]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm/mm/mmu.c
ARM: add generic ioremap optimization by reusing static mappings
[mirror_ubuntu-artful-kernel.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
d111e8f9 19
0ba8b9b2 20#include <asm/cputype.h>
37efe642 21#include <asm/sections.h>
3f973e22 22#include <asm/cachetype.h>
d111e8f9
RK
23#include <asm/setup.h>
24#include <asm/sizes.h>
e616c591 25#include <asm/smp_plat.h>
d111e8f9 26#include <asm/tlb.h>
d73cd428 27#include <asm/highmem.h>
247055aa 28#include <asm/traps.h>
d111e8f9
RK
29
30#include <asm/mach/arch.h>
31#include <asm/mach/map.h>
32
33#include "mm.h"
34
d111e8f9
RK
35/*
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
38 */
39struct page *empty_zero_page;
3653f3ab 40EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
41
42/*
43 * The pmd table for the upper-most set of pages.
44 */
45pmd_t *top_pmd;
46
ae8f1541
RK
47#define CPOLICY_UNCACHED 0
48#define CPOLICY_BUFFERED 1
49#define CPOLICY_WRITETHROUGH 2
50#define CPOLICY_WRITEBACK 3
51#define CPOLICY_WRITEALLOC 4
52
53static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54static unsigned int ecc_mask __initdata = 0;
44b18693 55pgprot_t pgprot_user;
ae8f1541
RK
56pgprot_t pgprot_kernel;
57
44b18693 58EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
59EXPORT_SYMBOL(pgprot_kernel);
60
61struct cachepolicy {
62 const char policy[16];
63 unsigned int cr_mask;
442e70c0 64 pmdval_t pmd;
f6e3354d 65 pteval_t pte;
ae8f1541
RK
66};
67
68static struct cachepolicy cache_policies[] __initdata = {
69 {
70 .policy = "uncached",
71 .cr_mask = CR_W|CR_C,
72 .pmd = PMD_SECT_UNCACHED,
bb30f36f 73 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
74 }, {
75 .policy = "buffered",
76 .cr_mask = CR_C,
77 .pmd = PMD_SECT_BUFFERED,
bb30f36f 78 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
79 }, {
80 .policy = "writethrough",
81 .cr_mask = 0,
82 .pmd = PMD_SECT_WT,
bb30f36f 83 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
84 }, {
85 .policy = "writeback",
86 .cr_mask = 0,
87 .pmd = PMD_SECT_WB,
bb30f36f 88 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
89 }, {
90 .policy = "writealloc",
91 .cr_mask = 0,
92 .pmd = PMD_SECT_WBWA,
bb30f36f 93 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
94 }
95};
96
97/*
6cbdc8c5 98 * These are useful for identifying cache coherency
ae8f1541
RK
99 * problems by allowing the cache or the cache and
100 * writebuffer to be turned off. (Note: the write
101 * buffer should not be on and the cache off).
102 */
2b0d8c25 103static int __init early_cachepolicy(char *p)
ae8f1541
RK
104{
105 int i;
106
107 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108 int len = strlen(cache_policies[i].policy);
109
2b0d8c25 110 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
111 cachepolicy = i;
112 cr_alignment &= ~cache_policies[i].cr_mask;
113 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
114 break;
115 }
116 }
117 if (i == ARRAY_SIZE(cache_policies))
118 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
119 /*
120 * This restriction is partly to do with the way we boot; it is
121 * unpredictable to have memory mapped using two different sets of
122 * memory attributes (shared, type, and cache attribs). We can not
123 * change these attributes once the initial assembly has setup the
124 * page tables.
125 */
11179d8c
CM
126 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128 cachepolicy = CPOLICY_WRITEBACK;
129 }
ae8f1541
RK
130 flush_cache_all();
131 set_cr(cr_alignment);
2b0d8c25 132 return 0;
ae8f1541 133}
2b0d8c25 134early_param("cachepolicy", early_cachepolicy);
ae8f1541 135
2b0d8c25 136static int __init early_nocache(char *__unused)
ae8f1541
RK
137{
138 char *p = "buffered";
139 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
140 early_cachepolicy(p);
141 return 0;
ae8f1541 142}
2b0d8c25 143early_param("nocache", early_nocache);
ae8f1541 144
2b0d8c25 145static int __init early_nowrite(char *__unused)
ae8f1541
RK
146{
147 char *p = "uncached";
148 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
149 early_cachepolicy(p);
150 return 0;
ae8f1541 151}
2b0d8c25 152early_param("nowb", early_nowrite);
ae8f1541 153
2b0d8c25 154static int __init early_ecc(char *p)
ae8f1541 155{
2b0d8c25 156 if (memcmp(p, "on", 2) == 0)
ae8f1541 157 ecc_mask = PMD_PROTECTION;
2b0d8c25 158 else if (memcmp(p, "off", 3) == 0)
ae8f1541 159 ecc_mask = 0;
2b0d8c25 160 return 0;
ae8f1541 161}
2b0d8c25 162early_param("ecc", early_ecc);
ae8f1541
RK
163
164static int __init noalign_setup(char *__unused)
165{
166 cr_alignment &= ~CR_A;
167 cr_no_alignment &= ~CR_A;
168 set_cr(cr_alignment);
169 return 1;
170}
171__setup("noalign", noalign_setup);
172
255d1f86
RK
173#ifndef CONFIG_SMP
174void adjust_cr(unsigned long mask, unsigned long set)
175{
176 unsigned long flags;
177
178 mask &= ~CR_A;
179
180 set &= mask;
181
182 local_irq_save(flags);
183
184 cr_no_alignment = (cr_no_alignment & ~mask) | set;
185 cr_alignment = (cr_alignment & ~mask) | set;
186
187 set_cr((get_cr() & ~mask) | set);
188
189 local_irq_restore(flags);
190}
191#endif
192
36bb94ba 193#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
b1cce6b1 194#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 195
b29e9f5e 196static struct mem_type mem_types[] = {
0af92bef 197 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
198 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199 L_PTE_SHARED,
0af92bef 200 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 201 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
202 .domain = DOMAIN_IO,
203 },
204 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 205 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 206 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 207 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
208 .domain = DOMAIN_IO,
209 },
210 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 211 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
212 .prot_l1 = PMD_TYPE_TABLE,
213 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
214 .domain = DOMAIN_IO,
215 },
1ad77a87 216 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 217 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 218 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 219 .prot_sect = PROT_SECT_DEVICE,
0af92bef 220 .domain = DOMAIN_IO,
ae8f1541 221 },
ebb4c658
RK
222 [MT_UNCACHED] = {
223 .prot_pte = PROT_PTE_DEVICE,
224 .prot_l1 = PMD_TYPE_TABLE,
225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
226 .domain = DOMAIN_IO,
227 },
ae8f1541 228 [MT_CACHECLEAN] = {
9ef79635 229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
230 .domain = DOMAIN_KERNEL,
231 },
232 [MT_MINICLEAN] = {
9ef79635 233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
234 .domain = DOMAIN_KERNEL,
235 },
236 [MT_LOW_VECTORS] = {
237 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 238 L_PTE_RDONLY,
ae8f1541
RK
239 .prot_l1 = PMD_TYPE_TABLE,
240 .domain = DOMAIN_USER,
241 },
242 [MT_HIGH_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 244 L_PTE_USER | L_PTE_RDONLY,
ae8f1541
RK
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
247 },
248 [MT_MEMORY] = {
36bb94ba 249 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 250 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 251 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
252 .domain = DOMAIN_KERNEL,
253 },
254 [MT_ROM] = {
9ef79635 255 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
256 .domain = DOMAIN_KERNEL,
257 },
e4707dd3 258 [MT_MEMORY_NONCACHED] = {
f1a2481c 259 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 260 L_PTE_MT_BUFFERABLE,
f1a2481c 261 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
262 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
263 .domain = DOMAIN_KERNEL,
264 },
cb9d7707 265 [MT_MEMORY_DTCM] = {
f444fce3 266 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 267 L_PTE_XN,
f444fce3
LW
268 .prot_l1 = PMD_TYPE_TABLE,
269 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
270 .domain = DOMAIN_KERNEL,
cb9d7707
LW
271 },
272 [MT_MEMORY_ITCM] = {
36bb94ba 273 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 274 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 275 .domain = DOMAIN_KERNEL,
cb9d7707 276 },
8fb54284
SS
277 [MT_MEMORY_SO] = {
278 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
279 L_PTE_MT_UNCACHED,
280 .prot_l1 = PMD_TYPE_TABLE,
281 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
282 PMD_SECT_UNCACHED | PMD_SECT_XN,
283 .domain = DOMAIN_KERNEL,
284 },
ae8f1541
RK
285};
286
b29e9f5e
RK
287const struct mem_type *get_mem_type(unsigned int type)
288{
289 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
290}
69d3a84a 291EXPORT_SYMBOL(get_mem_type);
b29e9f5e 292
ae8f1541
RK
293/*
294 * Adjust the PMD section entries according to the CPU in use.
295 */
296static void __init build_mem_type_table(void)
297{
298 struct cachepolicy *cp;
299 unsigned int cr = get_cr();
442e70c0 300 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
301 int cpu_arch = cpu_architecture();
302 int i;
303
11179d8c 304 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 305#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
306 if (cachepolicy > CPOLICY_BUFFERED)
307 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 308#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
309 if (cachepolicy > CPOLICY_WRITETHROUGH)
310 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 311#endif
11179d8c 312 }
ae8f1541
RK
313 if (cpu_arch < CPU_ARCH_ARMv5) {
314 if (cachepolicy >= CPOLICY_WRITEALLOC)
315 cachepolicy = CPOLICY_WRITEBACK;
316 ecc_mask = 0;
317 }
f00ec48f
RK
318 if (is_smp())
319 cachepolicy = CPOLICY_WRITEALLOC;
ae8f1541 320
1ad77a87 321 /*
b1cce6b1
RK
322 * Strip out features not present on earlier architectures.
323 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
324 * without extended page tables don't have the 'Shared' bit.
1ad77a87 325 */
b1cce6b1
RK
326 if (cpu_arch < CPU_ARCH_ARMv5)
327 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
328 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
329 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
330 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
331 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
332
333 /*
b1cce6b1
RK
334 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
335 * "update-able on write" bit on ARM610). However, Xscale and
336 * Xscale3 require this bit to be cleared.
ae8f1541 337 */
b1cce6b1 338 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 339 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 340 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
341 mem_types[i].prot_l1 &= ~PMD_BIT4;
342 }
343 } else if (cpu_arch < CPU_ARCH_ARMv6) {
344 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
345 if (mem_types[i].prot_l1)
346 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
347 if (mem_types[i].prot_sect)
348 mem_types[i].prot_sect |= PMD_BIT4;
349 }
350 }
ae8f1541 351
b1cce6b1
RK
352 /*
353 * Mark the device areas according to the CPU/architecture.
354 */
355 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
356 if (!cpu_is_xsc3()) {
357 /*
358 * Mark device regions on ARMv6+ as execute-never
359 * to prevent speculative instruction fetches.
360 */
361 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
362 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
363 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
364 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
365 }
366 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
367 /*
368 * For ARMv7 with TEX remapping,
369 * - shared device is SXCB=1100
370 * - nonshared device is SXCB=0100
371 * - write combine device mem is SXCB=0001
372 * (Uncached Normal memory)
373 */
374 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
375 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
376 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
377 } else if (cpu_is_xsc3()) {
378 /*
379 * For Xscale3,
380 * - shared device is TEXCB=00101
381 * - nonshared device is TEXCB=01000
382 * - write combine device mem is TEXCB=00100
383 * (Inner/Outer Uncacheable in xsc3 parlance)
384 */
385 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
386 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
387 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
388 } else {
389 /*
390 * For ARMv6 and ARMv7 without TEX remapping,
391 * - shared device is TEXCB=00001
392 * - nonshared device is TEXCB=01000
393 * - write combine device mem is TEXCB=00100
394 * (Uncached Normal in ARMv6 parlance).
395 */
396 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
397 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
398 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
399 }
400 } else {
401 /*
402 * On others, write combining is "Uncached/Buffered"
403 */
404 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
405 }
406
407 /*
408 * Now deal with the memory-type mappings
409 */
ae8f1541 410 cp = &cache_policies[cachepolicy];
bb30f36f
RK
411 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
412
bb30f36f
RK
413 /*
414 * Only use write-through for non-SMP systems
415 */
f00ec48f 416 if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
bb30f36f 417 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
ae8f1541
RK
418
419 /*
420 * Enable CPU-specific coherency if supported.
421 * (Only available on XSC3 at the moment.)
422 */
f1a2481c 423 if (arch_is_coherent() && cpu_is_xsc3()) {
b1cce6b1 424 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
f1a2481c
SS
425 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
426 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
427 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
428 }
ae8f1541
RK
429 /*
430 * ARMv6 and above have extended page tables.
431 */
432 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
ae8f1541
RK
433 /*
434 * Mark cache clean areas and XIP ROM read only
435 * from SVC mode and no access from userspace.
436 */
437 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
438 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
439 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
440
f00ec48f
RK
441 if (is_smp()) {
442 /*
443 * Mark memory with the "shared" attribute
444 * for SMP systems
445 */
446 user_pgprot |= L_PTE_SHARED;
447 kern_pgprot |= L_PTE_SHARED;
448 vecs_pgprot |= L_PTE_SHARED;
449 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
450 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
451 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
452 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
453 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
454 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
455 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
456 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
457 }
ae8f1541
RK
458 }
459
e4707dd3
PW
460 /*
461 * Non-cacheable Normal - intended for memory areas that must
462 * not cause dirty cache line writebacks when used
463 */
464 if (cpu_arch >= CPU_ARCH_ARMv6) {
465 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
466 /* Non-cacheable Normal is XCB = 001 */
467 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
468 PMD_SECT_BUFFERED;
469 } else {
470 /* For both ARMv6 and non-TEX-remapping ARMv7 */
471 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
472 PMD_SECT_TEX(1);
473 }
474 } else {
475 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
476 }
477
ae8f1541
RK
478 for (i = 0; i < 16; i++) {
479 unsigned long v = pgprot_val(protection_map[i]);
bb30f36f 480 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
481 }
482
bb30f36f
RK
483 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
484 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 485
44b18693 486 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 487 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 488 L_PTE_DIRTY | kern_pgprot);
ae8f1541
RK
489
490 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
491 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
492 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
f1a2481c
SS
493 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
494 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
495 mem_types[MT_ROM].prot_sect |= cp->pmd;
496
497 switch (cp->pmd) {
498 case PMD_SECT_WT:
499 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
500 break;
501 case PMD_SECT_WB:
502 case PMD_SECT_WBWA:
503 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
504 break;
505 }
506 printk("Memory policy: ECC %sabled, Data cache %s\n",
507 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
508
509 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
510 struct mem_type *t = &mem_types[i];
511 if (t->prot_l1)
512 t->prot_l1 |= PMD_DOMAIN(t->domain);
513 if (t->prot_sect)
514 t->prot_sect |= PMD_DOMAIN(t->domain);
515 }
ae8f1541
RK
516}
517
d907387c
CM
518#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
519pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
520 unsigned long size, pgprot_t vma_prot)
521{
522 if (!pfn_valid(pfn))
523 return pgprot_noncached(vma_prot);
524 else if (file->f_flags & O_SYNC)
525 return pgprot_writecombine(vma_prot);
526 return vma_prot;
527}
528EXPORT_SYMBOL(phys_mem_access_prot);
529#endif
530
ae8f1541
RK
531#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
532
0536bdf3 533static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 534{
0536bdf3 535 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
536 memset(ptr, 0, sz);
537 return ptr;
3abe9d33
RK
538}
539
0536bdf3
NP
540static void __init *early_alloc(unsigned long sz)
541{
542 return early_alloc_aligned(sz, sz);
543}
544
4bb2e27d 545static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 546{
24e6c699 547 if (pmd_none(*pmd)) {
410f1483 548 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 549 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 550 }
4bb2e27d
RK
551 BUG_ON(pmd_bad(*pmd));
552 return pte_offset_kernel(pmd, addr);
553}
ae8f1541 554
4bb2e27d
RK
555static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
556 unsigned long end, unsigned long pfn,
557 const struct mem_type *type)
558{
559 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 560 do {
40d192b6 561 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
562 pfn++;
563 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
564}
565
516295e5 566static void __init alloc_init_section(pud_t *pud, unsigned long addr,
97092e0c 567 unsigned long end, phys_addr_t phys,
24e6c699 568 const struct mem_type *type)
ae8f1541 569{
516295e5 570 pmd_t *pmd = pmd_offset(pud, addr);
ae8f1541 571
24e6c699
RK
572 /*
573 * Try a section mapping - end, addr and phys must all be aligned
574 * to a section boundary. Note that PMDs refer to the individual
575 * L1 entries, whereas PGDs refer to a group of L1 entries making
576 * up one logical pointer to an L2 table.
577 */
578 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
579 pmd_t *p = pmd;
ae8f1541 580
24e6c699
RK
581 if (addr & SECTION_SIZE)
582 pmd++;
583
584 do {
585 *pmd = __pmd(phys | type->prot_sect);
586 phys += SECTION_SIZE;
587 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 588
24e6c699
RK
589 flush_pmd_entry(p);
590 } else {
591 /*
592 * No need to loop; pte's aren't interested in the
593 * individual L1 entries.
594 */
595 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
596 }
ae8f1541
RK
597}
598
516295e5
RK
599static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
600 unsigned long phys, const struct mem_type *type)
601{
602 pud_t *pud = pud_offset(pgd, addr);
603 unsigned long next;
604
605 do {
606 next = pud_addr_end(addr, end);
607 alloc_init_section(pud, addr, next, phys, type);
608 phys += next - addr;
609 } while (pud++, addr = next, addr != end);
610}
611
4a56c1e4
RK
612static void __init create_36bit_mapping(struct map_desc *md,
613 const struct mem_type *type)
614{
97092e0c
RK
615 unsigned long addr, length, end;
616 phys_addr_t phys;
4a56c1e4
RK
617 pgd_t *pgd;
618
619 addr = md->virtual;
cae6292b 620 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
621 length = PAGE_ALIGN(md->length);
622
623 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
624 printk(KERN_ERR "MM: CPU does not support supersection "
625 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 626 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
627 return;
628 }
629
630 /* N.B. ARMv6 supersections are only defined to work with domain 0.
631 * Since domain assignments can in fact be arbitrary, the
632 * 'domain == 0' check below is required to insure that ARMv6
633 * supersections are only allocated for domain 0 regardless
634 * of the actual domain assignments in use.
635 */
636 if (type->domain) {
637 printk(KERN_ERR "MM: invalid domain in supersection "
638 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 639 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
640 return;
641 }
642
643 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
29a38193
WD
644 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
645 " at 0x%08lx invalid alignment\n",
646 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
647 return;
648 }
649
650 /*
651 * Shift bits [35:32] of address into bits [23:20] of PMD
652 * (See ARMv6 spec).
653 */
654 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
655
656 pgd = pgd_offset_k(addr);
657 end = addr + length;
658 do {
516295e5
RK
659 pud_t *pud = pud_offset(pgd, addr);
660 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
661 int i;
662
663 for (i = 0; i < 16; i++)
664 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
665
666 addr += SUPERSECTION_SIZE;
667 phys += SUPERSECTION_SIZE;
668 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
669 } while (addr != end);
670}
671
ae8f1541
RK
672/*
673 * Create the page directory entries and any necessary
674 * page tables for the mapping specified by `md'. We
675 * are able to cope here with varying sizes and address
676 * offsets, and we take full advantage of sections and
677 * supersections.
678 */
a2227120 679static void __init create_mapping(struct map_desc *md)
ae8f1541 680{
cae6292b
WD
681 unsigned long addr, length, end;
682 phys_addr_t phys;
d5c98176 683 const struct mem_type *type;
24e6c699 684 pgd_t *pgd;
ae8f1541
RK
685
686 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
29a38193
WD
687 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
688 " at 0x%08lx in user region\n",
689 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
690 return;
691 }
692
693 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
0536bdf3
NP
694 md->virtual >= PAGE_OFFSET &&
695 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
29a38193 696 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
0536bdf3 697 " at 0x%08lx out of vmalloc space\n",
29a38193 698 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
699 }
700
d5c98176 701 type = &mem_types[md->type];
ae8f1541
RK
702
703 /*
704 * Catch 36-bit addresses
705 */
4a56c1e4
RK
706 if (md->pfn >= 0x100000) {
707 create_36bit_mapping(md, type);
708 return;
ae8f1541
RK
709 }
710
7b9c7b4d 711 addr = md->virtual & PAGE_MASK;
cae6292b 712 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 713 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 714
24e6c699 715 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
29a38193 716 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
ae8f1541 717 "be mapped using pages, ignoring.\n",
29a38193 718 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
719 return;
720 }
721
24e6c699
RK
722 pgd = pgd_offset_k(addr);
723 end = addr + length;
724 do {
725 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 726
516295e5 727 alloc_init_pud(pgd, addr, next, phys, type);
ae8f1541 728
24e6c699
RK
729 phys += next - addr;
730 addr = next;
731 } while (pgd++, addr != end);
ae8f1541
RK
732}
733
734/*
735 * Create the architecture specific mappings
736 */
737void __init iotable_init(struct map_desc *io_desc, int nr)
738{
0536bdf3
NP
739 struct map_desc *md;
740 struct vm_struct *vm;
741
742 if (!nr)
743 return;
ae8f1541 744
0536bdf3
NP
745 vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
746
747 for (md = io_desc; nr; md++, nr--) {
748 create_mapping(md);
749 vm->addr = (void *)(md->virtual & PAGE_MASK);
750 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
751 vm->phys_addr = __pfn_to_phys(md->pfn);
576d2f25
NP
752 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
753 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3
NP
754 vm->caller = iotable_init;
755 vm_area_add_early(vm++);
756 }
ae8f1541
RK
757}
758
0536bdf3
NP
759static void * __initdata vmalloc_min =
760 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
761
762/*
763 * vmalloc=size forces the vmalloc area to be exactly 'size'
764 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 765 * area - the default is 240m.
6c5da7ac 766 */
2b0d8c25 767static int __init early_vmalloc(char *arg)
6c5da7ac 768{
79612395 769 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
770
771 if (vmalloc_reserve < SZ_16M) {
772 vmalloc_reserve = SZ_16M;
773 printk(KERN_WARNING
774 "vmalloc area too small, limiting to %luMB\n",
775 vmalloc_reserve >> 20);
776 }
9210807c
NP
777
778 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
779 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
780 printk(KERN_WARNING
781 "vmalloc area is too big, limiting to %luMB\n",
782 vmalloc_reserve >> 20);
783 }
79612395
RK
784
785 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 786 return 0;
6c5da7ac 787}
2b0d8c25 788early_param("vmalloc", early_vmalloc);
6c5da7ac 789
8df65168
RK
790static phys_addr_t lowmem_limit __initdata = 0;
791
0371d3f7 792void __init sanity_check_meminfo(void)
60296c71 793{
dde5828f 794 int i, j, highmem = 0;
60296c71 795
4b5f32ce 796 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
797 struct membank *bank = &meminfo.bank[j];
798 *bank = meminfo.bank[i];
60296c71 799
a1bbaec0 800#ifdef CONFIG_HIGHMEM
40f7bfe4 801 if (__va(bank->start) >= vmalloc_min ||
dde5828f
RK
802 __va(bank->start) < (void *)PAGE_OFFSET)
803 highmem = 1;
804
805 bank->highmem = highmem;
806
a1bbaec0
NP
807 /*
808 * Split those memory banks which are partially overlapping
809 * the vmalloc area greatly simplifying things later.
810 */
79612395
RK
811 if (__va(bank->start) < vmalloc_min &&
812 bank->size > vmalloc_min - __va(bank->start)) {
a1bbaec0
NP
813 if (meminfo.nr_banks >= NR_BANKS) {
814 printk(KERN_CRIT "NR_BANKS too low, "
815 "ignoring high memory\n");
816 } else {
817 memmove(bank + 1, bank,
818 (meminfo.nr_banks - i) * sizeof(*bank));
819 meminfo.nr_banks++;
820 i++;
79612395
RK
821 bank[1].size -= vmalloc_min - __va(bank->start);
822 bank[1].start = __pa(vmalloc_min - 1) + 1;
dde5828f 823 bank[1].highmem = highmem = 1;
a1bbaec0
NP
824 j++;
825 }
79612395 826 bank->size = vmalloc_min - __va(bank->start);
a1bbaec0
NP
827 }
828#else
041d785f
RK
829 bank->highmem = highmem;
830
a1bbaec0
NP
831 /*
832 * Check whether this memory bank would entirely overlap
833 * the vmalloc area.
834 */
79612395 835 if (__va(bank->start) >= vmalloc_min ||
f0bba9f9 836 __va(bank->start) < (void *)PAGE_OFFSET) {
e33b9d08 837 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
a1bbaec0 838 "(vmalloc region overlap).\n",
e33b9d08
RK
839 (unsigned long long)bank->start,
840 (unsigned long long)bank->start + bank->size - 1);
a1bbaec0
NP
841 continue;
842 }
60296c71 843
a1bbaec0
NP
844 /*
845 * Check whether this memory bank would partially overlap
846 * the vmalloc area.
847 */
79612395 848 if (__va(bank->start + bank->size) > vmalloc_min ||
a1bbaec0 849 __va(bank->start + bank->size) < __va(bank->start)) {
79612395 850 unsigned long newsize = vmalloc_min - __va(bank->start);
e33b9d08
RK
851 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
852 "to -%.8llx (vmalloc region overlap).\n",
853 (unsigned long long)bank->start,
854 (unsigned long long)bank->start + bank->size - 1,
855 (unsigned long long)bank->start + newsize - 1);
a1bbaec0
NP
856 bank->size = newsize;
857 }
858#endif
40f7bfe4
WD
859 if (!bank->highmem && bank->start + bank->size > lowmem_limit)
860 lowmem_limit = bank->start + bank->size;
861
a1bbaec0 862 j++;
60296c71 863 }
e616c591
RK
864#ifdef CONFIG_HIGHMEM
865 if (highmem) {
866 const char *reason = NULL;
867
868 if (cache_is_vipt_aliasing()) {
869 /*
870 * Interactions between kmap and other mappings
871 * make highmem support with aliasing VIPT caches
872 * rather difficult.
873 */
874 reason = "with VIPT aliasing cache";
e616c591
RK
875 }
876 if (reason) {
877 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
878 reason);
879 while (j > 0 && meminfo.bank[j - 1].highmem)
880 j--;
881 }
882 }
883#endif
4b5f32ce 884 meminfo.nr_banks = j;
55a8173c 885 high_memory = __va(lowmem_limit - 1) + 1;
40f7bfe4 886 memblock_set_current_limit(lowmem_limit);
60296c71
LB
887}
888
4b5f32ce 889static inline void prepare_page_table(void)
d111e8f9
RK
890{
891 unsigned long addr;
8df65168 892 phys_addr_t end;
d111e8f9
RK
893
894 /*
895 * Clear out all the mappings below the kernel image.
896 */
e73fc88e 897 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
898 pmd_clear(pmd_off_k(addr));
899
900#ifdef CONFIG_XIP_KERNEL
901 /* The XIP kernel is mapped in the module area -- skip over it */
e73fc88e 902 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 903#endif
e73fc88e 904 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
905 pmd_clear(pmd_off_k(addr));
906
8df65168
RK
907 /*
908 * Find the end of the first block of lowmem.
909 */
910 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
911 if (end >= lowmem_limit)
912 end = lowmem_limit;
913
d111e8f9
RK
914 /*
915 * Clear out all the kernel space mappings, except for the first
0536bdf3 916 * memory bank, up to the vmalloc region.
d111e8f9 917 */
8df65168 918 for (addr = __phys_to_virt(end);
0536bdf3 919 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
920 pmd_clear(pmd_off_k(addr));
921}
922
e73fc88e
CM
923#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
924
d111e8f9 925/*
2778f620 926 * Reserve the special regions of memory
d111e8f9 927 */
2778f620 928void __init arm_mm_memblock_reserve(void)
d111e8f9 929{
d111e8f9
RK
930 /*
931 * Reserve the page tables. These are already in use,
932 * and can only be in node 0.
933 */
e73fc88e 934 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 935
d111e8f9
RK
936#ifdef CONFIG_SA1111
937 /*
938 * Because of the SA1111 DMA bug, we want to preserve our
939 * precious DMA-able memory...
940 */
2778f620 941 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 942#endif
d111e8f9
RK
943}
944
945/*
0536bdf3
NP
946 * Set up the device mappings. Since we clear out the page tables for all
947 * mappings above VMALLOC_START, we will remove any debug device mappings.
d111e8f9
RK
948 * This means you have to be careful how you debug this function, or any
949 * called function. This means you can't use any function or debugging
950 * method which may touch any device, otherwise the kernel _will_ crash.
951 */
952static void __init devicemaps_init(struct machine_desc *mdesc)
953{
954 struct map_desc map;
955 unsigned long addr;
d111e8f9
RK
956
957 /*
958 * Allocate the vector page early.
959 */
247055aa 960 vectors_page = early_alloc(PAGE_SIZE);
d111e8f9 961
0536bdf3 962 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
d111e8f9
RK
963 pmd_clear(pmd_off_k(addr));
964
965 /*
966 * Map the kernel if it is XIP.
967 * It is always first in the modulearea.
968 */
969#ifdef CONFIG_XIP_KERNEL
970 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 971 map.virtual = MODULES_VADDR;
37efe642 972 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
973 map.type = MT_ROM;
974 create_mapping(&map);
975#endif
976
977 /*
978 * Map the cache flushing regions.
979 */
980#ifdef FLUSH_BASE
981 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
982 map.virtual = FLUSH_BASE;
983 map.length = SZ_1M;
984 map.type = MT_CACHECLEAN;
985 create_mapping(&map);
986#endif
987#ifdef FLUSH_BASE_MINICACHE
988 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
989 map.virtual = FLUSH_BASE_MINICACHE;
990 map.length = SZ_1M;
991 map.type = MT_MINICLEAN;
992 create_mapping(&map);
993#endif
994
995 /*
996 * Create a mapping for the machine vectors at the high-vectors
997 * location (0xffff0000). If we aren't using high-vectors, also
998 * create a mapping at the low-vectors virtual address.
999 */
247055aa 1000 map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
d111e8f9
RK
1001 map.virtual = 0xffff0000;
1002 map.length = PAGE_SIZE;
1003 map.type = MT_HIGH_VECTORS;
1004 create_mapping(&map);
1005
1006 if (!vectors_high()) {
1007 map.virtual = 0;
1008 map.type = MT_LOW_VECTORS;
1009 create_mapping(&map);
1010 }
1011
1012 /*
1013 * Ask the machine support to map in the statically mapped devices.
1014 */
1015 if (mdesc->map_io)
1016 mdesc->map_io();
1017
1018 /*
1019 * Finally flush the caches and tlb to ensure that we're in a
1020 * consistent state wrt the writebuffer. This also ensures that
1021 * any write-allocated cache lines in the vector page are written
1022 * back. After this point, we can start to touch devices again.
1023 */
1024 local_flush_tlb_all();
1025 flush_cache_all();
1026}
1027
d73cd428
NP
1028static void __init kmap_init(void)
1029{
1030#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1031 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1032 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428
NP
1033#endif
1034}
1035
a2227120
RK
1036static void __init map_lowmem(void)
1037{
8df65168 1038 struct memblock_region *reg;
a2227120
RK
1039
1040 /* Map all the lowmem memory banks. */
8df65168
RK
1041 for_each_memblock(memory, reg) {
1042 phys_addr_t start = reg->base;
1043 phys_addr_t end = start + reg->size;
1044 struct map_desc map;
1045
1046 if (end > lowmem_limit)
1047 end = lowmem_limit;
1048 if (start >= end)
1049 break;
1050
1051 map.pfn = __phys_to_pfn(start);
1052 map.virtual = __phys_to_virt(start);
1053 map.length = end - start;
1054 map.type = MT_MEMORY;
a2227120 1055
8df65168 1056 create_mapping(&map);
a2227120
RK
1057 }
1058}
1059
d111e8f9
RK
1060/*
1061 * paging_init() sets up the page tables, initialises the zone memory
1062 * maps, and sets up the zero page, bad page and bad page tables.
1063 */
4b5f32ce 1064void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1065{
1066 void *zero_page;
1067
0371d3f7
RK
1068 memblock_set_current_limit(lowmem_limit);
1069
d111e8f9 1070 build_mem_type_table();
4b5f32ce 1071 prepare_page_table();
a2227120 1072 map_lowmem();
d111e8f9 1073 devicemaps_init(mdesc);
d73cd428 1074 kmap_init();
d111e8f9
RK
1075
1076 top_pmd = pmd_off_k(0xffff0000);
1077
3abe9d33
RK
1078 /* allocate the zero page. */
1079 zero_page = early_alloc(PAGE_SIZE);
2778f620 1080
8d717a52 1081 bootmem_init();
2778f620 1082
d111e8f9 1083 empty_zero_page = virt_to_page(zero_page);
421fe93c 1084 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1085}