]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm/mm/dma-mapping.c
ARM: 8560/1: errata: Workaround errata A12 825619 / A17 852421
[mirror_ubuntu-artful-kernel.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
11a5aa32 12#include <linux/bootmem.h>
1da177e4
LT
13#include <linux/module.h>
14#include <linux/mm.h>
36d0fd21 15#include <linux/genalloc.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
c7909509 22#include <linux/dma-contiguous.h>
39af22a7 23#include <linux/highmem.h>
c7909509 24#include <linux/memblock.h>
99d1717d 25#include <linux/slab.h>
4ce63fcd 26#include <linux/iommu.h>
e9da6e99 27#include <linux/io.h>
4ce63fcd 28#include <linux/vmalloc.h>
158e8bfe 29#include <linux/sizes.h>
a254129e 30#include <linux/cma.h>
1da177e4 31
23759dc6 32#include <asm/memory.h>
43377453 33#include <asm/highmem.h>
1da177e4 34#include <asm/cacheflush.h>
1da177e4 35#include <asm/tlbflush.h>
99d1717d 36#include <asm/mach/arch.h>
4ce63fcd 37#include <asm/dma-iommu.h>
c7909509
MS
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
37134cd5 41
1234e3fd 42#include "dma.h"
022ae537
RK
43#include "mm.h"
44
b4268676
RV
45struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52};
53
54struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60};
61
62struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66};
67
19e6e5e5
RV
68struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
b4268676 71 struct arm_dma_allocator *allocator;
19e6e5e5
RV
72};
73
74static LIST_HEAD(arm_dma_bufs);
75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78{
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92}
93
15237e1f
MS
94/*
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
99 *
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
104 *
15237e1f 105 */
51fde349 106static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 107 size_t, enum dma_data_direction);
51fde349 108static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
109 size_t, enum dma_data_direction);
110
2dc6a016
MS
111/**
112 * arm_dma_map_page - map a portion of a page for streaming DMA
113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114 * @page: page that buffer resides in
115 * @offset: offset into page for start of buffer
116 * @size: size of buffer to map
117 * @dir: DMA transfer direction
118 *
119 * Ensure that any data held in the cache is appropriately discarded
120 * or written back.
121 *
122 * The device owns this memory once this call has completed. The CPU
123 * can regain ownership by calling dma_unmap_page().
124 */
51fde349 125static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
126 unsigned long offset, size_t size, enum dma_data_direction dir,
127 struct dma_attrs *attrs)
128{
dd37e940 129 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
130 __dma_page_cpu_to_dev(page, offset, size, dir);
131 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
132}
133
dd37e940
RH
134static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 unsigned long offset, size_t size, enum dma_data_direction dir,
136 struct dma_attrs *attrs)
137{
138 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
139}
140
2dc6a016
MS
141/**
142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144 * @handle: DMA address of buffer
145 * @size: size of buffer (same as passed to dma_map_page)
146 * @dir: DMA transfer direction (same as passed to dma_map_page)
147 *
148 * Unmap a page streaming mode DMA translation. The handle and size
149 * must match what was provided in the previous dma_map_page() call.
150 * All other usages are undefined.
151 *
152 * After this call, reads by the CPU to the buffer are guaranteed to see
153 * whatever the device wrote there.
154 */
51fde349 155static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
156 size_t size, enum dma_data_direction dir,
157 struct dma_attrs *attrs)
158{
dd37e940 159 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
160 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
161 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
162}
163
51fde349 164static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
165 dma_addr_t handle, size_t size, enum dma_data_direction dir)
166{
167 unsigned int offset = handle & (PAGE_SIZE - 1);
168 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 169 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
170}
171
51fde349 172static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
173 dma_addr_t handle, size_t size, enum dma_data_direction dir)
174{
175 unsigned int offset = handle & (PAGE_SIZE - 1);
176 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 177 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
178}
179
2dc6a016 180struct dma_map_ops arm_dma_ops = {
f99d6034
MS
181 .alloc = arm_dma_alloc,
182 .free = arm_dma_free,
183 .mmap = arm_dma_mmap,
dc2832e1 184 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
185 .map_page = arm_dma_map_page,
186 .unmap_page = arm_dma_unmap_page,
187 .map_sg = arm_dma_map_sg,
188 .unmap_sg = arm_dma_unmap_sg,
189 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
190 .sync_single_for_device = arm_dma_sync_single_for_device,
191 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
192 .sync_sg_for_device = arm_dma_sync_sg_for_device,
2dc6a016
MS
193};
194EXPORT_SYMBOL(arm_dma_ops);
195
dd37e940
RH
196static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
197 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
198static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
199 dma_addr_t handle, struct dma_attrs *attrs);
55af8a91
ML
200static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
201 void *cpu_addr, dma_addr_t dma_addr, size_t size,
202 struct dma_attrs *attrs);
dd37e940
RH
203
204struct dma_map_ops arm_coherent_dma_ops = {
205 .alloc = arm_coherent_dma_alloc,
206 .free = arm_coherent_dma_free,
55af8a91 207 .mmap = arm_coherent_dma_mmap,
dd37e940
RH
208 .get_sgtable = arm_dma_get_sgtable,
209 .map_page = arm_coherent_dma_map_page,
210 .map_sg = arm_dma_map_sg,
dd37e940
RH
211};
212EXPORT_SYMBOL(arm_coherent_dma_ops);
213
9f28cde0
RK
214static int __dma_supported(struct device *dev, u64 mask, bool warn)
215{
216 unsigned long max_dma_pfn;
217
218 /*
219 * If the mask allows for more memory than we can address,
220 * and we actually have that much memory, then we must
221 * indicate that DMA to this device is not supported.
222 */
223 if (sizeof(mask) != sizeof(dma_addr_t) &&
224 mask > (dma_addr_t)~0 &&
8bf1268f 225 dma_to_pfn(dev, ~0) < max_pfn - 1) {
9f28cde0
RK
226 if (warn) {
227 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
228 mask);
229 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
230 }
231 return 0;
232 }
233
234 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
235
236 /*
237 * Translate the device's DMA mask to a PFN limit. This
238 * PFN number includes the page which we can DMA to.
239 */
240 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
241 if (warn)
242 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
243 mask,
244 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
245 max_dma_pfn + 1);
246 return 0;
247 }
248
249 return 1;
250}
251
ab6494f0
CM
252static u64 get_coherent_dma_mask(struct device *dev)
253{
4dcfa600 254 u64 mask = (u64)DMA_BIT_MASK(32);
ab6494f0
CM
255
256 if (dev) {
257 mask = dev->coherent_dma_mask;
258
259 /*
260 * Sanity check the DMA mask - it must be non-zero, and
261 * must be able to be satisfied by a DMA allocation.
262 */
263 if (mask == 0) {
264 dev_warn(dev, "coherent DMA mask is unset\n");
265 return 0;
266 }
267
9f28cde0 268 if (!__dma_supported(dev, mask, true))
ab6494f0 269 return 0;
ab6494f0 270 }
1da177e4 271
ab6494f0
CM
272 return mask;
273}
274
c7909509
MS
275static void __dma_clear_buffer(struct page *page, size_t size)
276{
c7909509
MS
277 /*
278 * Ensure that the allocated pages are zeroed, and that any data
279 * lurking in the kernel direct-mapped region is invalidated.
280 */
9848e48f
MS
281 if (PageHighMem(page)) {
282 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
283 phys_addr_t end = base + size;
284 while (size > 0) {
285 void *ptr = kmap_atomic(page);
286 memset(ptr, 0, PAGE_SIZE);
287 dmac_flush_range(ptr, ptr + PAGE_SIZE);
288 kunmap_atomic(ptr);
289 page++;
290 size -= PAGE_SIZE;
291 }
292 outer_flush_range(base, end);
293 } else {
294 void *ptr = page_address(page);
4ce63fcd
MS
295 memset(ptr, 0, size);
296 dmac_flush_range(ptr, ptr + size);
297 outer_flush_range(__pa(ptr), __pa(ptr) + size);
298 }
c7909509
MS
299}
300
7a9a32a9
RK
301/*
302 * Allocate a DMA buffer for 'dev' of size 'size' using the
303 * specified gfp mask. Note that 'size' must be page aligned.
304 */
305static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
306{
307 unsigned long order = get_order(size);
308 struct page *page, *p, *e;
7a9a32a9
RK
309
310 page = alloc_pages(gfp, order);
311 if (!page)
312 return NULL;
313
314 /*
315 * Now split the huge page and free the excess pages
316 */
317 split_page(page, order);
318 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
319 __free_page(p);
320
c7909509 321 __dma_clear_buffer(page, size);
7a9a32a9
RK
322
323 return page;
324}
325
326/*
327 * Free a DMA buffer. 'size' must be page aligned.
328 */
329static void __dma_free_buffer(struct page *page, size_t size)
330{
331 struct page *e = page + (size >> PAGE_SHIFT);
332
333 while (page < e) {
334 __free_page(page);
335 page++;
336 }
337}
338
ab6494f0 339#ifdef CONFIG_MMU
a5e9d38b 340
e9da6e99 341static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 342 pgprot_t prot, struct page **ret_page,
6e8266e3 343 const void *caller, bool want_vaddr);
99d1717d 344
e9da6e99
MS
345static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
346 pgprot_t prot, struct page **ret_page,
6e8266e3 347 const void *caller, bool want_vaddr);
99d1717d 348
e9da6e99
MS
349static void *
350__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
351 const void *caller)
99d1717d 352{
e9da6e99
MS
353 /*
354 * DMA allocation can be mapped to user space, so lets
355 * set VM_USERMAP flags too.
356 */
513510dd
LA
357 return dma_common_contiguous_remap(page, size,
358 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
359 prot, caller);
99d1717d 360}
1da177e4 361
e9da6e99 362static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 363{
513510dd
LA
364 dma_common_free_remap(cpu_addr, size,
365 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
88c58f3b 366}
88c58f3b 367
6e5267aa 368#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
36d0fd21 369static struct gen_pool *atomic_pool;
6e5267aa 370
36d0fd21 371static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
c7909509
MS
372
373static int __init early_coherent_pool(char *p)
374{
36d0fd21 375 atomic_pool_size = memparse(p, &p);
c7909509
MS
376 return 0;
377}
378early_param("coherent_pool", early_coherent_pool);
379
6e5267aa
MS
380void __init init_dma_coherent_pool_size(unsigned long size)
381{
382 /*
383 * Catch any attempt to set the pool size too late.
384 */
36d0fd21 385 BUG_ON(atomic_pool);
6e5267aa
MS
386
387 /*
388 * Set architecture specific coherent pool size only if
389 * it has not been changed by kernel command line parameter.
390 */
36d0fd21
LA
391 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
392 atomic_pool_size = size;
6e5267aa
MS
393}
394
c7909509
MS
395/*
396 * Initialise the coherent pool for atomic allocations.
397 */
e9da6e99 398static int __init atomic_pool_init(void)
c7909509 399{
71b55663 400 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
9d1400cf 401 gfp_t gfp = GFP_KERNEL | GFP_DMA;
c7909509
MS
402 struct page *page;
403 void *ptr;
c7909509 404
36d0fd21
LA
405 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
406 if (!atomic_pool)
407 goto out;
6b3fe472 408
e464ef16 409 if (dev_get_cma_area(NULL))
36d0fd21 410 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
6e8266e3 411 &page, atomic_pool_init, true);
e9da6e99 412 else
36d0fd21 413 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
6e8266e3 414 &page, atomic_pool_init, true);
c7909509 415 if (ptr) {
36d0fd21
LA
416 int ret;
417
418 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
419 page_to_phys(page),
420 atomic_pool_size, -1);
421 if (ret)
422 goto destroy_genpool;
423
424 gen_pool_set_algo(atomic_pool,
425 gen_pool_first_fit_order_align,
426 (void *)PAGE_SHIFT);
427 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
428 atomic_pool_size / 1024);
c7909509
MS
429 return 0;
430 }
ec10665c 431
36d0fd21
LA
432destroy_genpool:
433 gen_pool_destroy(atomic_pool);
434 atomic_pool = NULL;
435out:
436 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
437 atomic_pool_size / 1024);
c7909509
MS
438 return -ENOMEM;
439}
440/*
441 * CMA is activated by core_initcall, so we must be called after it.
442 */
e9da6e99 443postcore_initcall(atomic_pool_init);
c7909509
MS
444
445struct dma_contig_early_reserve {
446 phys_addr_t base;
447 unsigned long size;
448};
449
450static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
451
452static int dma_mmu_remap_num __initdata;
453
454void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
455{
456 dma_mmu_remap[dma_mmu_remap_num].base = base;
457 dma_mmu_remap[dma_mmu_remap_num].size = size;
458 dma_mmu_remap_num++;
459}
460
461void __init dma_contiguous_remap(void)
462{
463 int i;
464 for (i = 0; i < dma_mmu_remap_num; i++) {
465 phys_addr_t start = dma_mmu_remap[i].base;
466 phys_addr_t end = start + dma_mmu_remap[i].size;
467 struct map_desc map;
468 unsigned long addr;
469
470 if (end > arm_lowmem_limit)
471 end = arm_lowmem_limit;
472 if (start >= end)
39f78e70 473 continue;
c7909509
MS
474
475 map.pfn = __phys_to_pfn(start);
476 map.virtual = __phys_to_virt(start);
477 map.length = end - start;
478 map.type = MT_MEMORY_DMA_READY;
479
480 /*
6b076991
RK
481 * Clear previous low-memory mapping to ensure that the
482 * TLB does not see any conflicting entries, then flush
483 * the TLB of the old entries before creating new mappings.
484 *
485 * This ensures that any speculatively loaded TLB entries
486 * (even though they may be rare) can not cause any problems,
487 * and ensures that this code is architecturally compliant.
c7909509
MS
488 */
489 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 490 addr += PMD_SIZE)
c7909509
MS
491 pmd_clear(pmd_off_k(addr));
492
6b076991
RK
493 flush_tlb_kernel_range(__phys_to_virt(start),
494 __phys_to_virt(end));
495
c7909509
MS
496 iotable_init(&map, 1);
497 }
498}
499
c7909509
MS
500static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
501 void *data)
502{
503 struct page *page = virt_to_page(addr);
504 pgprot_t prot = *(pgprot_t *)data;
505
506 set_pte_ext(pte, mk_pte(page, prot), 0);
507 return 0;
508}
509
510static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
511{
512 unsigned long start = (unsigned long) page_address(page);
513 unsigned end = start + size;
514
515 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
516 flush_tlb_kernel_range(start, end);
517}
518
519static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
520 pgprot_t prot, struct page **ret_page,
6e8266e3 521 const void *caller, bool want_vaddr)
c7909509
MS
522{
523 struct page *page;
6e8266e3 524 void *ptr = NULL;
c7909509
MS
525 page = __dma_alloc_buffer(dev, size, gfp);
526 if (!page)
527 return NULL;
6e8266e3
CC
528 if (!want_vaddr)
529 goto out;
c7909509
MS
530
531 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
532 if (!ptr) {
533 __dma_free_buffer(page, size);
534 return NULL;
535 }
536
6e8266e3 537 out:
c7909509
MS
538 *ret_page = page;
539 return ptr;
540}
541
e9da6e99 542static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 543{
36d0fd21 544 unsigned long val;
e9da6e99 545 void *ptr = NULL;
c7909509 546
36d0fd21 547 if (!atomic_pool) {
e9da6e99 548 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
549 return NULL;
550 }
551
36d0fd21
LA
552 val = gen_pool_alloc(atomic_pool, size);
553 if (val) {
554 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
555
556 *ret_page = phys_to_page(phys);
557 ptr = (void *)val;
c7909509 558 }
e9da6e99
MS
559
560 return ptr;
c7909509
MS
561}
562
21d0a759
HD
563static bool __in_atomic_pool(void *start, size_t size)
564{
36d0fd21 565 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
21d0a759
HD
566}
567
e9da6e99 568static int __free_from_pool(void *start, size_t size)
c7909509 569{
21d0a759 570 if (!__in_atomic_pool(start, size))
c7909509
MS
571 return 0;
572
36d0fd21 573 gen_pool_free(atomic_pool, (unsigned long)start, size);
e9da6e99 574
c7909509
MS
575 return 1;
576}
577
578static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 579 pgprot_t prot, struct page **ret_page,
6e8266e3 580 const void *caller, bool want_vaddr)
c7909509
MS
581{
582 unsigned long order = get_order(size);
583 size_t count = size >> PAGE_SHIFT;
584 struct page *page;
6e8266e3 585 void *ptr = NULL;
c7909509
MS
586
587 page = dma_alloc_from_contiguous(dev, count, order);
588 if (!page)
589 return NULL;
590
591 __dma_clear_buffer(page, size);
c7909509 592
6e8266e3
CC
593 if (!want_vaddr)
594 goto out;
595
9848e48f
MS
596 if (PageHighMem(page)) {
597 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
598 if (!ptr) {
599 dma_release_from_contiguous(dev, page, count);
600 return NULL;
601 }
602 } else {
603 __dma_remap(page, size, prot);
604 ptr = page_address(page);
605 }
6e8266e3
CC
606
607 out:
c7909509 608 *ret_page = page;
9848e48f 609 return ptr;
c7909509
MS
610}
611
612static void __free_from_contiguous(struct device *dev, struct page *page,
6e8266e3 613 void *cpu_addr, size_t size, bool want_vaddr)
c7909509 614{
6e8266e3
CC
615 if (want_vaddr) {
616 if (PageHighMem(page))
617 __dma_free_remap(cpu_addr, size);
618 else
619 __dma_remap(page, size, PAGE_KERNEL);
620 }
c7909509
MS
621 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
622}
623
f99d6034
MS
624static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
625{
626 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
627 pgprot_writecombine(prot) :
628 pgprot_dmacoherent(prot);
629 return prot;
630}
631
c7909509
MS
632#define nommu() 0
633
ab6494f0 634#else /* !CONFIG_MMU */
695ae0af 635
c7909509
MS
636#define nommu() 1
637
6e8266e3
CC
638#define __get_dma_pgprot(attrs, prot) __pgprot(0)
639#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
e9da6e99 640#define __alloc_from_pool(size, ret_page) NULL
6e8266e3 641#define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
b4268676 642#define __free_from_pool(cpu_addr, size) do { } while (0)
6e8266e3 643#define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
c7909509 644#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
645
646#endif /* CONFIG_MMU */
647
c7909509
MS
648static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
649 struct page **ret_page)
ab6494f0 650{
c7909509
MS
651 struct page *page;
652 page = __dma_alloc_buffer(dev, size, gfp);
653 if (!page)
654 return NULL;
655
656 *ret_page = page;
657 return page_address(page);
658}
659
b4268676
RV
660static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
661 struct page **ret_page)
662{
663 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
664 ret_page);
665}
c7909509 666
b4268676
RV
667static void simple_allocator_free(struct arm_dma_free_args *args)
668{
669 __dma_free_buffer(args->page, args->size);
670}
671
672static struct arm_dma_allocator simple_allocator = {
673 .alloc = simple_allocator_alloc,
674 .free = simple_allocator_free,
675};
676
677static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
678 struct page **ret_page)
679{
680 return __alloc_from_contiguous(args->dev, args->size, args->prot,
681 ret_page, args->caller,
682 args->want_vaddr);
683}
684
685static void cma_allocator_free(struct arm_dma_free_args *args)
686{
687 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
688 args->size, args->want_vaddr);
689}
690
691static struct arm_dma_allocator cma_allocator = {
692 .alloc = cma_allocator_alloc,
693 .free = cma_allocator_free,
694};
695
696static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
697 struct page **ret_page)
698{
699 return __alloc_from_pool(args->size, ret_page);
700}
701
702static void pool_allocator_free(struct arm_dma_free_args *args)
703{
704 __free_from_pool(args->cpu_addr, args->size);
705}
706
707static struct arm_dma_allocator pool_allocator = {
708 .alloc = pool_allocator_alloc,
709 .free = pool_allocator_free,
710};
711
712static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
713 struct page **ret_page)
714{
715 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
716 args->prot, ret_page, args->caller,
717 args->want_vaddr);
718}
719
720static void remap_allocator_free(struct arm_dma_free_args *args)
721{
722 if (args->want_vaddr)
723 __dma_free_remap(args->cpu_addr, args->size);
724
725 __dma_free_buffer(args->page, args->size);
726}
727
728static struct arm_dma_allocator remap_allocator = {
729 .alloc = remap_allocator_alloc,
730 .free = remap_allocator_free,
731};
c7909509
MS
732
733static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
6e8266e3
CC
734 gfp_t gfp, pgprot_t prot, bool is_coherent,
735 struct dma_attrs *attrs, const void *caller)
c7909509
MS
736{
737 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 738 struct page *page = NULL;
31ebf944 739 void *addr;
b4268676 740 bool allowblock, cma;
19e6e5e5 741 struct arm_dma_buffer *buf;
b4268676
RV
742 struct arm_dma_alloc_args args = {
743 .dev = dev,
744 .size = PAGE_ALIGN(size),
745 .gfp = gfp,
746 .prot = prot,
747 .caller = caller,
748 .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
749 };
ab6494f0 750
c7909509
MS
751#ifdef CONFIG_DMA_API_DEBUG
752 u64 limit = (mask + 1) & ~mask;
753 if (limit && size >= limit) {
754 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
755 size, mask);
756 return NULL;
757 }
758#endif
759
760 if (!mask)
761 return NULL;
762
9c18fcf7
AC
763 buf = kzalloc(sizeof(*buf),
764 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
19e6e5e5
RV
765 if (!buf)
766 return NULL;
767
c7909509
MS
768 if (mask < 0xffffffffULL)
769 gfp |= GFP_DMA;
770
ea2e7057
SB
771 /*
772 * Following is a work-around (a.k.a. hack) to prevent pages
773 * with __GFP_COMP being passed to split_page() which cannot
774 * handle them. The real problem is that this flag probably
775 * should be 0 on ARM as it is not supported on this
776 * platform; see CONFIG_HUGETLBFS.
777 */
778 gfp &= ~(__GFP_COMP);
b4268676 779 args.gfp = gfp;
ea2e7057 780
553ac788 781 *handle = DMA_ERROR_CODE;
b4268676
RV
782 allowblock = gfpflags_allow_blocking(gfp);
783 cma = allowblock ? dev_get_cma_area(dev) : false;
784
785 if (cma)
786 buf->allocator = &cma_allocator;
787 else if (nommu() || is_coherent)
788 buf->allocator = &simple_allocator;
789 else if (allowblock)
790 buf->allocator = &remap_allocator;
31ebf944 791 else
b4268676
RV
792 buf->allocator = &pool_allocator;
793
794 addr = buf->allocator->alloc(&args, &page);
695ae0af 795
19e6e5e5
RV
796 if (page) {
797 unsigned long flags;
798
9eedd963 799 *handle = pfn_to_dma(dev, page_to_pfn(page));
b4268676 800 buf->virt = args.want_vaddr ? addr : page;
19e6e5e5
RV
801
802 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
803 list_add(&buf->list, &arm_dma_bufs);
804 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
805 } else {
806 kfree(buf);
807 }
695ae0af 808
b4268676 809 return args.want_vaddr ? addr : page;
31ebf944 810}
1da177e4
LT
811
812/*
813 * Allocate DMA-coherent memory space and return both the kernel remapped
814 * virtual and bus address for that space.
815 */
f99d6034
MS
816void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
817 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 818{
0ea1ec71 819 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1fe53268 820
dd37e940 821 return __dma_alloc(dev, size, handle, gfp, prot, false,
6e8266e3 822 attrs, __builtin_return_address(0));
dd37e940
RH
823}
824
825static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
826 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
827{
21caf3a7 828 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
6e8266e3 829 attrs, __builtin_return_address(0));
1da177e4 830}
1da177e4 831
55af8a91 832static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
f99d6034
MS
833 void *cpu_addr, dma_addr_t dma_addr, size_t size,
834 struct dma_attrs *attrs)
1da177e4 835{
ab6494f0
CM
836 int ret = -ENXIO;
837#ifdef CONFIG_MMU
50262a4b
MS
838 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
839 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 840 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
841 unsigned long off = vma->vm_pgoff;
842
47142f07
MS
843 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
844 return ret;
845
50262a4b
MS
846 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
847 ret = remap_pfn_range(vma, vma->vm_start,
848 pfn + off,
849 vma->vm_end - vma->vm_start,
850 vma->vm_page_prot);
851 }
ab6494f0 852#endif /* CONFIG_MMU */
1da177e4
LT
853
854 return ret;
855}
856
55af8a91
ML
857/*
858 * Create userspace mapping for the DMA-coherent memory.
859 */
860static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
861 void *cpu_addr, dma_addr_t dma_addr, size_t size,
862 struct dma_attrs *attrs)
863{
864 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
865}
866
867int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
868 void *cpu_addr, dma_addr_t dma_addr, size_t size,
869 struct dma_attrs *attrs)
870{
871#ifdef CONFIG_MMU
872 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
873#endif /* CONFIG_MMU */
874 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
875}
876
1da177e4 877/*
c7909509 878 * Free a buffer as defined by the above mapping.
1da177e4 879 */
dd37e940
RH
880static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
881 dma_addr_t handle, struct dma_attrs *attrs,
882 bool is_coherent)
1da177e4 883{
c7909509 884 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
19e6e5e5 885 struct arm_dma_buffer *buf;
b4268676
RV
886 struct arm_dma_free_args args = {
887 .dev = dev,
888 .size = PAGE_ALIGN(size),
889 .cpu_addr = cpu_addr,
890 .page = page,
891 .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
892 };
19e6e5e5
RV
893
894 buf = arm_dma_buffer_find(cpu_addr);
895 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
896 return;
5edf71ae 897
b4268676 898 buf->allocator->free(&args);
19e6e5e5 899 kfree(buf);
1da177e4 900}
afd1a321 901
dd37e940
RH
902void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
903 dma_addr_t handle, struct dma_attrs *attrs)
904{
905 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
906}
907
908static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
909 dma_addr_t handle, struct dma_attrs *attrs)
910{
911 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
912}
913
dc2832e1
MS
914int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
915 void *cpu_addr, dma_addr_t handle, size_t size,
916 struct dma_attrs *attrs)
917{
918 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
919 int ret;
920
921 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
922 if (unlikely(ret))
923 return ret;
924
925 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
926 return 0;
927}
928
4ea0d737 929static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
930 size_t size, enum dma_data_direction dir,
931 void (*op)(const void *, size_t, int))
43377453 932{
15653371
RK
933 unsigned long pfn;
934 size_t left = size;
935
936 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
937 offset %= PAGE_SIZE;
938
43377453
NP
939 /*
940 * A single sg entry may refer to multiple physically contiguous
941 * pages. But we still need to process highmem pages individually.
942 * If highmem is not configured then the bulk of this loop gets
943 * optimized out.
944 */
43377453
NP
945 do {
946 size_t len = left;
93f1d629
RK
947 void *vaddr;
948
15653371
RK
949 page = pfn_to_page(pfn);
950
93f1d629 951 if (PageHighMem(page)) {
15653371 952 if (len + offset > PAGE_SIZE)
93f1d629 953 len = PAGE_SIZE - offset;
dd0f67f4
JK
954
955 if (cache_is_vipt_nonaliasing()) {
39af22a7 956 vaddr = kmap_atomic(page);
7e5a69e8 957 op(vaddr + offset, len, dir);
39af22a7 958 kunmap_atomic(vaddr);
dd0f67f4
JK
959 } else {
960 vaddr = kmap_high_get(page);
961 if (vaddr) {
962 op(vaddr + offset, len, dir);
963 kunmap_high(page);
964 }
43377453 965 }
93f1d629
RK
966 } else {
967 vaddr = page_address(page) + offset;
a9c9147e 968 op(vaddr, len, dir);
43377453 969 }
43377453 970 offset = 0;
15653371 971 pfn++;
43377453
NP
972 left -= len;
973 } while (left);
974}
4ea0d737 975
51fde349
MS
976/*
977 * Make an area consistent for devices.
978 * Note: Drivers should NOT use this function directly, as it will break
979 * platforms with CONFIG_DMABOUNCE.
980 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
981 */
982static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
983 size_t size, enum dma_data_direction dir)
984{
2161c248 985 phys_addr_t paddr;
65af191a 986
a9c9147e 987 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
988
989 paddr = page_to_phys(page) + off;
2ffe2da3
RK
990 if (dir == DMA_FROM_DEVICE) {
991 outer_inv_range(paddr, paddr + size);
992 } else {
993 outer_clean_range(paddr, paddr + size);
994 }
995 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 996}
4ea0d737 997
51fde349 998static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
999 size_t size, enum dma_data_direction dir)
1000{
2161c248 1001 phys_addr_t paddr = page_to_phys(page) + off;
2ffe2da3
RK
1002
1003 /* FIXME: non-speculating: not required */
deace4a6
RK
1004 /* in any case, don't bother invalidating if DMA to device */
1005 if (dir != DMA_TO_DEVICE) {
2ffe2da3
RK
1006 outer_inv_range(paddr, paddr + size);
1007
deace4a6
RK
1008 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1009 }
c0177800
CM
1010
1011 /*
b2a234ed 1012 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 1013 */
b2a234ed
ML
1014 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1015 unsigned long pfn;
1016 size_t left = size;
1017
1018 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1019 off %= PAGE_SIZE;
1020 if (off) {
1021 pfn++;
1022 left -= PAGE_SIZE - off;
1023 }
1024 while (left >= PAGE_SIZE) {
1025 page = pfn_to_page(pfn++);
1026 set_bit(PG_dcache_clean, &page->flags);
1027 left -= PAGE_SIZE;
1028 }
1029 }
4ea0d737 1030}
43377453 1031
afd1a321 1032/**
2a550e73 1033 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
1034 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1035 * @sg: list of buffers
1036 * @nents: number of buffers to map
1037 * @dir: DMA transfer direction
1038 *
1039 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1040 * This is the scatter-gather version of the dma_map_single interface.
1041 * Here the scatter gather list elements are each tagged with the
1042 * appropriate dma address and length. They are obtained via
1043 * sg_dma_{address,length}.
1044 *
1045 * Device ownership issues as mentioned for dma_map_single are the same
1046 * here.
1047 */
2dc6a016
MS
1048int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1049 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 1050{
2a550e73 1051 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 1052 struct scatterlist *s;
01135d92 1053 int i, j;
afd1a321
RK
1054
1055 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
1056#ifdef CONFIG_NEED_SG_DMA_LENGTH
1057 s->dma_length = s->length;
1058#endif
2a550e73
MS
1059 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1060 s->length, dir, attrs);
01135d92
RK
1061 if (dma_mapping_error(dev, s->dma_address))
1062 goto bad_mapping;
afd1a321 1063 }
afd1a321 1064 return nents;
01135d92
RK
1065
1066 bad_mapping:
1067 for_each_sg(sg, s, i, j)
2a550e73 1068 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 1069 return 0;
afd1a321 1070}
afd1a321
RK
1071
1072/**
2a550e73 1073 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
1074 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1075 * @sg: list of buffers
0adfca6f 1076 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
1077 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1078 *
1079 * Unmap a set of streaming mode DMA translations. Again, CPU access
1080 * rules concerning calls here are the same as for dma_unmap_single().
1081 */
2dc6a016
MS
1082void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1083 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 1084{
2a550e73 1085 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 1086 struct scatterlist *s;
01135d92 1087
01135d92 1088 int i;
24056f52 1089
01135d92 1090 for_each_sg(sg, s, nents, i)
2a550e73 1091 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 1092}
afd1a321
RK
1093
1094/**
2a550e73 1095 * arm_dma_sync_sg_for_cpu
afd1a321
RK
1096 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1097 * @sg: list of buffers
1098 * @nents: number of buffers to map (returned from dma_map_sg)
1099 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1100 */
2dc6a016 1101void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1102 int nents, enum dma_data_direction dir)
1103{
2a550e73 1104 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1105 struct scatterlist *s;
1106 int i;
1107
2a550e73
MS
1108 for_each_sg(sg, s, nents, i)
1109 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1110 dir);
afd1a321 1111}
afd1a321
RK
1112
1113/**
2a550e73 1114 * arm_dma_sync_sg_for_device
afd1a321
RK
1115 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1116 * @sg: list of buffers
1117 * @nents: number of buffers to map (returned from dma_map_sg)
1118 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1119 */
2dc6a016 1120void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1121 int nents, enum dma_data_direction dir)
1122{
2a550e73 1123 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1124 struct scatterlist *s;
1125 int i;
1126
2a550e73
MS
1127 for_each_sg(sg, s, nents, i)
1128 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1129 dir);
afd1a321 1130}
24056f52 1131
022ae537
RK
1132/*
1133 * Return whether the given device DMA address mask can be supported
1134 * properly. For example, if your device can only drive the low 24-bits
1135 * during bus mastering, then you would pass 0x00ffffff as the mask
1136 * to this function.
1137 */
1138int dma_supported(struct device *dev, u64 mask)
1139{
9f28cde0 1140 return __dma_supported(dev, mask, false);
022ae537
RK
1141}
1142EXPORT_SYMBOL(dma_supported);
1143
24056f52
RK
1144#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1145
1146static int __init dma_debug_do_init(void)
1147{
1148 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1149 return 0;
1150}
1151fs_initcall(dma_debug_do_init);
4ce63fcd
MS
1152
1153#ifdef CONFIG_ARM_DMA_USE_IOMMU
1154
1155/* IOMMU */
1156
4d852ef8
AH
1157static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1158
4ce63fcd
MS
1159static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1160 size_t size)
1161{
1162 unsigned int order = get_order(size);
1163 unsigned int align = 0;
1164 unsigned int count, start;
006f841d 1165 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1166 unsigned long flags;
4d852ef8
AH
1167 dma_addr_t iova;
1168 int i;
4ce63fcd 1169
60460abf
SWK
1170 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1171 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1172
68efd7d2
MS
1173 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1174 align = (1 << order) - 1;
4ce63fcd
MS
1175
1176 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8
AH
1177 for (i = 0; i < mapping->nr_bitmaps; i++) {
1178 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1179 mapping->bits, 0, count, align);
1180
1181 if (start > mapping->bits)
1182 continue;
1183
1184 bitmap_set(mapping->bitmaps[i], start, count);
1185 break;
4ce63fcd
MS
1186 }
1187
4d852ef8
AH
1188 /*
1189 * No unused range found. Try to extend the existing mapping
1190 * and perform a second attempt to reserve an IO virtual
1191 * address range of size bytes.
1192 */
1193 if (i == mapping->nr_bitmaps) {
1194 if (extend_iommu_mapping(mapping)) {
1195 spin_unlock_irqrestore(&mapping->lock, flags);
1196 return DMA_ERROR_CODE;
1197 }
1198
1199 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1200 mapping->bits, 0, count, align);
1201
1202 if (start > mapping->bits) {
1203 spin_unlock_irqrestore(&mapping->lock, flags);
1204 return DMA_ERROR_CODE;
1205 }
1206
1207 bitmap_set(mapping->bitmaps[i], start, count);
1208 }
4ce63fcd
MS
1209 spin_unlock_irqrestore(&mapping->lock, flags);
1210
006f841d 1211 iova = mapping->base + (mapping_size * i);
68efd7d2 1212 iova += start << PAGE_SHIFT;
4d852ef8
AH
1213
1214 return iova;
4ce63fcd
MS
1215}
1216
1217static inline void __free_iova(struct dma_iommu_mapping *mapping,
1218 dma_addr_t addr, size_t size)
1219{
4d852ef8 1220 unsigned int start, count;
006f841d 1221 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1222 unsigned long flags;
4d852ef8
AH
1223 dma_addr_t bitmap_base;
1224 u32 bitmap_index;
1225
1226 if (!size)
1227 return;
1228
006f841d 1229 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
4d852ef8
AH
1230 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1231
006f841d 1232 bitmap_base = mapping->base + mapping_size * bitmap_index;
4d852ef8 1233
68efd7d2 1234 start = (addr - bitmap_base) >> PAGE_SHIFT;
4d852ef8 1235
006f841d 1236 if (addr + size > bitmap_base + mapping_size) {
4d852ef8
AH
1237 /*
1238 * The address range to be freed reaches into the iova
1239 * range of the next bitmap. This should not happen as
1240 * we don't allow this in __alloc_iova (at the
1241 * moment).
1242 */
1243 BUG();
1244 } else
68efd7d2 1245 count = size >> PAGE_SHIFT;
4ce63fcd
MS
1246
1247 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8 1248 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
4ce63fcd
MS
1249 spin_unlock_irqrestore(&mapping->lock, flags);
1250}
1251
33298ef6
DA
1252/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1253static const int iommu_order_array[] = { 9, 8, 4, 0 };
1254
549a17e4
MS
1255static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1256 gfp_t gfp, struct dma_attrs *attrs)
4ce63fcd
MS
1257{
1258 struct page **pages;
1259 int count = size >> PAGE_SHIFT;
1260 int array_size = count * sizeof(struct page *);
1261 int i = 0;
33298ef6 1262 int order_idx = 0;
4ce63fcd
MS
1263
1264 if (array_size <= PAGE_SIZE)
23be7fda 1265 pages = kzalloc(array_size, GFP_KERNEL);
4ce63fcd
MS
1266 else
1267 pages = vzalloc(array_size);
1268 if (!pages)
1269 return NULL;
1270
549a17e4
MS
1271 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1272 {
1273 unsigned long order = get_order(size);
1274 struct page *page;
1275
1276 page = dma_alloc_from_contiguous(dev, count, order);
1277 if (!page)
1278 goto error;
1279
1280 __dma_clear_buffer(page, size);
1281
1282 for (i = 0; i < count; i++)
1283 pages[i] = page + i;
1284
1285 return pages;
1286 }
1287
14d3ae2e
DA
1288 /* Go straight to 4K chunks if caller says it's OK. */
1289 if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1290 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1291
f8669bef
MS
1292 /*
1293 * IOMMU can map any pages, so himem can also be used here
1294 */
1295 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1296
4ce63fcd 1297 while (count) {
49f28aa6
TF
1298 int j, order;
1299
33298ef6
DA
1300 order = iommu_order_array[order_idx];
1301
1302 /* Drop down when we get small */
1303 if (__fls(count) < order) {
1304 order_idx++;
1305 continue;
49f28aa6 1306 }
4ce63fcd 1307
33298ef6
DA
1308 if (order) {
1309 /* See if it's easy to allocate a high-order chunk */
1310 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1311
1312 /* Go down a notch at first sign of pressure */
1313 if (!pages[i]) {
1314 order_idx++;
1315 continue;
1316 }
1317 } else {
49f28aa6
TF
1318 pages[i] = alloc_pages(gfp, 0);
1319 if (!pages[i])
1320 goto error;
1321 }
4ce63fcd 1322
5a796eeb 1323 if (order) {
4ce63fcd 1324 split_page(pages[i], order);
5a796eeb
HD
1325 j = 1 << order;
1326 while (--j)
1327 pages[i + j] = pages[i] + j;
1328 }
4ce63fcd
MS
1329
1330 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1331 i += 1 << order;
1332 count -= 1 << order;
1333 }
1334
1335 return pages;
1336error:
9fa8af91 1337 while (i--)
4ce63fcd
MS
1338 if (pages[i])
1339 __free_pages(pages[i], 0);
1d5cfdb0 1340 kvfree(pages);
4ce63fcd
MS
1341 return NULL;
1342}
1343
549a17e4
MS
1344static int __iommu_free_buffer(struct device *dev, struct page **pages,
1345 size_t size, struct dma_attrs *attrs)
4ce63fcd
MS
1346{
1347 int count = size >> PAGE_SHIFT;
4ce63fcd 1348 int i;
549a17e4
MS
1349
1350 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1351 dma_release_from_contiguous(dev, pages[0], count);
1352 } else {
1353 for (i = 0; i < count; i++)
1354 if (pages[i])
1355 __free_pages(pages[i], 0);
1356 }
1357
1d5cfdb0 1358 kvfree(pages);
4ce63fcd
MS
1359 return 0;
1360}
1361
1362/*
1363 * Create a CPU mapping for a specified pages
1364 */
1365static void *
e9da6e99
MS
1366__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1367 const void *caller)
4ce63fcd 1368{
513510dd
LA
1369 return dma_common_pages_remap(pages, size,
1370 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
4ce63fcd
MS
1371}
1372
1373/*
1374 * Create a mapping in device IO address space for specified pages
1375 */
1376static dma_addr_t
1377__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1378{
89cfdb19 1379 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1380 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1381 dma_addr_t dma_addr, iova;
90cde558 1382 int i;
4ce63fcd
MS
1383
1384 dma_addr = __alloc_iova(mapping, size);
1385 if (dma_addr == DMA_ERROR_CODE)
1386 return dma_addr;
1387
1388 iova = dma_addr;
1389 for (i = 0; i < count; ) {
90cde558
AP
1390 int ret;
1391
4ce63fcd
MS
1392 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1393 phys_addr_t phys = page_to_phys(pages[i]);
1394 unsigned int len, j;
1395
1396 for (j = i + 1; j < count; j++, next_pfn++)
1397 if (page_to_pfn(pages[j]) != next_pfn)
1398 break;
1399
1400 len = (j - i) << PAGE_SHIFT;
c9b24996
AH
1401 ret = iommu_map(mapping->domain, iova, phys, len,
1402 IOMMU_READ|IOMMU_WRITE);
4ce63fcd
MS
1403 if (ret < 0)
1404 goto fail;
1405 iova += len;
1406 i = j;
1407 }
1408 return dma_addr;
1409fail:
1410 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1411 __free_iova(mapping, dma_addr, size);
1412 return DMA_ERROR_CODE;
1413}
1414
1415static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1416{
89cfdb19 1417 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1418
1419 /*
1420 * add optional in-page offset from iova to size and align
1421 * result to page size
1422 */
1423 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1424 iova &= PAGE_MASK;
1425
1426 iommu_unmap(mapping->domain, iova, size);
1427 __free_iova(mapping, iova, size);
1428 return 0;
1429}
1430
665bad7b
HD
1431static struct page **__atomic_get_pages(void *addr)
1432{
36d0fd21
LA
1433 struct page *page;
1434 phys_addr_t phys;
1435
1436 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1437 page = phys_to_page(phys);
665bad7b 1438
36d0fd21 1439 return (struct page **)page;
665bad7b
HD
1440}
1441
955c757e 1442static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1443{
1444 struct vm_struct *area;
1445
665bad7b
HD
1446 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1447 return __atomic_get_pages(cpu_addr);
1448
955c757e
MS
1449 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1450 return cpu_addr;
1451
e9da6e99
MS
1452 area = find_vm_area(cpu_addr);
1453 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1454 return area->pages;
1455 return NULL;
1456}
1457
479ed93a
HD
1458static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1459 dma_addr_t *handle)
1460{
1461 struct page *page;
1462 void *addr;
1463
1464 addr = __alloc_from_pool(size, &page);
1465 if (!addr)
1466 return NULL;
1467
1468 *handle = __iommu_create_mapping(dev, &page, size);
1469 if (*handle == DMA_ERROR_CODE)
1470 goto err_mapping;
1471
1472 return addr;
1473
1474err_mapping:
1475 __free_from_pool(addr, size);
1476 return NULL;
1477}
1478
d5898291 1479static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
479ed93a
HD
1480 dma_addr_t handle, size_t size)
1481{
1482 __iommu_remove_mapping(dev, handle, size);
d5898291 1483 __free_from_pool(cpu_addr, size);
479ed93a
HD
1484}
1485
4ce63fcd
MS
1486static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1487 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1488{
71b55663 1489 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
4ce63fcd
MS
1490 struct page **pages;
1491 void *addr = NULL;
1492
1493 *handle = DMA_ERROR_CODE;
1494 size = PAGE_ALIGN(size);
1495
d0164adc 1496 if (!gfpflags_allow_blocking(gfp))
479ed93a
HD
1497 return __iommu_alloc_atomic(dev, size, handle);
1498
5b91a98c
RZ
1499 /*
1500 * Following is a work-around (a.k.a. hack) to prevent pages
1501 * with __GFP_COMP being passed to split_page() which cannot
1502 * handle them. The real problem is that this flag probably
1503 * should be 0 on ARM as it is not supported on this
1504 * platform; see CONFIG_HUGETLBFS.
1505 */
1506 gfp &= ~(__GFP_COMP);
1507
549a17e4 1508 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
4ce63fcd
MS
1509 if (!pages)
1510 return NULL;
1511
1512 *handle = __iommu_create_mapping(dev, pages, size);
1513 if (*handle == DMA_ERROR_CODE)
1514 goto err_buffer;
1515
955c757e
MS
1516 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1517 return pages;
1518
e9da6e99
MS
1519 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1520 __builtin_return_address(0));
4ce63fcd
MS
1521 if (!addr)
1522 goto err_mapping;
1523
1524 return addr;
1525
1526err_mapping:
1527 __iommu_remove_mapping(dev, *handle, size);
1528err_buffer:
549a17e4 1529 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1530 return NULL;
1531}
1532
1533static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1534 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1535 struct dma_attrs *attrs)
1536{
e9da6e99
MS
1537 unsigned long uaddr = vma->vm_start;
1538 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1539 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
371f0f08
MS
1540 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1541 unsigned long off = vma->vm_pgoff;
4ce63fcd
MS
1542
1543 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1544
e9da6e99
MS
1545 if (!pages)
1546 return -ENXIO;
4ce63fcd 1547
371f0f08
MS
1548 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1549 return -ENXIO;
1550
7e312103
MS
1551 pages += off;
1552
e9da6e99
MS
1553 do {
1554 int ret = vm_insert_page(vma, uaddr, *pages++);
1555 if (ret) {
1556 pr_err("Remapping memory failed: %d\n", ret);
1557 return ret;
1558 }
1559 uaddr += PAGE_SIZE;
1560 usize -= PAGE_SIZE;
1561 } while (usize > 0);
4ce63fcd 1562
4ce63fcd
MS
1563 return 0;
1564}
1565
1566/*
1567 * free a page as defined by the above mapping.
1568 * Must not be called with IRQs disabled.
1569 */
1570void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1571 dma_addr_t handle, struct dma_attrs *attrs)
1572{
836bfa0d 1573 struct page **pages;
4ce63fcd
MS
1574 size = PAGE_ALIGN(size);
1575
836bfa0d
YC
1576 if (__in_atomic_pool(cpu_addr, size)) {
1577 __iommu_free_atomic(dev, cpu_addr, handle, size);
e9da6e99 1578 return;
4ce63fcd 1579 }
e9da6e99 1580
836bfa0d
YC
1581 pages = __iommu_get_pages(cpu_addr, attrs);
1582 if (!pages) {
1583 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1584 return;
1585 }
1586
955c757e 1587 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
513510dd
LA
1588 dma_common_free_remap(cpu_addr, size,
1589 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
955c757e 1590 }
e9da6e99
MS
1591
1592 __iommu_remove_mapping(dev, handle, size);
549a17e4 1593 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1594}
1595
dc2832e1
MS
1596static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1597 void *cpu_addr, dma_addr_t dma_addr,
1598 size_t size, struct dma_attrs *attrs)
1599{
1600 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1601 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1602
1603 if (!pages)
1604 return -ENXIO;
1605
1606 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1607 GFP_KERNEL);
4ce63fcd
MS
1608}
1609
c9b24996
AH
1610static int __dma_direction_to_prot(enum dma_data_direction dir)
1611{
1612 int prot;
1613
1614 switch (dir) {
1615 case DMA_BIDIRECTIONAL:
1616 prot = IOMMU_READ | IOMMU_WRITE;
1617 break;
1618 case DMA_TO_DEVICE:
1619 prot = IOMMU_READ;
1620 break;
1621 case DMA_FROM_DEVICE:
1622 prot = IOMMU_WRITE;
1623 break;
1624 default:
1625 prot = 0;
1626 }
1627
1628 return prot;
1629}
1630
4ce63fcd
MS
1631/*
1632 * Map a part of the scatter-gather list into contiguous io address space
1633 */
1634static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1635 size_t size, dma_addr_t *handle,
0fa478df
RH
1636 enum dma_data_direction dir, struct dma_attrs *attrs,
1637 bool is_coherent)
4ce63fcd 1638{
89cfdb19 1639 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1640 dma_addr_t iova, iova_base;
1641 int ret = 0;
1642 unsigned int count;
1643 struct scatterlist *s;
c9b24996 1644 int prot;
4ce63fcd
MS
1645
1646 size = PAGE_ALIGN(size);
1647 *handle = DMA_ERROR_CODE;
1648
1649 iova_base = iova = __alloc_iova(mapping, size);
1650 if (iova == DMA_ERROR_CODE)
1651 return -ENOMEM;
1652
1653 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
3e6110fd 1654 phys_addr_t phys = page_to_phys(sg_page(s));
4ce63fcd
MS
1655 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1656
0fa478df
RH
1657 if (!is_coherent &&
1658 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1659 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1660
c9b24996
AH
1661 prot = __dma_direction_to_prot(dir);
1662
1663 ret = iommu_map(mapping->domain, iova, phys, len, prot);
4ce63fcd
MS
1664 if (ret < 0)
1665 goto fail;
1666 count += len >> PAGE_SHIFT;
1667 iova += len;
1668 }
1669 *handle = iova_base;
1670
1671 return 0;
1672fail:
1673 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1674 __free_iova(mapping, iova_base, size);
1675 return ret;
1676}
1677
0fa478df
RH
1678static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1679 enum dma_data_direction dir, struct dma_attrs *attrs,
1680 bool is_coherent)
4ce63fcd
MS
1681{
1682 struct scatterlist *s = sg, *dma = sg, *start = sg;
1683 int i, count = 0;
1684 unsigned int offset = s->offset;
1685 unsigned int size = s->offset + s->length;
1686 unsigned int max = dma_get_max_seg_size(dev);
1687
1688 for (i = 1; i < nents; i++) {
1689 s = sg_next(s);
1690
1691 s->dma_address = DMA_ERROR_CODE;
1692 s->dma_length = 0;
1693
1694 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1695 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1696 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1697 goto bad_mapping;
1698
1699 dma->dma_address += offset;
1700 dma->dma_length = size - offset;
1701
1702 size = offset = s->offset;
1703 start = s;
1704 dma = sg_next(dma);
1705 count += 1;
1706 }
1707 size += s->length;
1708 }
0fa478df
RH
1709 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1710 is_coherent) < 0)
4ce63fcd
MS
1711 goto bad_mapping;
1712
1713 dma->dma_address += offset;
1714 dma->dma_length = size - offset;
1715
1716 return count+1;
1717
1718bad_mapping:
1719 for_each_sg(sg, s, count, i)
1720 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1721 return 0;
1722}
1723
1724/**
0fa478df 1725 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1726 * @dev: valid struct device pointer
1727 * @sg: list of buffers
0fa478df
RH
1728 * @nents: number of buffers to map
1729 * @dir: DMA transfer direction
4ce63fcd 1730 *
0fa478df
RH
1731 * Map a set of i/o coherent buffers described by scatterlist in streaming
1732 * mode for DMA. The scatter gather list elements are merged together (if
1733 * possible) and tagged with the appropriate dma address and length. They are
1734 * obtained via sg_dma_{address,length}.
4ce63fcd 1735 */
0fa478df
RH
1736int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1737 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1738{
1739 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1740}
1741
1742/**
1743 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1744 * @dev: valid struct device pointer
1745 * @sg: list of buffers
1746 * @nents: number of buffers to map
1747 * @dir: DMA transfer direction
1748 *
1749 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1750 * The scatter gather list elements are merged together (if possible) and
1751 * tagged with the appropriate dma address and length. They are obtained via
1752 * sg_dma_{address,length}.
1753 */
1754int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1755 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1756{
1757 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1758}
1759
1760static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1761 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1762 bool is_coherent)
4ce63fcd
MS
1763{
1764 struct scatterlist *s;
1765 int i;
1766
1767 for_each_sg(sg, s, nents, i) {
1768 if (sg_dma_len(s))
1769 __iommu_remove_mapping(dev, sg_dma_address(s),
1770 sg_dma_len(s));
0fa478df 1771 if (!is_coherent &&
97ef952a 1772 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1773 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1774 s->length, dir);
1775 }
1776}
1777
0fa478df
RH
1778/**
1779 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1780 * @dev: valid struct device pointer
1781 * @sg: list of buffers
1782 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1783 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1784 *
1785 * Unmap a set of streaming mode DMA translations. Again, CPU access
1786 * rules concerning calls here are the same as for dma_unmap_single().
1787 */
1788void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1789 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1790{
1791 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1792}
1793
1794/**
1795 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1796 * @dev: valid struct device pointer
1797 * @sg: list of buffers
1798 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1799 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1800 *
1801 * Unmap a set of streaming mode DMA translations. Again, CPU access
1802 * rules concerning calls here are the same as for dma_unmap_single().
1803 */
1804void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1805 enum dma_data_direction dir, struct dma_attrs *attrs)
1806{
1807 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1808}
1809
4ce63fcd
MS
1810/**
1811 * arm_iommu_sync_sg_for_cpu
1812 * @dev: valid struct device pointer
1813 * @sg: list of buffers
1814 * @nents: number of buffers to map (returned from dma_map_sg)
1815 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1816 */
1817void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1818 int nents, enum dma_data_direction dir)
1819{
1820 struct scatterlist *s;
1821 int i;
1822
1823 for_each_sg(sg, s, nents, i)
0fa478df 1824 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1825
1826}
1827
1828/**
1829 * arm_iommu_sync_sg_for_device
1830 * @dev: valid struct device pointer
1831 * @sg: list of buffers
1832 * @nents: number of buffers to map (returned from dma_map_sg)
1833 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1834 */
1835void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1836 int nents, enum dma_data_direction dir)
1837{
1838 struct scatterlist *s;
1839 int i;
1840
1841 for_each_sg(sg, s, nents, i)
0fa478df 1842 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1843}
1844
1845
1846/**
0fa478df 1847 * arm_coherent_iommu_map_page
4ce63fcd
MS
1848 * @dev: valid struct device pointer
1849 * @page: page that buffer resides in
1850 * @offset: offset into page for start of buffer
1851 * @size: size of buffer to map
1852 * @dir: DMA transfer direction
1853 *
0fa478df 1854 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1855 */
0fa478df 1856static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd
MS
1857 unsigned long offset, size_t size, enum dma_data_direction dir,
1858 struct dma_attrs *attrs)
1859{
89cfdb19 1860 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd 1861 dma_addr_t dma_addr;
13987d68 1862 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1863
4ce63fcd
MS
1864 dma_addr = __alloc_iova(mapping, len);
1865 if (dma_addr == DMA_ERROR_CODE)
1866 return dma_addr;
1867
c9b24996 1868 prot = __dma_direction_to_prot(dir);
13987d68
WD
1869
1870 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
4ce63fcd
MS
1871 if (ret < 0)
1872 goto fail;
1873
1874 return dma_addr + offset;
1875fail:
1876 __free_iova(mapping, dma_addr, len);
1877 return DMA_ERROR_CODE;
1878}
1879
0fa478df
RH
1880/**
1881 * arm_iommu_map_page
1882 * @dev: valid struct device pointer
1883 * @page: page that buffer resides in
1884 * @offset: offset into page for start of buffer
1885 * @size: size of buffer to map
1886 * @dir: DMA transfer direction
1887 *
1888 * IOMMU aware version of arm_dma_map_page()
1889 */
1890static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1891 unsigned long offset, size_t size, enum dma_data_direction dir,
1892 struct dma_attrs *attrs)
1893{
1894 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1895 __dma_page_cpu_to_dev(page, offset, size, dir);
1896
1897 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1898}
1899
1900/**
1901 * arm_coherent_iommu_unmap_page
1902 * @dev: valid struct device pointer
1903 * @handle: DMA address of buffer
1904 * @size: size of buffer (same as passed to dma_map_page)
1905 * @dir: DMA transfer direction (same as passed to dma_map_page)
1906 *
1907 * Coherent IOMMU aware version of arm_dma_unmap_page()
1908 */
1909static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1910 size_t size, enum dma_data_direction dir,
1911 struct dma_attrs *attrs)
1912{
89cfdb19 1913 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
0fa478df 1914 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1915 int offset = handle & ~PAGE_MASK;
1916 int len = PAGE_ALIGN(size + offset);
1917
1918 if (!iova)
1919 return;
1920
1921 iommu_unmap(mapping->domain, iova, len);
1922 __free_iova(mapping, iova, len);
1923}
1924
4ce63fcd
MS
1925/**
1926 * arm_iommu_unmap_page
1927 * @dev: valid struct device pointer
1928 * @handle: DMA address of buffer
1929 * @size: size of buffer (same as passed to dma_map_page)
1930 * @dir: DMA transfer direction (same as passed to dma_map_page)
1931 *
1932 * IOMMU aware version of arm_dma_unmap_page()
1933 */
1934static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1935 size_t size, enum dma_data_direction dir,
1936 struct dma_attrs *attrs)
1937{
89cfdb19 1938 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1939 dma_addr_t iova = handle & PAGE_MASK;
1940 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1941 int offset = handle & ~PAGE_MASK;
1942 int len = PAGE_ALIGN(size + offset);
1943
1944 if (!iova)
1945 return;
1946
0fa478df 1947 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1948 __dma_page_dev_to_cpu(page, offset, size, dir);
1949
1950 iommu_unmap(mapping->domain, iova, len);
1951 __free_iova(mapping, iova, len);
1952}
1953
1954static void arm_iommu_sync_single_for_cpu(struct device *dev,
1955 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1956{
89cfdb19 1957 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1958 dma_addr_t iova = handle & PAGE_MASK;
1959 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1960 unsigned int offset = handle & ~PAGE_MASK;
1961
1962 if (!iova)
1963 return;
1964
0fa478df 1965 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
1966}
1967
1968static void arm_iommu_sync_single_for_device(struct device *dev,
1969 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1970{
89cfdb19 1971 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1972 dma_addr_t iova = handle & PAGE_MASK;
1973 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1974 unsigned int offset = handle & ~PAGE_MASK;
1975
1976 if (!iova)
1977 return;
1978
1979 __dma_page_cpu_to_dev(page, offset, size, dir);
1980}
1981
1982struct dma_map_ops iommu_ops = {
1983 .alloc = arm_iommu_alloc_attrs,
1984 .free = arm_iommu_free_attrs,
1985 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1986 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1987
1988 .map_page = arm_iommu_map_page,
1989 .unmap_page = arm_iommu_unmap_page,
1990 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1991 .sync_single_for_device = arm_iommu_sync_single_for_device,
1992
1993 .map_sg = arm_iommu_map_sg,
1994 .unmap_sg = arm_iommu_unmap_sg,
1995 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1996 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1997};
1998
0fa478df
RH
1999struct dma_map_ops iommu_coherent_ops = {
2000 .alloc = arm_iommu_alloc_attrs,
2001 .free = arm_iommu_free_attrs,
2002 .mmap = arm_iommu_mmap_attrs,
2003 .get_sgtable = arm_iommu_get_sgtable,
2004
2005 .map_page = arm_coherent_iommu_map_page,
2006 .unmap_page = arm_coherent_iommu_unmap_page,
2007
2008 .map_sg = arm_coherent_iommu_map_sg,
2009 .unmap_sg = arm_coherent_iommu_unmap_sg,
2010};
2011
4ce63fcd
MS
2012/**
2013 * arm_iommu_create_mapping
2014 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2015 * @base: start address of the valid IO address space
68efd7d2 2016 * @size: maximum size of the valid IO address space
4ce63fcd
MS
2017 *
2018 * Creates a mapping structure which holds information about used/unused
2019 * IO address ranges, which is required to perform memory allocation and
2020 * mapping with IOMMU aware functions.
2021 *
2022 * The client device need to be attached to the mapping with
2023 * arm_iommu_attach_device function.
2024 */
2025struct dma_iommu_mapping *
1424532b 2026arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
4ce63fcd 2027{
68efd7d2
MS
2028 unsigned int bits = size >> PAGE_SHIFT;
2029 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
4ce63fcd 2030 struct dma_iommu_mapping *mapping;
68efd7d2 2031 int extensions = 1;
4ce63fcd
MS
2032 int err = -ENOMEM;
2033
1424532b
MS
2034 /* currently only 32-bit DMA address space is supported */
2035 if (size > DMA_BIT_MASK(32) + 1)
2036 return ERR_PTR(-ERANGE);
2037
68efd7d2 2038 if (!bitmap_size)
4ce63fcd
MS
2039 return ERR_PTR(-EINVAL);
2040
68efd7d2
MS
2041 if (bitmap_size > PAGE_SIZE) {
2042 extensions = bitmap_size / PAGE_SIZE;
2043 bitmap_size = PAGE_SIZE;
2044 }
2045
4ce63fcd
MS
2046 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2047 if (!mapping)
2048 goto err;
2049
68efd7d2
MS
2050 mapping->bitmap_size = bitmap_size;
2051 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
4d852ef8
AH
2052 GFP_KERNEL);
2053 if (!mapping->bitmaps)
4ce63fcd
MS
2054 goto err2;
2055
68efd7d2 2056 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
4d852ef8
AH
2057 if (!mapping->bitmaps[0])
2058 goto err3;
2059
2060 mapping->nr_bitmaps = 1;
2061 mapping->extensions = extensions;
4ce63fcd 2062 mapping->base = base;
68efd7d2 2063 mapping->bits = BITS_PER_BYTE * bitmap_size;
4d852ef8 2064
4ce63fcd
MS
2065 spin_lock_init(&mapping->lock);
2066
2067 mapping->domain = iommu_domain_alloc(bus);
2068 if (!mapping->domain)
4d852ef8 2069 goto err4;
4ce63fcd
MS
2070
2071 kref_init(&mapping->kref);
2072 return mapping;
4d852ef8
AH
2073err4:
2074 kfree(mapping->bitmaps[0]);
4ce63fcd 2075err3:
4d852ef8 2076 kfree(mapping->bitmaps);
4ce63fcd
MS
2077err2:
2078 kfree(mapping);
2079err:
2080 return ERR_PTR(err);
2081}
18177d12 2082EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
2083
2084static void release_iommu_mapping(struct kref *kref)
2085{
4d852ef8 2086 int i;
4ce63fcd
MS
2087 struct dma_iommu_mapping *mapping =
2088 container_of(kref, struct dma_iommu_mapping, kref);
2089
2090 iommu_domain_free(mapping->domain);
4d852ef8
AH
2091 for (i = 0; i < mapping->nr_bitmaps; i++)
2092 kfree(mapping->bitmaps[i]);
2093 kfree(mapping->bitmaps);
4ce63fcd
MS
2094 kfree(mapping);
2095}
2096
4d852ef8
AH
2097static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2098{
2099 int next_bitmap;
2100
462859aa 2101 if (mapping->nr_bitmaps >= mapping->extensions)
4d852ef8
AH
2102 return -EINVAL;
2103
2104 next_bitmap = mapping->nr_bitmaps;
2105 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2106 GFP_ATOMIC);
2107 if (!mapping->bitmaps[next_bitmap])
2108 return -ENOMEM;
2109
2110 mapping->nr_bitmaps++;
2111
2112 return 0;
2113}
2114
4ce63fcd
MS
2115void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2116{
2117 if (mapping)
2118 kref_put(&mapping->kref, release_iommu_mapping);
2119}
18177d12 2120EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd 2121
eab8d653
LP
2122static int __arm_iommu_attach_device(struct device *dev,
2123 struct dma_iommu_mapping *mapping)
2124{
2125 int err;
2126
2127 err = iommu_attach_device(mapping->domain, dev);
2128 if (err)
2129 return err;
2130
2131 kref_get(&mapping->kref);
89cfdb19 2132 to_dma_iommu_mapping(dev) = mapping;
eab8d653
LP
2133
2134 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2135 return 0;
2136}
2137
4ce63fcd
MS
2138/**
2139 * arm_iommu_attach_device
2140 * @dev: valid struct device pointer
2141 * @mapping: io address space mapping structure (returned from
2142 * arm_iommu_create_mapping)
2143 *
eab8d653
LP
2144 * Attaches specified io address space mapping to the provided device.
2145 * This replaces the dma operations (dma_map_ops pointer) with the
2146 * IOMMU aware version.
2147 *
4bb25789
WD
2148 * More than one client might be attached to the same io address space
2149 * mapping.
4ce63fcd
MS
2150 */
2151int arm_iommu_attach_device(struct device *dev,
2152 struct dma_iommu_mapping *mapping)
2153{
2154 int err;
2155
eab8d653 2156 err = __arm_iommu_attach_device(dev, mapping);
4ce63fcd
MS
2157 if (err)
2158 return err;
2159
eab8d653 2160 set_dma_ops(dev, &iommu_ops);
4ce63fcd
MS
2161 return 0;
2162}
18177d12 2163EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 2164
eab8d653 2165static void __arm_iommu_detach_device(struct device *dev)
6fe36758
HD
2166{
2167 struct dma_iommu_mapping *mapping;
2168
2169 mapping = to_dma_iommu_mapping(dev);
2170 if (!mapping) {
2171 dev_warn(dev, "Not attached\n");
2172 return;
2173 }
2174
2175 iommu_detach_device(mapping->domain, dev);
2176 kref_put(&mapping->kref, release_iommu_mapping);
89cfdb19 2177 to_dma_iommu_mapping(dev) = NULL;
6fe36758
HD
2178
2179 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2180}
eab8d653
LP
2181
2182/**
2183 * arm_iommu_detach_device
2184 * @dev: valid struct device pointer
2185 *
2186 * Detaches the provided device from a previously attached map.
2187 * This voids the dma operations (dma_map_ops pointer)
2188 */
2189void arm_iommu_detach_device(struct device *dev)
2190{
2191 __arm_iommu_detach_device(dev);
2192 set_dma_ops(dev, NULL);
2193}
18177d12 2194EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 2195
4bb25789
WD
2196static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2197{
2198 return coherent ? &iommu_coherent_ops : &iommu_ops;
2199}
2200
2201static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
53c92d79 2202 const struct iommu_ops *iommu)
4bb25789
WD
2203{
2204 struct dma_iommu_mapping *mapping;
2205
2206 if (!iommu)
2207 return false;
2208
2209 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2210 if (IS_ERR(mapping)) {
2211 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2212 size, dev_name(dev));
2213 return false;
2214 }
2215
eab8d653 2216 if (__arm_iommu_attach_device(dev, mapping)) {
4bb25789
WD
2217 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2218 dev_name(dev));
2219 arm_iommu_release_mapping(mapping);
2220 return false;
2221 }
2222
2223 return true;
2224}
2225
2226static void arm_teardown_iommu_dma_ops(struct device *dev)
2227{
89cfdb19 2228 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4bb25789 2229
c2273a18
WD
2230 if (!mapping)
2231 return;
2232
eab8d653 2233 __arm_iommu_detach_device(dev);
4bb25789
WD
2234 arm_iommu_release_mapping(mapping);
2235}
2236
2237#else
2238
2239static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
53c92d79 2240 const struct iommu_ops *iommu)
4bb25789
WD
2241{
2242 return false;
2243}
2244
2245static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2246
2247#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2248
2249#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2250
2251static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2252{
2253 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2254}
2255
2256void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
53c92d79 2257 const struct iommu_ops *iommu, bool coherent)
4bb25789
WD
2258{
2259 struct dma_map_ops *dma_ops;
2260
6f51ee70 2261 dev->archdata.dma_coherent = coherent;
4bb25789
WD
2262 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2263 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2264 else
2265 dma_ops = arm_get_dma_map_ops(coherent);
2266
2267 set_dma_ops(dev, dma_ops);
2268}
2269
2270void arch_teardown_dma_ops(struct device *dev)
2271{
2272 arm_teardown_iommu_dma_ops(dev);
2273}