]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm/mm/dma-mapping.c
ACPI/IORT: Fix CONFIG_IOMMU_API dependency
[mirror_ubuntu-artful-kernel.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
11a5aa32 12#include <linux/bootmem.h>
1da177e4
LT
13#include <linux/module.h>
14#include <linux/mm.h>
36d0fd21 15#include <linux/genalloc.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
c7909509 22#include <linux/dma-contiguous.h>
39af22a7 23#include <linux/highmem.h>
c7909509 24#include <linux/memblock.h>
99d1717d 25#include <linux/slab.h>
4ce63fcd 26#include <linux/iommu.h>
e9da6e99 27#include <linux/io.h>
4ce63fcd 28#include <linux/vmalloc.h>
158e8bfe 29#include <linux/sizes.h>
a254129e 30#include <linux/cma.h>
1da177e4 31
23759dc6 32#include <asm/memory.h>
43377453 33#include <asm/highmem.h>
1da177e4 34#include <asm/cacheflush.h>
1da177e4 35#include <asm/tlbflush.h>
99d1717d 36#include <asm/mach/arch.h>
4ce63fcd 37#include <asm/dma-iommu.h>
c7909509
MS
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
37134cd5 41
1234e3fd 42#include "dma.h"
022ae537
RK
43#include "mm.h"
44
b4268676
RV
45struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
f1270896 52 int coherent_flag;
b4268676
RV
53};
54
55struct arm_dma_free_args {
56 struct device *dev;
57 size_t size;
58 void *cpu_addr;
59 struct page *page;
60 bool want_vaddr;
61};
62
f1270896
GC
63#define NORMAL 0
64#define COHERENT 1
65
b4268676
RV
66struct arm_dma_allocator {
67 void *(*alloc)(struct arm_dma_alloc_args *args,
68 struct page **ret_page);
69 void (*free)(struct arm_dma_free_args *args);
70};
71
19e6e5e5
RV
72struct arm_dma_buffer {
73 struct list_head list;
74 void *virt;
b4268676 75 struct arm_dma_allocator *allocator;
19e6e5e5
RV
76};
77
78static LIST_HEAD(arm_dma_bufs);
79static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80
81static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82{
83 struct arm_dma_buffer *buf, *found = NULL;
84 unsigned long flags;
85
86 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
87 list_for_each_entry(buf, &arm_dma_bufs, list) {
88 if (buf->virt == virt) {
89 list_del(&buf->list);
90 found = buf;
91 break;
92 }
93 }
94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
95 return found;
96}
97
15237e1f
MS
98/*
99 * The DMA API is built upon the notion of "buffer ownership". A buffer
100 * is either exclusively owned by the CPU (and therefore may be accessed
101 * by it) or exclusively owned by the DMA device. These helper functions
102 * represent the transitions between these two ownership states.
103 *
104 * Note, however, that on later ARMs, this notion does not work due to
105 * speculative prefetches. We model our approach on the assumption that
106 * the CPU does do speculative prefetches, which means we clean caches
107 * before transfers and delay cache invalidation until transfer completion.
108 *
15237e1f 109 */
51fde349 110static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 111 size_t, enum dma_data_direction);
51fde349 112static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
113 size_t, enum dma_data_direction);
114
2dc6a016
MS
115/**
116 * arm_dma_map_page - map a portion of a page for streaming DMA
117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118 * @page: page that buffer resides in
119 * @offset: offset into page for start of buffer
120 * @size: size of buffer to map
121 * @dir: DMA transfer direction
122 *
123 * Ensure that any data held in the cache is appropriately discarded
124 * or written back.
125 *
126 * The device owns this memory once this call has completed. The CPU
127 * can regain ownership by calling dma_unmap_page().
128 */
51fde349 129static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016 130 unsigned long offset, size_t size, enum dma_data_direction dir,
00085f1e 131 unsigned long attrs)
2dc6a016 132{
00085f1e 133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
51fde349
MS
134 __dma_page_cpu_to_dev(page, offset, size, dir);
135 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
136}
137
dd37e940
RH
138static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
139 unsigned long offset, size_t size, enum dma_data_direction dir,
00085f1e 140 unsigned long attrs)
dd37e940
RH
141{
142 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
143}
144
2dc6a016
MS
145/**
146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148 * @handle: DMA address of buffer
149 * @size: size of buffer (same as passed to dma_map_page)
150 * @dir: DMA transfer direction (same as passed to dma_map_page)
151 *
152 * Unmap a page streaming mode DMA translation. The handle and size
153 * must match what was provided in the previous dma_map_page() call.
154 * All other usages are undefined.
155 *
156 * After this call, reads by the CPU to the buffer are guaranteed to see
157 * whatever the device wrote there.
158 */
51fde349 159static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
00085f1e 160 size_t size, enum dma_data_direction dir, unsigned long attrs)
2dc6a016 161{
00085f1e 162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
51fde349
MS
163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
164 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
165}
166
51fde349 167static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
168 dma_addr_t handle, size_t size, enum dma_data_direction dir)
169{
170 unsigned int offset = handle & (PAGE_SIZE - 1);
171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 172 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
173}
174
51fde349 175static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
176 dma_addr_t handle, size_t size, enum dma_data_direction dir)
177{
178 unsigned int offset = handle & (PAGE_SIZE - 1);
179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 180 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
181}
182
5299709d 183const struct dma_map_ops arm_dma_ops = {
f99d6034
MS
184 .alloc = arm_dma_alloc,
185 .free = arm_dma_free,
186 .mmap = arm_dma_mmap,
dc2832e1 187 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
188 .map_page = arm_dma_map_page,
189 .unmap_page = arm_dma_unmap_page,
190 .map_sg = arm_dma_map_sg,
191 .unmap_sg = arm_dma_unmap_sg,
192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
193 .sync_single_for_device = arm_dma_sync_single_for_device,
194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
195 .sync_sg_for_device = arm_dma_sync_sg_for_device,
2dc6a016
MS
196};
197EXPORT_SYMBOL(arm_dma_ops);
198
dd37e940 199static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
00085f1e 200 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
dd37e940 201static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
00085f1e 202 dma_addr_t handle, unsigned long attrs);
55af8a91
ML
203static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
204 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 205 unsigned long attrs);
dd37e940 206
5299709d 207const struct dma_map_ops arm_coherent_dma_ops = {
dd37e940
RH
208 .alloc = arm_coherent_dma_alloc,
209 .free = arm_coherent_dma_free,
55af8a91 210 .mmap = arm_coherent_dma_mmap,
dd37e940
RH
211 .get_sgtable = arm_dma_get_sgtable,
212 .map_page = arm_coherent_dma_map_page,
213 .map_sg = arm_dma_map_sg,
dd37e940
RH
214};
215EXPORT_SYMBOL(arm_coherent_dma_ops);
216
9f28cde0
RK
217static int __dma_supported(struct device *dev, u64 mask, bool warn)
218{
219 unsigned long max_dma_pfn;
220
221 /*
222 * If the mask allows for more memory than we can address,
223 * and we actually have that much memory, then we must
224 * indicate that DMA to this device is not supported.
225 */
226 if (sizeof(mask) != sizeof(dma_addr_t) &&
227 mask > (dma_addr_t)~0 &&
8bf1268f 228 dma_to_pfn(dev, ~0) < max_pfn - 1) {
9f28cde0
RK
229 if (warn) {
230 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
231 mask);
232 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
233 }
234 return 0;
235 }
236
237 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
238
239 /*
240 * Translate the device's DMA mask to a PFN limit. This
241 * PFN number includes the page which we can DMA to.
242 */
243 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
244 if (warn)
245 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
246 mask,
247 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
248 max_dma_pfn + 1);
249 return 0;
250 }
251
252 return 1;
253}
254
ab6494f0
CM
255static u64 get_coherent_dma_mask(struct device *dev)
256{
4dcfa600 257 u64 mask = (u64)DMA_BIT_MASK(32);
ab6494f0
CM
258
259 if (dev) {
260 mask = dev->coherent_dma_mask;
261
262 /*
263 * Sanity check the DMA mask - it must be non-zero, and
264 * must be able to be satisfied by a DMA allocation.
265 */
266 if (mask == 0) {
267 dev_warn(dev, "coherent DMA mask is unset\n");
268 return 0;
269 }
270
9f28cde0 271 if (!__dma_supported(dev, mask, true))
ab6494f0 272 return 0;
ab6494f0 273 }
1da177e4 274
ab6494f0
CM
275 return mask;
276}
277
f1270896 278static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
c7909509 279{
c7909509
MS
280 /*
281 * Ensure that the allocated pages are zeroed, and that any data
282 * lurking in the kernel direct-mapped region is invalidated.
283 */
9848e48f
MS
284 if (PageHighMem(page)) {
285 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
286 phys_addr_t end = base + size;
287 while (size > 0) {
288 void *ptr = kmap_atomic(page);
289 memset(ptr, 0, PAGE_SIZE);
f1270896
GC
290 if (coherent_flag != COHERENT)
291 dmac_flush_range(ptr, ptr + PAGE_SIZE);
9848e48f
MS
292 kunmap_atomic(ptr);
293 page++;
294 size -= PAGE_SIZE;
295 }
f1270896
GC
296 if (coherent_flag != COHERENT)
297 outer_flush_range(base, end);
9848e48f
MS
298 } else {
299 void *ptr = page_address(page);
4ce63fcd 300 memset(ptr, 0, size);
f1270896
GC
301 if (coherent_flag != COHERENT) {
302 dmac_flush_range(ptr, ptr + size);
303 outer_flush_range(__pa(ptr), __pa(ptr) + size);
304 }
4ce63fcd 305 }
c7909509
MS
306}
307
7a9a32a9
RK
308/*
309 * Allocate a DMA buffer for 'dev' of size 'size' using the
310 * specified gfp mask. Note that 'size' must be page aligned.
311 */
f1270896
GC
312static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
313 gfp_t gfp, int coherent_flag)
7a9a32a9
RK
314{
315 unsigned long order = get_order(size);
316 struct page *page, *p, *e;
7a9a32a9
RK
317
318 page = alloc_pages(gfp, order);
319 if (!page)
320 return NULL;
321
322 /*
323 * Now split the huge page and free the excess pages
324 */
325 split_page(page, order);
326 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
327 __free_page(p);
328
f1270896 329 __dma_clear_buffer(page, size, coherent_flag);
7a9a32a9
RK
330
331 return page;
332}
333
334/*
335 * Free a DMA buffer. 'size' must be page aligned.
336 */
337static void __dma_free_buffer(struct page *page, size_t size)
338{
339 struct page *e = page + (size >> PAGE_SHIFT);
340
341 while (page < e) {
342 __free_page(page);
343 page++;
344 }
345}
346
ab6494f0 347#ifdef CONFIG_MMU
a5e9d38b 348
e9da6e99 349static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 350 pgprot_t prot, struct page **ret_page,
f1270896 351 const void *caller, bool want_vaddr,
712c604d 352 int coherent_flag, gfp_t gfp);
99d1717d 353
e9da6e99
MS
354static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
355 pgprot_t prot, struct page **ret_page,
6e8266e3 356 const void *caller, bool want_vaddr);
99d1717d 357
e9da6e99
MS
358static void *
359__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
360 const void *caller)
99d1717d 361{
e9da6e99
MS
362 /*
363 * DMA allocation can be mapped to user space, so lets
364 * set VM_USERMAP flags too.
365 */
513510dd
LA
366 return dma_common_contiguous_remap(page, size,
367 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
368 prot, caller);
99d1717d 369}
1da177e4 370
e9da6e99 371static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 372{
513510dd
LA
373 dma_common_free_remap(cpu_addr, size,
374 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
88c58f3b 375}
88c58f3b 376
6e5267aa 377#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
36d0fd21 378static struct gen_pool *atomic_pool;
6e5267aa 379
36d0fd21 380static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
c7909509
MS
381
382static int __init early_coherent_pool(char *p)
383{
36d0fd21 384 atomic_pool_size = memparse(p, &p);
c7909509
MS
385 return 0;
386}
387early_param("coherent_pool", early_coherent_pool);
388
6e5267aa
MS
389void __init init_dma_coherent_pool_size(unsigned long size)
390{
391 /*
392 * Catch any attempt to set the pool size too late.
393 */
36d0fd21 394 BUG_ON(atomic_pool);
6e5267aa
MS
395
396 /*
397 * Set architecture specific coherent pool size only if
398 * it has not been changed by kernel command line parameter.
399 */
36d0fd21
LA
400 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
401 atomic_pool_size = size;
6e5267aa
MS
402}
403
c7909509
MS
404/*
405 * Initialise the coherent pool for atomic allocations.
406 */
e9da6e99 407static int __init atomic_pool_init(void)
c7909509 408{
71b55663 409 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
9d1400cf 410 gfp_t gfp = GFP_KERNEL | GFP_DMA;
c7909509
MS
411 struct page *page;
412 void *ptr;
c7909509 413
36d0fd21
LA
414 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
415 if (!atomic_pool)
416 goto out;
f1270896
GC
417 /*
418 * The atomic pool is only used for non-coherent allocations
419 * so we must pass NORMAL for coherent_flag.
420 */
e464ef16 421 if (dev_get_cma_area(NULL))
36d0fd21 422 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
712c604d
LS
423 &page, atomic_pool_init, true, NORMAL,
424 GFP_KERNEL);
e9da6e99 425 else
36d0fd21 426 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
6e8266e3 427 &page, atomic_pool_init, true);
c7909509 428 if (ptr) {
36d0fd21
LA
429 int ret;
430
431 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
432 page_to_phys(page),
433 atomic_pool_size, -1);
434 if (ret)
435 goto destroy_genpool;
436
437 gen_pool_set_algo(atomic_pool,
438 gen_pool_first_fit_order_align,
439 (void *)PAGE_SHIFT);
bf31c5e0 440 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
36d0fd21 441 atomic_pool_size / 1024);
c7909509
MS
442 return 0;
443 }
ec10665c 444
36d0fd21
LA
445destroy_genpool:
446 gen_pool_destroy(atomic_pool);
447 atomic_pool = NULL;
448out:
bf31c5e0 449 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
36d0fd21 450 atomic_pool_size / 1024);
c7909509
MS
451 return -ENOMEM;
452}
453/*
454 * CMA is activated by core_initcall, so we must be called after it.
455 */
e9da6e99 456postcore_initcall(atomic_pool_init);
c7909509
MS
457
458struct dma_contig_early_reserve {
459 phys_addr_t base;
460 unsigned long size;
461};
462
463static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
464
465static int dma_mmu_remap_num __initdata;
466
467void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
468{
469 dma_mmu_remap[dma_mmu_remap_num].base = base;
470 dma_mmu_remap[dma_mmu_remap_num].size = size;
471 dma_mmu_remap_num++;
472}
473
474void __init dma_contiguous_remap(void)
475{
476 int i;
477 for (i = 0; i < dma_mmu_remap_num; i++) {
478 phys_addr_t start = dma_mmu_remap[i].base;
479 phys_addr_t end = start + dma_mmu_remap[i].size;
480 struct map_desc map;
481 unsigned long addr;
482
483 if (end > arm_lowmem_limit)
484 end = arm_lowmem_limit;
485 if (start >= end)
39f78e70 486 continue;
c7909509
MS
487
488 map.pfn = __phys_to_pfn(start);
489 map.virtual = __phys_to_virt(start);
490 map.length = end - start;
491 map.type = MT_MEMORY_DMA_READY;
492
493 /*
6b076991
RK
494 * Clear previous low-memory mapping to ensure that the
495 * TLB does not see any conflicting entries, then flush
496 * the TLB of the old entries before creating new mappings.
497 *
498 * This ensures that any speculatively loaded TLB entries
499 * (even though they may be rare) can not cause any problems,
500 * and ensures that this code is architecturally compliant.
c7909509
MS
501 */
502 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 503 addr += PMD_SIZE)
c7909509
MS
504 pmd_clear(pmd_off_k(addr));
505
6b076991
RK
506 flush_tlb_kernel_range(__phys_to_virt(start),
507 __phys_to_virt(end));
508
c7909509
MS
509 iotable_init(&map, 1);
510 }
511}
512
c7909509
MS
513static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
514 void *data)
515{
516 struct page *page = virt_to_page(addr);
517 pgprot_t prot = *(pgprot_t *)data;
518
519 set_pte_ext(pte, mk_pte(page, prot), 0);
520 return 0;
521}
522
523static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
524{
525 unsigned long start = (unsigned long) page_address(page);
526 unsigned end = start + size;
527
528 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
529 flush_tlb_kernel_range(start, end);
530}
531
532static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
533 pgprot_t prot, struct page **ret_page,
6e8266e3 534 const void *caller, bool want_vaddr)
c7909509
MS
535{
536 struct page *page;
6e8266e3 537 void *ptr = NULL;
f1270896
GC
538 /*
539 * __alloc_remap_buffer is only called when the device is
540 * non-coherent
541 */
542 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
c7909509
MS
543 if (!page)
544 return NULL;
6e8266e3
CC
545 if (!want_vaddr)
546 goto out;
c7909509
MS
547
548 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
549 if (!ptr) {
550 __dma_free_buffer(page, size);
551 return NULL;
552 }
553
6e8266e3 554 out:
c7909509
MS
555 *ret_page = page;
556 return ptr;
557}
558
e9da6e99 559static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 560{
36d0fd21 561 unsigned long val;
e9da6e99 562 void *ptr = NULL;
c7909509 563
36d0fd21 564 if (!atomic_pool) {
e9da6e99 565 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
566 return NULL;
567 }
568
36d0fd21
LA
569 val = gen_pool_alloc(atomic_pool, size);
570 if (val) {
571 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
572
573 *ret_page = phys_to_page(phys);
574 ptr = (void *)val;
c7909509 575 }
e9da6e99
MS
576
577 return ptr;
c7909509
MS
578}
579
21d0a759
HD
580static bool __in_atomic_pool(void *start, size_t size)
581{
36d0fd21 582 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
21d0a759
HD
583}
584
e9da6e99 585static int __free_from_pool(void *start, size_t size)
c7909509 586{
21d0a759 587 if (!__in_atomic_pool(start, size))
c7909509
MS
588 return 0;
589
36d0fd21 590 gen_pool_free(atomic_pool, (unsigned long)start, size);
e9da6e99 591
c7909509
MS
592 return 1;
593}
594
595static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 596 pgprot_t prot, struct page **ret_page,
f1270896 597 const void *caller, bool want_vaddr,
712c604d 598 int coherent_flag, gfp_t gfp)
c7909509
MS
599{
600 unsigned long order = get_order(size);
601 size_t count = size >> PAGE_SHIFT;
602 struct page *page;
6e8266e3 603 void *ptr = NULL;
c7909509 604
712c604d 605 page = dma_alloc_from_contiguous(dev, count, order, gfp);
c7909509
MS
606 if (!page)
607 return NULL;
608
f1270896 609 __dma_clear_buffer(page, size, coherent_flag);
c7909509 610
6e8266e3
CC
611 if (!want_vaddr)
612 goto out;
613
9848e48f
MS
614 if (PageHighMem(page)) {
615 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
616 if (!ptr) {
617 dma_release_from_contiguous(dev, page, count);
618 return NULL;
619 }
620 } else {
621 __dma_remap(page, size, prot);
622 ptr = page_address(page);
623 }
6e8266e3
CC
624
625 out:
c7909509 626 *ret_page = page;
9848e48f 627 return ptr;
c7909509
MS
628}
629
630static void __free_from_contiguous(struct device *dev, struct page *page,
6e8266e3 631 void *cpu_addr, size_t size, bool want_vaddr)
c7909509 632{
6e8266e3
CC
633 if (want_vaddr) {
634 if (PageHighMem(page))
635 __dma_free_remap(cpu_addr, size);
636 else
637 __dma_remap(page, size, PAGE_KERNEL);
638 }
c7909509
MS
639 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
640}
641
00085f1e 642static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
f99d6034 643{
00085f1e
KK
644 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
645 pgprot_writecombine(prot) :
646 pgprot_dmacoherent(prot);
f99d6034
MS
647 return prot;
648}
649
c7909509
MS
650#define nommu() 0
651
ab6494f0 652#else /* !CONFIG_MMU */
695ae0af 653
c7909509
MS
654#define nommu() 1
655
6e8266e3
CC
656#define __get_dma_pgprot(attrs, prot) __pgprot(0)
657#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
e9da6e99 658#define __alloc_from_pool(size, ret_page) NULL
712c604d 659#define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag, gfp) NULL
b4268676 660#define __free_from_pool(cpu_addr, size) do { } while (0)
6e8266e3 661#define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
c7909509 662#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
663
664#endif /* CONFIG_MMU */
665
c7909509
MS
666static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
667 struct page **ret_page)
ab6494f0 668{
c7909509 669 struct page *page;
f1270896
GC
670 /* __alloc_simple_buffer is only called when the device is coherent */
671 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
c7909509
MS
672 if (!page)
673 return NULL;
674
675 *ret_page = page;
676 return page_address(page);
677}
678
b4268676
RV
679static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
680 struct page **ret_page)
681{
682 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
683 ret_page);
684}
c7909509 685
b4268676
RV
686static void simple_allocator_free(struct arm_dma_free_args *args)
687{
688 __dma_free_buffer(args->page, args->size);
689}
690
691static struct arm_dma_allocator simple_allocator = {
692 .alloc = simple_allocator_alloc,
693 .free = simple_allocator_free,
694};
695
696static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
697 struct page **ret_page)
698{
699 return __alloc_from_contiguous(args->dev, args->size, args->prot,
700 ret_page, args->caller,
712c604d
LS
701 args->want_vaddr, args->coherent_flag,
702 args->gfp);
b4268676
RV
703}
704
705static void cma_allocator_free(struct arm_dma_free_args *args)
706{
707 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
708 args->size, args->want_vaddr);
709}
710
711static struct arm_dma_allocator cma_allocator = {
712 .alloc = cma_allocator_alloc,
713 .free = cma_allocator_free,
714};
715
716static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
717 struct page **ret_page)
718{
719 return __alloc_from_pool(args->size, ret_page);
720}
721
722static void pool_allocator_free(struct arm_dma_free_args *args)
723{
724 __free_from_pool(args->cpu_addr, args->size);
725}
726
727static struct arm_dma_allocator pool_allocator = {
728 .alloc = pool_allocator_alloc,
729 .free = pool_allocator_free,
730};
731
732static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
733 struct page **ret_page)
734{
735 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
736 args->prot, ret_page, args->caller,
737 args->want_vaddr);
738}
739
740static void remap_allocator_free(struct arm_dma_free_args *args)
741{
742 if (args->want_vaddr)
743 __dma_free_remap(args->cpu_addr, args->size);
744
745 __dma_free_buffer(args->page, args->size);
746}
747
748static struct arm_dma_allocator remap_allocator = {
749 .alloc = remap_allocator_alloc,
750 .free = remap_allocator_free,
751};
c7909509
MS
752
753static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
6e8266e3 754 gfp_t gfp, pgprot_t prot, bool is_coherent,
00085f1e 755 unsigned long attrs, const void *caller)
c7909509
MS
756{
757 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 758 struct page *page = NULL;
31ebf944 759 void *addr;
b4268676 760 bool allowblock, cma;
19e6e5e5 761 struct arm_dma_buffer *buf;
b4268676
RV
762 struct arm_dma_alloc_args args = {
763 .dev = dev,
764 .size = PAGE_ALIGN(size),
765 .gfp = gfp,
766 .prot = prot,
767 .caller = caller,
00085f1e 768 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
f1270896 769 .coherent_flag = is_coherent ? COHERENT : NORMAL,
b4268676 770 };
ab6494f0 771
c7909509
MS
772#ifdef CONFIG_DMA_API_DEBUG
773 u64 limit = (mask + 1) & ~mask;
774 if (limit && size >= limit) {
775 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
776 size, mask);
777 return NULL;
778 }
779#endif
780
781 if (!mask)
782 return NULL;
783
9c18fcf7
AC
784 buf = kzalloc(sizeof(*buf),
785 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
19e6e5e5
RV
786 if (!buf)
787 return NULL;
788
c7909509
MS
789 if (mask < 0xffffffffULL)
790 gfp |= GFP_DMA;
791
ea2e7057
SB
792 /*
793 * Following is a work-around (a.k.a. hack) to prevent pages
794 * with __GFP_COMP being passed to split_page() which cannot
795 * handle them. The real problem is that this flag probably
796 * should be 0 on ARM as it is not supported on this
797 * platform; see CONFIG_HUGETLBFS.
798 */
799 gfp &= ~(__GFP_COMP);
b4268676 800 args.gfp = gfp;
ea2e7057 801
553ac788 802 *handle = DMA_ERROR_CODE;
b4268676
RV
803 allowblock = gfpflags_allow_blocking(gfp);
804 cma = allowblock ? dev_get_cma_area(dev) : false;
805
806 if (cma)
807 buf->allocator = &cma_allocator;
808 else if (nommu() || is_coherent)
809 buf->allocator = &simple_allocator;
810 else if (allowblock)
811 buf->allocator = &remap_allocator;
31ebf944 812 else
b4268676
RV
813 buf->allocator = &pool_allocator;
814
815 addr = buf->allocator->alloc(&args, &page);
695ae0af 816
19e6e5e5
RV
817 if (page) {
818 unsigned long flags;
819
9eedd963 820 *handle = pfn_to_dma(dev, page_to_pfn(page));
b4268676 821 buf->virt = args.want_vaddr ? addr : page;
19e6e5e5
RV
822
823 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
824 list_add(&buf->list, &arm_dma_bufs);
825 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
826 } else {
827 kfree(buf);
828 }
695ae0af 829
b4268676 830 return args.want_vaddr ? addr : page;
31ebf944 831}
1da177e4
LT
832
833/*
834 * Allocate DMA-coherent memory space and return both the kernel remapped
835 * virtual and bus address for that space.
836 */
f99d6034 837void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
00085f1e 838 gfp_t gfp, unsigned long attrs)
1da177e4 839{
0ea1ec71 840 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1fe53268 841
dd37e940 842 return __dma_alloc(dev, size, handle, gfp, prot, false,
6e8266e3 843 attrs, __builtin_return_address(0));
dd37e940
RH
844}
845
846static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
00085f1e 847 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
dd37e940 848{
21caf3a7 849 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
6e8266e3 850 attrs, __builtin_return_address(0));
1da177e4 851}
1da177e4 852
55af8a91 853static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
f99d6034 854 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 855 unsigned long attrs)
1da177e4 856{
ab6494f0
CM
857 int ret = -ENXIO;
858#ifdef CONFIG_MMU
50262a4b
MS
859 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
860 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 861 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
862 unsigned long off = vma->vm_pgoff;
863
47142f07
MS
864 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
865 return ret;
866
50262a4b
MS
867 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
868 ret = remap_pfn_range(vma, vma->vm_start,
869 pfn + off,
870 vma->vm_end - vma->vm_start,
871 vma->vm_page_prot);
872 }
79964a1c
BG
873#else
874 ret = vm_iomap_memory(vma, vma->vm_start,
875 (vma->vm_end - vma->vm_start));
ab6494f0 876#endif /* CONFIG_MMU */
1da177e4
LT
877
878 return ret;
879}
880
55af8a91
ML
881/*
882 * Create userspace mapping for the DMA-coherent memory.
883 */
884static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
885 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 886 unsigned long attrs)
55af8a91
ML
887{
888 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
889}
890
891int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
892 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 893 unsigned long attrs)
55af8a91
ML
894{
895#ifdef CONFIG_MMU
896 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
897#endif /* CONFIG_MMU */
898 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
899}
900
1da177e4 901/*
c7909509 902 * Free a buffer as defined by the above mapping.
1da177e4 903 */
dd37e940 904static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
00085f1e 905 dma_addr_t handle, unsigned long attrs,
dd37e940 906 bool is_coherent)
1da177e4 907{
c7909509 908 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
19e6e5e5 909 struct arm_dma_buffer *buf;
b4268676
RV
910 struct arm_dma_free_args args = {
911 .dev = dev,
912 .size = PAGE_ALIGN(size),
913 .cpu_addr = cpu_addr,
914 .page = page,
00085f1e 915 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
b4268676 916 };
19e6e5e5
RV
917
918 buf = arm_dma_buffer_find(cpu_addr);
919 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
920 return;
5edf71ae 921
b4268676 922 buf->allocator->free(&args);
19e6e5e5 923 kfree(buf);
1da177e4 924}
afd1a321 925
dd37e940 926void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
00085f1e 927 dma_addr_t handle, unsigned long attrs)
dd37e940
RH
928{
929 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
930}
931
932static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
00085f1e 933 dma_addr_t handle, unsigned long attrs)
dd37e940
RH
934{
935 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
936}
937
dc2832e1
MS
938int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
939 void *cpu_addr, dma_addr_t handle, size_t size,
00085f1e 940 unsigned long attrs)
dc2832e1
MS
941{
942 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
943 int ret;
944
945 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
946 if (unlikely(ret))
947 return ret;
948
949 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
950 return 0;
951}
952
4ea0d737 953static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
954 size_t size, enum dma_data_direction dir,
955 void (*op)(const void *, size_t, int))
43377453 956{
15653371
RK
957 unsigned long pfn;
958 size_t left = size;
959
960 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
961 offset %= PAGE_SIZE;
962
43377453
NP
963 /*
964 * A single sg entry may refer to multiple physically contiguous
965 * pages. But we still need to process highmem pages individually.
966 * If highmem is not configured then the bulk of this loop gets
967 * optimized out.
968 */
43377453
NP
969 do {
970 size_t len = left;
93f1d629
RK
971 void *vaddr;
972
15653371
RK
973 page = pfn_to_page(pfn);
974
93f1d629 975 if (PageHighMem(page)) {
15653371 976 if (len + offset > PAGE_SIZE)
93f1d629 977 len = PAGE_SIZE - offset;
dd0f67f4
JK
978
979 if (cache_is_vipt_nonaliasing()) {
39af22a7 980 vaddr = kmap_atomic(page);
7e5a69e8 981 op(vaddr + offset, len, dir);
39af22a7 982 kunmap_atomic(vaddr);
dd0f67f4
JK
983 } else {
984 vaddr = kmap_high_get(page);
985 if (vaddr) {
986 op(vaddr + offset, len, dir);
987 kunmap_high(page);
988 }
43377453 989 }
93f1d629
RK
990 } else {
991 vaddr = page_address(page) + offset;
a9c9147e 992 op(vaddr, len, dir);
43377453 993 }
43377453 994 offset = 0;
15653371 995 pfn++;
43377453
NP
996 left -= len;
997 } while (left);
998}
4ea0d737 999
51fde349
MS
1000/*
1001 * Make an area consistent for devices.
1002 * Note: Drivers should NOT use this function directly, as it will break
1003 * platforms with CONFIG_DMABOUNCE.
1004 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1005 */
1006static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
1007 size_t size, enum dma_data_direction dir)
1008{
2161c248 1009 phys_addr_t paddr;
65af191a 1010
a9c9147e 1011 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
1012
1013 paddr = page_to_phys(page) + off;
2ffe2da3
RK
1014 if (dir == DMA_FROM_DEVICE) {
1015 outer_inv_range(paddr, paddr + size);
1016 } else {
1017 outer_clean_range(paddr, paddr + size);
1018 }
1019 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 1020}
4ea0d737 1021
51fde349 1022static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
1023 size_t size, enum dma_data_direction dir)
1024{
2161c248 1025 phys_addr_t paddr = page_to_phys(page) + off;
2ffe2da3
RK
1026
1027 /* FIXME: non-speculating: not required */
deace4a6
RK
1028 /* in any case, don't bother invalidating if DMA to device */
1029 if (dir != DMA_TO_DEVICE) {
2ffe2da3
RK
1030 outer_inv_range(paddr, paddr + size);
1031
deace4a6
RK
1032 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1033 }
c0177800
CM
1034
1035 /*
b2a234ed 1036 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 1037 */
b2a234ed
ML
1038 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1039 unsigned long pfn;
1040 size_t left = size;
1041
1042 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1043 off %= PAGE_SIZE;
1044 if (off) {
1045 pfn++;
1046 left -= PAGE_SIZE - off;
1047 }
1048 while (left >= PAGE_SIZE) {
1049 page = pfn_to_page(pfn++);
1050 set_bit(PG_dcache_clean, &page->flags);
1051 left -= PAGE_SIZE;
1052 }
1053 }
4ea0d737 1054}
43377453 1055
afd1a321 1056/**
2a550e73 1057 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
1058 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1059 * @sg: list of buffers
1060 * @nents: number of buffers to map
1061 * @dir: DMA transfer direction
1062 *
1063 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1064 * This is the scatter-gather version of the dma_map_single interface.
1065 * Here the scatter gather list elements are each tagged with the
1066 * appropriate dma address and length. They are obtained via
1067 * sg_dma_{address,length}.
1068 *
1069 * Device ownership issues as mentioned for dma_map_single are the same
1070 * here.
1071 */
2dc6a016 1072int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e 1073 enum dma_data_direction dir, unsigned long attrs)
afd1a321 1074{
5299709d 1075 const struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 1076 struct scatterlist *s;
01135d92 1077 int i, j;
afd1a321
RK
1078
1079 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
1080#ifdef CONFIG_NEED_SG_DMA_LENGTH
1081 s->dma_length = s->length;
1082#endif
2a550e73
MS
1083 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1084 s->length, dir, attrs);
01135d92
RK
1085 if (dma_mapping_error(dev, s->dma_address))
1086 goto bad_mapping;
afd1a321 1087 }
afd1a321 1088 return nents;
01135d92
RK
1089
1090 bad_mapping:
1091 for_each_sg(sg, s, i, j)
2a550e73 1092 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 1093 return 0;
afd1a321 1094}
afd1a321
RK
1095
1096/**
2a550e73 1097 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
1098 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1099 * @sg: list of buffers
0adfca6f 1100 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
1101 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1102 *
1103 * Unmap a set of streaming mode DMA translations. Again, CPU access
1104 * rules concerning calls here are the same as for dma_unmap_single().
1105 */
2dc6a016 1106void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e 1107 enum dma_data_direction dir, unsigned long attrs)
afd1a321 1108{
5299709d 1109 const struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 1110 struct scatterlist *s;
01135d92 1111
01135d92 1112 int i;
24056f52 1113
01135d92 1114 for_each_sg(sg, s, nents, i)
2a550e73 1115 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 1116}
afd1a321
RK
1117
1118/**
2a550e73 1119 * arm_dma_sync_sg_for_cpu
afd1a321
RK
1120 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1121 * @sg: list of buffers
1122 * @nents: number of buffers to map (returned from dma_map_sg)
1123 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1124 */
2dc6a016 1125void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1126 int nents, enum dma_data_direction dir)
1127{
5299709d 1128 const struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1129 struct scatterlist *s;
1130 int i;
1131
2a550e73
MS
1132 for_each_sg(sg, s, nents, i)
1133 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1134 dir);
afd1a321 1135}
afd1a321
RK
1136
1137/**
2a550e73 1138 * arm_dma_sync_sg_for_device
afd1a321
RK
1139 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1140 * @sg: list of buffers
1141 * @nents: number of buffers to map (returned from dma_map_sg)
1142 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1143 */
2dc6a016 1144void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1145 int nents, enum dma_data_direction dir)
1146{
5299709d 1147 const struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1148 struct scatterlist *s;
1149 int i;
1150
2a550e73
MS
1151 for_each_sg(sg, s, nents, i)
1152 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1153 dir);
afd1a321 1154}
24056f52 1155
022ae537
RK
1156/*
1157 * Return whether the given device DMA address mask can be supported
1158 * properly. For example, if your device can only drive the low 24-bits
1159 * during bus mastering, then you would pass 0x00ffffff as the mask
1160 * to this function.
1161 */
1162int dma_supported(struct device *dev, u64 mask)
1163{
9f28cde0 1164 return __dma_supported(dev, mask, false);
022ae537
RK
1165}
1166EXPORT_SYMBOL(dma_supported);
1167
24056f52
RK
1168#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1169
1170static int __init dma_debug_do_init(void)
1171{
1172 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1173 return 0;
1174}
256ff1cf 1175core_initcall(dma_debug_do_init);
4ce63fcd
MS
1176
1177#ifdef CONFIG_ARM_DMA_USE_IOMMU
1178
7d2822df
S
1179static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1180{
1181 int prot = 0;
1182
1183 if (attrs & DMA_ATTR_PRIVILEGED)
1184 prot |= IOMMU_PRIV;
1185
1186 switch (dir) {
1187 case DMA_BIDIRECTIONAL:
1188 return prot | IOMMU_READ | IOMMU_WRITE;
1189 case DMA_TO_DEVICE:
1190 return prot | IOMMU_READ;
1191 case DMA_FROM_DEVICE:
1192 return prot | IOMMU_WRITE;
1193 default:
1194 return prot;
1195 }
1196}
1197
4ce63fcd
MS
1198/* IOMMU */
1199
4d852ef8
AH
1200static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1201
4ce63fcd
MS
1202static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1203 size_t size)
1204{
1205 unsigned int order = get_order(size);
1206 unsigned int align = 0;
1207 unsigned int count, start;
006f841d 1208 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1209 unsigned long flags;
4d852ef8
AH
1210 dma_addr_t iova;
1211 int i;
4ce63fcd 1212
60460abf
SWK
1213 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1214 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1215
68efd7d2
MS
1216 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1217 align = (1 << order) - 1;
4ce63fcd
MS
1218
1219 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8
AH
1220 for (i = 0; i < mapping->nr_bitmaps; i++) {
1221 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1222 mapping->bits, 0, count, align);
1223
1224 if (start > mapping->bits)
1225 continue;
1226
1227 bitmap_set(mapping->bitmaps[i], start, count);
1228 break;
4ce63fcd
MS
1229 }
1230
4d852ef8
AH
1231 /*
1232 * No unused range found. Try to extend the existing mapping
1233 * and perform a second attempt to reserve an IO virtual
1234 * address range of size bytes.
1235 */
1236 if (i == mapping->nr_bitmaps) {
1237 if (extend_iommu_mapping(mapping)) {
1238 spin_unlock_irqrestore(&mapping->lock, flags);
1239 return DMA_ERROR_CODE;
1240 }
1241
1242 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1243 mapping->bits, 0, count, align);
1244
1245 if (start > mapping->bits) {
1246 spin_unlock_irqrestore(&mapping->lock, flags);
1247 return DMA_ERROR_CODE;
1248 }
1249
1250 bitmap_set(mapping->bitmaps[i], start, count);
1251 }
4ce63fcd
MS
1252 spin_unlock_irqrestore(&mapping->lock, flags);
1253
006f841d 1254 iova = mapping->base + (mapping_size * i);
68efd7d2 1255 iova += start << PAGE_SHIFT;
4d852ef8
AH
1256
1257 return iova;
4ce63fcd
MS
1258}
1259
1260static inline void __free_iova(struct dma_iommu_mapping *mapping,
1261 dma_addr_t addr, size_t size)
1262{
4d852ef8 1263 unsigned int start, count;
006f841d 1264 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1265 unsigned long flags;
4d852ef8
AH
1266 dma_addr_t bitmap_base;
1267 u32 bitmap_index;
1268
1269 if (!size)
1270 return;
1271
006f841d 1272 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
4d852ef8
AH
1273 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1274
006f841d 1275 bitmap_base = mapping->base + mapping_size * bitmap_index;
4d852ef8 1276
68efd7d2 1277 start = (addr - bitmap_base) >> PAGE_SHIFT;
4d852ef8 1278
006f841d 1279 if (addr + size > bitmap_base + mapping_size) {
4d852ef8
AH
1280 /*
1281 * The address range to be freed reaches into the iova
1282 * range of the next bitmap. This should not happen as
1283 * we don't allow this in __alloc_iova (at the
1284 * moment).
1285 */
1286 BUG();
1287 } else
68efd7d2 1288 count = size >> PAGE_SHIFT;
4ce63fcd
MS
1289
1290 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8 1291 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
4ce63fcd
MS
1292 spin_unlock_irqrestore(&mapping->lock, flags);
1293}
1294
33298ef6
DA
1295/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1296static const int iommu_order_array[] = { 9, 8, 4, 0 };
1297
549a17e4 1298static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
00085f1e 1299 gfp_t gfp, unsigned long attrs,
f1270896 1300 int coherent_flag)
4ce63fcd
MS
1301{
1302 struct page **pages;
1303 int count = size >> PAGE_SHIFT;
1304 int array_size = count * sizeof(struct page *);
1305 int i = 0;
33298ef6 1306 int order_idx = 0;
4ce63fcd
MS
1307
1308 if (array_size <= PAGE_SIZE)
23be7fda 1309 pages = kzalloc(array_size, GFP_KERNEL);
4ce63fcd
MS
1310 else
1311 pages = vzalloc(array_size);
1312 if (!pages)
1313 return NULL;
1314
00085f1e 1315 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
549a17e4
MS
1316 {
1317 unsigned long order = get_order(size);
1318 struct page *page;
1319
712c604d 1320 page = dma_alloc_from_contiguous(dev, count, order, gfp);
549a17e4
MS
1321 if (!page)
1322 goto error;
1323
f1270896 1324 __dma_clear_buffer(page, size, coherent_flag);
549a17e4
MS
1325
1326 for (i = 0; i < count; i++)
1327 pages[i] = page + i;
1328
1329 return pages;
1330 }
1331
14d3ae2e 1332 /* Go straight to 4K chunks if caller says it's OK. */
00085f1e 1333 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
14d3ae2e
DA
1334 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1335
f8669bef
MS
1336 /*
1337 * IOMMU can map any pages, so himem can also be used here
1338 */
1339 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1340
4ce63fcd 1341 while (count) {
49f28aa6
TF
1342 int j, order;
1343
33298ef6
DA
1344 order = iommu_order_array[order_idx];
1345
1346 /* Drop down when we get small */
1347 if (__fls(count) < order) {
1348 order_idx++;
1349 continue;
49f28aa6 1350 }
4ce63fcd 1351
33298ef6
DA
1352 if (order) {
1353 /* See if it's easy to allocate a high-order chunk */
1354 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1355
1356 /* Go down a notch at first sign of pressure */
1357 if (!pages[i]) {
1358 order_idx++;
1359 continue;
1360 }
1361 } else {
49f28aa6
TF
1362 pages[i] = alloc_pages(gfp, 0);
1363 if (!pages[i])
1364 goto error;
1365 }
4ce63fcd 1366
5a796eeb 1367 if (order) {
4ce63fcd 1368 split_page(pages[i], order);
5a796eeb
HD
1369 j = 1 << order;
1370 while (--j)
1371 pages[i + j] = pages[i] + j;
1372 }
4ce63fcd 1373
f1270896 1374 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
4ce63fcd
MS
1375 i += 1 << order;
1376 count -= 1 << order;
1377 }
1378
1379 return pages;
1380error:
9fa8af91 1381 while (i--)
4ce63fcd
MS
1382 if (pages[i])
1383 __free_pages(pages[i], 0);
1d5cfdb0 1384 kvfree(pages);
4ce63fcd
MS
1385 return NULL;
1386}
1387
549a17e4 1388static int __iommu_free_buffer(struct device *dev, struct page **pages,
00085f1e 1389 size_t size, unsigned long attrs)
4ce63fcd
MS
1390{
1391 int count = size >> PAGE_SHIFT;
4ce63fcd 1392 int i;
549a17e4 1393
00085f1e 1394 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
549a17e4
MS
1395 dma_release_from_contiguous(dev, pages[0], count);
1396 } else {
1397 for (i = 0; i < count; i++)
1398 if (pages[i])
1399 __free_pages(pages[i], 0);
1400 }
1401
1d5cfdb0 1402 kvfree(pages);
4ce63fcd
MS
1403 return 0;
1404}
1405
1406/*
1407 * Create a CPU mapping for a specified pages
1408 */
1409static void *
e9da6e99
MS
1410__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1411 const void *caller)
4ce63fcd 1412{
513510dd
LA
1413 return dma_common_pages_remap(pages, size,
1414 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
4ce63fcd
MS
1415}
1416
1417/*
1418 * Create a mapping in device IO address space for specified pages
1419 */
1420static dma_addr_t
7d2822df
S
1421__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1422 unsigned long attrs)
4ce63fcd 1423{
89cfdb19 1424 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1425 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1426 dma_addr_t dma_addr, iova;
90cde558 1427 int i;
4ce63fcd
MS
1428
1429 dma_addr = __alloc_iova(mapping, size);
1430 if (dma_addr == DMA_ERROR_CODE)
1431 return dma_addr;
1432
1433 iova = dma_addr;
1434 for (i = 0; i < count; ) {
90cde558
AP
1435 int ret;
1436
4ce63fcd
MS
1437 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1438 phys_addr_t phys = page_to_phys(pages[i]);
1439 unsigned int len, j;
1440
1441 for (j = i + 1; j < count; j++, next_pfn++)
1442 if (page_to_pfn(pages[j]) != next_pfn)
1443 break;
1444
1445 len = (j - i) << PAGE_SHIFT;
c9b24996 1446 ret = iommu_map(mapping->domain, iova, phys, len,
7d2822df 1447 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
4ce63fcd
MS
1448 if (ret < 0)
1449 goto fail;
1450 iova += len;
1451 i = j;
1452 }
1453 return dma_addr;
1454fail:
1455 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1456 __free_iova(mapping, dma_addr, size);
1457 return DMA_ERROR_CODE;
1458}
1459
1460static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1461{
89cfdb19 1462 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1463
1464 /*
1465 * add optional in-page offset from iova to size and align
1466 * result to page size
1467 */
1468 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1469 iova &= PAGE_MASK;
1470
1471 iommu_unmap(mapping->domain, iova, size);
1472 __free_iova(mapping, iova, size);
1473 return 0;
1474}
1475
665bad7b
HD
1476static struct page **__atomic_get_pages(void *addr)
1477{
36d0fd21
LA
1478 struct page *page;
1479 phys_addr_t phys;
1480
1481 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1482 page = phys_to_page(phys);
665bad7b 1483
36d0fd21 1484 return (struct page **)page;
665bad7b
HD
1485}
1486
00085f1e 1487static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
e9da6e99
MS
1488{
1489 struct vm_struct *area;
1490
665bad7b
HD
1491 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1492 return __atomic_get_pages(cpu_addr);
1493
00085f1e 1494 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
955c757e
MS
1495 return cpu_addr;
1496
e9da6e99
MS
1497 area = find_vm_area(cpu_addr);
1498 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1499 return area->pages;
1500 return NULL;
1501}
1502
56506822 1503static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
7d2822df
S
1504 dma_addr_t *handle, int coherent_flag,
1505 unsigned long attrs)
479ed93a
HD
1506{
1507 struct page *page;
1508 void *addr;
1509
56506822
GC
1510 if (coherent_flag == COHERENT)
1511 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1512 else
1513 addr = __alloc_from_pool(size, &page);
479ed93a
HD
1514 if (!addr)
1515 return NULL;
1516
7d2822df 1517 *handle = __iommu_create_mapping(dev, &page, size, attrs);
479ed93a
HD
1518 if (*handle == DMA_ERROR_CODE)
1519 goto err_mapping;
1520
1521 return addr;
1522
1523err_mapping:
1524 __free_from_pool(addr, size);
1525 return NULL;
1526}
1527
d5898291 1528static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
56506822 1529 dma_addr_t handle, size_t size, int coherent_flag)
479ed93a
HD
1530{
1531 __iommu_remove_mapping(dev, handle, size);
56506822
GC
1532 if (coherent_flag == COHERENT)
1533 __dma_free_buffer(virt_to_page(cpu_addr), size);
1534 else
1535 __free_from_pool(cpu_addr, size);
479ed93a
HD
1536}
1537
56506822 1538static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
00085f1e 1539 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
56506822 1540 int coherent_flag)
4ce63fcd 1541{
71b55663 1542 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
4ce63fcd
MS
1543 struct page **pages;
1544 void *addr = NULL;
1545
1546 *handle = DMA_ERROR_CODE;
1547 size = PAGE_ALIGN(size);
1548
56506822
GC
1549 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1550 return __iommu_alloc_simple(dev, size, gfp, handle,
7d2822df 1551 coherent_flag, attrs);
479ed93a 1552
5b91a98c
RZ
1553 /*
1554 * Following is a work-around (a.k.a. hack) to prevent pages
1555 * with __GFP_COMP being passed to split_page() which cannot
1556 * handle them. The real problem is that this flag probably
1557 * should be 0 on ARM as it is not supported on this
1558 * platform; see CONFIG_HUGETLBFS.
1559 */
1560 gfp &= ~(__GFP_COMP);
1561
56506822 1562 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
4ce63fcd
MS
1563 if (!pages)
1564 return NULL;
1565
7d2822df 1566 *handle = __iommu_create_mapping(dev, pages, size, attrs);
4ce63fcd
MS
1567 if (*handle == DMA_ERROR_CODE)
1568 goto err_buffer;
1569
00085f1e 1570 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
955c757e
MS
1571 return pages;
1572
e9da6e99
MS
1573 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1574 __builtin_return_address(0));
4ce63fcd
MS
1575 if (!addr)
1576 goto err_mapping;
1577
1578 return addr;
1579
1580err_mapping:
1581 __iommu_remove_mapping(dev, *handle, size);
1582err_buffer:
549a17e4 1583 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1584 return NULL;
1585}
1586
56506822 1587static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
00085f1e 1588 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
56506822
GC
1589{
1590 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1591}
1592
1593static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
00085f1e 1594 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
56506822
GC
1595{
1596 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1597}
1598
1599static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
4ce63fcd 1600 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 1601 unsigned long attrs)
4ce63fcd 1602{
e9da6e99
MS
1603 unsigned long uaddr = vma->vm_start;
1604 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1605 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
371f0f08
MS
1606 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1607 unsigned long off = vma->vm_pgoff;
4ce63fcd 1608
e9da6e99
MS
1609 if (!pages)
1610 return -ENXIO;
4ce63fcd 1611
371f0f08
MS
1612 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1613 return -ENXIO;
1614
7e312103
MS
1615 pages += off;
1616
e9da6e99
MS
1617 do {
1618 int ret = vm_insert_page(vma, uaddr, *pages++);
1619 if (ret) {
1620 pr_err("Remapping memory failed: %d\n", ret);
1621 return ret;
1622 }
1623 uaddr += PAGE_SIZE;
1624 usize -= PAGE_SIZE;
1625 } while (usize > 0);
4ce63fcd 1626
4ce63fcd
MS
1627 return 0;
1628}
56506822
GC
1629static int arm_iommu_mmap_attrs(struct device *dev,
1630 struct vm_area_struct *vma, void *cpu_addr,
00085f1e 1631 dma_addr_t dma_addr, size_t size, unsigned long attrs)
56506822
GC
1632{
1633 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1634
1635 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1636}
1637
1638static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1639 struct vm_area_struct *vma, void *cpu_addr,
00085f1e 1640 dma_addr_t dma_addr, size_t size, unsigned long attrs)
56506822
GC
1641{
1642 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1643}
4ce63fcd
MS
1644
1645/*
1646 * free a page as defined by the above mapping.
1647 * Must not be called with IRQs disabled.
1648 */
56506822 1649void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
00085f1e 1650 dma_addr_t handle, unsigned long attrs, int coherent_flag)
4ce63fcd 1651{
836bfa0d 1652 struct page **pages;
4ce63fcd
MS
1653 size = PAGE_ALIGN(size);
1654
56506822
GC
1655 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1656 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
e9da6e99 1657 return;
4ce63fcd 1658 }
e9da6e99 1659
836bfa0d
YC
1660 pages = __iommu_get_pages(cpu_addr, attrs);
1661 if (!pages) {
1662 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1663 return;
1664 }
1665
00085f1e 1666 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
513510dd
LA
1667 dma_common_free_remap(cpu_addr, size,
1668 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
955c757e 1669 }
e9da6e99
MS
1670
1671 __iommu_remove_mapping(dev, handle, size);
549a17e4 1672 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1673}
1674
56506822 1675void arm_iommu_free_attrs(struct device *dev, size_t size,
00085f1e 1676 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
56506822
GC
1677{
1678 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1679}
1680
1681void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
00085f1e 1682 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
56506822
GC
1683{
1684 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1685}
1686
dc2832e1
MS
1687static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1688 void *cpu_addr, dma_addr_t dma_addr,
00085f1e 1689 size_t size, unsigned long attrs)
dc2832e1
MS
1690{
1691 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1692 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1693
1694 if (!pages)
1695 return -ENXIO;
1696
1697 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1698 GFP_KERNEL);
4ce63fcd
MS
1699}
1700
1701/*
1702 * Map a part of the scatter-gather list into contiguous io address space
1703 */
1704static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1705 size_t size, dma_addr_t *handle,
00085f1e 1706 enum dma_data_direction dir, unsigned long attrs,
0fa478df 1707 bool is_coherent)
4ce63fcd 1708{
89cfdb19 1709 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1710 dma_addr_t iova, iova_base;
1711 int ret = 0;
1712 unsigned int count;
1713 struct scatterlist *s;
c9b24996 1714 int prot;
4ce63fcd
MS
1715
1716 size = PAGE_ALIGN(size);
1717 *handle = DMA_ERROR_CODE;
1718
1719 iova_base = iova = __alloc_iova(mapping, size);
1720 if (iova == DMA_ERROR_CODE)
1721 return -ENOMEM;
1722
1723 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
3e6110fd 1724 phys_addr_t phys = page_to_phys(sg_page(s));
4ce63fcd
MS
1725 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1726
00085f1e 1727 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
4ce63fcd
MS
1728 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1729
7d2822df 1730 prot = __dma_info_to_prot(dir, attrs);
c9b24996
AH
1731
1732 ret = iommu_map(mapping->domain, iova, phys, len, prot);
4ce63fcd
MS
1733 if (ret < 0)
1734 goto fail;
1735 count += len >> PAGE_SHIFT;
1736 iova += len;
1737 }
1738 *handle = iova_base;
1739
1740 return 0;
1741fail:
1742 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1743 __free_iova(mapping, iova_base, size);
1744 return ret;
1745}
1746
0fa478df 1747static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e 1748 enum dma_data_direction dir, unsigned long attrs,
0fa478df 1749 bool is_coherent)
4ce63fcd
MS
1750{
1751 struct scatterlist *s = sg, *dma = sg, *start = sg;
1752 int i, count = 0;
1753 unsigned int offset = s->offset;
1754 unsigned int size = s->offset + s->length;
1755 unsigned int max = dma_get_max_seg_size(dev);
1756
1757 for (i = 1; i < nents; i++) {
1758 s = sg_next(s);
1759
1760 s->dma_address = DMA_ERROR_CODE;
1761 s->dma_length = 0;
1762
1763 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1764 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1765 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1766 goto bad_mapping;
1767
1768 dma->dma_address += offset;
1769 dma->dma_length = size - offset;
1770
1771 size = offset = s->offset;
1772 start = s;
1773 dma = sg_next(dma);
1774 count += 1;
1775 }
1776 size += s->length;
1777 }
0fa478df
RH
1778 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1779 is_coherent) < 0)
4ce63fcd
MS
1780 goto bad_mapping;
1781
1782 dma->dma_address += offset;
1783 dma->dma_length = size - offset;
1784
1785 return count+1;
1786
1787bad_mapping:
1788 for_each_sg(sg, s, count, i)
1789 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1790 return 0;
1791}
1792
1793/**
0fa478df 1794 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1795 * @dev: valid struct device pointer
1796 * @sg: list of buffers
0fa478df
RH
1797 * @nents: number of buffers to map
1798 * @dir: DMA transfer direction
4ce63fcd 1799 *
0fa478df
RH
1800 * Map a set of i/o coherent buffers described by scatterlist in streaming
1801 * mode for DMA. The scatter gather list elements are merged together (if
1802 * possible) and tagged with the appropriate dma address and length. They are
1803 * obtained via sg_dma_{address,length}.
4ce63fcd 1804 */
0fa478df 1805int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
00085f1e 1806 int nents, enum dma_data_direction dir, unsigned long attrs)
0fa478df
RH
1807{
1808 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1809}
1810
1811/**
1812 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1813 * @dev: valid struct device pointer
1814 * @sg: list of buffers
1815 * @nents: number of buffers to map
1816 * @dir: DMA transfer direction
1817 *
1818 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1819 * The scatter gather list elements are merged together (if possible) and
1820 * tagged with the appropriate dma address and length. They are obtained via
1821 * sg_dma_{address,length}.
1822 */
1823int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
00085f1e 1824 int nents, enum dma_data_direction dir, unsigned long attrs)
0fa478df
RH
1825{
1826 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1827}
1828
1829static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
00085f1e
KK
1830 int nents, enum dma_data_direction dir,
1831 unsigned long attrs, bool is_coherent)
4ce63fcd
MS
1832{
1833 struct scatterlist *s;
1834 int i;
1835
1836 for_each_sg(sg, s, nents, i) {
1837 if (sg_dma_len(s))
1838 __iommu_remove_mapping(dev, sg_dma_address(s),
1839 sg_dma_len(s));
00085f1e 1840 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
4ce63fcd
MS
1841 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1842 s->length, dir);
1843 }
1844}
1845
0fa478df
RH
1846/**
1847 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1848 * @dev: valid struct device pointer
1849 * @sg: list of buffers
1850 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1851 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1852 *
1853 * Unmap a set of streaming mode DMA translations. Again, CPU access
1854 * rules concerning calls here are the same as for dma_unmap_single().
1855 */
1856void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
00085f1e
KK
1857 int nents, enum dma_data_direction dir,
1858 unsigned long attrs)
0fa478df
RH
1859{
1860 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1861}
1862
1863/**
1864 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1865 * @dev: valid struct device pointer
1866 * @sg: list of buffers
1867 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1868 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1869 *
1870 * Unmap a set of streaming mode DMA translations. Again, CPU access
1871 * rules concerning calls here are the same as for dma_unmap_single().
1872 */
1873void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e
KK
1874 enum dma_data_direction dir,
1875 unsigned long attrs)
0fa478df
RH
1876{
1877 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1878}
1879
4ce63fcd
MS
1880/**
1881 * arm_iommu_sync_sg_for_cpu
1882 * @dev: valid struct device pointer
1883 * @sg: list of buffers
1884 * @nents: number of buffers to map (returned from dma_map_sg)
1885 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1886 */
1887void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1888 int nents, enum dma_data_direction dir)
1889{
1890 struct scatterlist *s;
1891 int i;
1892
1893 for_each_sg(sg, s, nents, i)
0fa478df 1894 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1895
1896}
1897
1898/**
1899 * arm_iommu_sync_sg_for_device
1900 * @dev: valid struct device pointer
1901 * @sg: list of buffers
1902 * @nents: number of buffers to map (returned from dma_map_sg)
1903 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1904 */
1905void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1906 int nents, enum dma_data_direction dir)
1907{
1908 struct scatterlist *s;
1909 int i;
1910
1911 for_each_sg(sg, s, nents, i)
0fa478df 1912 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1913}
1914
1915
1916/**
0fa478df 1917 * arm_coherent_iommu_map_page
4ce63fcd
MS
1918 * @dev: valid struct device pointer
1919 * @page: page that buffer resides in
1920 * @offset: offset into page for start of buffer
1921 * @size: size of buffer to map
1922 * @dir: DMA transfer direction
1923 *
0fa478df 1924 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1925 */
0fa478df 1926static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd 1927 unsigned long offset, size_t size, enum dma_data_direction dir,
00085f1e 1928 unsigned long attrs)
4ce63fcd 1929{
89cfdb19 1930 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd 1931 dma_addr_t dma_addr;
13987d68 1932 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1933
4ce63fcd
MS
1934 dma_addr = __alloc_iova(mapping, len);
1935 if (dma_addr == DMA_ERROR_CODE)
1936 return dma_addr;
1937
7d2822df 1938 prot = __dma_info_to_prot(dir, attrs);
13987d68
WD
1939
1940 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
4ce63fcd
MS
1941 if (ret < 0)
1942 goto fail;
1943
1944 return dma_addr + offset;
1945fail:
1946 __free_iova(mapping, dma_addr, len);
1947 return DMA_ERROR_CODE;
1948}
1949
0fa478df
RH
1950/**
1951 * arm_iommu_map_page
1952 * @dev: valid struct device pointer
1953 * @page: page that buffer resides in
1954 * @offset: offset into page for start of buffer
1955 * @size: size of buffer to map
1956 * @dir: DMA transfer direction
1957 *
1958 * IOMMU aware version of arm_dma_map_page()
1959 */
1960static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1961 unsigned long offset, size_t size, enum dma_data_direction dir,
00085f1e 1962 unsigned long attrs)
0fa478df 1963{
00085f1e 1964 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
0fa478df
RH
1965 __dma_page_cpu_to_dev(page, offset, size, dir);
1966
1967 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1968}
1969
1970/**
1971 * arm_coherent_iommu_unmap_page
1972 * @dev: valid struct device pointer
1973 * @handle: DMA address of buffer
1974 * @size: size of buffer (same as passed to dma_map_page)
1975 * @dir: DMA transfer direction (same as passed to dma_map_page)
1976 *
1977 * Coherent IOMMU aware version of arm_dma_unmap_page()
1978 */
1979static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
00085f1e 1980 size_t size, enum dma_data_direction dir, unsigned long attrs)
0fa478df 1981{
89cfdb19 1982 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
0fa478df 1983 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1984 int offset = handle & ~PAGE_MASK;
1985 int len = PAGE_ALIGN(size + offset);
1986
1987 if (!iova)
1988 return;
1989
1990 iommu_unmap(mapping->domain, iova, len);
1991 __free_iova(mapping, iova, len);
1992}
1993
4ce63fcd
MS
1994/**
1995 * arm_iommu_unmap_page
1996 * @dev: valid struct device pointer
1997 * @handle: DMA address of buffer
1998 * @size: size of buffer (same as passed to dma_map_page)
1999 * @dir: DMA transfer direction (same as passed to dma_map_page)
2000 *
2001 * IOMMU aware version of arm_dma_unmap_page()
2002 */
2003static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
00085f1e 2004 size_t size, enum dma_data_direction dir, unsigned long attrs)
4ce63fcd 2005{
89cfdb19 2006 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
2007 dma_addr_t iova = handle & PAGE_MASK;
2008 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2009 int offset = handle & ~PAGE_MASK;
2010 int len = PAGE_ALIGN(size + offset);
2011
2012 if (!iova)
2013 return;
2014
00085f1e 2015 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
4ce63fcd
MS
2016 __dma_page_dev_to_cpu(page, offset, size, dir);
2017
2018 iommu_unmap(mapping->domain, iova, len);
2019 __free_iova(mapping, iova, len);
2020}
2021
24ed5d2c
NS
2022/**
2023 * arm_iommu_map_resource - map a device resource for DMA
2024 * @dev: valid struct device pointer
2025 * @phys_addr: physical address of resource
2026 * @size: size of resource to map
2027 * @dir: DMA transfer direction
2028 */
2029static dma_addr_t arm_iommu_map_resource(struct device *dev,
2030 phys_addr_t phys_addr, size_t size,
2031 enum dma_data_direction dir, unsigned long attrs)
2032{
2033 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2034 dma_addr_t dma_addr;
2035 int ret, prot;
2036 phys_addr_t addr = phys_addr & PAGE_MASK;
2037 unsigned int offset = phys_addr & ~PAGE_MASK;
2038 size_t len = PAGE_ALIGN(size + offset);
2039
2040 dma_addr = __alloc_iova(mapping, len);
2041 if (dma_addr == DMA_ERROR_CODE)
2042 return dma_addr;
2043
7d2822df 2044 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
24ed5d2c
NS
2045
2046 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2047 if (ret < 0)
2048 goto fail;
2049
2050 return dma_addr + offset;
2051fail:
2052 __free_iova(mapping, dma_addr, len);
2053 return DMA_ERROR_CODE;
2054}
2055
2056/**
2057 * arm_iommu_unmap_resource - unmap a device DMA resource
2058 * @dev: valid struct device pointer
2059 * @dma_handle: DMA address to resource
2060 * @size: size of resource to map
2061 * @dir: DMA transfer direction
2062 */
2063static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2064 size_t size, enum dma_data_direction dir,
2065 unsigned long attrs)
2066{
2067 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2068 dma_addr_t iova = dma_handle & PAGE_MASK;
2069 unsigned int offset = dma_handle & ~PAGE_MASK;
2070 size_t len = PAGE_ALIGN(size + offset);
2071
2072 if (!iova)
2073 return;
2074
2075 iommu_unmap(mapping->domain, iova, len);
2076 __free_iova(mapping, iova, len);
2077}
2078
4ce63fcd
MS
2079static void arm_iommu_sync_single_for_cpu(struct device *dev,
2080 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2081{
89cfdb19 2082 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
2083 dma_addr_t iova = handle & PAGE_MASK;
2084 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2085 unsigned int offset = handle & ~PAGE_MASK;
2086
2087 if (!iova)
2088 return;
2089
0fa478df 2090 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
2091}
2092
2093static void arm_iommu_sync_single_for_device(struct device *dev,
2094 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2095{
89cfdb19 2096 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
2097 dma_addr_t iova = handle & PAGE_MASK;
2098 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2099 unsigned int offset = handle & ~PAGE_MASK;
2100
2101 if (!iova)
2102 return;
2103
2104 __dma_page_cpu_to_dev(page, offset, size, dir);
2105}
2106
5299709d 2107const struct dma_map_ops iommu_ops = {
4ce63fcd
MS
2108 .alloc = arm_iommu_alloc_attrs,
2109 .free = arm_iommu_free_attrs,
2110 .mmap = arm_iommu_mmap_attrs,
dc2832e1 2111 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
2112
2113 .map_page = arm_iommu_map_page,
2114 .unmap_page = arm_iommu_unmap_page,
2115 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2116 .sync_single_for_device = arm_iommu_sync_single_for_device,
2117
2118 .map_sg = arm_iommu_map_sg,
2119 .unmap_sg = arm_iommu_unmap_sg,
2120 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2121 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
24ed5d2c
NS
2122
2123 .map_resource = arm_iommu_map_resource,
2124 .unmap_resource = arm_iommu_unmap_resource,
4ce63fcd
MS
2125};
2126
5299709d 2127const struct dma_map_ops iommu_coherent_ops = {
56506822
GC
2128 .alloc = arm_coherent_iommu_alloc_attrs,
2129 .free = arm_coherent_iommu_free_attrs,
2130 .mmap = arm_coherent_iommu_mmap_attrs,
0fa478df
RH
2131 .get_sgtable = arm_iommu_get_sgtable,
2132
2133 .map_page = arm_coherent_iommu_map_page,
2134 .unmap_page = arm_coherent_iommu_unmap_page,
2135
2136 .map_sg = arm_coherent_iommu_map_sg,
2137 .unmap_sg = arm_coherent_iommu_unmap_sg,
24ed5d2c
NS
2138
2139 .map_resource = arm_iommu_map_resource,
2140 .unmap_resource = arm_iommu_unmap_resource,
0fa478df
RH
2141};
2142
4ce63fcd
MS
2143/**
2144 * arm_iommu_create_mapping
2145 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2146 * @base: start address of the valid IO address space
68efd7d2 2147 * @size: maximum size of the valid IO address space
4ce63fcd
MS
2148 *
2149 * Creates a mapping structure which holds information about used/unused
2150 * IO address ranges, which is required to perform memory allocation and
2151 * mapping with IOMMU aware functions.
2152 *
2153 * The client device need to be attached to the mapping with
2154 * arm_iommu_attach_device function.
2155 */
2156struct dma_iommu_mapping *
1424532b 2157arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
4ce63fcd 2158{
68efd7d2
MS
2159 unsigned int bits = size >> PAGE_SHIFT;
2160 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
4ce63fcd 2161 struct dma_iommu_mapping *mapping;
68efd7d2 2162 int extensions = 1;
4ce63fcd
MS
2163 int err = -ENOMEM;
2164
1424532b
MS
2165 /* currently only 32-bit DMA address space is supported */
2166 if (size > DMA_BIT_MASK(32) + 1)
2167 return ERR_PTR(-ERANGE);
2168
68efd7d2 2169 if (!bitmap_size)
4ce63fcd
MS
2170 return ERR_PTR(-EINVAL);
2171
68efd7d2
MS
2172 if (bitmap_size > PAGE_SIZE) {
2173 extensions = bitmap_size / PAGE_SIZE;
2174 bitmap_size = PAGE_SIZE;
2175 }
2176
4ce63fcd
MS
2177 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2178 if (!mapping)
2179 goto err;
2180
68efd7d2
MS
2181 mapping->bitmap_size = bitmap_size;
2182 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
4d852ef8
AH
2183 GFP_KERNEL);
2184 if (!mapping->bitmaps)
4ce63fcd
MS
2185 goto err2;
2186
68efd7d2 2187 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
4d852ef8
AH
2188 if (!mapping->bitmaps[0])
2189 goto err3;
2190
2191 mapping->nr_bitmaps = 1;
2192 mapping->extensions = extensions;
4ce63fcd 2193 mapping->base = base;
68efd7d2 2194 mapping->bits = BITS_PER_BYTE * bitmap_size;
4d852ef8 2195
4ce63fcd
MS
2196 spin_lock_init(&mapping->lock);
2197
2198 mapping->domain = iommu_domain_alloc(bus);
2199 if (!mapping->domain)
4d852ef8 2200 goto err4;
4ce63fcd
MS
2201
2202 kref_init(&mapping->kref);
2203 return mapping;
4d852ef8
AH
2204err4:
2205 kfree(mapping->bitmaps[0]);
4ce63fcd 2206err3:
4d852ef8 2207 kfree(mapping->bitmaps);
4ce63fcd
MS
2208err2:
2209 kfree(mapping);
2210err:
2211 return ERR_PTR(err);
2212}
18177d12 2213EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
2214
2215static void release_iommu_mapping(struct kref *kref)
2216{
4d852ef8 2217 int i;
4ce63fcd
MS
2218 struct dma_iommu_mapping *mapping =
2219 container_of(kref, struct dma_iommu_mapping, kref);
2220
2221 iommu_domain_free(mapping->domain);
4d852ef8
AH
2222 for (i = 0; i < mapping->nr_bitmaps; i++)
2223 kfree(mapping->bitmaps[i]);
2224 kfree(mapping->bitmaps);
4ce63fcd
MS
2225 kfree(mapping);
2226}
2227
4d852ef8
AH
2228static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2229{
2230 int next_bitmap;
2231
462859aa 2232 if (mapping->nr_bitmaps >= mapping->extensions)
4d852ef8
AH
2233 return -EINVAL;
2234
2235 next_bitmap = mapping->nr_bitmaps;
2236 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2237 GFP_ATOMIC);
2238 if (!mapping->bitmaps[next_bitmap])
2239 return -ENOMEM;
2240
2241 mapping->nr_bitmaps++;
2242
2243 return 0;
2244}
2245
4ce63fcd
MS
2246void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2247{
2248 if (mapping)
2249 kref_put(&mapping->kref, release_iommu_mapping);
2250}
18177d12 2251EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd 2252
eab8d653
LP
2253static int __arm_iommu_attach_device(struct device *dev,
2254 struct dma_iommu_mapping *mapping)
2255{
2256 int err;
2257
2258 err = iommu_attach_device(mapping->domain, dev);
2259 if (err)
2260 return err;
2261
2262 kref_get(&mapping->kref);
89cfdb19 2263 to_dma_iommu_mapping(dev) = mapping;
eab8d653
LP
2264
2265 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2266 return 0;
2267}
2268
4ce63fcd
MS
2269/**
2270 * arm_iommu_attach_device
2271 * @dev: valid struct device pointer
2272 * @mapping: io address space mapping structure (returned from
2273 * arm_iommu_create_mapping)
2274 *
eab8d653
LP
2275 * Attaches specified io address space mapping to the provided device.
2276 * This replaces the dma operations (dma_map_ops pointer) with the
2277 * IOMMU aware version.
2278 *
4bb25789
WD
2279 * More than one client might be attached to the same io address space
2280 * mapping.
4ce63fcd
MS
2281 */
2282int arm_iommu_attach_device(struct device *dev,
2283 struct dma_iommu_mapping *mapping)
2284{
2285 int err;
2286
eab8d653 2287 err = __arm_iommu_attach_device(dev, mapping);
4ce63fcd
MS
2288 if (err)
2289 return err;
2290
eab8d653 2291 set_dma_ops(dev, &iommu_ops);
4ce63fcd
MS
2292 return 0;
2293}
18177d12 2294EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 2295
eab8d653 2296static void __arm_iommu_detach_device(struct device *dev)
6fe36758
HD
2297{
2298 struct dma_iommu_mapping *mapping;
2299
2300 mapping = to_dma_iommu_mapping(dev);
2301 if (!mapping) {
2302 dev_warn(dev, "Not attached\n");
2303 return;
2304 }
2305
2306 iommu_detach_device(mapping->domain, dev);
2307 kref_put(&mapping->kref, release_iommu_mapping);
89cfdb19 2308 to_dma_iommu_mapping(dev) = NULL;
6fe36758
HD
2309
2310 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2311}
eab8d653
LP
2312
2313/**
2314 * arm_iommu_detach_device
2315 * @dev: valid struct device pointer
2316 *
2317 * Detaches the provided device from a previously attached map.
2318 * This voids the dma operations (dma_map_ops pointer)
2319 */
2320void arm_iommu_detach_device(struct device *dev)
2321{
2322 __arm_iommu_detach_device(dev);
2323 set_dma_ops(dev, NULL);
2324}
18177d12 2325EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 2326
5299709d 2327static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
4bb25789
WD
2328{
2329 return coherent ? &iommu_coherent_ops : &iommu_ops;
2330}
2331
2332static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
53c92d79 2333 const struct iommu_ops *iommu)
4bb25789
WD
2334{
2335 struct dma_iommu_mapping *mapping;
2336
2337 if (!iommu)
2338 return false;
2339
2340 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2341 if (IS_ERR(mapping)) {
2342 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2343 size, dev_name(dev));
2344 return false;
2345 }
2346
eab8d653 2347 if (__arm_iommu_attach_device(dev, mapping)) {
4bb25789
WD
2348 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2349 dev_name(dev));
2350 arm_iommu_release_mapping(mapping);
2351 return false;
2352 }
2353
2354 return true;
2355}
2356
2357static void arm_teardown_iommu_dma_ops(struct device *dev)
2358{
89cfdb19 2359 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4bb25789 2360
c2273a18
WD
2361 if (!mapping)
2362 return;
2363
eab8d653 2364 __arm_iommu_detach_device(dev);
4bb25789
WD
2365 arm_iommu_release_mapping(mapping);
2366}
2367
2368#else
2369
2370static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
53c92d79 2371 const struct iommu_ops *iommu)
4bb25789
WD
2372{
2373 return false;
2374}
2375
2376static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2377
2378#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2379
2380#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2381
5299709d 2382static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
4bb25789
WD
2383{
2384 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2385}
2386
2387void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
53c92d79 2388 const struct iommu_ops *iommu, bool coherent)
4bb25789 2389{
5299709d 2390 const struct dma_map_ops *dma_ops;
4bb25789 2391
6f51ee70 2392 dev->archdata.dma_coherent = coherent;
4bb25789
WD
2393 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2394 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2395 else
2396 dma_ops = arm_get_dma_map_ops(coherent);
2397
2398 set_dma_ops(dev, dma_ops);
2399}
2400
2401void arch_teardown_dma_ops(struct device *dev)
2402{
2403 arm_teardown_iommu_dma_ops(dev);
2404}