1234 for (i = 0; i < count; ) {
1235 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1236 phys_addr_t phys = page_to_phys(pages[i]);
1237 unsigned int len, j;
1238
1239 for (j = i + 1; j < count; j++, next_pfn++)
1240 if (page_to_pfn(pages[j]) != next_pfn)
1241 break;
1242
1243 len = (j - i) << PAGE_SHIFT;
c9b24996
AH
1244 ret = iommu_map(mapping->domain, iova, phys, len,
1245 IOMMU_READ|IOMMU_WRITE);
4ce63fcd
MS
1246 if (ret < 0)
1247 goto fail;
1248 iova += len;
1249 i = j;
1250 }
1251 return dma_addr;
1252fail:
1253 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1254 __free_iova(mapping, dma_addr, size);
1255 return DMA_ERROR_CODE;
1256}
1257
1258static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1259{
1260 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1261
1262 /*
1263 * add optional in-page offset from iova to size and align
1264 * result to page size
1265 */
1266 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1267 iova &= PAGE_MASK;
1268
1269 iommu_unmap(mapping->domain, iova, size);
1270 __free_iova(mapping, iova, size);
1271 return 0;
1272}
1273
665bad7b
HD
1274static struct page **__atomic_get_pages(void *addr)
1275{
36d0fd21
LA
1276 struct page *page;
1277 phys_addr_t phys;
1278
1279 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1280 page = phys_to_page(phys);
665bad7b 1281
36d0fd21 1282 return (struct page **)page;
665bad7b
HD
1283}
1284
955c757e 1285static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1286{
1287 struct vm_struct *area;
1288
665bad7b
HD
1289 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1290 return __atomic_get_pages(cpu_addr);
1291
955c757e
MS
1292 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1293 return cpu_addr;
1294
e9da6e99
MS
1295 area = find_vm_area(cpu_addr);
1296 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1297 return area->pages;
1298 return NULL;
1299}
1300
479ed93a
HD
1301static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1302 dma_addr_t *handle)
1303{
1304 struct page *page;
1305 void *addr;
1306
1307 addr = __alloc_from_pool(size, &page);
1308 if (!addr)
1309 return NULL;
1310
1311 *handle = __iommu_create_mapping(dev, &page, size);
1312 if (*handle == DMA_ERROR_CODE)
1313 goto err_mapping;
1314
1315 return addr;
1316
1317err_mapping:
1318 __free_from_pool(addr, size);
1319 return NULL;
1320}
1321
d5898291 1322static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
479ed93a
HD
1323 dma_addr_t handle, size_t size)
1324{
1325 __iommu_remove_mapping(dev, handle, size);
d5898291 1326 __free_from_pool(cpu_addr, size);
479ed93a
HD
1327}
1328
4ce63fcd
MS
1329static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1330 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1331{
71b55663 1332 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
4ce63fcd
MS
1333 struct page **pages;
1334 void *addr = NULL;
1335
1336 *handle = DMA_ERROR_CODE;
1337 size = PAGE_ALIGN(size);
1338
10c8562f 1339 if (!(gfp & __GFP_WAIT))
479ed93a
HD
1340 return __iommu_alloc_atomic(dev, size, handle);
1341
5b91a98c
RZ
1342 /*
1343 * Following is a work-around (a.k.a. hack) to prevent pages
1344 * with __GFP_COMP being passed to split_page() which cannot
1345 * handle them. The real problem is that this flag probably
1346 * should be 0 on ARM as it is not supported on this
1347 * platform; see CONFIG_HUGETLBFS.
1348 */
1349 gfp &= ~(__GFP_COMP);
1350
549a17e4 1351 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
4ce63fcd
MS
1352 if (!pages)
1353 return NULL;
1354
1355 *handle = __iommu_create_mapping(dev, pages, size);
1356 if (*handle == DMA_ERROR_CODE)
1357 goto err_buffer;
1358
955c757e
MS
1359 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1360 return pages;
1361
e9da6e99
MS
1362 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1363 __builtin_return_address(0));
4ce63fcd
MS
1364 if (!addr)
1365 goto err_mapping;
1366
1367 return addr;
1368
1369err_mapping:
1370 __iommu_remove_mapping(dev, *handle, size);
1371err_buffer:
549a17e4 1372 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1373 return NULL;
1374}
1375
1376static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1377 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1378 struct dma_attrs *attrs)
1379{
e9da6e99
MS
1380 unsigned long uaddr = vma->vm_start;
1381 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1382 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1383
1384 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1385
e9da6e99
MS
1386 if (!pages)
1387 return -ENXIO;
4ce63fcd 1388
e9da6e99
MS
1389 do {
1390 int ret = vm_insert_page(vma, uaddr, *pages++);
1391 if (ret) {
1392 pr_err("Remapping memory failed: %d\n", ret);
1393 return ret;
1394 }
1395 uaddr += PAGE_SIZE;
1396 usize -= PAGE_SIZE;
1397 } while (usize > 0);
4ce63fcd 1398
4ce63fcd
MS
1399 return 0;
1400}
1401
1402/*
1403 * free a page as defined by the above mapping.
1404 * Must not be called with IRQs disabled.
1405 */
1406void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1407 dma_addr_t handle, struct dma_attrs *attrs)
1408{
836bfa0d 1409 struct page **pages;
4ce63fcd
MS
1410 size = PAGE_ALIGN(size);
1411
836bfa0d
YC
1412 if (__in_atomic_pool(cpu_addr, size)) {
1413 __iommu_free_atomic(dev, cpu_addr, handle, size);
e9da6e99 1414 return;
4ce63fcd 1415 }
e9da6e99 1416
836bfa0d
YC
1417 pages = __iommu_get_pages(cpu_addr, attrs);
1418 if (!pages) {
1419 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1420 return;
1421 }
1422
955c757e 1423 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
513510dd
LA
1424 dma_common_free_remap(cpu_addr, size,
1425 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
955c757e 1426 }
e9da6e99
MS
1427
1428 __iommu_remove_mapping(dev, handle, size);
549a17e4 1429 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1430}
1431
dc2832e1
MS
1432static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1433 void *cpu_addr, dma_addr_t dma_addr,
1434 size_t size, struct dma_attrs *attrs)
1435{
1436 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1437 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1438
1439 if (!pages)
1440 return -ENXIO;
1441
1442 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1443 GFP_KERNEL);
4ce63fcd
MS
1444}
1445
c9b24996
AH
1446static int __dma_direction_to_prot(enum dma_data_direction dir)
1447{
1448 int prot;
1449
1450 switch (dir) {
1451 case DMA_BIDIRECTIONAL:
1452 prot = IOMMU_READ | IOMMU_WRITE;
1453 break;
1454 case DMA_TO_DEVICE:
1455 prot = IOMMU_READ;
1456 break;
1457 case DMA_FROM_DEVICE:
1458 prot = IOMMU_WRITE;
1459 break;
1460 default:
1461 prot = 0;
1462 }
1463
1464 return prot;
1465}
1466
4ce63fcd
MS
1467/*
1468 * Map a part of the scatter-gather list into contiguous io address space
1469 */
1470static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1471 size_t size, dma_addr_t *handle,
0fa478df
RH
1472 enum dma_data_direction dir, struct dma_attrs *attrs,
1473 bool is_coherent)
4ce63fcd
MS
1474{
1475 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1476 dma_addr_t iova, iova_base;
1477 int ret = 0;
1478 unsigned int count;
1479 struct scatterlist *s;
c9b24996 1480 int prot;
4ce63fcd
MS
1481
1482 size = PAGE_ALIGN(size);
1483 *handle = DMA_ERROR_CODE;
1484
1485 iova_base = iova = __alloc_iova(mapping, size);
1486 if (iova == DMA_ERROR_CODE)
1487 return -ENOMEM;
1488
1489 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1490 phys_addr_t phys = page_to_phys(sg_page(s));
1491 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1492
0fa478df
RH
1493 if (!is_coherent &&
1494 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1495 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1496
c9b24996
AH
1497 prot = __dma_direction_to_prot(dir);
1498
1499 ret = iommu_map(mapping->domain, iova, phys, len, prot);
4ce63fcd
MS
1500 if (ret < 0)
1501 goto fail;
1502 count += len >> PAGE_SHIFT;
1503 iova += len;
1504 }
1505 *handle = iova_base;
1506
1507 return 0;
1508fail:
1509 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1510 __free_iova(mapping, iova_base, size);
1511 return ret;
1512}
1513
0fa478df
RH
1514static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1515 enum dma_data_direction dir, struct dma_attrs *attrs,
1516 bool is_coherent)
4ce63fcd
MS
1517{
1518 struct scatterlist *s = sg, *dma = sg, *start = sg;
1519 int i, count = 0;
1520 unsigned int offset = s->offset;
1521 unsigned int size = s->offset + s->length;
1522 unsigned int max = dma_get_max_seg_size(dev);
1523
1524 for (i = 1; i < nents; i++) {
1525 s = sg_next(s);
1526
1527 s->dma_address = DMA_ERROR_CODE;
1528 s->dma_length = 0;
1529
1530 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1531 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1532 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1533 goto bad_mapping;
1534
1535 dma->dma_address += offset;
1536 dma->dma_length = size - offset;
1537
1538 size = offset = s->offset;
1539 start = s;
1540 dma = sg_next(dma);
1541 count += 1;
1542 }
1543 size += s->length;
1544 }
0fa478df
RH
1545 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1546 is_coherent) < 0)
4ce63fcd
MS
1547 goto bad_mapping;
1548
1549 dma->dma_address += offset;
1550 dma->dma_length = size - offset;
1551
1552 return count+1;
1553
1554bad_mapping:
1555 for_each_sg(sg, s, count, i)
1556 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1557 return 0;
1558}
1559
1560/**
0fa478df 1561 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1562 * @dev: valid struct device pointer
1563 * @sg: list of buffers
0fa478df
RH
1564 * @nents: number of buffers to map
1565 * @dir: DMA transfer direction
4ce63fcd 1566 *
0fa478df
RH
1567 * Map a set of i/o coherent buffers described by scatterlist in streaming
1568 * mode for DMA. The scatter gather list elements are merged together (if
1569 * possible) and tagged with the appropriate dma address and length. They are
1570 * obtained via sg_dma_{address,length}.
4ce63fcd 1571 */
0fa478df
RH
1572int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1573 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1574{
1575 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1576}
1577
1578/**
1579 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1580 * @dev: valid struct device pointer
1581 * @sg: list of buffers
1582 * @nents: number of buffers to map
1583 * @dir: DMA transfer direction
1584 *
1585 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1586 * The scatter gather list elements are merged together (if possible) and
1587 * tagged with the appropriate dma address and length. They are obtained via
1588 * sg_dma_{address,length}.
1589 */
1590int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1591 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1592{
1593 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1594}
1595
1596static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1597 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1598 bool is_coherent)
4ce63fcd
MS
1599{
1600 struct scatterlist *s;
1601 int i;
1602
1603 for_each_sg(sg, s, nents, i) {
1604 if (sg_dma_len(s))
1605 __iommu_remove_mapping(dev, sg_dma_address(s),
1606 sg_dma_len(s));
0fa478df 1607 if (!is_coherent &&
97ef952a 1608 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1609 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1610 s->length, dir);
1611 }
1612}
1613
0fa478df
RH
1614/**
1615 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1616 * @dev: valid struct device pointer
1617 * @sg: list of buffers
1618 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1619 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1620 *
1621 * Unmap a set of streaming mode DMA translations. Again, CPU access
1622 * rules concerning calls here are the same as for dma_unmap_single().
1623 */
1624void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1625 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1626{
1627 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1628}
1629
1630/**
1631 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1632 * @dev: valid struct device pointer
1633 * @sg: list of buffers
1634 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1635 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1636 *
1637 * Unmap a set of streaming mode DMA translations. Again, CPU access
1638 * rules concerning calls here are the same as for dma_unmap_single().
1639 */
1640void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1641 enum dma_data_direction dir, struct dma_attrs *attrs)
1642{
1643 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1644}
1645
4ce63fcd
MS
1646/**
1647 * arm_iommu_sync_sg_for_cpu
1648 * @dev: valid struct device pointer
1649 * @sg: list of buffers
1650 * @nents: number of buffers to map (returned from dma_map_sg)
1651 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1652 */
1653void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1654 int nents, enum dma_data_direction dir)
1655{
1656 struct scatterlist *s;
1657 int i;
1658
1659 for_each_sg(sg, s, nents, i)
0fa478df 1660 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1661
1662}
1663
1664/**
1665 * arm_iommu_sync_sg_for_device
1666 * @dev: valid struct device pointer
1667 * @sg: list of buffers
1668 * @nents: number of buffers to map (returned from dma_map_sg)
1669 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1670 */
1671void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1672 int nents, enum dma_data_direction dir)
1673{
1674 struct scatterlist *s;
1675 int i;
1676
1677 for_each_sg(sg, s, nents, i)
0fa478df 1678 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1679}
1680
1681
1682/**
0fa478df 1683 * arm_coherent_iommu_map_page
4ce63fcd
MS
1684 * @dev: valid struct device pointer
1685 * @page: page that buffer resides in
1686 * @offset: offset into page for start of buffer
1687 * @size: size of buffer to map
1688 * @dir: DMA transfer direction
1689 *
0fa478df 1690 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1691 */
0fa478df 1692static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd
MS
1693 unsigned long offset, size_t size, enum dma_data_direction dir,
1694 struct dma_attrs *attrs)
1695{
1696 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1697 dma_addr_t dma_addr;
13987d68 1698 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1699
4ce63fcd
MS
1700 dma_addr = __alloc_iova(mapping, len);
1701 if (dma_addr == DMA_ERROR_CODE)
1702 return dma_addr;
1703
c9b24996 1704 prot = __dma_direction_to_prot(dir);
13987d68
WD
1705
1706 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
4ce63fcd
MS
1707 if (ret < 0)
1708 goto fail;
1709
1710 return dma_addr + offset;
1711fail:
1712 __free_iova(mapping, dma_addr, len);
1713 return DMA_ERROR_CODE;
1714}
1715
0fa478df
RH
1716/**
1717 * arm_iommu_map_page
1718 * @dev: valid struct device pointer
1719 * @page: page that buffer resides in
1720 * @offset: offset into page for start of buffer
1721 * @size: size of buffer to map
1722 * @dir: DMA transfer direction
1723 *
1724 * IOMMU aware version of arm_dma_map_page()
1725 */
1726static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1727 unsigned long offset, size_t size, enum dma_data_direction dir,
1728 struct dma_attrs *attrs)
1729{
1730 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1731 __dma_page_cpu_to_dev(page, offset, size, dir);
1732
1733 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1734}
1735
1736/**
1737 * arm_coherent_iommu_unmap_page
1738 * @dev: valid struct device pointer
1739 * @handle: DMA address of buffer
1740 * @size: size of buffer (same as passed to dma_map_page)
1741 * @dir: DMA transfer direction (same as passed to dma_map_page)
1742 *
1743 * Coherent IOMMU aware version of arm_dma_unmap_page()
1744 */
1745static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1746 size_t size, enum dma_data_direction dir,
1747 struct dma_attrs *attrs)
1748{
1749 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1750 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1751 int offset = handle & ~PAGE_MASK;
1752 int len = PAGE_ALIGN(size + offset);
1753
1754 if (!iova)
1755 return;
1756
1757 iommu_unmap(mapping->domain, iova, len);
1758 __free_iova(mapping, iova, len);
1759}
1760
4ce63fcd
MS
1761/**
1762 * arm_iommu_unmap_page
1763 * @dev: valid struct device pointer
1764 * @handle: DMA address of buffer
1765 * @size: size of buffer (same as passed to dma_map_page)
1766 * @dir: DMA transfer direction (same as passed to dma_map_page)
1767 *
1768 * IOMMU aware version of arm_dma_unmap_page()
1769 */
1770static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1771 size_t size, enum dma_data_direction dir,
1772 struct dma_attrs *attrs)
1773{
1774 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1775 dma_addr_t iova = handle & PAGE_MASK;
1776 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1777 int offset = handle & ~PAGE_MASK;
1778 int len = PAGE_ALIGN(size + offset);
1779
1780 if (!iova)
1781 return;
1782
0fa478df 1783 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1784 __dma_page_dev_to_cpu(page, offset, size, dir);
1785
1786 iommu_unmap(mapping->domain, iova, len);
1787 __free_iova(mapping, iova, len);
1788}
1789
1790static void arm_iommu_sync_single_for_cpu(struct device *dev,
1791 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1792{
1793 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1794 dma_addr_t iova = handle & PAGE_MASK;
1795 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1796 unsigned int offset = handle & ~PAGE_MASK;
1797
1798 if (!iova)
1799 return;
1800
0fa478df 1801 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
1802}
1803
1804static void arm_iommu_sync_single_for_device(struct device *dev,
1805 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1806{
1807 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1808 dma_addr_t iova = handle & PAGE_MASK;
1809 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1810 unsigned int offset = handle & ~PAGE_MASK;
1811
1812 if (!iova)
1813 return;
1814
1815 __dma_page_cpu_to_dev(page, offset, size, dir);
1816}
1817
1818struct dma_map_ops iommu_ops = {
1819 .alloc = arm_iommu_alloc_attrs,
1820 .free = arm_iommu_free_attrs,
1821 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1822 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1823
1824 .map_page = arm_iommu_map_page,
1825 .unmap_page = arm_iommu_unmap_page,
1826 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1827 .sync_single_for_device = arm_iommu_sync_single_for_device,
1828
1829 .map_sg = arm_iommu_map_sg,
1830 .unmap_sg = arm_iommu_unmap_sg,
1831 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1832 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
d09e1333
HD
1833
1834 .set_dma_mask = arm_dma_set_mask,
4ce63fcd
MS
1835};
1836
0fa478df
RH
1837struct dma_map_ops iommu_coherent_ops = {
1838 .alloc = arm_iommu_alloc_attrs,
1839 .free = arm_iommu_free_attrs,
1840 .mmap = arm_iommu_mmap_attrs,
1841 .get_sgtable = arm_iommu_get_sgtable,
1842
1843 .map_page = arm_coherent_iommu_map_page,
1844 .unmap_page = arm_coherent_iommu_unmap_page,
1845
1846 .map_sg = arm_coherent_iommu_map_sg,
1847 .unmap_sg = arm_coherent_iommu_unmap_sg,
d09e1333
HD
1848
1849 .set_dma_mask = arm_dma_set_mask,
0fa478df
RH
1850};
1851
4ce63fcd
MS
1852/**
1853 * arm_iommu_create_mapping
1854 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1855 * @base: start address of the valid IO address space
68efd7d2 1856 * @size: maximum size of the valid IO address space
4ce63fcd
MS
1857 *
1858 * Creates a mapping structure which holds information about used/unused
1859 * IO address ranges, which is required to perform memory allocation and
1860 * mapping with IOMMU aware functions.
1861 *
1862 * The client device need to be attached to the mapping with
1863 * arm_iommu_attach_device function.
1864 */
1865struct dma_iommu_mapping *
68efd7d2 1866arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
4ce63fcd 1867{
68efd7d2
MS
1868 unsigned int bits = size >> PAGE_SHIFT;
1869 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
4ce63fcd 1870 struct dma_iommu_mapping *mapping;
68efd7d2 1871 int extensions = 1;
4ce63fcd
MS
1872 int err = -ENOMEM;
1873
68efd7d2 1874 if (!bitmap_size)
4ce63fcd
MS
1875 return ERR_PTR(-EINVAL);
1876
68efd7d2
MS
1877 if (bitmap_size > PAGE_SIZE) {
1878 extensions = bitmap_size / PAGE_SIZE;
1879 bitmap_size = PAGE_SIZE;
1880 }
1881
4ce63fcd
MS
1882 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1883 if (!mapping)
1884 goto err;
1885
68efd7d2
MS
1886 mapping->bitmap_size = bitmap_size;
1887 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
4d852ef8
AH
1888 GFP_KERNEL);
1889 if (!mapping->bitmaps)
4ce63fcd
MS
1890 goto err2;
1891
68efd7d2 1892 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
4d852ef8
AH
1893 if (!mapping->bitmaps[0])
1894 goto err3;
1895
1896 mapping->nr_bitmaps = 1;
1897 mapping->extensions = extensions;
4ce63fcd 1898 mapping->base = base;
68efd7d2 1899 mapping->bits = BITS_PER_BYTE * bitmap_size;
4d852ef8 1900
4ce63fcd
MS
1901 spin_lock_init(&mapping->lock);
1902
1903 mapping->domain = iommu_domain_alloc(bus);
1904 if (!mapping->domain)
4d852ef8 1905 goto err4;
4ce63fcd
MS
1906
1907 kref_init(&mapping->kref);
1908 return mapping;
4d852ef8
AH
1909err4:
1910 kfree(mapping->bitmaps[0]);
4ce63fcd 1911err3:
4d852ef8 1912 kfree(mapping->bitmaps);
4ce63fcd
MS
1913err2:
1914 kfree(mapping);
1915err:
1916 return ERR_PTR(err);
1917}
18177d12 1918EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
1919
1920static void release_iommu_mapping(struct kref *kref)
1921{
4d852ef8 1922 int i;
4ce63fcd
MS
1923 struct dma_iommu_mapping *mapping =
1924 container_of(kref, struct dma_iommu_mapping, kref);
1925
1926 iommu_domain_free(mapping->domain);
4d852ef8
AH
1927 for (i = 0; i < mapping->nr_bitmaps; i++)
1928 kfree(mapping->bitmaps[i]);
1929 kfree(mapping->bitmaps);
4ce63fcd
MS
1930 kfree(mapping);
1931}
1932
4d852ef8
AH
1933static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1934{
1935 int next_bitmap;
1936
1937 if (mapping->nr_bitmaps > mapping->extensions)
1938 return -EINVAL;
1939
1940 next_bitmap = mapping->nr_bitmaps;
1941 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1942 GFP_ATOMIC);
1943 if (!mapping->bitmaps[next_bitmap])
1944 return -ENOMEM;
1945
1946 mapping->nr_bitmaps++;
1947
1948 return 0;
1949}
1950
4ce63fcd
MS
1951void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1952{
1953 if (mapping)
1954 kref_put(&mapping->kref, release_iommu_mapping);
1955}
18177d12 1956EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd 1957
eab8d653
LP
1958static int __arm_iommu_attach_device(struct device *dev,
1959 struct dma_iommu_mapping *mapping)
1960{
1961 int err;
1962
1963 err = iommu_attach_device(mapping->domain, dev);
1964 if (err)
1965 return err;
1966
1967 kref_get(&mapping->kref);
1968 dev->archdata.mapping = mapping;
1969
1970 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1971 return 0;
1972}
1973
4ce63fcd
MS
1974/**
1975 * arm_iommu_attach_device
1976 * @dev: valid struct device pointer
1977 * @mapping: io address space mapping structure (returned from
1978 * arm_iommu_create_mapping)
1979 *
eab8d653
LP
1980 * Attaches specified io address space mapping to the provided device.
1981 * This replaces the dma operations (dma_map_ops pointer) with the
1982 * IOMMU aware version.
1983 *
4bb25789
WD
1984 * More than one client might be attached to the same io address space
1985 * mapping.
4ce63fcd
MS
1986 */
1987int arm_iommu_attach_device(struct device *dev,
1988 struct dma_iommu_mapping *mapping)
1989{
1990 int err;
1991
eab8d653 1992 err = __arm_iommu_attach_device(dev, mapping);
4ce63fcd
MS
1993 if (err)
1994 return err;
1995
eab8d653 1996 set_dma_ops(dev, &iommu_ops);
4ce63fcd
MS
1997 return 0;
1998}
18177d12 1999EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 2000
eab8d653 2001static void __arm_iommu_detach_device(struct device *dev)
6fe36758
HD
2002{
2003 struct dma_iommu_mapping *mapping;
2004
2005 mapping = to_dma_iommu_mapping(dev);
2006 if (!mapping) {
2007 dev_warn(dev, "Not attached\n");
2008 return;
2009 }
2010
2011 iommu_detach_device(mapping->domain, dev);
2012 kref_put(&mapping->kref, release_iommu_mapping);
9e4b259d 2013 dev->archdata.mapping = NULL;
6fe36758
HD
2014
2015 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2016}
eab8d653
LP
2017
2018/**
2019 * arm_iommu_detach_device
2020 * @dev: valid struct device pointer
2021 *
2022 * Detaches the provided device from a previously attached map.
2023 * This voids the dma operations (dma_map_ops pointer)
2024 */
2025void arm_iommu_detach_device(struct device *dev)
2026{
2027 __arm_iommu_detach_device(dev);
2028 set_dma_ops(dev, NULL);
2029}
18177d12 2030EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 2031
4bb25789
WD
2032static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2033{
2034 return coherent ? &iommu_coherent_ops : &iommu_ops;
2035}
2036
2037static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2038 struct iommu_ops *iommu)
2039{
2040 struct dma_iommu_mapping *mapping;
2041
2042 if (!iommu)
2043 return false;
2044
2045 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2046 if (IS_ERR(mapping)) {
2047 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2048 size, dev_name(dev));
2049 return false;
2050 }
2051
eab8d653 2052 if (__arm_iommu_attach_device(dev, mapping)) {
4bb25789
WD
2053 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2054 dev_name(dev));
2055 arm_iommu_release_mapping(mapping);
2056 return false;
2057 }
2058
2059 return true;
2060}
2061
2062static void arm_teardown_iommu_dma_ops(struct device *dev)
2063{
2064 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
2065
c2273a18
WD
2066 if (!mapping)
2067 return;
2068
eab8d653 2069 __arm_iommu_detach_device(dev);
4bb25789
WD
2070 arm_iommu_release_mapping(mapping);
2071}
2072
2073#else
2074
2075static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2076 struct iommu_ops *iommu)
2077{
2078 return false;
2079}
2080
2081static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2082
2083#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2084
2085#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2086
2087static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2088{
2089 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2090}
2091
2092void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2093 struct iommu_ops *iommu, bool coherent)
2094{
2095 struct dma_map_ops *dma_ops;
2096
6f51ee70 2097 dev->archdata.dma_coherent = coherent;
4bb25789
WD
2098 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2099 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2100 else
2101 dma_ops = arm_get_dma_map_ops(coherent);
2102
2103 set_dma_ops(dev, dma_ops);
2104}
2105
2106void arch_teardown_dma_ops(struct device *dev)
2107{
2108 arm_teardown_iommu_dma_ops(dev);
2109}