]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/arm/mm/dma-mapping.c
tree wide: use kvfree() than conditional kfree()/vfree()
[mirror_ubuntu-bionic-kernel.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
11a5aa32 12#include <linux/bootmem.h>
1da177e4
LT
13#include <linux/module.h>
14#include <linux/mm.h>
36d0fd21 15#include <linux/genalloc.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
c7909509 22#include <linux/dma-contiguous.h>
39af22a7 23#include <linux/highmem.h>
c7909509 24#include <linux/memblock.h>
99d1717d 25#include <linux/slab.h>
4ce63fcd 26#include <linux/iommu.h>
e9da6e99 27#include <linux/io.h>
4ce63fcd 28#include <linux/vmalloc.h>
158e8bfe 29#include <linux/sizes.h>
a254129e 30#include <linux/cma.h>
1da177e4 31
23759dc6 32#include <asm/memory.h>
43377453 33#include <asm/highmem.h>
1da177e4 34#include <asm/cacheflush.h>
1da177e4 35#include <asm/tlbflush.h>
99d1717d 36#include <asm/mach/arch.h>
4ce63fcd 37#include <asm/dma-iommu.h>
c7909509
MS
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
37134cd5 41
1234e3fd 42#include "dma.h"
022ae537
RK
43#include "mm.h"
44
15237e1f
MS
45/*
46 * The DMA API is built upon the notion of "buffer ownership". A buffer
47 * is either exclusively owned by the CPU (and therefore may be accessed
48 * by it) or exclusively owned by the DMA device. These helper functions
49 * represent the transitions between these two ownership states.
50 *
51 * Note, however, that on later ARMs, this notion does not work due to
52 * speculative prefetches. We model our approach on the assumption that
53 * the CPU does do speculative prefetches, which means we clean caches
54 * before transfers and delay cache invalidation until transfer completion.
55 *
15237e1f 56 */
51fde349 57static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 58 size_t, enum dma_data_direction);
51fde349 59static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
60 size_t, enum dma_data_direction);
61
2dc6a016
MS
62/**
63 * arm_dma_map_page - map a portion of a page for streaming DMA
64 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
65 * @page: page that buffer resides in
66 * @offset: offset into page for start of buffer
67 * @size: size of buffer to map
68 * @dir: DMA transfer direction
69 *
70 * Ensure that any data held in the cache is appropriately discarded
71 * or written back.
72 *
73 * The device owns this memory once this call has completed. The CPU
74 * can regain ownership by calling dma_unmap_page().
75 */
51fde349 76static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
77 unsigned long offset, size_t size, enum dma_data_direction dir,
78 struct dma_attrs *attrs)
79{
dd37e940 80 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
81 __dma_page_cpu_to_dev(page, offset, size, dir);
82 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
83}
84
dd37e940
RH
85static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
86 unsigned long offset, size_t size, enum dma_data_direction dir,
87 struct dma_attrs *attrs)
88{
89 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
90}
91
2dc6a016
MS
92/**
93 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
94 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
95 * @handle: DMA address of buffer
96 * @size: size of buffer (same as passed to dma_map_page)
97 * @dir: DMA transfer direction (same as passed to dma_map_page)
98 *
99 * Unmap a page streaming mode DMA translation. The handle and size
100 * must match what was provided in the previous dma_map_page() call.
101 * All other usages are undefined.
102 *
103 * After this call, reads by the CPU to the buffer are guaranteed to see
104 * whatever the device wrote there.
105 */
51fde349 106static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
107 size_t size, enum dma_data_direction dir,
108 struct dma_attrs *attrs)
109{
dd37e940 110 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
111 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
112 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
113}
114
51fde349 115static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
116 dma_addr_t handle, size_t size, enum dma_data_direction dir)
117{
118 unsigned int offset = handle & (PAGE_SIZE - 1);
119 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 120 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
121}
122
51fde349 123static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
124 dma_addr_t handle, size_t size, enum dma_data_direction dir)
125{
126 unsigned int offset = handle & (PAGE_SIZE - 1);
127 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 128 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
129}
130
2dc6a016 131struct dma_map_ops arm_dma_ops = {
f99d6034
MS
132 .alloc = arm_dma_alloc,
133 .free = arm_dma_free,
134 .mmap = arm_dma_mmap,
dc2832e1 135 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
136 .map_page = arm_dma_map_page,
137 .unmap_page = arm_dma_unmap_page,
138 .map_sg = arm_dma_map_sg,
139 .unmap_sg = arm_dma_unmap_sg,
140 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
141 .sync_single_for_device = arm_dma_sync_single_for_device,
142 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
143 .sync_sg_for_device = arm_dma_sync_sg_for_device,
144 .set_dma_mask = arm_dma_set_mask,
145};
146EXPORT_SYMBOL(arm_dma_ops);
147
dd37e940
RH
148static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
149 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
150static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
151 dma_addr_t handle, struct dma_attrs *attrs);
55af8a91
ML
152static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
153 void *cpu_addr, dma_addr_t dma_addr, size_t size,
154 struct dma_attrs *attrs);
dd37e940
RH
155
156struct dma_map_ops arm_coherent_dma_ops = {
157 .alloc = arm_coherent_dma_alloc,
158 .free = arm_coherent_dma_free,
55af8a91 159 .mmap = arm_coherent_dma_mmap,
dd37e940
RH
160 .get_sgtable = arm_dma_get_sgtable,
161 .map_page = arm_coherent_dma_map_page,
162 .map_sg = arm_dma_map_sg,
163 .set_dma_mask = arm_dma_set_mask,
164};
165EXPORT_SYMBOL(arm_coherent_dma_ops);
166
9f28cde0
RK
167static int __dma_supported(struct device *dev, u64 mask, bool warn)
168{
169 unsigned long max_dma_pfn;
170
171 /*
172 * If the mask allows for more memory than we can address,
173 * and we actually have that much memory, then we must
174 * indicate that DMA to this device is not supported.
175 */
176 if (sizeof(mask) != sizeof(dma_addr_t) &&
177 mask > (dma_addr_t)~0 &&
8bf1268f 178 dma_to_pfn(dev, ~0) < max_pfn - 1) {
9f28cde0
RK
179 if (warn) {
180 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
181 mask);
182 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
183 }
184 return 0;
185 }
186
187 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
188
189 /*
190 * Translate the device's DMA mask to a PFN limit. This
191 * PFN number includes the page which we can DMA to.
192 */
193 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
194 if (warn)
195 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
196 mask,
197 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
198 max_dma_pfn + 1);
199 return 0;
200 }
201
202 return 1;
203}
204
ab6494f0
CM
205static u64 get_coherent_dma_mask(struct device *dev)
206{
4dcfa600 207 u64 mask = (u64)DMA_BIT_MASK(32);
ab6494f0
CM
208
209 if (dev) {
210 mask = dev->coherent_dma_mask;
211
212 /*
213 * Sanity check the DMA mask - it must be non-zero, and
214 * must be able to be satisfied by a DMA allocation.
215 */
216 if (mask == 0) {
217 dev_warn(dev, "coherent DMA mask is unset\n");
218 return 0;
219 }
220
9f28cde0 221 if (!__dma_supported(dev, mask, true))
ab6494f0 222 return 0;
ab6494f0 223 }
1da177e4 224
ab6494f0
CM
225 return mask;
226}
227
c7909509
MS
228static void __dma_clear_buffer(struct page *page, size_t size)
229{
c7909509
MS
230 /*
231 * Ensure that the allocated pages are zeroed, and that any data
232 * lurking in the kernel direct-mapped region is invalidated.
233 */
9848e48f
MS
234 if (PageHighMem(page)) {
235 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
236 phys_addr_t end = base + size;
237 while (size > 0) {
238 void *ptr = kmap_atomic(page);
239 memset(ptr, 0, PAGE_SIZE);
240 dmac_flush_range(ptr, ptr + PAGE_SIZE);
241 kunmap_atomic(ptr);
242 page++;
243 size -= PAGE_SIZE;
244 }
245 outer_flush_range(base, end);
246 } else {
247 void *ptr = page_address(page);
4ce63fcd
MS
248 memset(ptr, 0, size);
249 dmac_flush_range(ptr, ptr + size);
250 outer_flush_range(__pa(ptr), __pa(ptr) + size);
251 }
c7909509
MS
252}
253
7a9a32a9
RK
254/*
255 * Allocate a DMA buffer for 'dev' of size 'size' using the
256 * specified gfp mask. Note that 'size' must be page aligned.
257 */
258static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
259{
260 unsigned long order = get_order(size);
261 struct page *page, *p, *e;
7a9a32a9
RK
262
263 page = alloc_pages(gfp, order);
264 if (!page)
265 return NULL;
266
267 /*
268 * Now split the huge page and free the excess pages
269 */
270 split_page(page, order);
271 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
272 __free_page(p);
273
c7909509 274 __dma_clear_buffer(page, size);
7a9a32a9
RK
275
276 return page;
277}
278
279/*
280 * Free a DMA buffer. 'size' must be page aligned.
281 */
282static void __dma_free_buffer(struct page *page, size_t size)
283{
284 struct page *e = page + (size >> PAGE_SHIFT);
285
286 while (page < e) {
287 __free_page(page);
288 page++;
289 }
290}
291
ab6494f0 292#ifdef CONFIG_MMU
a5e9d38b 293
e9da6e99 294static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 295 pgprot_t prot, struct page **ret_page,
6e8266e3 296 const void *caller, bool want_vaddr);
99d1717d 297
e9da6e99
MS
298static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
299 pgprot_t prot, struct page **ret_page,
6e8266e3 300 const void *caller, bool want_vaddr);
99d1717d 301
e9da6e99
MS
302static void *
303__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
304 const void *caller)
99d1717d 305{
e9da6e99
MS
306 /*
307 * DMA allocation can be mapped to user space, so lets
308 * set VM_USERMAP flags too.
309 */
513510dd
LA
310 return dma_common_contiguous_remap(page, size,
311 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
312 prot, caller);
99d1717d 313}
1da177e4 314
e9da6e99 315static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 316{
513510dd
LA
317 dma_common_free_remap(cpu_addr, size,
318 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
88c58f3b 319}
88c58f3b 320
6e5267aa 321#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
36d0fd21 322static struct gen_pool *atomic_pool;
6e5267aa 323
36d0fd21 324static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
c7909509
MS
325
326static int __init early_coherent_pool(char *p)
327{
36d0fd21 328 atomic_pool_size = memparse(p, &p);
c7909509
MS
329 return 0;
330}
331early_param("coherent_pool", early_coherent_pool);
332
6e5267aa
MS
333void __init init_dma_coherent_pool_size(unsigned long size)
334{
335 /*
336 * Catch any attempt to set the pool size too late.
337 */
36d0fd21 338 BUG_ON(atomic_pool);
6e5267aa
MS
339
340 /*
341 * Set architecture specific coherent pool size only if
342 * it has not been changed by kernel command line parameter.
343 */
36d0fd21
LA
344 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
345 atomic_pool_size = size;
6e5267aa
MS
346}
347
c7909509
MS
348/*
349 * Initialise the coherent pool for atomic allocations.
350 */
e9da6e99 351static int __init atomic_pool_init(void)
c7909509 352{
71b55663 353 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
9d1400cf 354 gfp_t gfp = GFP_KERNEL | GFP_DMA;
c7909509
MS
355 struct page *page;
356 void *ptr;
c7909509 357
36d0fd21
LA
358 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
359 if (!atomic_pool)
360 goto out;
6b3fe472 361
e464ef16 362 if (dev_get_cma_area(NULL))
36d0fd21 363 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
6e8266e3 364 &page, atomic_pool_init, true);
e9da6e99 365 else
36d0fd21 366 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
6e8266e3 367 &page, atomic_pool_init, true);
c7909509 368 if (ptr) {
36d0fd21
LA
369 int ret;
370
371 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
372 page_to_phys(page),
373 atomic_pool_size, -1);
374 if (ret)
375 goto destroy_genpool;
376
377 gen_pool_set_algo(atomic_pool,
378 gen_pool_first_fit_order_align,
379 (void *)PAGE_SHIFT);
380 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
381 atomic_pool_size / 1024);
c7909509
MS
382 return 0;
383 }
ec10665c 384
36d0fd21
LA
385destroy_genpool:
386 gen_pool_destroy(atomic_pool);
387 atomic_pool = NULL;
388out:
389 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
390 atomic_pool_size / 1024);
c7909509
MS
391 return -ENOMEM;
392}
393/*
394 * CMA is activated by core_initcall, so we must be called after it.
395 */
e9da6e99 396postcore_initcall(atomic_pool_init);
c7909509
MS
397
398struct dma_contig_early_reserve {
399 phys_addr_t base;
400 unsigned long size;
401};
402
403static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
404
405static int dma_mmu_remap_num __initdata;
406
407void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
408{
409 dma_mmu_remap[dma_mmu_remap_num].base = base;
410 dma_mmu_remap[dma_mmu_remap_num].size = size;
411 dma_mmu_remap_num++;
412}
413
414void __init dma_contiguous_remap(void)
415{
416 int i;
417 for (i = 0; i < dma_mmu_remap_num; i++) {
418 phys_addr_t start = dma_mmu_remap[i].base;
419 phys_addr_t end = start + dma_mmu_remap[i].size;
420 struct map_desc map;
421 unsigned long addr;
422
423 if (end > arm_lowmem_limit)
424 end = arm_lowmem_limit;
425 if (start >= end)
39f78e70 426 continue;
c7909509
MS
427
428 map.pfn = __phys_to_pfn(start);
429 map.virtual = __phys_to_virt(start);
430 map.length = end - start;
431 map.type = MT_MEMORY_DMA_READY;
432
433 /*
6b076991
RK
434 * Clear previous low-memory mapping to ensure that the
435 * TLB does not see any conflicting entries, then flush
436 * the TLB of the old entries before creating new mappings.
437 *
438 * This ensures that any speculatively loaded TLB entries
439 * (even though they may be rare) can not cause any problems,
440 * and ensures that this code is architecturally compliant.
c7909509
MS
441 */
442 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 443 addr += PMD_SIZE)
c7909509
MS
444 pmd_clear(pmd_off_k(addr));
445
6b076991
RK
446 flush_tlb_kernel_range(__phys_to_virt(start),
447 __phys_to_virt(end));
448
c7909509
MS
449 iotable_init(&map, 1);
450 }
451}
452
c7909509
MS
453static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
454 void *data)
455{
456 struct page *page = virt_to_page(addr);
457 pgprot_t prot = *(pgprot_t *)data;
458
459 set_pte_ext(pte, mk_pte(page, prot), 0);
460 return 0;
461}
462
463static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
464{
465 unsigned long start = (unsigned long) page_address(page);
466 unsigned end = start + size;
467
468 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
469 flush_tlb_kernel_range(start, end);
470}
471
472static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
473 pgprot_t prot, struct page **ret_page,
6e8266e3 474 const void *caller, bool want_vaddr)
c7909509
MS
475{
476 struct page *page;
6e8266e3 477 void *ptr = NULL;
c7909509
MS
478 page = __dma_alloc_buffer(dev, size, gfp);
479 if (!page)
480 return NULL;
6e8266e3
CC
481 if (!want_vaddr)
482 goto out;
c7909509
MS
483
484 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
485 if (!ptr) {
486 __dma_free_buffer(page, size);
487 return NULL;
488 }
489
6e8266e3 490 out:
c7909509
MS
491 *ret_page = page;
492 return ptr;
493}
494
e9da6e99 495static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 496{
36d0fd21 497 unsigned long val;
e9da6e99 498 void *ptr = NULL;
c7909509 499
36d0fd21 500 if (!atomic_pool) {
e9da6e99 501 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
502 return NULL;
503 }
504
36d0fd21
LA
505 val = gen_pool_alloc(atomic_pool, size);
506 if (val) {
507 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
508
509 *ret_page = phys_to_page(phys);
510 ptr = (void *)val;
c7909509 511 }
e9da6e99
MS
512
513 return ptr;
c7909509
MS
514}
515
21d0a759
HD
516static bool __in_atomic_pool(void *start, size_t size)
517{
36d0fd21 518 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
21d0a759
HD
519}
520
e9da6e99 521static int __free_from_pool(void *start, size_t size)
c7909509 522{
21d0a759 523 if (!__in_atomic_pool(start, size))
c7909509
MS
524 return 0;
525
36d0fd21 526 gen_pool_free(atomic_pool, (unsigned long)start, size);
e9da6e99 527
c7909509
MS
528 return 1;
529}
530
531static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 532 pgprot_t prot, struct page **ret_page,
6e8266e3 533 const void *caller, bool want_vaddr)
c7909509
MS
534{
535 unsigned long order = get_order(size);
536 size_t count = size >> PAGE_SHIFT;
537 struct page *page;
6e8266e3 538 void *ptr = NULL;
c7909509
MS
539
540 page = dma_alloc_from_contiguous(dev, count, order);
541 if (!page)
542 return NULL;
543
544 __dma_clear_buffer(page, size);
c7909509 545
6e8266e3
CC
546 if (!want_vaddr)
547 goto out;
548
9848e48f
MS
549 if (PageHighMem(page)) {
550 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
551 if (!ptr) {
552 dma_release_from_contiguous(dev, page, count);
553 return NULL;
554 }
555 } else {
556 __dma_remap(page, size, prot);
557 ptr = page_address(page);
558 }
6e8266e3
CC
559
560 out:
c7909509 561 *ret_page = page;
9848e48f 562 return ptr;
c7909509
MS
563}
564
565static void __free_from_contiguous(struct device *dev, struct page *page,
6e8266e3 566 void *cpu_addr, size_t size, bool want_vaddr)
c7909509 567{
6e8266e3
CC
568 if (want_vaddr) {
569 if (PageHighMem(page))
570 __dma_free_remap(cpu_addr, size);
571 else
572 __dma_remap(page, size, PAGE_KERNEL);
573 }
c7909509
MS
574 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
575}
576
f99d6034
MS
577static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
578{
579 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
580 pgprot_writecombine(prot) :
581 pgprot_dmacoherent(prot);
582 return prot;
583}
584
c7909509
MS
585#define nommu() 0
586
ab6494f0 587#else /* !CONFIG_MMU */
695ae0af 588
c7909509
MS
589#define nommu() 1
590
6e8266e3
CC
591#define __get_dma_pgprot(attrs, prot) __pgprot(0)
592#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
e9da6e99 593#define __alloc_from_pool(size, ret_page) NULL
6e8266e3 594#define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
c7909509 595#define __free_from_pool(cpu_addr, size) 0
6e8266e3 596#define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
c7909509 597#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
598
599#endif /* CONFIG_MMU */
600
c7909509
MS
601static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
602 struct page **ret_page)
ab6494f0 603{
c7909509
MS
604 struct page *page;
605 page = __dma_alloc_buffer(dev, size, gfp);
606 if (!page)
607 return NULL;
608
609 *ret_page = page;
610 return page_address(page);
611}
612
613
614
615static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
6e8266e3
CC
616 gfp_t gfp, pgprot_t prot, bool is_coherent,
617 struct dma_attrs *attrs, const void *caller)
c7909509
MS
618{
619 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 620 struct page *page = NULL;
31ebf944 621 void *addr;
6e8266e3 622 bool want_vaddr;
ab6494f0 623
c7909509
MS
624#ifdef CONFIG_DMA_API_DEBUG
625 u64 limit = (mask + 1) & ~mask;
626 if (limit && size >= limit) {
627 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
628 size, mask);
629 return NULL;
630 }
631#endif
632
633 if (!mask)
634 return NULL;
635
636 if (mask < 0xffffffffULL)
637 gfp |= GFP_DMA;
638
ea2e7057
SB
639 /*
640 * Following is a work-around (a.k.a. hack) to prevent pages
641 * with __GFP_COMP being passed to split_page() which cannot
642 * handle them. The real problem is that this flag probably
643 * should be 0 on ARM as it is not supported on this
644 * platform; see CONFIG_HUGETLBFS.
645 */
646 gfp &= ~(__GFP_COMP);
647
553ac788 648 *handle = DMA_ERROR_CODE;
04da5694 649 size = PAGE_ALIGN(size);
6e8266e3 650 want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
ab6494f0 651
21caf3a7
LN
652 if (nommu())
653 addr = __alloc_simple_buffer(dev, size, gfp, &page);
d0164adc 654 else if (dev_get_cma_area(dev) && (gfp & __GFP_DIRECT_RECLAIM))
21caf3a7
LN
655 addr = __alloc_from_contiguous(dev, size, prot, &page,
656 caller, want_vaddr);
657 else if (is_coherent)
c7909509 658 addr = __alloc_simple_buffer(dev, size, gfp, &page);
d0164adc 659 else if (!gfpflags_allow_blocking(gfp))
e9da6e99 660 addr = __alloc_from_pool(size, &page);
31ebf944 661 else
21caf3a7
LN
662 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page,
663 caller, want_vaddr);
695ae0af 664
6e8266e3 665 if (page)
9eedd963 666 *handle = pfn_to_dma(dev, page_to_pfn(page));
695ae0af 667
6e8266e3 668 return want_vaddr ? addr : page;
31ebf944 669}
1da177e4
LT
670
671/*
672 * Allocate DMA-coherent memory space and return both the kernel remapped
673 * virtual and bus address for that space.
674 */
f99d6034
MS
675void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
676 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 677{
0ea1ec71 678 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1fe53268 679
dd37e940 680 return __dma_alloc(dev, size, handle, gfp, prot, false,
6e8266e3 681 attrs, __builtin_return_address(0));
dd37e940
RH
682}
683
684static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
685 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
686{
21caf3a7 687 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
6e8266e3 688 attrs, __builtin_return_address(0));
1da177e4 689}
1da177e4 690
55af8a91 691static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
f99d6034
MS
692 void *cpu_addr, dma_addr_t dma_addr, size_t size,
693 struct dma_attrs *attrs)
1da177e4 694{
ab6494f0
CM
695 int ret = -ENXIO;
696#ifdef CONFIG_MMU
50262a4b
MS
697 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
698 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 699 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
700 unsigned long off = vma->vm_pgoff;
701
47142f07
MS
702 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
703 return ret;
704
50262a4b
MS
705 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
706 ret = remap_pfn_range(vma, vma->vm_start,
707 pfn + off,
708 vma->vm_end - vma->vm_start,
709 vma->vm_page_prot);
710 }
ab6494f0 711#endif /* CONFIG_MMU */
1da177e4
LT
712
713 return ret;
714}
715
55af8a91
ML
716/*
717 * Create userspace mapping for the DMA-coherent memory.
718 */
719static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
720 void *cpu_addr, dma_addr_t dma_addr, size_t size,
721 struct dma_attrs *attrs)
722{
723 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
724}
725
726int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
727 void *cpu_addr, dma_addr_t dma_addr, size_t size,
728 struct dma_attrs *attrs)
729{
730#ifdef CONFIG_MMU
731 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
732#endif /* CONFIG_MMU */
733 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
734}
735
1da177e4 736/*
c7909509 737 * Free a buffer as defined by the above mapping.
1da177e4 738 */
dd37e940
RH
739static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
740 dma_addr_t handle, struct dma_attrs *attrs,
741 bool is_coherent)
1da177e4 742{
c7909509 743 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
6e8266e3 744 bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
5edf71ae 745
3e82d012
RK
746 size = PAGE_ALIGN(size);
747
21caf3a7 748 if (nommu()) {
c7909509 749 __dma_free_buffer(page, size);
21caf3a7 750 } else if (!is_coherent && __free_from_pool(cpu_addr, size)) {
d9e0d149 751 return;
e464ef16 752 } else if (!dev_get_cma_area(dev)) {
21caf3a7 753 if (want_vaddr && !is_coherent)
6e8266e3 754 __dma_free_remap(cpu_addr, size);
c7909509
MS
755 __dma_free_buffer(page, size);
756 } else {
c7909509
MS
757 /*
758 * Non-atomic allocations cannot be freed with IRQs disabled
759 */
760 WARN_ON(irqs_disabled());
6e8266e3 761 __free_from_contiguous(dev, page, cpu_addr, size, want_vaddr);
c7909509 762 }
1da177e4 763}
afd1a321 764
dd37e940
RH
765void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
766 dma_addr_t handle, struct dma_attrs *attrs)
767{
768 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
769}
770
771static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
772 dma_addr_t handle, struct dma_attrs *attrs)
773{
774 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
775}
776
dc2832e1
MS
777int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
778 void *cpu_addr, dma_addr_t handle, size_t size,
779 struct dma_attrs *attrs)
780{
781 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
782 int ret;
783
784 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
785 if (unlikely(ret))
786 return ret;
787
788 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
789 return 0;
790}
791
4ea0d737 792static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
793 size_t size, enum dma_data_direction dir,
794 void (*op)(const void *, size_t, int))
43377453 795{
15653371
RK
796 unsigned long pfn;
797 size_t left = size;
798
799 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
800 offset %= PAGE_SIZE;
801
43377453
NP
802 /*
803 * A single sg entry may refer to multiple physically contiguous
804 * pages. But we still need to process highmem pages individually.
805 * If highmem is not configured then the bulk of this loop gets
806 * optimized out.
807 */
43377453
NP
808 do {
809 size_t len = left;
93f1d629
RK
810 void *vaddr;
811
15653371
RK
812 page = pfn_to_page(pfn);
813
93f1d629 814 if (PageHighMem(page)) {
15653371 815 if (len + offset > PAGE_SIZE)
93f1d629 816 len = PAGE_SIZE - offset;
dd0f67f4
JK
817
818 if (cache_is_vipt_nonaliasing()) {
39af22a7 819 vaddr = kmap_atomic(page);
7e5a69e8 820 op(vaddr + offset, len, dir);
39af22a7 821 kunmap_atomic(vaddr);
dd0f67f4
JK
822 } else {
823 vaddr = kmap_high_get(page);
824 if (vaddr) {
825 op(vaddr + offset, len, dir);
826 kunmap_high(page);
827 }
43377453 828 }
93f1d629
RK
829 } else {
830 vaddr = page_address(page) + offset;
a9c9147e 831 op(vaddr, len, dir);
43377453 832 }
43377453 833 offset = 0;
15653371 834 pfn++;
43377453
NP
835 left -= len;
836 } while (left);
837}
4ea0d737 838
51fde349
MS
839/*
840 * Make an area consistent for devices.
841 * Note: Drivers should NOT use this function directly, as it will break
842 * platforms with CONFIG_DMABOUNCE.
843 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
844 */
845static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
846 size_t size, enum dma_data_direction dir)
847{
2161c248 848 phys_addr_t paddr;
65af191a 849
a9c9147e 850 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
851
852 paddr = page_to_phys(page) + off;
2ffe2da3
RK
853 if (dir == DMA_FROM_DEVICE) {
854 outer_inv_range(paddr, paddr + size);
855 } else {
856 outer_clean_range(paddr, paddr + size);
857 }
858 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 859}
4ea0d737 860
51fde349 861static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
862 size_t size, enum dma_data_direction dir)
863{
2161c248 864 phys_addr_t paddr = page_to_phys(page) + off;
2ffe2da3
RK
865
866 /* FIXME: non-speculating: not required */
deace4a6
RK
867 /* in any case, don't bother invalidating if DMA to device */
868 if (dir != DMA_TO_DEVICE) {
2ffe2da3
RK
869 outer_inv_range(paddr, paddr + size);
870
deace4a6
RK
871 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
872 }
c0177800
CM
873
874 /*
b2a234ed 875 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 876 */
b2a234ed
ML
877 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
878 unsigned long pfn;
879 size_t left = size;
880
881 pfn = page_to_pfn(page) + off / PAGE_SIZE;
882 off %= PAGE_SIZE;
883 if (off) {
884 pfn++;
885 left -= PAGE_SIZE - off;
886 }
887 while (left >= PAGE_SIZE) {
888 page = pfn_to_page(pfn++);
889 set_bit(PG_dcache_clean, &page->flags);
890 left -= PAGE_SIZE;
891 }
892 }
4ea0d737 893}
43377453 894
afd1a321 895/**
2a550e73 896 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
897 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
898 * @sg: list of buffers
899 * @nents: number of buffers to map
900 * @dir: DMA transfer direction
901 *
902 * Map a set of buffers described by scatterlist in streaming mode for DMA.
903 * This is the scatter-gather version of the dma_map_single interface.
904 * Here the scatter gather list elements are each tagged with the
905 * appropriate dma address and length. They are obtained via
906 * sg_dma_{address,length}.
907 *
908 * Device ownership issues as mentioned for dma_map_single are the same
909 * here.
910 */
2dc6a016
MS
911int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
912 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 913{
2a550e73 914 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 915 struct scatterlist *s;
01135d92 916 int i, j;
afd1a321
RK
917
918 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
919#ifdef CONFIG_NEED_SG_DMA_LENGTH
920 s->dma_length = s->length;
921#endif
2a550e73
MS
922 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
923 s->length, dir, attrs);
01135d92
RK
924 if (dma_mapping_error(dev, s->dma_address))
925 goto bad_mapping;
afd1a321 926 }
afd1a321 927 return nents;
01135d92
RK
928
929 bad_mapping:
930 for_each_sg(sg, s, i, j)
2a550e73 931 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 932 return 0;
afd1a321 933}
afd1a321
RK
934
935/**
2a550e73 936 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
937 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
938 * @sg: list of buffers
0adfca6f 939 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
940 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
941 *
942 * Unmap a set of streaming mode DMA translations. Again, CPU access
943 * rules concerning calls here are the same as for dma_unmap_single().
944 */
2dc6a016
MS
945void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
946 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 947{
2a550e73 948 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 949 struct scatterlist *s;
01135d92 950
01135d92 951 int i;
24056f52 952
01135d92 953 for_each_sg(sg, s, nents, i)
2a550e73 954 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 955}
afd1a321
RK
956
957/**
2a550e73 958 * arm_dma_sync_sg_for_cpu
afd1a321
RK
959 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
960 * @sg: list of buffers
961 * @nents: number of buffers to map (returned from dma_map_sg)
962 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
963 */
2dc6a016 964void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
965 int nents, enum dma_data_direction dir)
966{
2a550e73 967 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
968 struct scatterlist *s;
969 int i;
970
2a550e73
MS
971 for_each_sg(sg, s, nents, i)
972 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
973 dir);
afd1a321 974}
afd1a321
RK
975
976/**
2a550e73 977 * arm_dma_sync_sg_for_device
afd1a321
RK
978 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
979 * @sg: list of buffers
980 * @nents: number of buffers to map (returned from dma_map_sg)
981 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
982 */
2dc6a016 983void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
984 int nents, enum dma_data_direction dir)
985{
2a550e73 986 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
987 struct scatterlist *s;
988 int i;
989
2a550e73
MS
990 for_each_sg(sg, s, nents, i)
991 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
992 dir);
afd1a321 993}
24056f52 994
022ae537
RK
995/*
996 * Return whether the given device DMA address mask can be supported
997 * properly. For example, if your device can only drive the low 24-bits
998 * during bus mastering, then you would pass 0x00ffffff as the mask
999 * to this function.
1000 */
1001int dma_supported(struct device *dev, u64 mask)
1002{
9f28cde0 1003 return __dma_supported(dev, mask, false);
022ae537
RK
1004}
1005EXPORT_SYMBOL(dma_supported);
1006
87b54e78 1007int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
1008{
1009 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1010 return -EIO;
1011
022ae537 1012 *dev->dma_mask = dma_mask;
022ae537
RK
1013
1014 return 0;
1015}
022ae537 1016
24056f52
RK
1017#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1018
1019static int __init dma_debug_do_init(void)
1020{
1021 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1022 return 0;
1023}
1024fs_initcall(dma_debug_do_init);
4ce63fcd
MS
1025
1026#ifdef CONFIG_ARM_DMA_USE_IOMMU
1027
1028/* IOMMU */
1029
4d852ef8
AH
1030static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1031
4ce63fcd
MS
1032static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1033 size_t size)
1034{
1035 unsigned int order = get_order(size);
1036 unsigned int align = 0;
1037 unsigned int count, start;
006f841d 1038 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1039 unsigned long flags;
4d852ef8
AH
1040 dma_addr_t iova;
1041 int i;
4ce63fcd 1042
60460abf
SWK
1043 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1044 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1045
68efd7d2
MS
1046 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1047 align = (1 << order) - 1;
4ce63fcd
MS
1048
1049 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8
AH
1050 for (i = 0; i < mapping->nr_bitmaps; i++) {
1051 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1052 mapping->bits, 0, count, align);
1053
1054 if (start > mapping->bits)
1055 continue;
1056
1057 bitmap_set(mapping->bitmaps[i], start, count);
1058 break;
4ce63fcd
MS
1059 }
1060
4d852ef8
AH
1061 /*
1062 * No unused range found. Try to extend the existing mapping
1063 * and perform a second attempt to reserve an IO virtual
1064 * address range of size bytes.
1065 */
1066 if (i == mapping->nr_bitmaps) {
1067 if (extend_iommu_mapping(mapping)) {
1068 spin_unlock_irqrestore(&mapping->lock, flags);
1069 return DMA_ERROR_CODE;
1070 }
1071
1072 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1073 mapping->bits, 0, count, align);
1074
1075 if (start > mapping->bits) {
1076 spin_unlock_irqrestore(&mapping->lock, flags);
1077 return DMA_ERROR_CODE;
1078 }
1079
1080 bitmap_set(mapping->bitmaps[i], start, count);
1081 }
4ce63fcd
MS
1082 spin_unlock_irqrestore(&mapping->lock, flags);
1083
006f841d 1084 iova = mapping->base + (mapping_size * i);
68efd7d2 1085 iova += start << PAGE_SHIFT;
4d852ef8
AH
1086
1087 return iova;
4ce63fcd
MS
1088}
1089
1090static inline void __free_iova(struct dma_iommu_mapping *mapping,
1091 dma_addr_t addr, size_t size)
1092{
4d852ef8 1093 unsigned int start, count;
006f841d 1094 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1095 unsigned long flags;
4d852ef8
AH
1096 dma_addr_t bitmap_base;
1097 u32 bitmap_index;
1098
1099 if (!size)
1100 return;
1101
006f841d 1102 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
4d852ef8
AH
1103 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1104
006f841d 1105 bitmap_base = mapping->base + mapping_size * bitmap_index;
4d852ef8 1106
68efd7d2 1107 start = (addr - bitmap_base) >> PAGE_SHIFT;
4d852ef8 1108
006f841d 1109 if (addr + size > bitmap_base + mapping_size) {
4d852ef8
AH
1110 /*
1111 * The address range to be freed reaches into the iova
1112 * range of the next bitmap. This should not happen as
1113 * we don't allow this in __alloc_iova (at the
1114 * moment).
1115 */
1116 BUG();
1117 } else
68efd7d2 1118 count = size >> PAGE_SHIFT;
4ce63fcd
MS
1119
1120 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8 1121 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
4ce63fcd
MS
1122 spin_unlock_irqrestore(&mapping->lock, flags);
1123}
1124
549a17e4
MS
1125static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1126 gfp_t gfp, struct dma_attrs *attrs)
4ce63fcd
MS
1127{
1128 struct page **pages;
1129 int count = size >> PAGE_SHIFT;
1130 int array_size = count * sizeof(struct page *);
1131 int i = 0;
1132
1133 if (array_size <= PAGE_SIZE)
23be7fda 1134 pages = kzalloc(array_size, GFP_KERNEL);
4ce63fcd
MS
1135 else
1136 pages = vzalloc(array_size);
1137 if (!pages)
1138 return NULL;
1139
549a17e4
MS
1140 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1141 {
1142 unsigned long order = get_order(size);
1143 struct page *page;
1144
1145 page = dma_alloc_from_contiguous(dev, count, order);
1146 if (!page)
1147 goto error;
1148
1149 __dma_clear_buffer(page, size);
1150
1151 for (i = 0; i < count; i++)
1152 pages[i] = page + i;
1153
1154 return pages;
1155 }
1156
f8669bef
MS
1157 /*
1158 * IOMMU can map any pages, so himem can also be used here
1159 */
1160 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1161
4ce63fcd 1162 while (count) {
49f28aa6
TF
1163 int j, order;
1164
1165 for (order = __fls(count); order > 0; --order) {
1166 /*
1167 * We do not want OOM killer to be invoked as long
1168 * as we can fall back to single pages, so we force
1169 * __GFP_NORETRY for orders higher than zero.
1170 */
1171 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1172 if (pages[i])
1173 break;
1174 }
4ce63fcd 1175
49f28aa6
TF
1176 if (!pages[i]) {
1177 /*
1178 * Fall back to single page allocation.
1179 * Might invoke OOM killer as last resort.
1180 */
1181 pages[i] = alloc_pages(gfp, 0);
1182 if (!pages[i])
1183 goto error;
1184 }
4ce63fcd 1185
5a796eeb 1186 if (order) {
4ce63fcd 1187 split_page(pages[i], order);
5a796eeb
HD
1188 j = 1 << order;
1189 while (--j)
1190 pages[i + j] = pages[i] + j;
1191 }
4ce63fcd
MS
1192
1193 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1194 i += 1 << order;
1195 count -= 1 << order;
1196 }
1197
1198 return pages;
1199error:
9fa8af91 1200 while (i--)
4ce63fcd
MS
1201 if (pages[i])
1202 __free_pages(pages[i], 0);
1d5cfdb0 1203 kvfree(pages);
4ce63fcd
MS
1204 return NULL;
1205}
1206
549a17e4
MS
1207static int __iommu_free_buffer(struct device *dev, struct page **pages,
1208 size_t size, struct dma_attrs *attrs)
4ce63fcd
MS
1209{
1210 int count = size >> PAGE_SHIFT;
4ce63fcd 1211 int i;
549a17e4
MS
1212
1213 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1214 dma_release_from_contiguous(dev, pages[0], count);
1215 } else {
1216 for (i = 0; i < count; i++)
1217 if (pages[i])
1218 __free_pages(pages[i], 0);
1219 }
1220
1d5cfdb0 1221 kvfree(pages);
4ce63fcd
MS
1222 return 0;
1223}
1224
1225/*
1226 * Create a CPU mapping for a specified pages
1227 */
1228static void *
e9da6e99
MS
1229__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1230 const void *caller)
4ce63fcd 1231{
513510dd
LA
1232 return dma_common_pages_remap(pages, size,
1233 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
4ce63fcd
MS
1234}
1235
1236/*
1237 * Create a mapping in device IO address space for specified pages
1238 */
1239static dma_addr_t
1240__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1241{
89cfdb19 1242 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1243 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1244 dma_addr_t dma_addr, iova;
90cde558 1245 int i;
4ce63fcd
MS
1246
1247 dma_addr = __alloc_iova(mapping, size);
1248 if (dma_addr == DMA_ERROR_CODE)
1249 return dma_addr;
1250
1251 iova = dma_addr;
1252 for (i = 0; i < count; ) {
90cde558
AP
1253 int ret;
1254
4ce63fcd
MS
1255 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1256 phys_addr_t phys = page_to_phys(pages[i]);
1257 unsigned int len, j;
1258
1259 for (j = i + 1; j < count; j++, next_pfn++)
1260 if (page_to_pfn(pages[j]) != next_pfn)
1261 break;
1262
1263 len = (j - i) << PAGE_SHIFT;
c9b24996
AH
1264 ret = iommu_map(mapping->domain, iova, phys, len,
1265 IOMMU_READ|IOMMU_WRITE);
4ce63fcd
MS
1266 if (ret < 0)
1267 goto fail;
1268 iova += len;
1269 i = j;
1270 }
1271 return dma_addr;
1272fail:
1273 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1274 __free_iova(mapping, dma_addr, size);
1275 return DMA_ERROR_CODE;
1276}
1277
1278static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1279{
89cfdb19 1280 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1281
1282 /*
1283 * add optional in-page offset from iova to size and align
1284 * result to page size
1285 */
1286 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1287 iova &= PAGE_MASK;
1288
1289 iommu_unmap(mapping->domain, iova, size);
1290 __free_iova(mapping, iova, size);
1291 return 0;
1292}
1293
665bad7b
HD
1294static struct page **__atomic_get_pages(void *addr)
1295{
36d0fd21
LA
1296 struct page *page;
1297 phys_addr_t phys;
1298
1299 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1300 page = phys_to_page(phys);
665bad7b 1301
36d0fd21 1302 return (struct page **)page;
665bad7b
HD
1303}
1304
955c757e 1305static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1306{
1307 struct vm_struct *area;
1308
665bad7b
HD
1309 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1310 return __atomic_get_pages(cpu_addr);
1311
955c757e
MS
1312 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1313 return cpu_addr;
1314
e9da6e99
MS
1315 area = find_vm_area(cpu_addr);
1316 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1317 return area->pages;
1318 return NULL;
1319}
1320
479ed93a
HD
1321static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1322 dma_addr_t *handle)
1323{
1324 struct page *page;
1325 void *addr;
1326
1327 addr = __alloc_from_pool(size, &page);
1328 if (!addr)
1329 return NULL;
1330
1331 *handle = __iommu_create_mapping(dev, &page, size);
1332 if (*handle == DMA_ERROR_CODE)
1333 goto err_mapping;
1334
1335 return addr;
1336
1337err_mapping:
1338 __free_from_pool(addr, size);
1339 return NULL;
1340}
1341
d5898291 1342static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
479ed93a
HD
1343 dma_addr_t handle, size_t size)
1344{
1345 __iommu_remove_mapping(dev, handle, size);
d5898291 1346 __free_from_pool(cpu_addr, size);
479ed93a
HD
1347}
1348
4ce63fcd
MS
1349static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1350 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1351{
71b55663 1352 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
4ce63fcd
MS
1353 struct page **pages;
1354 void *addr = NULL;
1355
1356 *handle = DMA_ERROR_CODE;
1357 size = PAGE_ALIGN(size);
1358
d0164adc 1359 if (!gfpflags_allow_blocking(gfp))
479ed93a
HD
1360 return __iommu_alloc_atomic(dev, size, handle);
1361
5b91a98c
RZ
1362 /*
1363 * Following is a work-around (a.k.a. hack) to prevent pages
1364 * with __GFP_COMP being passed to split_page() which cannot
1365 * handle them. The real problem is that this flag probably
1366 * should be 0 on ARM as it is not supported on this
1367 * platform; see CONFIG_HUGETLBFS.
1368 */
1369 gfp &= ~(__GFP_COMP);
1370
549a17e4 1371 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
4ce63fcd
MS
1372 if (!pages)
1373 return NULL;
1374
1375 *handle = __iommu_create_mapping(dev, pages, size);
1376 if (*handle == DMA_ERROR_CODE)
1377 goto err_buffer;
1378
955c757e
MS
1379 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1380 return pages;
1381
e9da6e99
MS
1382 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1383 __builtin_return_address(0));
4ce63fcd
MS
1384 if (!addr)
1385 goto err_mapping;
1386
1387 return addr;
1388
1389err_mapping:
1390 __iommu_remove_mapping(dev, *handle, size);
1391err_buffer:
549a17e4 1392 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1393 return NULL;
1394}
1395
1396static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1397 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1398 struct dma_attrs *attrs)
1399{
e9da6e99
MS
1400 unsigned long uaddr = vma->vm_start;
1401 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1402 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
371f0f08
MS
1403 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1404 unsigned long off = vma->vm_pgoff;
4ce63fcd
MS
1405
1406 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1407
e9da6e99
MS
1408 if (!pages)
1409 return -ENXIO;
4ce63fcd 1410
371f0f08
MS
1411 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1412 return -ENXIO;
1413
7e312103
MS
1414 pages += off;
1415
e9da6e99
MS
1416 do {
1417 int ret = vm_insert_page(vma, uaddr, *pages++);
1418 if (ret) {
1419 pr_err("Remapping memory failed: %d\n", ret);
1420 return ret;
1421 }
1422 uaddr += PAGE_SIZE;
1423 usize -= PAGE_SIZE;
1424 } while (usize > 0);
4ce63fcd 1425
4ce63fcd
MS
1426 return 0;
1427}
1428
1429/*
1430 * free a page as defined by the above mapping.
1431 * Must not be called with IRQs disabled.
1432 */
1433void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1434 dma_addr_t handle, struct dma_attrs *attrs)
1435{
836bfa0d 1436 struct page **pages;
4ce63fcd
MS
1437 size = PAGE_ALIGN(size);
1438
836bfa0d
YC
1439 if (__in_atomic_pool(cpu_addr, size)) {
1440 __iommu_free_atomic(dev, cpu_addr, handle, size);
e9da6e99 1441 return;
4ce63fcd 1442 }
e9da6e99 1443
836bfa0d
YC
1444 pages = __iommu_get_pages(cpu_addr, attrs);
1445 if (!pages) {
1446 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1447 return;
1448 }
1449
955c757e 1450 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
513510dd
LA
1451 dma_common_free_remap(cpu_addr, size,
1452 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
955c757e 1453 }
e9da6e99
MS
1454
1455 __iommu_remove_mapping(dev, handle, size);
549a17e4 1456 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1457}
1458
dc2832e1
MS
1459static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1460 void *cpu_addr, dma_addr_t dma_addr,
1461 size_t size, struct dma_attrs *attrs)
1462{
1463 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1464 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1465
1466 if (!pages)
1467 return -ENXIO;
1468
1469 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1470 GFP_KERNEL);
4ce63fcd
MS
1471}
1472
c9b24996
AH
1473static int __dma_direction_to_prot(enum dma_data_direction dir)
1474{
1475 int prot;
1476
1477 switch (dir) {
1478 case DMA_BIDIRECTIONAL:
1479 prot = IOMMU_READ | IOMMU_WRITE;
1480 break;
1481 case DMA_TO_DEVICE:
1482 prot = IOMMU_READ;
1483 break;
1484 case DMA_FROM_DEVICE:
1485 prot = IOMMU_WRITE;
1486 break;
1487 default:
1488 prot = 0;
1489 }
1490
1491 return prot;
1492}
1493
4ce63fcd
MS
1494/*
1495 * Map a part of the scatter-gather list into contiguous io address space
1496 */
1497static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1498 size_t size, dma_addr_t *handle,
0fa478df
RH
1499 enum dma_data_direction dir, struct dma_attrs *attrs,
1500 bool is_coherent)
4ce63fcd 1501{
89cfdb19 1502 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1503 dma_addr_t iova, iova_base;
1504 int ret = 0;
1505 unsigned int count;
1506 struct scatterlist *s;
c9b24996 1507 int prot;
4ce63fcd
MS
1508
1509 size = PAGE_ALIGN(size);
1510 *handle = DMA_ERROR_CODE;
1511
1512 iova_base = iova = __alloc_iova(mapping, size);
1513 if (iova == DMA_ERROR_CODE)
1514 return -ENOMEM;
1515
1516 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
3e6110fd 1517 phys_addr_t phys = page_to_phys(sg_page(s));
4ce63fcd
MS
1518 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1519
0fa478df
RH
1520 if (!is_coherent &&
1521 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1522 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1523
c9b24996
AH
1524 prot = __dma_direction_to_prot(dir);
1525
1526 ret = iommu_map(mapping->domain, iova, phys, len, prot);
4ce63fcd
MS
1527 if (ret < 0)
1528 goto fail;
1529 count += len >> PAGE_SHIFT;
1530 iova += len;
1531 }
1532 *handle = iova_base;
1533
1534 return 0;
1535fail:
1536 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1537 __free_iova(mapping, iova_base, size);
1538 return ret;
1539}
1540
0fa478df
RH
1541static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1542 enum dma_data_direction dir, struct dma_attrs *attrs,
1543 bool is_coherent)
4ce63fcd
MS
1544{
1545 struct scatterlist *s = sg, *dma = sg, *start = sg;
1546 int i, count = 0;
1547 unsigned int offset = s->offset;
1548 unsigned int size = s->offset + s->length;
1549 unsigned int max = dma_get_max_seg_size(dev);
1550
1551 for (i = 1; i < nents; i++) {
1552 s = sg_next(s);
1553
1554 s->dma_address = DMA_ERROR_CODE;
1555 s->dma_length = 0;
1556
1557 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1558 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1559 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1560 goto bad_mapping;
1561
1562 dma->dma_address += offset;
1563 dma->dma_length = size - offset;
1564
1565 size = offset = s->offset;
1566 start = s;
1567 dma = sg_next(dma);
1568 count += 1;
1569 }
1570 size += s->length;
1571 }
0fa478df
RH
1572 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1573 is_coherent) < 0)
4ce63fcd
MS
1574 goto bad_mapping;
1575
1576 dma->dma_address += offset;
1577 dma->dma_length = size - offset;
1578
1579 return count+1;
1580
1581bad_mapping:
1582 for_each_sg(sg, s, count, i)
1583 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1584 return 0;
1585}
1586
1587/**
0fa478df 1588 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1589 * @dev: valid struct device pointer
1590 * @sg: list of buffers
0fa478df
RH
1591 * @nents: number of buffers to map
1592 * @dir: DMA transfer direction
4ce63fcd 1593 *
0fa478df
RH
1594 * Map a set of i/o coherent buffers described by scatterlist in streaming
1595 * mode for DMA. The scatter gather list elements are merged together (if
1596 * possible) and tagged with the appropriate dma address and length. They are
1597 * obtained via sg_dma_{address,length}.
4ce63fcd 1598 */
0fa478df
RH
1599int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1600 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1601{
1602 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1603}
1604
1605/**
1606 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1607 * @dev: valid struct device pointer
1608 * @sg: list of buffers
1609 * @nents: number of buffers to map
1610 * @dir: DMA transfer direction
1611 *
1612 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1613 * The scatter gather list elements are merged together (if possible) and
1614 * tagged with the appropriate dma address and length. They are obtained via
1615 * sg_dma_{address,length}.
1616 */
1617int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1618 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1619{
1620 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1621}
1622
1623static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1624 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1625 bool is_coherent)
4ce63fcd
MS
1626{
1627 struct scatterlist *s;
1628 int i;
1629
1630 for_each_sg(sg, s, nents, i) {
1631 if (sg_dma_len(s))
1632 __iommu_remove_mapping(dev, sg_dma_address(s),
1633 sg_dma_len(s));
0fa478df 1634 if (!is_coherent &&
97ef952a 1635 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1636 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1637 s->length, dir);
1638 }
1639}
1640
0fa478df
RH
1641/**
1642 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1643 * @dev: valid struct device pointer
1644 * @sg: list of buffers
1645 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1646 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1647 *
1648 * Unmap a set of streaming mode DMA translations. Again, CPU access
1649 * rules concerning calls here are the same as for dma_unmap_single().
1650 */
1651void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1652 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1653{
1654 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1655}
1656
1657/**
1658 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1659 * @dev: valid struct device pointer
1660 * @sg: list of buffers
1661 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1662 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1663 *
1664 * Unmap a set of streaming mode DMA translations. Again, CPU access
1665 * rules concerning calls here are the same as for dma_unmap_single().
1666 */
1667void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1668 enum dma_data_direction dir, struct dma_attrs *attrs)
1669{
1670 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1671}
1672
4ce63fcd
MS
1673/**
1674 * arm_iommu_sync_sg_for_cpu
1675 * @dev: valid struct device pointer
1676 * @sg: list of buffers
1677 * @nents: number of buffers to map (returned from dma_map_sg)
1678 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1679 */
1680void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1681 int nents, enum dma_data_direction dir)
1682{
1683 struct scatterlist *s;
1684 int i;
1685
1686 for_each_sg(sg, s, nents, i)
0fa478df 1687 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1688
1689}
1690
1691/**
1692 * arm_iommu_sync_sg_for_device
1693 * @dev: valid struct device pointer
1694 * @sg: list of buffers
1695 * @nents: number of buffers to map (returned from dma_map_sg)
1696 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1697 */
1698void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1699 int nents, enum dma_data_direction dir)
1700{
1701 struct scatterlist *s;
1702 int i;
1703
1704 for_each_sg(sg, s, nents, i)
0fa478df 1705 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1706}
1707
1708
1709/**
0fa478df 1710 * arm_coherent_iommu_map_page
4ce63fcd
MS
1711 * @dev: valid struct device pointer
1712 * @page: page that buffer resides in
1713 * @offset: offset into page for start of buffer
1714 * @size: size of buffer to map
1715 * @dir: DMA transfer direction
1716 *
0fa478df 1717 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1718 */
0fa478df 1719static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd
MS
1720 unsigned long offset, size_t size, enum dma_data_direction dir,
1721 struct dma_attrs *attrs)
1722{
89cfdb19 1723 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd 1724 dma_addr_t dma_addr;
13987d68 1725 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1726
4ce63fcd
MS
1727 dma_addr = __alloc_iova(mapping, len);
1728 if (dma_addr == DMA_ERROR_CODE)
1729 return dma_addr;
1730
c9b24996 1731 prot = __dma_direction_to_prot(dir);
13987d68
WD
1732
1733 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
4ce63fcd
MS
1734 if (ret < 0)
1735 goto fail;
1736
1737 return dma_addr + offset;
1738fail:
1739 __free_iova(mapping, dma_addr, len);
1740 return DMA_ERROR_CODE;
1741}
1742
0fa478df
RH
1743/**
1744 * arm_iommu_map_page
1745 * @dev: valid struct device pointer
1746 * @page: page that buffer resides in
1747 * @offset: offset into page for start of buffer
1748 * @size: size of buffer to map
1749 * @dir: DMA transfer direction
1750 *
1751 * IOMMU aware version of arm_dma_map_page()
1752 */
1753static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1754 unsigned long offset, size_t size, enum dma_data_direction dir,
1755 struct dma_attrs *attrs)
1756{
1757 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1758 __dma_page_cpu_to_dev(page, offset, size, dir);
1759
1760 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1761}
1762
1763/**
1764 * arm_coherent_iommu_unmap_page
1765 * @dev: valid struct device pointer
1766 * @handle: DMA address of buffer
1767 * @size: size of buffer (same as passed to dma_map_page)
1768 * @dir: DMA transfer direction (same as passed to dma_map_page)
1769 *
1770 * Coherent IOMMU aware version of arm_dma_unmap_page()
1771 */
1772static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1773 size_t size, enum dma_data_direction dir,
1774 struct dma_attrs *attrs)
1775{
89cfdb19 1776 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
0fa478df 1777 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1778 int offset = handle & ~PAGE_MASK;
1779 int len = PAGE_ALIGN(size + offset);
1780
1781 if (!iova)
1782 return;
1783
1784 iommu_unmap(mapping->domain, iova, len);
1785 __free_iova(mapping, iova, len);
1786}
1787
4ce63fcd
MS
1788/**
1789 * arm_iommu_unmap_page
1790 * @dev: valid struct device pointer
1791 * @handle: DMA address of buffer
1792 * @size: size of buffer (same as passed to dma_map_page)
1793 * @dir: DMA transfer direction (same as passed to dma_map_page)
1794 *
1795 * IOMMU aware version of arm_dma_unmap_page()
1796 */
1797static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1798 size_t size, enum dma_data_direction dir,
1799 struct dma_attrs *attrs)
1800{
89cfdb19 1801 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1802 dma_addr_t iova = handle & PAGE_MASK;
1803 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1804 int offset = handle & ~PAGE_MASK;
1805 int len = PAGE_ALIGN(size + offset);
1806
1807 if (!iova)
1808 return;
1809
0fa478df 1810 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1811 __dma_page_dev_to_cpu(page, offset, size, dir);
1812
1813 iommu_unmap(mapping->domain, iova, len);
1814 __free_iova(mapping, iova, len);
1815}
1816
1817static void arm_iommu_sync_single_for_cpu(struct device *dev,
1818 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1819{
89cfdb19 1820 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1821 dma_addr_t iova = handle & PAGE_MASK;
1822 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1823 unsigned int offset = handle & ~PAGE_MASK;
1824
1825 if (!iova)
1826 return;
1827
0fa478df 1828 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
1829}
1830
1831static void arm_iommu_sync_single_for_device(struct device *dev,
1832 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1833{
89cfdb19 1834 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1835 dma_addr_t iova = handle & PAGE_MASK;
1836 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1837 unsigned int offset = handle & ~PAGE_MASK;
1838
1839 if (!iova)
1840 return;
1841
1842 __dma_page_cpu_to_dev(page, offset, size, dir);
1843}
1844
1845struct dma_map_ops iommu_ops = {
1846 .alloc = arm_iommu_alloc_attrs,
1847 .free = arm_iommu_free_attrs,
1848 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1849 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1850
1851 .map_page = arm_iommu_map_page,
1852 .unmap_page = arm_iommu_unmap_page,
1853 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1854 .sync_single_for_device = arm_iommu_sync_single_for_device,
1855
1856 .map_sg = arm_iommu_map_sg,
1857 .unmap_sg = arm_iommu_unmap_sg,
1858 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1859 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
d09e1333
HD
1860
1861 .set_dma_mask = arm_dma_set_mask,
4ce63fcd
MS
1862};
1863
0fa478df
RH
1864struct dma_map_ops iommu_coherent_ops = {
1865 .alloc = arm_iommu_alloc_attrs,
1866 .free = arm_iommu_free_attrs,
1867 .mmap = arm_iommu_mmap_attrs,
1868 .get_sgtable = arm_iommu_get_sgtable,
1869
1870 .map_page = arm_coherent_iommu_map_page,
1871 .unmap_page = arm_coherent_iommu_unmap_page,
1872
1873 .map_sg = arm_coherent_iommu_map_sg,
1874 .unmap_sg = arm_coherent_iommu_unmap_sg,
d09e1333
HD
1875
1876 .set_dma_mask = arm_dma_set_mask,
0fa478df
RH
1877};
1878
4ce63fcd
MS
1879/**
1880 * arm_iommu_create_mapping
1881 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1882 * @base: start address of the valid IO address space
68efd7d2 1883 * @size: maximum size of the valid IO address space
4ce63fcd
MS
1884 *
1885 * Creates a mapping structure which holds information about used/unused
1886 * IO address ranges, which is required to perform memory allocation and
1887 * mapping with IOMMU aware functions.
1888 *
1889 * The client device need to be attached to the mapping with
1890 * arm_iommu_attach_device function.
1891 */
1892struct dma_iommu_mapping *
1424532b 1893arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
4ce63fcd 1894{
68efd7d2
MS
1895 unsigned int bits = size >> PAGE_SHIFT;
1896 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
4ce63fcd 1897 struct dma_iommu_mapping *mapping;
68efd7d2 1898 int extensions = 1;
4ce63fcd
MS
1899 int err = -ENOMEM;
1900
1424532b
MS
1901 /* currently only 32-bit DMA address space is supported */
1902 if (size > DMA_BIT_MASK(32) + 1)
1903 return ERR_PTR(-ERANGE);
1904
68efd7d2 1905 if (!bitmap_size)
4ce63fcd
MS
1906 return ERR_PTR(-EINVAL);
1907
68efd7d2
MS
1908 if (bitmap_size > PAGE_SIZE) {
1909 extensions = bitmap_size / PAGE_SIZE;
1910 bitmap_size = PAGE_SIZE;
1911 }
1912
4ce63fcd
MS
1913 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1914 if (!mapping)
1915 goto err;
1916
68efd7d2
MS
1917 mapping->bitmap_size = bitmap_size;
1918 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
4d852ef8
AH
1919 GFP_KERNEL);
1920 if (!mapping->bitmaps)
4ce63fcd
MS
1921 goto err2;
1922
68efd7d2 1923 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
4d852ef8
AH
1924 if (!mapping->bitmaps[0])
1925 goto err3;
1926
1927 mapping->nr_bitmaps = 1;
1928 mapping->extensions = extensions;
4ce63fcd 1929 mapping->base = base;
68efd7d2 1930 mapping->bits = BITS_PER_BYTE * bitmap_size;
4d852ef8 1931
4ce63fcd
MS
1932 spin_lock_init(&mapping->lock);
1933
1934 mapping->domain = iommu_domain_alloc(bus);
1935 if (!mapping->domain)
4d852ef8 1936 goto err4;
4ce63fcd
MS
1937
1938 kref_init(&mapping->kref);
1939 return mapping;
4d852ef8
AH
1940err4:
1941 kfree(mapping->bitmaps[0]);
4ce63fcd 1942err3:
4d852ef8 1943 kfree(mapping->bitmaps);
4ce63fcd
MS
1944err2:
1945 kfree(mapping);
1946err:
1947 return ERR_PTR(err);
1948}
18177d12 1949EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
1950
1951static void release_iommu_mapping(struct kref *kref)
1952{
4d852ef8 1953 int i;
4ce63fcd
MS
1954 struct dma_iommu_mapping *mapping =
1955 container_of(kref, struct dma_iommu_mapping, kref);
1956
1957 iommu_domain_free(mapping->domain);
4d852ef8
AH
1958 for (i = 0; i < mapping->nr_bitmaps; i++)
1959 kfree(mapping->bitmaps[i]);
1960 kfree(mapping->bitmaps);
4ce63fcd
MS
1961 kfree(mapping);
1962}
1963
4d852ef8
AH
1964static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1965{
1966 int next_bitmap;
1967
462859aa 1968 if (mapping->nr_bitmaps >= mapping->extensions)
4d852ef8
AH
1969 return -EINVAL;
1970
1971 next_bitmap = mapping->nr_bitmaps;
1972 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1973 GFP_ATOMIC);
1974 if (!mapping->bitmaps[next_bitmap])
1975 return -ENOMEM;
1976
1977 mapping->nr_bitmaps++;
1978
1979 return 0;
1980}
1981
4ce63fcd
MS
1982void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1983{
1984 if (mapping)
1985 kref_put(&mapping->kref, release_iommu_mapping);
1986}
18177d12 1987EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd 1988
eab8d653
LP
1989static int __arm_iommu_attach_device(struct device *dev,
1990 struct dma_iommu_mapping *mapping)
1991{
1992 int err;
1993
1994 err = iommu_attach_device(mapping->domain, dev);
1995 if (err)
1996 return err;
1997
1998 kref_get(&mapping->kref);
89cfdb19 1999 to_dma_iommu_mapping(dev) = mapping;
eab8d653
LP
2000
2001 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2002 return 0;
2003}
2004
4ce63fcd
MS
2005/**
2006 * arm_iommu_attach_device
2007 * @dev: valid struct device pointer
2008 * @mapping: io address space mapping structure (returned from
2009 * arm_iommu_create_mapping)
2010 *
eab8d653
LP
2011 * Attaches specified io address space mapping to the provided device.
2012 * This replaces the dma operations (dma_map_ops pointer) with the
2013 * IOMMU aware version.
2014 *
4bb25789
WD
2015 * More than one client might be attached to the same io address space
2016 * mapping.
4ce63fcd
MS
2017 */
2018int arm_iommu_attach_device(struct device *dev,
2019 struct dma_iommu_mapping *mapping)
2020{
2021 int err;
2022
eab8d653 2023 err = __arm_iommu_attach_device(dev, mapping);
4ce63fcd
MS
2024 if (err)
2025 return err;
2026
eab8d653 2027 set_dma_ops(dev, &iommu_ops);
4ce63fcd
MS
2028 return 0;
2029}
18177d12 2030EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 2031
eab8d653 2032static void __arm_iommu_detach_device(struct device *dev)
6fe36758
HD
2033{
2034 struct dma_iommu_mapping *mapping;
2035
2036 mapping = to_dma_iommu_mapping(dev);
2037 if (!mapping) {
2038 dev_warn(dev, "Not attached\n");
2039 return;
2040 }
2041
2042 iommu_detach_device(mapping->domain, dev);
2043 kref_put(&mapping->kref, release_iommu_mapping);
89cfdb19 2044 to_dma_iommu_mapping(dev) = NULL;
6fe36758
HD
2045
2046 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2047}
eab8d653
LP
2048
2049/**
2050 * arm_iommu_detach_device
2051 * @dev: valid struct device pointer
2052 *
2053 * Detaches the provided device from a previously attached map.
2054 * This voids the dma operations (dma_map_ops pointer)
2055 */
2056void arm_iommu_detach_device(struct device *dev)
2057{
2058 __arm_iommu_detach_device(dev);
2059 set_dma_ops(dev, NULL);
2060}
18177d12 2061EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 2062
4bb25789
WD
2063static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2064{
2065 return coherent ? &iommu_coherent_ops : &iommu_ops;
2066}
2067
2068static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2069 struct iommu_ops *iommu)
2070{
2071 struct dma_iommu_mapping *mapping;
2072
2073 if (!iommu)
2074 return false;
2075
2076 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2077 if (IS_ERR(mapping)) {
2078 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2079 size, dev_name(dev));
2080 return false;
2081 }
2082
eab8d653 2083 if (__arm_iommu_attach_device(dev, mapping)) {
4bb25789
WD
2084 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2085 dev_name(dev));
2086 arm_iommu_release_mapping(mapping);
2087 return false;
2088 }
2089
2090 return true;
2091}
2092
2093static void arm_teardown_iommu_dma_ops(struct device *dev)
2094{
89cfdb19 2095 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4bb25789 2096
c2273a18
WD
2097 if (!mapping)
2098 return;
2099
eab8d653 2100 __arm_iommu_detach_device(dev);
4bb25789
WD
2101 arm_iommu_release_mapping(mapping);
2102}
2103
2104#else
2105
2106static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2107 struct iommu_ops *iommu)
2108{
2109 return false;
2110}
2111
2112static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2113
2114#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2115
2116#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2117
2118static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2119{
2120 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2121}
2122
2123void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2124 struct iommu_ops *iommu, bool coherent)
2125{
2126 struct dma_map_ops *dma_ops;
2127
6f51ee70 2128 dev->archdata.dma_coherent = coherent;
4bb25789
WD
2129 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2130 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2131 else
2132 dma_ops = arm_get_dma_map_ops(coherent);
2133
2134 set_dma_ops(dev, dma_ops);
2135}
2136
2137void arch_teardown_dma_ops(struct device *dev)
2138{
2139 arm_teardown_iommu_dma_ops(dev);
2140}