]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/arm/mm/mmu.c
Merge branch 'akpm' (incoming from Andrew)
[mirror_ubuntu-zesty-kernel.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
158e8bfe 19#include <linux/sizes.h>
d111e8f9 20
15d07dc9 21#include <asm/cp15.h>
0ba8b9b2 22#include <asm/cputype.h>
37efe642 23#include <asm/sections.h>
3f973e22 24#include <asm/cachetype.h>
ebd4922e 25#include <asm/sections.h>
d111e8f9 26#include <asm/setup.h>
e616c591 27#include <asm/smp_plat.h>
d111e8f9 28#include <asm/tlb.h>
d73cd428 29#include <asm/highmem.h>
9f97da78 30#include <asm/system_info.h>
247055aa 31#include <asm/traps.h>
a77e0c7b
SS
32#include <asm/procinfo.h>
33#include <asm/memory.h>
d111e8f9
RK
34
35#include <asm/mach/arch.h>
36#include <asm/mach/map.h>
c2794437 37#include <asm/mach/pci.h>
d111e8f9
RK
38
39#include "mm.h"
de40614e 40#include "tcm.h"
d111e8f9 41
d111e8f9
RK
42/*
43 * empty_zero_page is a special page that is used for
44 * zero-initialized data and COW.
45 */
46struct page *empty_zero_page;
3653f3ab 47EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
48
49/*
50 * The pmd table for the upper-most set of pages.
51 */
52pmd_t *top_pmd;
53
ae8f1541
RK
54#define CPOLICY_UNCACHED 0
55#define CPOLICY_BUFFERED 1
56#define CPOLICY_WRITETHROUGH 2
57#define CPOLICY_WRITEBACK 3
58#define CPOLICY_WRITEALLOC 4
59
60static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
61static unsigned int ecc_mask __initdata = 0;
44b18693 62pgprot_t pgprot_user;
ae8f1541 63pgprot_t pgprot_kernel;
cc577c26
CD
64pgprot_t pgprot_hyp_device;
65pgprot_t pgprot_s2;
66pgprot_t pgprot_s2_device;
ae8f1541 67
44b18693 68EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
69EXPORT_SYMBOL(pgprot_kernel);
70
71struct cachepolicy {
72 const char policy[16];
73 unsigned int cr_mask;
442e70c0 74 pmdval_t pmd;
f6e3354d 75 pteval_t pte;
cc577c26 76 pteval_t pte_s2;
ae8f1541
RK
77};
78
cc577c26
CD
79#ifdef CONFIG_ARM_LPAE
80#define s2_policy(policy) policy
81#else
82#define s2_policy(policy) 0
83#endif
84
ae8f1541
RK
85static struct cachepolicy cache_policies[] __initdata = {
86 {
87 .policy = "uncached",
88 .cr_mask = CR_W|CR_C,
89 .pmd = PMD_SECT_UNCACHED,
bb30f36f 90 .pte = L_PTE_MT_UNCACHED,
cc577c26 91 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
92 }, {
93 .policy = "buffered",
94 .cr_mask = CR_C,
95 .pmd = PMD_SECT_BUFFERED,
bb30f36f 96 .pte = L_PTE_MT_BUFFERABLE,
cc577c26 97 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
98 }, {
99 .policy = "writethrough",
100 .cr_mask = 0,
101 .pmd = PMD_SECT_WT,
bb30f36f 102 .pte = L_PTE_MT_WRITETHROUGH,
cc577c26 103 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
ae8f1541
RK
104 }, {
105 .policy = "writeback",
106 .cr_mask = 0,
107 .pmd = PMD_SECT_WB,
bb30f36f 108 .pte = L_PTE_MT_WRITEBACK,
cc577c26 109 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
110 }, {
111 .policy = "writealloc",
112 .cr_mask = 0,
113 .pmd = PMD_SECT_WBWA,
bb30f36f 114 .pte = L_PTE_MT_WRITEALLOC,
cc577c26 115 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
116 }
117};
118
b849a60e 119#ifdef CONFIG_CPU_CP15
ae8f1541 120/*
6cbdc8c5 121 * These are useful for identifying cache coherency
ae8f1541
RK
122 * problems by allowing the cache or the cache and
123 * writebuffer to be turned off. (Note: the write
124 * buffer should not be on and the cache off).
125 */
2b0d8c25 126static int __init early_cachepolicy(char *p)
ae8f1541
RK
127{
128 int i;
129
130 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
131 int len = strlen(cache_policies[i].policy);
132
2b0d8c25 133 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
134 cachepolicy = i;
135 cr_alignment &= ~cache_policies[i].cr_mask;
136 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
137 break;
138 }
139 }
140 if (i == ARRAY_SIZE(cache_policies))
141 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
142 /*
143 * This restriction is partly to do with the way we boot; it is
144 * unpredictable to have memory mapped using two different sets of
145 * memory attributes (shared, type, and cache attribs). We can not
146 * change these attributes once the initial assembly has setup the
147 * page tables.
148 */
11179d8c
CM
149 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
150 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
151 cachepolicy = CPOLICY_WRITEBACK;
152 }
ae8f1541
RK
153 flush_cache_all();
154 set_cr(cr_alignment);
2b0d8c25 155 return 0;
ae8f1541 156}
2b0d8c25 157early_param("cachepolicy", early_cachepolicy);
ae8f1541 158
2b0d8c25 159static int __init early_nocache(char *__unused)
ae8f1541
RK
160{
161 char *p = "buffered";
162 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
163 early_cachepolicy(p);
164 return 0;
ae8f1541 165}
2b0d8c25 166early_param("nocache", early_nocache);
ae8f1541 167
2b0d8c25 168static int __init early_nowrite(char *__unused)
ae8f1541
RK
169{
170 char *p = "uncached";
171 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
172 early_cachepolicy(p);
173 return 0;
ae8f1541 174}
2b0d8c25 175early_param("nowb", early_nowrite);
ae8f1541 176
1b6ba46b 177#ifndef CONFIG_ARM_LPAE
2b0d8c25 178static int __init early_ecc(char *p)
ae8f1541 179{
2b0d8c25 180 if (memcmp(p, "on", 2) == 0)
ae8f1541 181 ecc_mask = PMD_PROTECTION;
2b0d8c25 182 else if (memcmp(p, "off", 3) == 0)
ae8f1541 183 ecc_mask = 0;
2b0d8c25 184 return 0;
ae8f1541 185}
2b0d8c25 186early_param("ecc", early_ecc);
1b6ba46b 187#endif
ae8f1541
RK
188
189static int __init noalign_setup(char *__unused)
190{
191 cr_alignment &= ~CR_A;
192 cr_no_alignment &= ~CR_A;
193 set_cr(cr_alignment);
194 return 1;
195}
196__setup("noalign", noalign_setup);
197
255d1f86
RK
198#ifndef CONFIG_SMP
199void adjust_cr(unsigned long mask, unsigned long set)
200{
201 unsigned long flags;
202
203 mask &= ~CR_A;
204
205 set &= mask;
206
207 local_irq_save(flags);
208
209 cr_no_alignment = (cr_no_alignment & ~mask) | set;
210 cr_alignment = (cr_alignment & ~mask) | set;
211
212 set_cr((get_cr() & ~mask) | set);
213
214 local_irq_restore(flags);
215}
216#endif
217
b849a60e
UKK
218#else /* ifdef CONFIG_CPU_CP15 */
219
220static int __init early_cachepolicy(char *p)
221{
222 pr_warning("cachepolicy kernel parameter not supported without cp15\n");
223}
224early_param("cachepolicy", early_cachepolicy);
225
226static int __init noalign_setup(char *__unused)
227{
228 pr_warning("noalign kernel parameter not supported without cp15\n");
229}
230__setup("noalign", noalign_setup);
231
232#endif /* ifdef CONFIG_CPU_CP15 / else */
233
36bb94ba 234#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
b1cce6b1 235#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 236
b29e9f5e 237static struct mem_type mem_types[] = {
0af92bef 238 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
239 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
240 L_PTE_SHARED,
0af92bef 241 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 242 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
243 .domain = DOMAIN_IO,
244 },
245 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 246 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 247 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 248 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
249 .domain = DOMAIN_IO,
250 },
251 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 252 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
253 .prot_l1 = PMD_TYPE_TABLE,
254 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
255 .domain = DOMAIN_IO,
c2794437 256 },
1ad77a87 257 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 258 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 259 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 260 .prot_sect = PROT_SECT_DEVICE,
0af92bef 261 .domain = DOMAIN_IO,
ae8f1541 262 },
ebb4c658
RK
263 [MT_UNCACHED] = {
264 .prot_pte = PROT_PTE_DEVICE,
265 .prot_l1 = PMD_TYPE_TABLE,
266 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
267 .domain = DOMAIN_IO,
268 },
ae8f1541 269 [MT_CACHECLEAN] = {
9ef79635 270 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
271 .domain = DOMAIN_KERNEL,
272 },
1b6ba46b 273#ifndef CONFIG_ARM_LPAE
ae8f1541 274 [MT_MINICLEAN] = {
9ef79635 275 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
276 .domain = DOMAIN_KERNEL,
277 },
1b6ba46b 278#endif
ae8f1541
RK
279 [MT_LOW_VECTORS] = {
280 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 281 L_PTE_RDONLY,
ae8f1541
RK
282 .prot_l1 = PMD_TYPE_TABLE,
283 .domain = DOMAIN_USER,
284 },
285 [MT_HIGH_VECTORS] = {
286 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 287 L_PTE_USER | L_PTE_RDONLY,
ae8f1541
RK
288 .prot_l1 = PMD_TYPE_TABLE,
289 .domain = DOMAIN_USER,
290 },
2e2c9de2 291 [MT_MEMORY_RWX] = {
36bb94ba 292 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 293 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 294 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
295 .domain = DOMAIN_KERNEL,
296 },
ebd4922e
RK
297 [MT_MEMORY_RW] = {
298 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
299 L_PTE_XN,
300 .prot_l1 = PMD_TYPE_TABLE,
301 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
302 .domain = DOMAIN_KERNEL,
303 },
ae8f1541 304 [MT_ROM] = {
9ef79635 305 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
306 .domain = DOMAIN_KERNEL,
307 },
2e2c9de2 308 [MT_MEMORY_RWX_NONCACHED] = {
f1a2481c 309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 310 L_PTE_MT_BUFFERABLE,
f1a2481c 311 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
312 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
313 .domain = DOMAIN_KERNEL,
314 },
2e2c9de2 315 [MT_MEMORY_RW_DTCM] = {
f444fce3 316 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 317 L_PTE_XN,
f444fce3
LW
318 .prot_l1 = PMD_TYPE_TABLE,
319 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
320 .domain = DOMAIN_KERNEL,
cb9d7707 321 },
2e2c9de2 322 [MT_MEMORY_RWX_ITCM] = {
36bb94ba 323 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 324 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 325 .domain = DOMAIN_KERNEL,
cb9d7707 326 },
2e2c9de2 327 [MT_MEMORY_RW_SO] = {
8fb54284 328 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
93d5bf07 329 L_PTE_MT_UNCACHED | L_PTE_XN,
8fb54284
SS
330 .prot_l1 = PMD_TYPE_TABLE,
331 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
332 PMD_SECT_UNCACHED | PMD_SECT_XN,
333 .domain = DOMAIN_KERNEL,
334 },
c7909509 335 [MT_MEMORY_DMA_READY] = {
71b55663
RK
336 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
337 L_PTE_XN,
c7909509
MS
338 .prot_l1 = PMD_TYPE_TABLE,
339 .domain = DOMAIN_KERNEL,
340 },
ae8f1541
RK
341};
342
b29e9f5e
RK
343const struct mem_type *get_mem_type(unsigned int type)
344{
345 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
346}
69d3a84a 347EXPORT_SYMBOL(get_mem_type);
b29e9f5e 348
75374ad4
LA
349#define PTE_SET_FN(_name, pteop) \
350static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
351 void *data) \
352{ \
353 pte_t pte = pteop(*ptep); \
354\
355 set_pte_ext(ptep, pte, 0); \
356 return 0; \
357} \
358
359#define SET_MEMORY_FN(_name, callback) \
360int set_memory_##_name(unsigned long addr, int numpages) \
361{ \
362 unsigned long start = addr; \
363 unsigned long size = PAGE_SIZE*numpages; \
364 unsigned end = start + size; \
365\
366 if (start < MODULES_VADDR || start >= MODULES_END) \
367 return -EINVAL;\
368\
369 if (end < MODULES_VADDR || end >= MODULES_END) \
370 return -EINVAL; \
371\
372 apply_to_page_range(&init_mm, start, size, callback, NULL); \
373 flush_tlb_kernel_range(start, end); \
374 return 0;\
375}
376
377PTE_SET_FN(ro, pte_wrprotect)
378PTE_SET_FN(rw, pte_mkwrite)
379PTE_SET_FN(x, pte_mkexec)
380PTE_SET_FN(nx, pte_mknexec)
381
382SET_MEMORY_FN(ro, pte_set_ro)
383SET_MEMORY_FN(rw, pte_set_rw)
384SET_MEMORY_FN(x, pte_set_x)
385SET_MEMORY_FN(nx, pte_set_nx)
386
ae8f1541
RK
387/*
388 * Adjust the PMD section entries according to the CPU in use.
389 */
390static void __init build_mem_type_table(void)
391{
392 struct cachepolicy *cp;
393 unsigned int cr = get_cr();
442e70c0 394 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
cc577c26 395 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
ae8f1541
RK
396 int cpu_arch = cpu_architecture();
397 int i;
398
11179d8c 399 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 400#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
401 if (cachepolicy > CPOLICY_BUFFERED)
402 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 403#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
404 if (cachepolicy > CPOLICY_WRITETHROUGH)
405 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 406#endif
11179d8c 407 }
ae8f1541
RK
408 if (cpu_arch < CPU_ARCH_ARMv5) {
409 if (cachepolicy >= CPOLICY_WRITEALLOC)
410 cachepolicy = CPOLICY_WRITEBACK;
411 ecc_mask = 0;
412 }
f00ec48f
RK
413 if (is_smp())
414 cachepolicy = CPOLICY_WRITEALLOC;
ae8f1541 415
1ad77a87 416 /*
b1cce6b1
RK
417 * Strip out features not present on earlier architectures.
418 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
419 * without extended page tables don't have the 'Shared' bit.
1ad77a87 420 */
b1cce6b1
RK
421 if (cpu_arch < CPU_ARCH_ARMv5)
422 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
423 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
424 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
425 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
426 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
427
428 /*
b1cce6b1
RK
429 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
430 * "update-able on write" bit on ARM610). However, Xscale and
431 * Xscale3 require this bit to be cleared.
ae8f1541 432 */
b1cce6b1 433 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 434 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 435 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
436 mem_types[i].prot_l1 &= ~PMD_BIT4;
437 }
438 } else if (cpu_arch < CPU_ARCH_ARMv6) {
439 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
440 if (mem_types[i].prot_l1)
441 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
442 if (mem_types[i].prot_sect)
443 mem_types[i].prot_sect |= PMD_BIT4;
444 }
445 }
ae8f1541 446
b1cce6b1
RK
447 /*
448 * Mark the device areas according to the CPU/architecture.
449 */
450 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
451 if (!cpu_is_xsc3()) {
452 /*
453 * Mark device regions on ARMv6+ as execute-never
454 * to prevent speculative instruction fetches.
455 */
456 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
457 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
458 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
459 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
ebd4922e
RK
460
461 /* Also setup NX memory mapping */
462 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
b1cce6b1
RK
463 }
464 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
465 /*
466 * For ARMv7 with TEX remapping,
467 * - shared device is SXCB=1100
468 * - nonshared device is SXCB=0100
469 * - write combine device mem is SXCB=0001
470 * (Uncached Normal memory)
471 */
472 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
473 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
474 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
475 } else if (cpu_is_xsc3()) {
476 /*
477 * For Xscale3,
478 * - shared device is TEXCB=00101
479 * - nonshared device is TEXCB=01000
480 * - write combine device mem is TEXCB=00100
481 * (Inner/Outer Uncacheable in xsc3 parlance)
482 */
483 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
484 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
485 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
486 } else {
487 /*
488 * For ARMv6 and ARMv7 without TEX remapping,
489 * - shared device is TEXCB=00001
490 * - nonshared device is TEXCB=01000
491 * - write combine device mem is TEXCB=00100
492 * (Uncached Normal in ARMv6 parlance).
493 */
494 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
495 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
496 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
497 }
498 } else {
499 /*
500 * On others, write combining is "Uncached/Buffered"
501 */
502 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
503 }
504
505 /*
506 * Now deal with the memory-type mappings
507 */
ae8f1541 508 cp = &cache_policies[cachepolicy];
bb30f36f 509 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
cc577c26
CD
510 s2_pgprot = cp->pte_s2;
511 hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
bb30f36f 512
ae8f1541
RK
513 /*
514 * ARMv6 and above have extended page tables.
515 */
516 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 517#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
518 /*
519 * Mark cache clean areas and XIP ROM read only
520 * from SVC mode and no access from userspace.
521 */
522 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
523 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
524 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 525#endif
ae8f1541 526
f00ec48f
RK
527 if (is_smp()) {
528 /*
529 * Mark memory with the "shared" attribute
530 * for SMP systems
531 */
532 user_pgprot |= L_PTE_SHARED;
533 kern_pgprot |= L_PTE_SHARED;
534 vecs_pgprot |= L_PTE_SHARED;
cc577c26 535 s2_pgprot |= L_PTE_SHARED;
f00ec48f
RK
536 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
537 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
538 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
539 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
540 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
541 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
ebd4922e
RK
542 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
543 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
c7909509 544 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
545 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
546 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
f00ec48f 547 }
ae8f1541
RK
548 }
549
e4707dd3
PW
550 /*
551 * Non-cacheable Normal - intended for memory areas that must
552 * not cause dirty cache line writebacks when used
553 */
554 if (cpu_arch >= CPU_ARCH_ARMv6) {
555 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
556 /* Non-cacheable Normal is XCB = 001 */
2e2c9de2 557 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
558 PMD_SECT_BUFFERED;
559 } else {
560 /* For both ARMv6 and non-TEX-remapping ARMv7 */
2e2c9de2 561 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
562 PMD_SECT_TEX(1);
563 }
564 } else {
2e2c9de2 565 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
e4707dd3
PW
566 }
567
1b6ba46b
CM
568#ifdef CONFIG_ARM_LPAE
569 /*
570 * Do not generate access flag faults for the kernel mappings.
571 */
572 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
573 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
574 if (mem_types[i].prot_sect)
575 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
576 }
577 kern_pgprot |= PTE_EXT_AF;
578 vecs_pgprot |= PTE_EXT_AF;
579#endif
580
ae8f1541 581 for (i = 0; i < 16; i++) {
864aa04c 582 pteval_t v = pgprot_val(protection_map[i]);
bb30f36f 583 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
584 }
585
bb30f36f
RK
586 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
587 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 588
44b18693 589 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 590 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 591 L_PTE_DIRTY | kern_pgprot);
cc577c26
CD
592 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
593 pgprot_s2_device = __pgprot(s2_device_pgprot);
594 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
ae8f1541
RK
595
596 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
597 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
2e2c9de2
RK
598 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
599 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
ebd4922e
RK
600 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
601 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
c7909509 602 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
2e2c9de2 603 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
604 mem_types[MT_ROM].prot_sect |= cp->pmd;
605
606 switch (cp->pmd) {
607 case PMD_SECT_WT:
608 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
609 break;
610 case PMD_SECT_WB:
611 case PMD_SECT_WBWA:
612 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
613 break;
614 }
905b5797
MS
615 pr_info("Memory policy: %sData cache %s\n",
616 ecc_mask ? "ECC enabled, " : "", cp->policy);
2497f0a8
RK
617
618 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
619 struct mem_type *t = &mem_types[i];
620 if (t->prot_l1)
621 t->prot_l1 |= PMD_DOMAIN(t->domain);
622 if (t->prot_sect)
623 t->prot_sect |= PMD_DOMAIN(t->domain);
624 }
ae8f1541
RK
625}
626
d907387c
CM
627#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
628pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
629 unsigned long size, pgprot_t vma_prot)
630{
631 if (!pfn_valid(pfn))
632 return pgprot_noncached(vma_prot);
633 else if (file->f_flags & O_SYNC)
634 return pgprot_writecombine(vma_prot);
635 return vma_prot;
636}
637EXPORT_SYMBOL(phys_mem_access_prot);
638#endif
639
ae8f1541
RK
640#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
641
0536bdf3 642static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 643{
0536bdf3 644 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
645 memset(ptr, 0, sz);
646 return ptr;
3abe9d33
RK
647}
648
0536bdf3
NP
649static void __init *early_alloc(unsigned long sz)
650{
651 return early_alloc_aligned(sz, sz);
652}
653
4bb2e27d 654static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 655{
24e6c699 656 if (pmd_none(*pmd)) {
410f1483 657 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 658 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 659 }
4bb2e27d
RK
660 BUG_ON(pmd_bad(*pmd));
661 return pte_offset_kernel(pmd, addr);
662}
ae8f1541 663
4bb2e27d
RK
664static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
665 unsigned long end, unsigned long pfn,
666 const struct mem_type *type)
667{
668 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 669 do {
40d192b6 670 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
671 pfn++;
672 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
673}
674
37468b30 675static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
e651eab0
S
676 unsigned long end, phys_addr_t phys,
677 const struct mem_type *type)
ae8f1541 678{
37468b30
PYC
679 pmd_t *p = pmd;
680
e651eab0 681#ifndef CONFIG_ARM_LPAE
24e6c699 682 /*
e651eab0
S
683 * In classic MMU format, puds and pmds are folded in to
684 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
685 * group of L1 entries making up one logical pointer to
686 * an L2 table (2MB), where as PMDs refer to the individual
687 * L1 entries (1MB). Hence increment to get the correct
688 * offset for odd 1MB sections.
689 * (See arch/arm/include/asm/pgtable-2level.h)
24e6c699 690 */
e651eab0
S
691 if (addr & SECTION_SIZE)
692 pmd++;
1b6ba46b 693#endif
e651eab0
S
694 do {
695 *pmd = __pmd(phys | type->prot_sect);
696 phys += SECTION_SIZE;
697 } while (pmd++, addr += SECTION_SIZE, addr != end);
24e6c699 698
37468b30 699 flush_pmd_entry(p);
e651eab0 700}
ae8f1541 701
e651eab0
S
702static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
703 unsigned long end, phys_addr_t phys,
704 const struct mem_type *type)
705{
706 pmd_t *pmd = pmd_offset(pud, addr);
707 unsigned long next;
708
709 do {
24e6c699 710 /*
e651eab0
S
711 * With LPAE, we must loop over to map
712 * all the pmds for the given range.
24e6c699 713 */
e651eab0
S
714 next = pmd_addr_end(addr, end);
715
716 /*
717 * Try a section mapping - addr, next and phys must all be
718 * aligned to a section boundary.
719 */
720 if (type->prot_sect &&
721 ((addr | next | phys) & ~SECTION_MASK) == 0) {
37468b30 722 __map_init_section(pmd, addr, next, phys, type);
e651eab0
S
723 } else {
724 alloc_init_pte(pmd, addr, next,
725 __phys_to_pfn(phys), type);
726 }
727
728 phys += next - addr;
729
730 } while (pmd++, addr = next, addr != end);
ae8f1541
RK
731}
732
14904927 733static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
20d6956d
VA
734 unsigned long end, phys_addr_t phys,
735 const struct mem_type *type)
516295e5
RK
736{
737 pud_t *pud = pud_offset(pgd, addr);
738 unsigned long next;
739
740 do {
741 next = pud_addr_end(addr, end);
e651eab0 742 alloc_init_pmd(pud, addr, next, phys, type);
516295e5
RK
743 phys += next - addr;
744 } while (pud++, addr = next, addr != end);
745}
746
1b6ba46b 747#ifndef CONFIG_ARM_LPAE
4a56c1e4
RK
748static void __init create_36bit_mapping(struct map_desc *md,
749 const struct mem_type *type)
750{
97092e0c
RK
751 unsigned long addr, length, end;
752 phys_addr_t phys;
4a56c1e4
RK
753 pgd_t *pgd;
754
755 addr = md->virtual;
cae6292b 756 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
757 length = PAGE_ALIGN(md->length);
758
759 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
760 printk(KERN_ERR "MM: CPU does not support supersection "
761 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 762 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
763 return;
764 }
765
766 /* N.B. ARMv6 supersections are only defined to work with domain 0.
767 * Since domain assignments can in fact be arbitrary, the
768 * 'domain == 0' check below is required to insure that ARMv6
769 * supersections are only allocated for domain 0 regardless
770 * of the actual domain assignments in use.
771 */
772 if (type->domain) {
773 printk(KERN_ERR "MM: invalid domain in supersection "
774 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 775 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
776 return;
777 }
778
779 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
29a38193
WD
780 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
781 " at 0x%08lx invalid alignment\n",
782 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
783 return;
784 }
785
786 /*
787 * Shift bits [35:32] of address into bits [23:20] of PMD
788 * (See ARMv6 spec).
789 */
790 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
791
792 pgd = pgd_offset_k(addr);
793 end = addr + length;
794 do {
516295e5
RK
795 pud_t *pud = pud_offset(pgd, addr);
796 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
797 int i;
798
799 for (i = 0; i < 16; i++)
800 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
801
802 addr += SUPERSECTION_SIZE;
803 phys += SUPERSECTION_SIZE;
804 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
805 } while (addr != end);
806}
1b6ba46b 807#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 808
ae8f1541
RK
809/*
810 * Create the page directory entries and any necessary
811 * page tables for the mapping specified by `md'. We
812 * are able to cope here with varying sizes and address
813 * offsets, and we take full advantage of sections and
814 * supersections.
815 */
a2227120 816static void __init create_mapping(struct map_desc *md)
ae8f1541 817{
cae6292b
WD
818 unsigned long addr, length, end;
819 phys_addr_t phys;
d5c98176 820 const struct mem_type *type;
24e6c699 821 pgd_t *pgd;
ae8f1541
RK
822
823 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
29a38193
WD
824 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
825 " at 0x%08lx in user region\n",
826 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
827 return;
828 }
829
830 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
0536bdf3
NP
831 md->virtual >= PAGE_OFFSET &&
832 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
29a38193 833 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
0536bdf3 834 " at 0x%08lx out of vmalloc space\n",
29a38193 835 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
836 }
837
d5c98176 838 type = &mem_types[md->type];
ae8f1541 839
1b6ba46b 840#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
841 /*
842 * Catch 36-bit addresses
843 */
4a56c1e4
RK
844 if (md->pfn >= 0x100000) {
845 create_36bit_mapping(md, type);
846 return;
ae8f1541 847 }
1b6ba46b 848#endif
ae8f1541 849
7b9c7b4d 850 addr = md->virtual & PAGE_MASK;
cae6292b 851 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 852 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 853
24e6c699 854 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
29a38193 855 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
ae8f1541 856 "be mapped using pages, ignoring.\n",
29a38193 857 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
858 return;
859 }
860
24e6c699
RK
861 pgd = pgd_offset_k(addr);
862 end = addr + length;
863 do {
864 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 865
516295e5 866 alloc_init_pud(pgd, addr, next, phys, type);
ae8f1541 867
24e6c699
RK
868 phys += next - addr;
869 addr = next;
870 } while (pgd++, addr != end);
ae8f1541
RK
871}
872
873/*
874 * Create the architecture specific mappings
875 */
876void __init iotable_init(struct map_desc *io_desc, int nr)
877{
0536bdf3
NP
878 struct map_desc *md;
879 struct vm_struct *vm;
101eeda3 880 struct static_vm *svm;
0536bdf3
NP
881
882 if (!nr)
883 return;
ae8f1541 884
101eeda3 885 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
0536bdf3
NP
886
887 for (md = io_desc; nr; md++, nr--) {
888 create_mapping(md);
101eeda3
JK
889
890 vm = &svm->vm;
0536bdf3
NP
891 vm->addr = (void *)(md->virtual & PAGE_MASK);
892 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
c2794437
RH
893 vm->phys_addr = __pfn_to_phys(md->pfn);
894 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
576d2f25 895 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3 896 vm->caller = iotable_init;
101eeda3 897 add_static_vm_early(svm++);
0536bdf3 898 }
ae8f1541
RK
899}
900
c2794437
RH
901void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
902 void *caller)
903{
904 struct vm_struct *vm;
101eeda3
JK
905 struct static_vm *svm;
906
907 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
c2794437 908
101eeda3 909 vm = &svm->vm;
c2794437
RH
910 vm->addr = (void *)addr;
911 vm->size = size;
863e99a8 912 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
c2794437 913 vm->caller = caller;
101eeda3 914 add_static_vm_early(svm);
c2794437
RH
915}
916
19b52abe
NP
917#ifndef CONFIG_ARM_LPAE
918
919/*
920 * The Linux PMD is made of two consecutive section entries covering 2MB
921 * (see definition in include/asm/pgtable-2level.h). However a call to
922 * create_mapping() may optimize static mappings by using individual
923 * 1MB section mappings. This leaves the actual PMD potentially half
924 * initialized if the top or bottom section entry isn't used, leaving it
925 * open to problems if a subsequent ioremap() or vmalloc() tries to use
926 * the virtual space left free by that unused section entry.
927 *
928 * Let's avoid the issue by inserting dummy vm entries covering the unused
929 * PMD halves once the static mappings are in place.
930 */
931
932static void __init pmd_empty_section_gap(unsigned long addr)
933{
c2794437 934 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
19b52abe
NP
935}
936
937static void __init fill_pmd_gaps(void)
938{
101eeda3 939 struct static_vm *svm;
19b52abe
NP
940 struct vm_struct *vm;
941 unsigned long addr, next = 0;
942 pmd_t *pmd;
943
101eeda3
JK
944 list_for_each_entry(svm, &static_vmlist, list) {
945 vm = &svm->vm;
19b52abe
NP
946 addr = (unsigned long)vm->addr;
947 if (addr < next)
948 continue;
949
950 /*
951 * Check if this vm starts on an odd section boundary.
952 * If so and the first section entry for this PMD is free
953 * then we block the corresponding virtual address.
954 */
955 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
956 pmd = pmd_off_k(addr);
957 if (pmd_none(*pmd))
958 pmd_empty_section_gap(addr & PMD_MASK);
959 }
960
961 /*
962 * Then check if this vm ends on an odd section boundary.
963 * If so and the second section entry for this PMD is empty
964 * then we block the corresponding virtual address.
965 */
966 addr += vm->size;
967 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
968 pmd = pmd_off_k(addr) + 1;
969 if (pmd_none(*pmd))
970 pmd_empty_section_gap(addr);
971 }
972
973 /* no need to look at any vm entry until we hit the next PMD */
974 next = (addr + PMD_SIZE - 1) & PMD_MASK;
975 }
976}
977
978#else
979#define fill_pmd_gaps() do { } while (0)
980#endif
981
c2794437
RH
982#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
983static void __init pci_reserve_io(void)
984{
101eeda3 985 struct static_vm *svm;
c2794437 986
101eeda3
JK
987 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
988 if (svm)
989 return;
c2794437 990
c2794437
RH
991 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
992}
993#else
994#define pci_reserve_io() do { } while (0)
995#endif
996
e5c5f2ad
RH
997#ifdef CONFIG_DEBUG_LL
998void __init debug_ll_io_init(void)
999{
1000 struct map_desc map;
1001
1002 debug_ll_addr(&map.pfn, &map.virtual);
1003 if (!map.pfn || !map.virtual)
1004 return;
1005 map.pfn = __phys_to_pfn(map.pfn);
1006 map.virtual &= PAGE_MASK;
1007 map.length = PAGE_SIZE;
1008 map.type = MT_DEVICE;
ee4de5d9 1009 iotable_init(&map, 1);
e5c5f2ad
RH
1010}
1011#endif
1012
0536bdf3
NP
1013static void * __initdata vmalloc_min =
1014 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
1015
1016/*
1017 * vmalloc=size forces the vmalloc area to be exactly 'size'
1018 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 1019 * area - the default is 240m.
6c5da7ac 1020 */
2b0d8c25 1021static int __init early_vmalloc(char *arg)
6c5da7ac 1022{
79612395 1023 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
1024
1025 if (vmalloc_reserve < SZ_16M) {
1026 vmalloc_reserve = SZ_16M;
1027 printk(KERN_WARNING
1028 "vmalloc area too small, limiting to %luMB\n",
1029 vmalloc_reserve >> 20);
1030 }
9210807c
NP
1031
1032 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1033 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1034 printk(KERN_WARNING
1035 "vmalloc area is too big, limiting to %luMB\n",
1036 vmalloc_reserve >> 20);
1037 }
79612395
RK
1038
1039 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 1040 return 0;
6c5da7ac 1041}
2b0d8c25 1042early_param("vmalloc", early_vmalloc);
6c5da7ac 1043
c7909509 1044phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 1045
0371d3f7 1046void __init sanity_check_meminfo(void)
60296c71 1047{
c65b7e98 1048 phys_addr_t memblock_limit = 0;
dde5828f 1049 int i, j, highmem = 0;
82f66704 1050 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
60296c71 1051
4b5f32ce 1052 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0 1053 struct membank *bank = &meminfo.bank[j];
28d4bf7a 1054 phys_addr_t size_limit;
60296c71 1055
a1bbaec0 1056 *bank = meminfo.bank[i];
28d4bf7a 1057 size_limit = bank->size;
77f73a2c 1058
82f66704 1059 if (bank->start >= vmalloc_limit)
dde5828f 1060 highmem = 1;
28d4bf7a
CC
1061 else
1062 size_limit = vmalloc_limit - bank->start;
dde5828f
RK
1063
1064 bank->highmem = highmem;
1065
adf2e9fd 1066#ifdef CONFIG_HIGHMEM
a1bbaec0
NP
1067 /*
1068 * Split those memory banks which are partially overlapping
1069 * the vmalloc area greatly simplifying things later.
1070 */
28d4bf7a 1071 if (!highmem && bank->size > size_limit) {
a1bbaec0
NP
1072 if (meminfo.nr_banks >= NR_BANKS) {
1073 printk(KERN_CRIT "NR_BANKS too low, "
1074 "ignoring high memory\n");
1075 } else {
1076 memmove(bank + 1, bank,
1077 (meminfo.nr_banks - i) * sizeof(*bank));
1078 meminfo.nr_banks++;
1079 i++;
28d4bf7a 1080 bank[1].size -= size_limit;
82f66704 1081 bank[1].start = vmalloc_limit;
dde5828f 1082 bank[1].highmem = highmem = 1;
a1bbaec0
NP
1083 j++;
1084 }
28d4bf7a 1085 bank->size = size_limit;
a1bbaec0
NP
1086 }
1087#else
77f73a2c
WD
1088 /*
1089 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1090 */
1091 if (highmem) {
1092 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1093 "(!CONFIG_HIGHMEM).\n",
1094 (unsigned long long)bank->start,
1095 (unsigned long long)bank->start + bank->size - 1);
1096 continue;
1097 }
1098
a1bbaec0
NP
1099 /*
1100 * Check whether this memory bank would partially overlap
1101 * the vmalloc area.
1102 */
28d4bf7a 1103 if (bank->size > size_limit) {
e33b9d08
RK
1104 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1105 "to -%.8llx (vmalloc region overlap).\n",
1106 (unsigned long long)bank->start,
1107 (unsigned long long)bank->start + bank->size - 1,
28d4bf7a
CC
1108 (unsigned long long)bank->start + size_limit - 1);
1109 bank->size = size_limit;
a1bbaec0
NP
1110 }
1111#endif
c65b7e98
RK
1112 if (!bank->highmem) {
1113 phys_addr_t bank_end = bank->start + bank->size;
40f7bfe4 1114
c65b7e98
RK
1115 if (bank_end > arm_lowmem_limit)
1116 arm_lowmem_limit = bank_end;
1117
1118 /*
1119 * Find the first non-section-aligned page, and point
1120 * memblock_limit at it. This relies on rounding the
1121 * limit down to be section-aligned, which happens at
1122 * the end of this function.
1123 *
1124 * With this algorithm, the start or end of almost any
1125 * bank can be non-section-aligned. The only exception
1126 * is that the start of the bank 0 must be section-
1127 * aligned, since otherwise memory would need to be
1128 * allocated when mapping the start of bank 0, which
1129 * occurs before any free memory is mapped.
1130 */
1131 if (!memblock_limit) {
1132 if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1133 memblock_limit = bank->start;
1134 else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1135 memblock_limit = bank_end;
1136 }
1137 }
a1bbaec0 1138 j++;
60296c71 1139 }
e616c591
RK
1140#ifdef CONFIG_HIGHMEM
1141 if (highmem) {
1142 const char *reason = NULL;
1143
1144 if (cache_is_vipt_aliasing()) {
1145 /*
1146 * Interactions between kmap and other mappings
1147 * make highmem support with aliasing VIPT caches
1148 * rather difficult.
1149 */
1150 reason = "with VIPT aliasing cache";
e616c591
RK
1151 }
1152 if (reason) {
1153 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1154 reason);
1155 while (j > 0 && meminfo.bank[j - 1].highmem)
1156 j--;
1157 }
1158 }
1159#endif
4b5f32ce 1160 meminfo.nr_banks = j;
c7909509 1161 high_memory = __va(arm_lowmem_limit - 1) + 1;
c65b7e98
RK
1162
1163 /*
1164 * Round the memblock limit down to a section size. This
1165 * helps to ensure that we will allocate memory from the
1166 * last full section, which should be mapped.
1167 */
1168 if (memblock_limit)
1169 memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1170 if (!memblock_limit)
1171 memblock_limit = arm_lowmem_limit;
1172
1173 memblock_set_current_limit(memblock_limit);
60296c71
LB
1174}
1175
4b5f32ce 1176static inline void prepare_page_table(void)
d111e8f9
RK
1177{
1178 unsigned long addr;
8df65168 1179 phys_addr_t end;
d111e8f9
RK
1180
1181 /*
1182 * Clear out all the mappings below the kernel image.
1183 */
e73fc88e 1184 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
1185 pmd_clear(pmd_off_k(addr));
1186
1187#ifdef CONFIG_XIP_KERNEL
1188 /* The XIP kernel is mapped in the module area -- skip over it */
e73fc88e 1189 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 1190#endif
e73fc88e 1191 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
1192 pmd_clear(pmd_off_k(addr));
1193
8df65168
RK
1194 /*
1195 * Find the end of the first block of lowmem.
1196 */
1197 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
1198 if (end >= arm_lowmem_limit)
1199 end = arm_lowmem_limit;
8df65168 1200
d111e8f9
RK
1201 /*
1202 * Clear out all the kernel space mappings, except for the first
0536bdf3 1203 * memory bank, up to the vmalloc region.
d111e8f9 1204 */
8df65168 1205 for (addr = __phys_to_virt(end);
0536bdf3 1206 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
1207 pmd_clear(pmd_off_k(addr));
1208}
1209
1b6ba46b
CM
1210#ifdef CONFIG_ARM_LPAE
1211/* the first page is reserved for pgd */
1212#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1213 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1214#else
e73fc88e 1215#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 1216#endif
e73fc88e 1217
d111e8f9 1218/*
2778f620 1219 * Reserve the special regions of memory
d111e8f9 1220 */
2778f620 1221void __init arm_mm_memblock_reserve(void)
d111e8f9 1222{
d111e8f9
RK
1223 /*
1224 * Reserve the page tables. These are already in use,
1225 * and can only be in node 0.
1226 */
e73fc88e 1227 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 1228
d111e8f9
RK
1229#ifdef CONFIG_SA1111
1230 /*
1231 * Because of the SA1111 DMA bug, we want to preserve our
1232 * precious DMA-able memory...
1233 */
2778f620 1234 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 1235#endif
d111e8f9
RK
1236}
1237
1238/*
0536bdf3
NP
1239 * Set up the device mappings. Since we clear out the page tables for all
1240 * mappings above VMALLOC_START, we will remove any debug device mappings.
d111e8f9
RK
1241 * This means you have to be careful how you debug this function, or any
1242 * called function. This means you can't use any function or debugging
1243 * method which may touch any device, otherwise the kernel _will_ crash.
1244 */
ff69a4c8 1245static void __init devicemaps_init(const struct machine_desc *mdesc)
d111e8f9
RK
1246{
1247 struct map_desc map;
1248 unsigned long addr;
94e5a85b 1249 void *vectors;
d111e8f9
RK
1250
1251 /*
1252 * Allocate the vector page early.
1253 */
19accfd3 1254 vectors = early_alloc(PAGE_SIZE * 2);
94e5a85b
RK
1255
1256 early_trap_init(vectors);
d111e8f9 1257
0536bdf3 1258 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
d111e8f9
RK
1259 pmd_clear(pmd_off_k(addr));
1260
1261 /*
1262 * Map the kernel if it is XIP.
1263 * It is always first in the modulearea.
1264 */
1265#ifdef CONFIG_XIP_KERNEL
1266 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1267 map.virtual = MODULES_VADDR;
37efe642 1268 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1269 map.type = MT_ROM;
1270 create_mapping(&map);
1271#endif
1272
1273 /*
1274 * Map the cache flushing regions.
1275 */
1276#ifdef FLUSH_BASE
1277 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1278 map.virtual = FLUSH_BASE;
1279 map.length = SZ_1M;
1280 map.type = MT_CACHECLEAN;
1281 create_mapping(&map);
1282#endif
1283#ifdef FLUSH_BASE_MINICACHE
1284 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1285 map.virtual = FLUSH_BASE_MINICACHE;
1286 map.length = SZ_1M;
1287 map.type = MT_MINICLEAN;
1288 create_mapping(&map);
1289#endif
1290
1291 /*
1292 * Create a mapping for the machine vectors at the high-vectors
1293 * location (0xffff0000). If we aren't using high-vectors, also
1294 * create a mapping at the low-vectors virtual address.
1295 */
94e5a85b 1296 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1297 map.virtual = 0xffff0000;
1298 map.length = PAGE_SIZE;
a5463cd3 1299#ifdef CONFIG_KUSER_HELPERS
d111e8f9 1300 map.type = MT_HIGH_VECTORS;
a5463cd3
RK
1301#else
1302 map.type = MT_LOW_VECTORS;
1303#endif
d111e8f9
RK
1304 create_mapping(&map);
1305
1306 if (!vectors_high()) {
1307 map.virtual = 0;
19accfd3 1308 map.length = PAGE_SIZE * 2;
d111e8f9
RK
1309 map.type = MT_LOW_VECTORS;
1310 create_mapping(&map);
1311 }
1312
19accfd3
RK
1313 /* Now create a kernel read-only mapping */
1314 map.pfn += 1;
1315 map.virtual = 0xffff0000 + PAGE_SIZE;
1316 map.length = PAGE_SIZE;
1317 map.type = MT_LOW_VECTORS;
1318 create_mapping(&map);
1319
d111e8f9
RK
1320 /*
1321 * Ask the machine support to map in the statically mapped devices.
1322 */
1323 if (mdesc->map_io)
1324 mdesc->map_io();
bc37324e
MR
1325 else
1326 debug_ll_io_init();
19b52abe 1327 fill_pmd_gaps();
d111e8f9 1328
c2794437
RH
1329 /* Reserve fixed i/o space in VMALLOC region */
1330 pci_reserve_io();
1331
d111e8f9
RK
1332 /*
1333 * Finally flush the caches and tlb to ensure that we're in a
1334 * consistent state wrt the writebuffer. This also ensures that
1335 * any write-allocated cache lines in the vector page are written
1336 * back. After this point, we can start to touch devices again.
1337 */
1338 local_flush_tlb_all();
1339 flush_cache_all();
1340}
1341
d73cd428
NP
1342static void __init kmap_init(void)
1343{
1344#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1345 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1346 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428
NP
1347#endif
1348}
1349
a2227120
RK
1350static void __init map_lowmem(void)
1351{
8df65168 1352 struct memblock_region *reg;
ebd4922e
RK
1353 unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1354 unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
a2227120
RK
1355
1356 /* Map all the lowmem memory banks. */
8df65168
RK
1357 for_each_memblock(memory, reg) {
1358 phys_addr_t start = reg->base;
1359 phys_addr_t end = start + reg->size;
1360 struct map_desc map;
1361
c7909509
MS
1362 if (end > arm_lowmem_limit)
1363 end = arm_lowmem_limit;
8df65168
RK
1364 if (start >= end)
1365 break;
1366
ebd4922e
RK
1367 if (end < kernel_x_start || start >= kernel_x_end) {
1368 map.pfn = __phys_to_pfn(start);
1369 map.virtual = __phys_to_virt(start);
1370 map.length = end - start;
1371 map.type = MT_MEMORY_RWX;
a2227120 1372
ebd4922e
RK
1373 create_mapping(&map);
1374 } else {
1375 /* This better cover the entire kernel */
1376 if (start < kernel_x_start) {
1377 map.pfn = __phys_to_pfn(start);
1378 map.virtual = __phys_to_virt(start);
1379 map.length = kernel_x_start - start;
1380 map.type = MT_MEMORY_RW;
1381
1382 create_mapping(&map);
1383 }
1384
1385 map.pfn = __phys_to_pfn(kernel_x_start);
1386 map.virtual = __phys_to_virt(kernel_x_start);
1387 map.length = kernel_x_end - kernel_x_start;
1388 map.type = MT_MEMORY_RWX;
1389
1390 create_mapping(&map);
1391
1392 if (kernel_x_end < end) {
1393 map.pfn = __phys_to_pfn(kernel_x_end);
1394 map.virtual = __phys_to_virt(kernel_x_end);
1395 map.length = end - kernel_x_end;
1396 map.type = MT_MEMORY_RW;
1397
1398 create_mapping(&map);
1399 }
1400 }
a2227120
RK
1401 }
1402}
1403
a77e0c7b
SS
1404#ifdef CONFIG_ARM_LPAE
1405/*
1406 * early_paging_init() recreates boot time page table setup, allowing machines
1407 * to switch over to a high (>4G) address space on LPAE systems
1408 */
1409void __init early_paging_init(const struct machine_desc *mdesc,
1410 struct proc_info_list *procinfo)
1411{
1412 pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1413 unsigned long map_start, map_end;
1414 pgd_t *pgd0, *pgdk;
1415 pud_t *pud0, *pudk, *pud_start;
1416 pmd_t *pmd0, *pmdk;
1417 phys_addr_t phys;
1418 int i;
1419
1420 if (!(mdesc->init_meminfo))
1421 return;
1422
1423 /* remap kernel code and data */
1424 map_start = init_mm.start_code;
1425 map_end = init_mm.brk;
1426
1427 /* get a handle on things... */
1428 pgd0 = pgd_offset_k(0);
1429 pud_start = pud0 = pud_offset(pgd0, 0);
1430 pmd0 = pmd_offset(pud0, 0);
1431
1432 pgdk = pgd_offset_k(map_start);
1433 pudk = pud_offset(pgdk, map_start);
1434 pmdk = pmd_offset(pudk, map_start);
1435
1436 mdesc->init_meminfo();
1437
1438 /* Run the patch stub to update the constants */
1439 fixup_pv_table(&__pv_table_begin,
1440 (&__pv_table_end - &__pv_table_begin) << 2);
1441
1442 /*
1443 * Cache cleaning operations for self-modifying code
1444 * We should clean the entries by MVA but running a
1445 * for loop over every pv_table entry pointer would
1446 * just complicate the code.
1447 */
1448 flush_cache_louis();
1449 dsb();
1450 isb();
1451
1452 /* remap level 1 table */
1453 for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1454 set_pud(pud0,
1455 __pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1456 pmd0 += PTRS_PER_PMD;
1457 }
1458
1459 /* remap pmds for kernel mapping */
1460 phys = __pa(map_start) & PMD_MASK;
1461 do {
1462 *pmdk++ = __pmd(phys | pmdprot);
1463 phys += PMD_SIZE;
1464 } while (phys < map_end);
1465
1466 flush_cache_all();
1467 cpu_switch_mm(pgd0, &init_mm);
1468 cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1469 local_flush_bp_all();
1470 local_flush_tlb_all();
1471}
1472
1473#else
1474
1475void __init early_paging_init(const struct machine_desc *mdesc,
1476 struct proc_info_list *procinfo)
1477{
1478 if (mdesc->init_meminfo)
1479 mdesc->init_meminfo();
1480}
1481
1482#endif
1483
d111e8f9
RK
1484/*
1485 * paging_init() sets up the page tables, initialises the zone memory
1486 * maps, and sets up the zero page, bad page and bad page tables.
1487 */
ff69a4c8 1488void __init paging_init(const struct machine_desc *mdesc)
d111e8f9
RK
1489{
1490 void *zero_page;
1491
1492 build_mem_type_table();
4b5f32ce 1493 prepare_page_table();
a2227120 1494 map_lowmem();
c7909509 1495 dma_contiguous_remap();
d111e8f9 1496 devicemaps_init(mdesc);
d73cd428 1497 kmap_init();
de40614e 1498 tcm_init();
d111e8f9
RK
1499
1500 top_pmd = pmd_off_k(0xffff0000);
1501
3abe9d33
RK
1502 /* allocate the zero page. */
1503 zero_page = early_alloc(PAGE_SIZE);
2778f620 1504
8d717a52 1505 bootmem_init();
2778f620 1506
d111e8f9 1507 empty_zero_page = virt_to_page(zero_page);
421fe93c 1508 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1509}