]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm/mm/dma-mapping.c
arm: dma-mapping: Add support to extend DMA IOMMU mappings
[mirror_ubuntu-artful-kernel.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
11a5aa32 12#include <linux/bootmem.h>
1da177e4
LT
13#include <linux/module.h>
14#include <linux/mm.h>
5a0e3ad6 15#include <linux/gfp.h>
1da177e4
LT
16#include <linux/errno.h>
17#include <linux/list.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/dma-mapping.h>
c7909509 21#include <linux/dma-contiguous.h>
39af22a7 22#include <linux/highmem.h>
c7909509 23#include <linux/memblock.h>
99d1717d 24#include <linux/slab.h>
4ce63fcd 25#include <linux/iommu.h>
e9da6e99 26#include <linux/io.h>
4ce63fcd 27#include <linux/vmalloc.h>
158e8bfe 28#include <linux/sizes.h>
1da177e4 29
23759dc6 30#include <asm/memory.h>
43377453 31#include <asm/highmem.h>
1da177e4 32#include <asm/cacheflush.h>
1da177e4 33#include <asm/tlbflush.h>
99d1717d 34#include <asm/mach/arch.h>
4ce63fcd 35#include <asm/dma-iommu.h>
c7909509
MS
36#include <asm/mach/map.h>
37#include <asm/system_info.h>
38#include <asm/dma-contiguous.h>
37134cd5 39
022ae537
RK
40#include "mm.h"
41
15237e1f
MS
42/*
43 * The DMA API is built upon the notion of "buffer ownership". A buffer
44 * is either exclusively owned by the CPU (and therefore may be accessed
45 * by it) or exclusively owned by the DMA device. These helper functions
46 * represent the transitions between these two ownership states.
47 *
48 * Note, however, that on later ARMs, this notion does not work due to
49 * speculative prefetches. We model our approach on the assumption that
50 * the CPU does do speculative prefetches, which means we clean caches
51 * before transfers and delay cache invalidation until transfer completion.
52 *
15237e1f 53 */
51fde349 54static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 55 size_t, enum dma_data_direction);
51fde349 56static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
57 size_t, enum dma_data_direction);
58
2dc6a016
MS
59/**
60 * arm_dma_map_page - map a portion of a page for streaming DMA
61 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
62 * @page: page that buffer resides in
63 * @offset: offset into page for start of buffer
64 * @size: size of buffer to map
65 * @dir: DMA transfer direction
66 *
67 * Ensure that any data held in the cache is appropriately discarded
68 * or written back.
69 *
70 * The device owns this memory once this call has completed. The CPU
71 * can regain ownership by calling dma_unmap_page().
72 */
51fde349 73static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
74 unsigned long offset, size_t size, enum dma_data_direction dir,
75 struct dma_attrs *attrs)
76{
dd37e940 77 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
78 __dma_page_cpu_to_dev(page, offset, size, dir);
79 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
80}
81
dd37e940
RH
82static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
83 unsigned long offset, size_t size, enum dma_data_direction dir,
84 struct dma_attrs *attrs)
85{
86 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
87}
88
2dc6a016
MS
89/**
90 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
91 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
92 * @handle: DMA address of buffer
93 * @size: size of buffer (same as passed to dma_map_page)
94 * @dir: DMA transfer direction (same as passed to dma_map_page)
95 *
96 * Unmap a page streaming mode DMA translation. The handle and size
97 * must match what was provided in the previous dma_map_page() call.
98 * All other usages are undefined.
99 *
100 * After this call, reads by the CPU to the buffer are guaranteed to see
101 * whatever the device wrote there.
102 */
51fde349 103static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
104 size_t size, enum dma_data_direction dir,
105 struct dma_attrs *attrs)
106{
dd37e940 107 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
108 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
109 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
110}
111
51fde349 112static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
113 dma_addr_t handle, size_t size, enum dma_data_direction dir)
114{
115 unsigned int offset = handle & (PAGE_SIZE - 1);
116 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 117 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
118}
119
51fde349 120static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
121 dma_addr_t handle, size_t size, enum dma_data_direction dir)
122{
123 unsigned int offset = handle & (PAGE_SIZE - 1);
124 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 125 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
126}
127
2dc6a016 128struct dma_map_ops arm_dma_ops = {
f99d6034
MS
129 .alloc = arm_dma_alloc,
130 .free = arm_dma_free,
131 .mmap = arm_dma_mmap,
dc2832e1 132 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
133 .map_page = arm_dma_map_page,
134 .unmap_page = arm_dma_unmap_page,
135 .map_sg = arm_dma_map_sg,
136 .unmap_sg = arm_dma_unmap_sg,
137 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
138 .sync_single_for_device = arm_dma_sync_single_for_device,
139 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
140 .sync_sg_for_device = arm_dma_sync_sg_for_device,
141 .set_dma_mask = arm_dma_set_mask,
142};
143EXPORT_SYMBOL(arm_dma_ops);
144
dd37e940
RH
145static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
146 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
147static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
148 dma_addr_t handle, struct dma_attrs *attrs);
149
150struct dma_map_ops arm_coherent_dma_ops = {
151 .alloc = arm_coherent_dma_alloc,
152 .free = arm_coherent_dma_free,
153 .mmap = arm_dma_mmap,
154 .get_sgtable = arm_dma_get_sgtable,
155 .map_page = arm_coherent_dma_map_page,
156 .map_sg = arm_dma_map_sg,
157 .set_dma_mask = arm_dma_set_mask,
158};
159EXPORT_SYMBOL(arm_coherent_dma_ops);
160
9f28cde0
RK
161static int __dma_supported(struct device *dev, u64 mask, bool warn)
162{
163 unsigned long max_dma_pfn;
164
165 /*
166 * If the mask allows for more memory than we can address,
167 * and we actually have that much memory, then we must
168 * indicate that DMA to this device is not supported.
169 */
170 if (sizeof(mask) != sizeof(dma_addr_t) &&
171 mask > (dma_addr_t)~0 &&
172 dma_to_pfn(dev, ~0) < max_pfn) {
173 if (warn) {
174 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
175 mask);
176 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
177 }
178 return 0;
179 }
180
181 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
182
183 /*
184 * Translate the device's DMA mask to a PFN limit. This
185 * PFN number includes the page which we can DMA to.
186 */
187 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
188 if (warn)
189 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
190 mask,
191 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
192 max_dma_pfn + 1);
193 return 0;
194 }
195
196 return 1;
197}
198
ab6494f0
CM
199static u64 get_coherent_dma_mask(struct device *dev)
200{
4dcfa600 201 u64 mask = (u64)DMA_BIT_MASK(32);
ab6494f0
CM
202
203 if (dev) {
204 mask = dev->coherent_dma_mask;
205
206 /*
207 * Sanity check the DMA mask - it must be non-zero, and
208 * must be able to be satisfied by a DMA allocation.
209 */
210 if (mask == 0) {
211 dev_warn(dev, "coherent DMA mask is unset\n");
212 return 0;
213 }
214
9f28cde0 215 if (!__dma_supported(dev, mask, true))
ab6494f0 216 return 0;
ab6494f0 217 }
1da177e4 218
ab6494f0
CM
219 return mask;
220}
221
c7909509
MS
222static void __dma_clear_buffer(struct page *page, size_t size)
223{
c7909509
MS
224 /*
225 * Ensure that the allocated pages are zeroed, and that any data
226 * lurking in the kernel direct-mapped region is invalidated.
227 */
9848e48f
MS
228 if (PageHighMem(page)) {
229 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
230 phys_addr_t end = base + size;
231 while (size > 0) {
232 void *ptr = kmap_atomic(page);
233 memset(ptr, 0, PAGE_SIZE);
234 dmac_flush_range(ptr, ptr + PAGE_SIZE);
235 kunmap_atomic(ptr);
236 page++;
237 size -= PAGE_SIZE;
238 }
239 outer_flush_range(base, end);
240 } else {
241 void *ptr = page_address(page);
4ce63fcd
MS
242 memset(ptr, 0, size);
243 dmac_flush_range(ptr, ptr + size);
244 outer_flush_range(__pa(ptr), __pa(ptr) + size);
245 }
c7909509
MS
246}
247
7a9a32a9
RK
248/*
249 * Allocate a DMA buffer for 'dev' of size 'size' using the
250 * specified gfp mask. Note that 'size' must be page aligned.
251 */
252static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
253{
254 unsigned long order = get_order(size);
255 struct page *page, *p, *e;
7a9a32a9
RK
256
257 page = alloc_pages(gfp, order);
258 if (!page)
259 return NULL;
260
261 /*
262 * Now split the huge page and free the excess pages
263 */
264 split_page(page, order);
265 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
266 __free_page(p);
267
c7909509 268 __dma_clear_buffer(page, size);
7a9a32a9
RK
269
270 return page;
271}
272
273/*
274 * Free a DMA buffer. 'size' must be page aligned.
275 */
276static void __dma_free_buffer(struct page *page, size_t size)
277{
278 struct page *e = page + (size >> PAGE_SHIFT);
279
280 while (page < e) {
281 __free_page(page);
282 page++;
283 }
284}
285
ab6494f0 286#ifdef CONFIG_MMU
e9da6e99 287#ifdef CONFIG_HUGETLB_PAGE
1355e2a6 288#warning ARM Coherent DMA allocator does not (yet) support huge TLB
e9da6e99 289#endif
a5e9d38b 290
e9da6e99 291static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f
MS
292 pgprot_t prot, struct page **ret_page,
293 const void *caller);
99d1717d 294
e9da6e99
MS
295static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
296 pgprot_t prot, struct page **ret_page,
297 const void *caller);
99d1717d 298
e9da6e99
MS
299static void *
300__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
301 const void *caller)
99d1717d 302{
e9da6e99
MS
303 struct vm_struct *area;
304 unsigned long addr;
99d1717d 305
e9da6e99
MS
306 /*
307 * DMA allocation can be mapped to user space, so lets
308 * set VM_USERMAP flags too.
309 */
310 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
311 caller);
312 if (!area)
313 return NULL;
314 addr = (unsigned long)area->addr;
315 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
99d1717d 316
e9da6e99
MS
317 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
318 vunmap((void *)addr);
319 return NULL;
320 }
321 return (void *)addr;
99d1717d 322}
1da177e4 323
e9da6e99 324static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 325{
e9da6e99
MS
326 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
327 struct vm_struct *area = find_vm_area(cpu_addr);
328 if (!area || (area->flags & flags) != flags) {
329 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
330 return;
99d1717d 331 }
e9da6e99
MS
332 unmap_kernel_range((unsigned long)cpu_addr, size);
333 vunmap(cpu_addr);
88c58f3b 334}
88c58f3b 335
6e5267aa
MS
336#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
337
e9da6e99
MS
338struct dma_pool {
339 size_t size;
340 spinlock_t lock;
341 unsigned long *bitmap;
342 unsigned long nr_pages;
343 void *vaddr;
6b3fe472 344 struct page **pages;
c7909509
MS
345};
346
e9da6e99 347static struct dma_pool atomic_pool = {
6e5267aa 348 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
e9da6e99 349};
c7909509
MS
350
351static int __init early_coherent_pool(char *p)
352{
e9da6e99 353 atomic_pool.size = memparse(p, &p);
c7909509
MS
354 return 0;
355}
356early_param("coherent_pool", early_coherent_pool);
357
6e5267aa
MS
358void __init init_dma_coherent_pool_size(unsigned long size)
359{
360 /*
361 * Catch any attempt to set the pool size too late.
362 */
363 BUG_ON(atomic_pool.vaddr);
364
365 /*
366 * Set architecture specific coherent pool size only if
367 * it has not been changed by kernel command line parameter.
368 */
369 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
370 atomic_pool.size = size;
371}
372
c7909509
MS
373/*
374 * Initialise the coherent pool for atomic allocations.
375 */
e9da6e99 376static int __init atomic_pool_init(void)
c7909509 377{
e9da6e99 378 struct dma_pool *pool = &atomic_pool;
71b55663 379 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
9d1400cf 380 gfp_t gfp = GFP_KERNEL | GFP_DMA;
e9da6e99
MS
381 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
382 unsigned long *bitmap;
c7909509 383 struct page *page;
6b3fe472 384 struct page **pages;
c7909509 385 void *ptr;
e9da6e99 386 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
c7909509 387
e9da6e99
MS
388 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
389 if (!bitmap)
390 goto no_bitmap;
c7909509 391
6b3fe472
HD
392 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
393 if (!pages)
394 goto no_pages;
395
f825c736 396 if (IS_ENABLED(CONFIG_DMA_CMA))
9848e48f
MS
397 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
398 atomic_pool_init);
e9da6e99 399 else
9d1400cf
MS
400 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
401 atomic_pool_init);
c7909509 402 if (ptr) {
6b3fe472
HD
403 int i;
404
405 for (i = 0; i < nr_pages; i++)
406 pages[i] = page + i;
407
e9da6e99
MS
408 spin_lock_init(&pool->lock);
409 pool->vaddr = ptr;
6b3fe472 410 pool->pages = pages;
e9da6e99
MS
411 pool->bitmap = bitmap;
412 pool->nr_pages = nr_pages;
413 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
414 (unsigned)pool->size / 1024);
c7909509
MS
415 return 0;
416 }
ec10665c
SK
417
418 kfree(pages);
6b3fe472 419no_pages:
e9da6e99
MS
420 kfree(bitmap);
421no_bitmap:
422 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
423 (unsigned)pool->size / 1024);
c7909509
MS
424 return -ENOMEM;
425}
426/*
427 * CMA is activated by core_initcall, so we must be called after it.
428 */
e9da6e99 429postcore_initcall(atomic_pool_init);
c7909509
MS
430
431struct dma_contig_early_reserve {
432 phys_addr_t base;
433 unsigned long size;
434};
435
436static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
437
438static int dma_mmu_remap_num __initdata;
439
440void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
441{
442 dma_mmu_remap[dma_mmu_remap_num].base = base;
443 dma_mmu_remap[dma_mmu_remap_num].size = size;
444 dma_mmu_remap_num++;
445}
446
447void __init dma_contiguous_remap(void)
448{
449 int i;
450 for (i = 0; i < dma_mmu_remap_num; i++) {
451 phys_addr_t start = dma_mmu_remap[i].base;
452 phys_addr_t end = start + dma_mmu_remap[i].size;
453 struct map_desc map;
454 unsigned long addr;
455
456 if (end > arm_lowmem_limit)
457 end = arm_lowmem_limit;
458 if (start >= end)
39f78e70 459 continue;
c7909509
MS
460
461 map.pfn = __phys_to_pfn(start);
462 map.virtual = __phys_to_virt(start);
463 map.length = end - start;
464 map.type = MT_MEMORY_DMA_READY;
465
466 /*
467 * Clear previous low-memory mapping
468 */
469 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 470 addr += PMD_SIZE)
c7909509
MS
471 pmd_clear(pmd_off_k(addr));
472
473 iotable_init(&map, 1);
474 }
475}
476
c7909509
MS
477static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
478 void *data)
479{
480 struct page *page = virt_to_page(addr);
481 pgprot_t prot = *(pgprot_t *)data;
482
483 set_pte_ext(pte, mk_pte(page, prot), 0);
484 return 0;
485}
486
487static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
488{
489 unsigned long start = (unsigned long) page_address(page);
490 unsigned end = start + size;
491
492 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
493 flush_tlb_kernel_range(start, end);
494}
495
496static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
497 pgprot_t prot, struct page **ret_page,
498 const void *caller)
499{
500 struct page *page;
501 void *ptr;
502 page = __dma_alloc_buffer(dev, size, gfp);
503 if (!page)
504 return NULL;
505
506 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
507 if (!ptr) {
508 __dma_free_buffer(page, size);
509 return NULL;
510 }
511
512 *ret_page = page;
513 return ptr;
514}
515
e9da6e99 516static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 517{
e9da6e99
MS
518 struct dma_pool *pool = &atomic_pool;
519 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
520 unsigned int pageno;
521 unsigned long flags;
522 void *ptr = NULL;
e4ea6918 523 unsigned long align_mask;
c7909509 524
e9da6e99
MS
525 if (!pool->vaddr) {
526 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
527 return NULL;
528 }
529
530 /*
531 * Align the region allocation - allocations from pool are rather
532 * small, so align them to their order in pages, minimum is a page
533 * size. This helps reduce fragmentation of the DMA space.
534 */
e4ea6918 535 align_mask = (1 << get_order(size)) - 1;
e9da6e99
MS
536
537 spin_lock_irqsave(&pool->lock, flags);
538 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
e4ea6918 539 0, count, align_mask);
e9da6e99
MS
540 if (pageno < pool->nr_pages) {
541 bitmap_set(pool->bitmap, pageno, count);
542 ptr = pool->vaddr + PAGE_SIZE * pageno;
6b3fe472 543 *ret_page = pool->pages[pageno];
fb71285f
MS
544 } else {
545 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
546 "Please increase it with coherent_pool= kernel parameter!\n",
547 (unsigned)pool->size / 1024);
c7909509 548 }
e9da6e99
MS
549 spin_unlock_irqrestore(&pool->lock, flags);
550
551 return ptr;
c7909509
MS
552}
553
21d0a759
HD
554static bool __in_atomic_pool(void *start, size_t size)
555{
556 struct dma_pool *pool = &atomic_pool;
557 void *end = start + size;
558 void *pool_start = pool->vaddr;
559 void *pool_end = pool->vaddr + pool->size;
560
f3d87524 561 if (start < pool_start || start >= pool_end)
21d0a759
HD
562 return false;
563
564 if (end <= pool_end)
565 return true;
566
567 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
568 start, end - 1, pool_start, pool_end - 1);
569
570 return false;
571}
572
e9da6e99 573static int __free_from_pool(void *start, size_t size)
c7909509 574{
e9da6e99
MS
575 struct dma_pool *pool = &atomic_pool;
576 unsigned long pageno, count;
577 unsigned long flags;
c7909509 578
21d0a759 579 if (!__in_atomic_pool(start, size))
c7909509
MS
580 return 0;
581
e9da6e99
MS
582 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
583 count = size >> PAGE_SHIFT;
584
585 spin_lock_irqsave(&pool->lock, flags);
586 bitmap_clear(pool->bitmap, pageno, count);
587 spin_unlock_irqrestore(&pool->lock, flags);
588
c7909509
MS
589 return 1;
590}
591
592static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f
MS
593 pgprot_t prot, struct page **ret_page,
594 const void *caller)
c7909509
MS
595{
596 unsigned long order = get_order(size);
597 size_t count = size >> PAGE_SHIFT;
598 struct page *page;
9848e48f 599 void *ptr;
c7909509
MS
600
601 page = dma_alloc_from_contiguous(dev, count, order);
602 if (!page)
603 return NULL;
604
605 __dma_clear_buffer(page, size);
c7909509 606
9848e48f
MS
607 if (PageHighMem(page)) {
608 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
609 if (!ptr) {
610 dma_release_from_contiguous(dev, page, count);
611 return NULL;
612 }
613 } else {
614 __dma_remap(page, size, prot);
615 ptr = page_address(page);
616 }
c7909509 617 *ret_page = page;
9848e48f 618 return ptr;
c7909509
MS
619}
620
621static void __free_from_contiguous(struct device *dev, struct page *page,
9848e48f 622 void *cpu_addr, size_t size)
c7909509 623{
9848e48f
MS
624 if (PageHighMem(page))
625 __dma_free_remap(cpu_addr, size);
626 else
71b55663 627 __dma_remap(page, size, PAGE_KERNEL);
c7909509
MS
628 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
629}
630
f99d6034
MS
631static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
632{
633 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
634 pgprot_writecombine(prot) :
635 pgprot_dmacoherent(prot);
636 return prot;
637}
638
c7909509
MS
639#define nommu() 0
640
ab6494f0 641#else /* !CONFIG_MMU */
695ae0af 642
c7909509
MS
643#define nommu() 1
644
f99d6034 645#define __get_dma_pgprot(attrs, prot) __pgprot(0)
c7909509 646#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
e9da6e99 647#define __alloc_from_pool(size, ret_page) NULL
9848e48f 648#define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
c7909509 649#define __free_from_pool(cpu_addr, size) 0
9848e48f 650#define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
c7909509 651#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
652
653#endif /* CONFIG_MMU */
654
c7909509
MS
655static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
656 struct page **ret_page)
ab6494f0 657{
c7909509
MS
658 struct page *page;
659 page = __dma_alloc_buffer(dev, size, gfp);
660 if (!page)
661 return NULL;
662
663 *ret_page = page;
664 return page_address(page);
665}
666
667
668
669static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
dd37e940 670 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
c7909509
MS
671{
672 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 673 struct page *page = NULL;
31ebf944 674 void *addr;
ab6494f0 675
c7909509
MS
676#ifdef CONFIG_DMA_API_DEBUG
677 u64 limit = (mask + 1) & ~mask;
678 if (limit && size >= limit) {
679 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
680 size, mask);
681 return NULL;
682 }
683#endif
684
685 if (!mask)
686 return NULL;
687
688 if (mask < 0xffffffffULL)
689 gfp |= GFP_DMA;
690
ea2e7057
SB
691 /*
692 * Following is a work-around (a.k.a. hack) to prevent pages
693 * with __GFP_COMP being passed to split_page() which cannot
694 * handle them. The real problem is that this flag probably
695 * should be 0 on ARM as it is not supported on this
696 * platform; see CONFIG_HUGETLBFS.
697 */
698 gfp &= ~(__GFP_COMP);
699
553ac788 700 *handle = DMA_ERROR_CODE;
04da5694 701 size = PAGE_ALIGN(size);
ab6494f0 702
dd37e940 703 if (is_coherent || nommu())
c7909509 704 addr = __alloc_simple_buffer(dev, size, gfp, &page);
633dc92a 705 else if (!(gfp & __GFP_WAIT))
e9da6e99 706 addr = __alloc_from_pool(size, &page);
f825c736 707 else if (!IS_ENABLED(CONFIG_DMA_CMA))
c7909509 708 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
31ebf944 709 else
9848e48f 710 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
695ae0af 711
31ebf944 712 if (addr)
9eedd963 713 *handle = pfn_to_dma(dev, page_to_pfn(page));
695ae0af 714
31ebf944
RK
715 return addr;
716}
1da177e4
LT
717
718/*
719 * Allocate DMA-coherent memory space and return both the kernel remapped
720 * virtual and bus address for that space.
721 */
f99d6034
MS
722void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
723 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 724{
0ea1ec71 725 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1fe53268
DES
726 void *memory;
727
728 if (dma_alloc_from_coherent(dev, size, handle, &memory))
729 return memory;
730
dd37e940
RH
731 return __dma_alloc(dev, size, handle, gfp, prot, false,
732 __builtin_return_address(0));
733}
734
735static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
736 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
737{
0ea1ec71 738 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
dd37e940
RH
739 void *memory;
740
741 if (dma_alloc_from_coherent(dev, size, handle, &memory))
742 return memory;
743
744 return __dma_alloc(dev, size, handle, gfp, prot, true,
45cd5290 745 __builtin_return_address(0));
1da177e4 746}
1da177e4
LT
747
748/*
f99d6034 749 * Create userspace mapping for the DMA-coherent memory.
1da177e4 750 */
f99d6034
MS
751int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
752 void *cpu_addr, dma_addr_t dma_addr, size_t size,
753 struct dma_attrs *attrs)
1da177e4 754{
ab6494f0
CM
755 int ret = -ENXIO;
756#ifdef CONFIG_MMU
50262a4b
MS
757 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
758 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 759 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
760 unsigned long off = vma->vm_pgoff;
761
f99d6034
MS
762 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
763
47142f07
MS
764 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
765 return ret;
766
50262a4b
MS
767 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
768 ret = remap_pfn_range(vma, vma->vm_start,
769 pfn + off,
770 vma->vm_end - vma->vm_start,
771 vma->vm_page_prot);
772 }
ab6494f0 773#endif /* CONFIG_MMU */
1da177e4
LT
774
775 return ret;
776}
777
1da177e4 778/*
c7909509 779 * Free a buffer as defined by the above mapping.
1da177e4 780 */
dd37e940
RH
781static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
782 dma_addr_t handle, struct dma_attrs *attrs,
783 bool is_coherent)
1da177e4 784{
c7909509 785 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
5edf71ae 786
1fe53268
DES
787 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
788 return;
789
3e82d012
RK
790 size = PAGE_ALIGN(size);
791
dd37e940 792 if (is_coherent || nommu()) {
c7909509 793 __dma_free_buffer(page, size);
d9e0d149
AK
794 } else if (__free_from_pool(cpu_addr, size)) {
795 return;
f825c736 796 } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
695ae0af 797 __dma_free_remap(cpu_addr, size);
c7909509
MS
798 __dma_free_buffer(page, size);
799 } else {
c7909509
MS
800 /*
801 * Non-atomic allocations cannot be freed with IRQs disabled
802 */
803 WARN_ON(irqs_disabled());
9848e48f 804 __free_from_contiguous(dev, page, cpu_addr, size);
c7909509 805 }
1da177e4 806}
afd1a321 807
dd37e940
RH
808void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
809 dma_addr_t handle, struct dma_attrs *attrs)
810{
811 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
812}
813
814static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
815 dma_addr_t handle, struct dma_attrs *attrs)
816{
817 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
818}
819
dc2832e1
MS
820int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
821 void *cpu_addr, dma_addr_t handle, size_t size,
822 struct dma_attrs *attrs)
823{
824 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
825 int ret;
826
827 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
828 if (unlikely(ret))
829 return ret;
830
831 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
832 return 0;
833}
834
4ea0d737 835static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
836 size_t size, enum dma_data_direction dir,
837 void (*op)(const void *, size_t, int))
43377453 838{
15653371
RK
839 unsigned long pfn;
840 size_t left = size;
841
842 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
843 offset %= PAGE_SIZE;
844
43377453
NP
845 /*
846 * A single sg entry may refer to multiple physically contiguous
847 * pages. But we still need to process highmem pages individually.
848 * If highmem is not configured then the bulk of this loop gets
849 * optimized out.
850 */
43377453
NP
851 do {
852 size_t len = left;
93f1d629
RK
853 void *vaddr;
854
15653371
RK
855 page = pfn_to_page(pfn);
856
93f1d629 857 if (PageHighMem(page)) {
15653371 858 if (len + offset > PAGE_SIZE)
93f1d629 859 len = PAGE_SIZE - offset;
dd0f67f4
JK
860
861 if (cache_is_vipt_nonaliasing()) {
39af22a7 862 vaddr = kmap_atomic(page);
7e5a69e8 863 op(vaddr + offset, len, dir);
39af22a7 864 kunmap_atomic(vaddr);
dd0f67f4
JK
865 } else {
866 vaddr = kmap_high_get(page);
867 if (vaddr) {
868 op(vaddr + offset, len, dir);
869 kunmap_high(page);
870 }
43377453 871 }
93f1d629
RK
872 } else {
873 vaddr = page_address(page) + offset;
a9c9147e 874 op(vaddr, len, dir);
43377453 875 }
43377453 876 offset = 0;
15653371 877 pfn++;
43377453
NP
878 left -= len;
879 } while (left);
880}
4ea0d737 881
51fde349
MS
882/*
883 * Make an area consistent for devices.
884 * Note: Drivers should NOT use this function directly, as it will break
885 * platforms with CONFIG_DMABOUNCE.
886 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
887 */
888static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
889 size_t size, enum dma_data_direction dir)
890{
65af191a 891 unsigned long paddr;
65af191a 892
a9c9147e 893 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
894
895 paddr = page_to_phys(page) + off;
2ffe2da3
RK
896 if (dir == DMA_FROM_DEVICE) {
897 outer_inv_range(paddr, paddr + size);
898 } else {
899 outer_clean_range(paddr, paddr + size);
900 }
901 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 902}
4ea0d737 903
51fde349 904static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
905 size_t size, enum dma_data_direction dir)
906{
2ffe2da3
RK
907 unsigned long paddr = page_to_phys(page) + off;
908
909 /* FIXME: non-speculating: not required */
910 /* don't bother invalidating if DMA to device */
911 if (dir != DMA_TO_DEVICE)
912 outer_inv_range(paddr, paddr + size);
913
a9c9147e 914 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
c0177800
CM
915
916 /*
b2a234ed 917 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 918 */
b2a234ed
ML
919 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
920 unsigned long pfn;
921 size_t left = size;
922
923 pfn = page_to_pfn(page) + off / PAGE_SIZE;
924 off %= PAGE_SIZE;
925 if (off) {
926 pfn++;
927 left -= PAGE_SIZE - off;
928 }
929 while (left >= PAGE_SIZE) {
930 page = pfn_to_page(pfn++);
931 set_bit(PG_dcache_clean, &page->flags);
932 left -= PAGE_SIZE;
933 }
934 }
4ea0d737 935}
43377453 936
afd1a321 937/**
2a550e73 938 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
939 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
940 * @sg: list of buffers
941 * @nents: number of buffers to map
942 * @dir: DMA transfer direction
943 *
944 * Map a set of buffers described by scatterlist in streaming mode for DMA.
945 * This is the scatter-gather version of the dma_map_single interface.
946 * Here the scatter gather list elements are each tagged with the
947 * appropriate dma address and length. They are obtained via
948 * sg_dma_{address,length}.
949 *
950 * Device ownership issues as mentioned for dma_map_single are the same
951 * here.
952 */
2dc6a016
MS
953int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
954 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 955{
2a550e73 956 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 957 struct scatterlist *s;
01135d92 958 int i, j;
afd1a321
RK
959
960 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
961#ifdef CONFIG_NEED_SG_DMA_LENGTH
962 s->dma_length = s->length;
963#endif
2a550e73
MS
964 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
965 s->length, dir, attrs);
01135d92
RK
966 if (dma_mapping_error(dev, s->dma_address))
967 goto bad_mapping;
afd1a321 968 }
afd1a321 969 return nents;
01135d92
RK
970
971 bad_mapping:
972 for_each_sg(sg, s, i, j)
2a550e73 973 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 974 return 0;
afd1a321 975}
afd1a321
RK
976
977/**
2a550e73 978 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
979 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
980 * @sg: list of buffers
0adfca6f 981 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
982 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
983 *
984 * Unmap a set of streaming mode DMA translations. Again, CPU access
985 * rules concerning calls here are the same as for dma_unmap_single().
986 */
2dc6a016
MS
987void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
988 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 989{
2a550e73 990 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 991 struct scatterlist *s;
01135d92 992
01135d92 993 int i;
24056f52 994
01135d92 995 for_each_sg(sg, s, nents, i)
2a550e73 996 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 997}
afd1a321
RK
998
999/**
2a550e73 1000 * arm_dma_sync_sg_for_cpu
afd1a321
RK
1001 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1002 * @sg: list of buffers
1003 * @nents: number of buffers to map (returned from dma_map_sg)
1004 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1005 */
2dc6a016 1006void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1007 int nents, enum dma_data_direction dir)
1008{
2a550e73 1009 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1010 struct scatterlist *s;
1011 int i;
1012
2a550e73
MS
1013 for_each_sg(sg, s, nents, i)
1014 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1015 dir);
afd1a321 1016}
afd1a321
RK
1017
1018/**
2a550e73 1019 * arm_dma_sync_sg_for_device
afd1a321
RK
1020 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1021 * @sg: list of buffers
1022 * @nents: number of buffers to map (returned from dma_map_sg)
1023 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1024 */
2dc6a016 1025void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1026 int nents, enum dma_data_direction dir)
1027{
2a550e73 1028 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1029 struct scatterlist *s;
1030 int i;
1031
2a550e73
MS
1032 for_each_sg(sg, s, nents, i)
1033 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1034 dir);
afd1a321 1035}
24056f52 1036
022ae537
RK
1037/*
1038 * Return whether the given device DMA address mask can be supported
1039 * properly. For example, if your device can only drive the low 24-bits
1040 * during bus mastering, then you would pass 0x00ffffff as the mask
1041 * to this function.
1042 */
1043int dma_supported(struct device *dev, u64 mask)
1044{
9f28cde0 1045 return __dma_supported(dev, mask, false);
022ae537
RK
1046}
1047EXPORT_SYMBOL(dma_supported);
1048
87b54e78 1049int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
1050{
1051 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1052 return -EIO;
1053
022ae537 1054 *dev->dma_mask = dma_mask;
022ae537
RK
1055
1056 return 0;
1057}
022ae537 1058
24056f52
RK
1059#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1060
1061static int __init dma_debug_do_init(void)
1062{
1063 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1064 return 0;
1065}
1066fs_initcall(dma_debug_do_init);
4ce63fcd
MS
1067
1068#ifdef CONFIG_ARM_DMA_USE_IOMMU
1069
1070/* IOMMU */
1071
4d852ef8
AH
1072static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1073
4ce63fcd
MS
1074static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1075 size_t size)
1076{
1077 unsigned int order = get_order(size);
1078 unsigned int align = 0;
1079 unsigned int count, start;
1080 unsigned long flags;
4d852ef8
AH
1081 dma_addr_t iova;
1082 int i;
4ce63fcd 1083
60460abf
SWK
1084 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1085 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1086
4ce63fcd
MS
1087 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1088 (1 << mapping->order) - 1) >> mapping->order;
1089
1090 if (order > mapping->order)
1091 align = (1 << (order - mapping->order)) - 1;
1092
1093 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8
AH
1094 for (i = 0; i < mapping->nr_bitmaps; i++) {
1095 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1096 mapping->bits, 0, count, align);
1097
1098 if (start > mapping->bits)
1099 continue;
1100
1101 bitmap_set(mapping->bitmaps[i], start, count);
1102 break;
4ce63fcd
MS
1103 }
1104
4d852ef8
AH
1105 /*
1106 * No unused range found. Try to extend the existing mapping
1107 * and perform a second attempt to reserve an IO virtual
1108 * address range of size bytes.
1109 */
1110 if (i == mapping->nr_bitmaps) {
1111 if (extend_iommu_mapping(mapping)) {
1112 spin_unlock_irqrestore(&mapping->lock, flags);
1113 return DMA_ERROR_CODE;
1114 }
1115
1116 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1117 mapping->bits, 0, count, align);
1118
1119 if (start > mapping->bits) {
1120 spin_unlock_irqrestore(&mapping->lock, flags);
1121 return DMA_ERROR_CODE;
1122 }
1123
1124 bitmap_set(mapping->bitmaps[i], start, count);
1125 }
4ce63fcd
MS
1126 spin_unlock_irqrestore(&mapping->lock, flags);
1127
4d852ef8
AH
1128 iova = mapping->base + (mapping->size * i);
1129 iova += start << (mapping->order + PAGE_SHIFT);
1130
1131 return iova;
4ce63fcd
MS
1132}
1133
1134static inline void __free_iova(struct dma_iommu_mapping *mapping,
1135 dma_addr_t addr, size_t size)
1136{
4d852ef8 1137 unsigned int start, count;
4ce63fcd 1138 unsigned long flags;
4d852ef8
AH
1139 dma_addr_t bitmap_base;
1140 u32 bitmap_index;
1141
1142 if (!size)
1143 return;
1144
1145 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping->size;
1146 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1147
1148 bitmap_base = mapping->base + mapping->size * bitmap_index;
1149
1150 start = (addr - bitmap_base) >> (mapping->order + PAGE_SHIFT);
1151
1152 if (addr + size > bitmap_base + mapping->size) {
1153 /*
1154 * The address range to be freed reaches into the iova
1155 * range of the next bitmap. This should not happen as
1156 * we don't allow this in __alloc_iova (at the
1157 * moment).
1158 */
1159 BUG();
1160 } else
1161 count = ((size >> PAGE_SHIFT) +
1162 (1 << mapping->order) - 1) >> mapping->order;
4ce63fcd
MS
1163
1164 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8 1165 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
4ce63fcd
MS
1166 spin_unlock_irqrestore(&mapping->lock, flags);
1167}
1168
549a17e4
MS
1169static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1170 gfp_t gfp, struct dma_attrs *attrs)
4ce63fcd
MS
1171{
1172 struct page **pages;
1173 int count = size >> PAGE_SHIFT;
1174 int array_size = count * sizeof(struct page *);
1175 int i = 0;
1176
1177 if (array_size <= PAGE_SIZE)
1178 pages = kzalloc(array_size, gfp);
1179 else
1180 pages = vzalloc(array_size);
1181 if (!pages)
1182 return NULL;
1183
549a17e4
MS
1184 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1185 {
1186 unsigned long order = get_order(size);
1187 struct page *page;
1188
1189 page = dma_alloc_from_contiguous(dev, count, order);
1190 if (!page)
1191 goto error;
1192
1193 __dma_clear_buffer(page, size);
1194
1195 for (i = 0; i < count; i++)
1196 pages[i] = page + i;
1197
1198 return pages;
1199 }
1200
f8669bef
MS
1201 /*
1202 * IOMMU can map any pages, so himem can also be used here
1203 */
1204 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1205
4ce63fcd 1206 while (count) {
593f4735 1207 int j, order = __fls(count);
4ce63fcd 1208
f8669bef 1209 pages[i] = alloc_pages(gfp, order);
4ce63fcd 1210 while (!pages[i] && order)
f8669bef 1211 pages[i] = alloc_pages(gfp, --order);
4ce63fcd
MS
1212 if (!pages[i])
1213 goto error;
1214
5a796eeb 1215 if (order) {
4ce63fcd 1216 split_page(pages[i], order);
5a796eeb
HD
1217 j = 1 << order;
1218 while (--j)
1219 pages[i + j] = pages[i] + j;
1220 }
4ce63fcd
MS
1221
1222 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1223 i += 1 << order;
1224 count -= 1 << order;
1225 }
1226
1227 return pages;
1228error:
9fa8af91 1229 while (i--)
4ce63fcd
MS
1230 if (pages[i])
1231 __free_pages(pages[i], 0);
46c87852 1232 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1233 kfree(pages);
1234 else
1235 vfree(pages);
1236 return NULL;
1237}
1238
549a17e4
MS
1239static int __iommu_free_buffer(struct device *dev, struct page **pages,
1240 size_t size, struct dma_attrs *attrs)
4ce63fcd
MS
1241{
1242 int count = size >> PAGE_SHIFT;
1243 int array_size = count * sizeof(struct page *);
1244 int i;
549a17e4
MS
1245
1246 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1247 dma_release_from_contiguous(dev, pages[0], count);
1248 } else {
1249 for (i = 0; i < count; i++)
1250 if (pages[i])
1251 __free_pages(pages[i], 0);
1252 }
1253
46c87852 1254 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1255 kfree(pages);
1256 else
1257 vfree(pages);
1258 return 0;
1259}
1260
1261/*
1262 * Create a CPU mapping for a specified pages
1263 */
1264static void *
e9da6e99
MS
1265__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1266 const void *caller)
4ce63fcd 1267{
e9da6e99
MS
1268 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1269 struct vm_struct *area;
1270 unsigned long p;
4ce63fcd 1271
e9da6e99
MS
1272 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1273 caller);
1274 if (!area)
4ce63fcd 1275 return NULL;
4ce63fcd 1276
e9da6e99
MS
1277 area->pages = pages;
1278 area->nr_pages = nr_pages;
1279 p = (unsigned long)area->addr;
4ce63fcd 1280
e9da6e99
MS
1281 for (i = 0; i < nr_pages; i++) {
1282 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1283 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1284 goto err;
1285 p += PAGE_SIZE;
4ce63fcd 1286 }
e9da6e99
MS
1287 return area->addr;
1288err:
1289 unmap_kernel_range((unsigned long)area->addr, size);
1290 vunmap(area->addr);
4ce63fcd
MS
1291 return NULL;
1292}
1293
1294/*
1295 * Create a mapping in device IO address space for specified pages
1296 */
1297static dma_addr_t
1298__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1299{
1300 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1301 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1302 dma_addr_t dma_addr, iova;
1303 int i, ret = DMA_ERROR_CODE;
1304
1305 dma_addr = __alloc_iova(mapping, size);
1306 if (dma_addr == DMA_ERROR_CODE)
1307 return dma_addr;
1308
1309 iova = dma_addr;
1310 for (i = 0; i < count; ) {
1311 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1312 phys_addr_t phys = page_to_phys(pages[i]);
1313 unsigned int len, j;
1314
1315 for (j = i + 1; j < count; j++, next_pfn++)
1316 if (page_to_pfn(pages[j]) != next_pfn)
1317 break;
1318
1319 len = (j - i) << PAGE_SHIFT;
c9b24996
AH
1320 ret = iommu_map(mapping->domain, iova, phys, len,
1321 IOMMU_READ|IOMMU_WRITE);
4ce63fcd
MS
1322 if (ret < 0)
1323 goto fail;
1324 iova += len;
1325 i = j;
1326 }
1327 return dma_addr;
1328fail:
1329 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1330 __free_iova(mapping, dma_addr, size);
1331 return DMA_ERROR_CODE;
1332}
1333
1334static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1335{
1336 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1337
1338 /*
1339 * add optional in-page offset from iova to size and align
1340 * result to page size
1341 */
1342 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1343 iova &= PAGE_MASK;
1344
1345 iommu_unmap(mapping->domain, iova, size);
1346 __free_iova(mapping, iova, size);
1347 return 0;
1348}
1349
665bad7b
HD
1350static struct page **__atomic_get_pages(void *addr)
1351{
1352 struct dma_pool *pool = &atomic_pool;
1353 struct page **pages = pool->pages;
1354 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1355
1356 return pages + offs;
1357}
1358
955c757e 1359static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1360{
1361 struct vm_struct *area;
1362
665bad7b
HD
1363 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1364 return __atomic_get_pages(cpu_addr);
1365
955c757e
MS
1366 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1367 return cpu_addr;
1368
e9da6e99
MS
1369 area = find_vm_area(cpu_addr);
1370 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1371 return area->pages;
1372 return NULL;
1373}
1374
479ed93a
HD
1375static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1376 dma_addr_t *handle)
1377{
1378 struct page *page;
1379 void *addr;
1380
1381 addr = __alloc_from_pool(size, &page);
1382 if (!addr)
1383 return NULL;
1384
1385 *handle = __iommu_create_mapping(dev, &page, size);
1386 if (*handle == DMA_ERROR_CODE)
1387 goto err_mapping;
1388
1389 return addr;
1390
1391err_mapping:
1392 __free_from_pool(addr, size);
1393 return NULL;
1394}
1395
d5898291 1396static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
479ed93a
HD
1397 dma_addr_t handle, size_t size)
1398{
1399 __iommu_remove_mapping(dev, handle, size);
d5898291 1400 __free_from_pool(cpu_addr, size);
479ed93a
HD
1401}
1402
4ce63fcd
MS
1403static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1404 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1405{
71b55663 1406 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
4ce63fcd
MS
1407 struct page **pages;
1408 void *addr = NULL;
1409
1410 *handle = DMA_ERROR_CODE;
1411 size = PAGE_ALIGN(size);
1412
10c8562f 1413 if (!(gfp & __GFP_WAIT))
479ed93a
HD
1414 return __iommu_alloc_atomic(dev, size, handle);
1415
5b91a98c
RZ
1416 /*
1417 * Following is a work-around (a.k.a. hack) to prevent pages
1418 * with __GFP_COMP being passed to split_page() which cannot
1419 * handle them. The real problem is that this flag probably
1420 * should be 0 on ARM as it is not supported on this
1421 * platform; see CONFIG_HUGETLBFS.
1422 */
1423 gfp &= ~(__GFP_COMP);
1424
549a17e4 1425 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
4ce63fcd
MS
1426 if (!pages)
1427 return NULL;
1428
1429 *handle = __iommu_create_mapping(dev, pages, size);
1430 if (*handle == DMA_ERROR_CODE)
1431 goto err_buffer;
1432
955c757e
MS
1433 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1434 return pages;
1435
e9da6e99
MS
1436 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1437 __builtin_return_address(0));
4ce63fcd
MS
1438 if (!addr)
1439 goto err_mapping;
1440
1441 return addr;
1442
1443err_mapping:
1444 __iommu_remove_mapping(dev, *handle, size);
1445err_buffer:
549a17e4 1446 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1447 return NULL;
1448}
1449
1450static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1451 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1452 struct dma_attrs *attrs)
1453{
e9da6e99
MS
1454 unsigned long uaddr = vma->vm_start;
1455 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1456 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1457
1458 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1459
e9da6e99
MS
1460 if (!pages)
1461 return -ENXIO;
4ce63fcd 1462
e9da6e99
MS
1463 do {
1464 int ret = vm_insert_page(vma, uaddr, *pages++);
1465 if (ret) {
1466 pr_err("Remapping memory failed: %d\n", ret);
1467 return ret;
1468 }
1469 uaddr += PAGE_SIZE;
1470 usize -= PAGE_SIZE;
1471 } while (usize > 0);
4ce63fcd 1472
4ce63fcd
MS
1473 return 0;
1474}
1475
1476/*
1477 * free a page as defined by the above mapping.
1478 * Must not be called with IRQs disabled.
1479 */
1480void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1481 dma_addr_t handle, struct dma_attrs *attrs)
1482{
836bfa0d 1483 struct page **pages;
4ce63fcd
MS
1484 size = PAGE_ALIGN(size);
1485
836bfa0d
YC
1486 if (__in_atomic_pool(cpu_addr, size)) {
1487 __iommu_free_atomic(dev, cpu_addr, handle, size);
e9da6e99 1488 return;
4ce63fcd 1489 }
e9da6e99 1490
836bfa0d
YC
1491 pages = __iommu_get_pages(cpu_addr, attrs);
1492 if (!pages) {
1493 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1494 return;
1495 }
1496
955c757e
MS
1497 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1498 unmap_kernel_range((unsigned long)cpu_addr, size);
1499 vunmap(cpu_addr);
1500 }
e9da6e99
MS
1501
1502 __iommu_remove_mapping(dev, handle, size);
549a17e4 1503 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1504}
1505
dc2832e1
MS
1506static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1507 void *cpu_addr, dma_addr_t dma_addr,
1508 size_t size, struct dma_attrs *attrs)
1509{
1510 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1511 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1512
1513 if (!pages)
1514 return -ENXIO;
1515
1516 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1517 GFP_KERNEL);
4ce63fcd
MS
1518}
1519
c9b24996
AH
1520static int __dma_direction_to_prot(enum dma_data_direction dir)
1521{
1522 int prot;
1523
1524 switch (dir) {
1525 case DMA_BIDIRECTIONAL:
1526 prot = IOMMU_READ | IOMMU_WRITE;
1527 break;
1528 case DMA_TO_DEVICE:
1529 prot = IOMMU_READ;
1530 break;
1531 case DMA_FROM_DEVICE:
1532 prot = IOMMU_WRITE;
1533 break;
1534 default:
1535 prot = 0;
1536 }
1537
1538 return prot;
1539}
1540
4ce63fcd
MS
1541/*
1542 * Map a part of the scatter-gather list into contiguous io address space
1543 */
1544static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1545 size_t size, dma_addr_t *handle,
0fa478df
RH
1546 enum dma_data_direction dir, struct dma_attrs *attrs,
1547 bool is_coherent)
4ce63fcd
MS
1548{
1549 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1550 dma_addr_t iova, iova_base;
1551 int ret = 0;
1552 unsigned int count;
1553 struct scatterlist *s;
c9b24996 1554 int prot;
4ce63fcd
MS
1555
1556 size = PAGE_ALIGN(size);
1557 *handle = DMA_ERROR_CODE;
1558
1559 iova_base = iova = __alloc_iova(mapping, size);
1560 if (iova == DMA_ERROR_CODE)
1561 return -ENOMEM;
1562
1563 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1564 phys_addr_t phys = page_to_phys(sg_page(s));
1565 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1566
0fa478df
RH
1567 if (!is_coherent &&
1568 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1569 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1570
c9b24996
AH
1571 prot = __dma_direction_to_prot(dir);
1572
1573 ret = iommu_map(mapping->domain, iova, phys, len, prot);
4ce63fcd
MS
1574 if (ret < 0)
1575 goto fail;
1576 count += len >> PAGE_SHIFT;
1577 iova += len;
1578 }
1579 *handle = iova_base;
1580
1581 return 0;
1582fail:
1583 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1584 __free_iova(mapping, iova_base, size);
1585 return ret;
1586}
1587
0fa478df
RH
1588static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1589 enum dma_data_direction dir, struct dma_attrs *attrs,
1590 bool is_coherent)
4ce63fcd
MS
1591{
1592 struct scatterlist *s = sg, *dma = sg, *start = sg;
1593 int i, count = 0;
1594 unsigned int offset = s->offset;
1595 unsigned int size = s->offset + s->length;
1596 unsigned int max = dma_get_max_seg_size(dev);
1597
1598 for (i = 1; i < nents; i++) {
1599 s = sg_next(s);
1600
1601 s->dma_address = DMA_ERROR_CODE;
1602 s->dma_length = 0;
1603
1604 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1605 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1606 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1607 goto bad_mapping;
1608
1609 dma->dma_address += offset;
1610 dma->dma_length = size - offset;
1611
1612 size = offset = s->offset;
1613 start = s;
1614 dma = sg_next(dma);
1615 count += 1;
1616 }
1617 size += s->length;
1618 }
0fa478df
RH
1619 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1620 is_coherent) < 0)
4ce63fcd
MS
1621 goto bad_mapping;
1622
1623 dma->dma_address += offset;
1624 dma->dma_length = size - offset;
1625
1626 return count+1;
1627
1628bad_mapping:
1629 for_each_sg(sg, s, count, i)
1630 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1631 return 0;
1632}
1633
1634/**
0fa478df 1635 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1636 * @dev: valid struct device pointer
1637 * @sg: list of buffers
0fa478df
RH
1638 * @nents: number of buffers to map
1639 * @dir: DMA transfer direction
4ce63fcd 1640 *
0fa478df
RH
1641 * Map a set of i/o coherent buffers described by scatterlist in streaming
1642 * mode for DMA. The scatter gather list elements are merged together (if
1643 * possible) and tagged with the appropriate dma address and length. They are
1644 * obtained via sg_dma_{address,length}.
4ce63fcd 1645 */
0fa478df
RH
1646int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1647 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1648{
1649 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1650}
1651
1652/**
1653 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1654 * @dev: valid struct device pointer
1655 * @sg: list of buffers
1656 * @nents: number of buffers to map
1657 * @dir: DMA transfer direction
1658 *
1659 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1660 * The scatter gather list elements are merged together (if possible) and
1661 * tagged with the appropriate dma address and length. They are obtained via
1662 * sg_dma_{address,length}.
1663 */
1664int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1665 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1666{
1667 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1668}
1669
1670static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1671 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1672 bool is_coherent)
4ce63fcd
MS
1673{
1674 struct scatterlist *s;
1675 int i;
1676
1677 for_each_sg(sg, s, nents, i) {
1678 if (sg_dma_len(s))
1679 __iommu_remove_mapping(dev, sg_dma_address(s),
1680 sg_dma_len(s));
0fa478df 1681 if (!is_coherent &&
97ef952a 1682 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1683 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1684 s->length, dir);
1685 }
1686}
1687
0fa478df
RH
1688/**
1689 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1690 * @dev: valid struct device pointer
1691 * @sg: list of buffers
1692 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1693 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1694 *
1695 * Unmap a set of streaming mode DMA translations. Again, CPU access
1696 * rules concerning calls here are the same as for dma_unmap_single().
1697 */
1698void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1699 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1700{
1701 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1702}
1703
1704/**
1705 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1706 * @dev: valid struct device pointer
1707 * @sg: list of buffers
1708 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1709 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1710 *
1711 * Unmap a set of streaming mode DMA translations. Again, CPU access
1712 * rules concerning calls here are the same as for dma_unmap_single().
1713 */
1714void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1715 enum dma_data_direction dir, struct dma_attrs *attrs)
1716{
1717 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1718}
1719
4ce63fcd
MS
1720/**
1721 * arm_iommu_sync_sg_for_cpu
1722 * @dev: valid struct device pointer
1723 * @sg: list of buffers
1724 * @nents: number of buffers to map (returned from dma_map_sg)
1725 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1726 */
1727void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1728 int nents, enum dma_data_direction dir)
1729{
1730 struct scatterlist *s;
1731 int i;
1732
1733 for_each_sg(sg, s, nents, i)
0fa478df 1734 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1735
1736}
1737
1738/**
1739 * arm_iommu_sync_sg_for_device
1740 * @dev: valid struct device pointer
1741 * @sg: list of buffers
1742 * @nents: number of buffers to map (returned from dma_map_sg)
1743 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1744 */
1745void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1746 int nents, enum dma_data_direction dir)
1747{
1748 struct scatterlist *s;
1749 int i;
1750
1751 for_each_sg(sg, s, nents, i)
0fa478df 1752 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1753}
1754
1755
1756/**
0fa478df 1757 * arm_coherent_iommu_map_page
4ce63fcd
MS
1758 * @dev: valid struct device pointer
1759 * @page: page that buffer resides in
1760 * @offset: offset into page for start of buffer
1761 * @size: size of buffer to map
1762 * @dir: DMA transfer direction
1763 *
0fa478df 1764 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1765 */
0fa478df 1766static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd
MS
1767 unsigned long offset, size_t size, enum dma_data_direction dir,
1768 struct dma_attrs *attrs)
1769{
1770 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1771 dma_addr_t dma_addr;
13987d68 1772 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1773
4ce63fcd
MS
1774 dma_addr = __alloc_iova(mapping, len);
1775 if (dma_addr == DMA_ERROR_CODE)
1776 return dma_addr;
1777
c9b24996 1778 prot = __dma_direction_to_prot(dir);
13987d68
WD
1779
1780 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
4ce63fcd
MS
1781 if (ret < 0)
1782 goto fail;
1783
1784 return dma_addr + offset;
1785fail:
1786 __free_iova(mapping, dma_addr, len);
1787 return DMA_ERROR_CODE;
1788}
1789
0fa478df
RH
1790/**
1791 * arm_iommu_map_page
1792 * @dev: valid struct device pointer
1793 * @page: page that buffer resides in
1794 * @offset: offset into page for start of buffer
1795 * @size: size of buffer to map
1796 * @dir: DMA transfer direction
1797 *
1798 * IOMMU aware version of arm_dma_map_page()
1799 */
1800static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1801 unsigned long offset, size_t size, enum dma_data_direction dir,
1802 struct dma_attrs *attrs)
1803{
1804 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1805 __dma_page_cpu_to_dev(page, offset, size, dir);
1806
1807 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1808}
1809
1810/**
1811 * arm_coherent_iommu_unmap_page
1812 * @dev: valid struct device pointer
1813 * @handle: DMA address of buffer
1814 * @size: size of buffer (same as passed to dma_map_page)
1815 * @dir: DMA transfer direction (same as passed to dma_map_page)
1816 *
1817 * Coherent IOMMU aware version of arm_dma_unmap_page()
1818 */
1819static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1820 size_t size, enum dma_data_direction dir,
1821 struct dma_attrs *attrs)
1822{
1823 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1824 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1825 int offset = handle & ~PAGE_MASK;
1826 int len = PAGE_ALIGN(size + offset);
1827
1828 if (!iova)
1829 return;
1830
1831 iommu_unmap(mapping->domain, iova, len);
1832 __free_iova(mapping, iova, len);
1833}
1834
4ce63fcd
MS
1835/**
1836 * arm_iommu_unmap_page
1837 * @dev: valid struct device pointer
1838 * @handle: DMA address of buffer
1839 * @size: size of buffer (same as passed to dma_map_page)
1840 * @dir: DMA transfer direction (same as passed to dma_map_page)
1841 *
1842 * IOMMU aware version of arm_dma_unmap_page()
1843 */
1844static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1845 size_t size, enum dma_data_direction dir,
1846 struct dma_attrs *attrs)
1847{
1848 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1849 dma_addr_t iova = handle & PAGE_MASK;
1850 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1851 int offset = handle & ~PAGE_MASK;
1852 int len = PAGE_ALIGN(size + offset);
1853
1854 if (!iova)
1855 return;
1856
0fa478df 1857 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1858 __dma_page_dev_to_cpu(page, offset, size, dir);
1859
1860 iommu_unmap(mapping->domain, iova, len);
1861 __free_iova(mapping, iova, len);
1862}
1863
1864static void arm_iommu_sync_single_for_cpu(struct device *dev,
1865 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1866{
1867 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1868 dma_addr_t iova = handle & PAGE_MASK;
1869 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1870 unsigned int offset = handle & ~PAGE_MASK;
1871
1872 if (!iova)
1873 return;
1874
0fa478df 1875 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
1876}
1877
1878static void arm_iommu_sync_single_for_device(struct device *dev,
1879 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1880{
1881 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1882 dma_addr_t iova = handle & PAGE_MASK;
1883 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1884 unsigned int offset = handle & ~PAGE_MASK;
1885
1886 if (!iova)
1887 return;
1888
1889 __dma_page_cpu_to_dev(page, offset, size, dir);
1890}
1891
1892struct dma_map_ops iommu_ops = {
1893 .alloc = arm_iommu_alloc_attrs,
1894 .free = arm_iommu_free_attrs,
1895 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1896 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1897
1898 .map_page = arm_iommu_map_page,
1899 .unmap_page = arm_iommu_unmap_page,
1900 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1901 .sync_single_for_device = arm_iommu_sync_single_for_device,
1902
1903 .map_sg = arm_iommu_map_sg,
1904 .unmap_sg = arm_iommu_unmap_sg,
1905 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1906 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
d09e1333
HD
1907
1908 .set_dma_mask = arm_dma_set_mask,
4ce63fcd
MS
1909};
1910
0fa478df
RH
1911struct dma_map_ops iommu_coherent_ops = {
1912 .alloc = arm_iommu_alloc_attrs,
1913 .free = arm_iommu_free_attrs,
1914 .mmap = arm_iommu_mmap_attrs,
1915 .get_sgtable = arm_iommu_get_sgtable,
1916
1917 .map_page = arm_coherent_iommu_map_page,
1918 .unmap_page = arm_coherent_iommu_unmap_page,
1919
1920 .map_sg = arm_coherent_iommu_map_sg,
1921 .unmap_sg = arm_coherent_iommu_unmap_sg,
d09e1333
HD
1922
1923 .set_dma_mask = arm_dma_set_mask,
0fa478df
RH
1924};
1925
4ce63fcd
MS
1926/**
1927 * arm_iommu_create_mapping
1928 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1929 * @base: start address of the valid IO address space
1930 * @size: size of the valid IO address space
1931 * @order: accuracy of the IO addresses allocations
1932 *
1933 * Creates a mapping structure which holds information about used/unused
1934 * IO address ranges, which is required to perform memory allocation and
1935 * mapping with IOMMU aware functions.
1936 *
1937 * The client device need to be attached to the mapping with
1938 * arm_iommu_attach_device function.
1939 */
1940struct dma_iommu_mapping *
1941arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1942 int order)
1943{
1944 unsigned int count = size >> (PAGE_SHIFT + order);
4ce63fcd 1945 struct dma_iommu_mapping *mapping;
4d852ef8 1946 int extensions = 0;
4ce63fcd
MS
1947 int err = -ENOMEM;
1948
1949 if (!count)
1950 return ERR_PTR(-EINVAL);
1951
1952 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1953 if (!mapping)
1954 goto err;
1955
4d852ef8
AH
1956 mapping->bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1957 mapping->bitmaps = kzalloc((extensions + 1) * sizeof(unsigned long *),
1958 GFP_KERNEL);
1959 if (!mapping->bitmaps)
4ce63fcd
MS
1960 goto err2;
1961
4d852ef8
AH
1962 mapping->bitmaps[0] = kzalloc(mapping->bitmap_size, GFP_KERNEL);
1963 if (!mapping->bitmaps[0])
1964 goto err3;
1965
1966 mapping->nr_bitmaps = 1;
1967 mapping->extensions = extensions;
4ce63fcd 1968 mapping->base = base;
4d852ef8 1969 mapping->size = size;
4ce63fcd 1970 mapping->order = order;
4d852ef8
AH
1971 mapping->bits = BITS_PER_BYTE * mapping->bitmap_size;
1972
4ce63fcd
MS
1973 spin_lock_init(&mapping->lock);
1974
1975 mapping->domain = iommu_domain_alloc(bus);
1976 if (!mapping->domain)
4d852ef8 1977 goto err4;
4ce63fcd
MS
1978
1979 kref_init(&mapping->kref);
1980 return mapping;
4d852ef8
AH
1981err4:
1982 kfree(mapping->bitmaps[0]);
4ce63fcd 1983err3:
4d852ef8 1984 kfree(mapping->bitmaps);
4ce63fcd
MS
1985err2:
1986 kfree(mapping);
1987err:
1988 return ERR_PTR(err);
1989}
18177d12 1990EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
1991
1992static void release_iommu_mapping(struct kref *kref)
1993{
4d852ef8 1994 int i;
4ce63fcd
MS
1995 struct dma_iommu_mapping *mapping =
1996 container_of(kref, struct dma_iommu_mapping, kref);
1997
1998 iommu_domain_free(mapping->domain);
4d852ef8
AH
1999 for (i = 0; i < mapping->nr_bitmaps; i++)
2000 kfree(mapping->bitmaps[i]);
2001 kfree(mapping->bitmaps);
4ce63fcd
MS
2002 kfree(mapping);
2003}
2004
4d852ef8
AH
2005static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2006{
2007 int next_bitmap;
2008
2009 if (mapping->nr_bitmaps > mapping->extensions)
2010 return -EINVAL;
2011
2012 next_bitmap = mapping->nr_bitmaps;
2013 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2014 GFP_ATOMIC);
2015 if (!mapping->bitmaps[next_bitmap])
2016 return -ENOMEM;
2017
2018 mapping->nr_bitmaps++;
2019
2020 return 0;
2021}
2022
4ce63fcd
MS
2023void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2024{
2025 if (mapping)
2026 kref_put(&mapping->kref, release_iommu_mapping);
2027}
18177d12 2028EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd
MS
2029
2030/**
2031 * arm_iommu_attach_device
2032 * @dev: valid struct device pointer
2033 * @mapping: io address space mapping structure (returned from
2034 * arm_iommu_create_mapping)
2035 *
2036 * Attaches specified io address space mapping to the provided device,
2037 * this replaces the dma operations (dma_map_ops pointer) with the
2038 * IOMMU aware version. More than one client might be attached to
2039 * the same io address space mapping.
2040 */
2041int arm_iommu_attach_device(struct device *dev,
2042 struct dma_iommu_mapping *mapping)
2043{
2044 int err;
2045
2046 err = iommu_attach_device(mapping->domain, dev);
2047 if (err)
2048 return err;
2049
2050 kref_get(&mapping->kref);
2051 dev->archdata.mapping = mapping;
2052 set_dma_ops(dev, &iommu_ops);
2053
75c59716 2054 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
4ce63fcd
MS
2055 return 0;
2056}
18177d12 2057EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 2058
6fe36758
HD
2059/**
2060 * arm_iommu_detach_device
2061 * @dev: valid struct device pointer
2062 *
2063 * Detaches the provided device from a previously attached map.
2064 * This voids the dma operations (dma_map_ops pointer)
2065 */
2066void arm_iommu_detach_device(struct device *dev)
2067{
2068 struct dma_iommu_mapping *mapping;
2069
2070 mapping = to_dma_iommu_mapping(dev);
2071 if (!mapping) {
2072 dev_warn(dev, "Not attached\n");
2073 return;
2074 }
2075
2076 iommu_detach_device(mapping->domain, dev);
2077 kref_put(&mapping->kref, release_iommu_mapping);
9e4b259d 2078 dev->archdata.mapping = NULL;
6fe36758
HD
2079 set_dma_ops(dev, NULL);
2080
2081 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2082}
18177d12 2083EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 2084
4ce63fcd 2085#endif