]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm/mm/mmu.c
ARM: 8667/3: Fix memory attribute inconsistencies when using fixmap
[mirror_ubuntu-artful-kernel.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
158e8bfe 19#include <linux/sizes.h>
d111e8f9 20
15d07dc9 21#include <asm/cp15.h>
0ba8b9b2 22#include <asm/cputype.h>
37efe642 23#include <asm/sections.h>
3f973e22 24#include <asm/cachetype.h>
99b4ac9a 25#include <asm/fixmap.h>
ebd4922e 26#include <asm/sections.h>
d111e8f9 27#include <asm/setup.h>
e616c591 28#include <asm/smp_plat.h>
d111e8f9 29#include <asm/tlb.h>
d73cd428 30#include <asm/highmem.h>
9f97da78 31#include <asm/system_info.h>
247055aa 32#include <asm/traps.h>
a77e0c7b
SS
33#include <asm/procinfo.h>
34#include <asm/memory.h>
d111e8f9
RK
35
36#include <asm/mach/arch.h>
37#include <asm/mach/map.h>
c2794437 38#include <asm/mach/pci.h>
a05e54c1 39#include <asm/fixmap.h>
d111e8f9 40
9254970c 41#include "fault.h"
d111e8f9 42#include "mm.h"
de40614e 43#include "tcm.h"
d111e8f9 44
d111e8f9
RK
45/*
46 * empty_zero_page is a special page that is used for
47 * zero-initialized data and COW.
48 */
49struct page *empty_zero_page;
3653f3ab 50EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
51
52/*
53 * The pmd table for the upper-most set of pages.
54 */
55pmd_t *top_pmd;
56
1d4d3715
JL
57pmdval_t user_pmd_table = _PAGE_USER_TABLE;
58
ae8f1541
RK
59#define CPOLICY_UNCACHED 0
60#define CPOLICY_BUFFERED 1
61#define CPOLICY_WRITETHROUGH 2
62#define CPOLICY_WRITEBACK 3
63#define CPOLICY_WRITEALLOC 4
64
65static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
66static unsigned int ecc_mask __initdata = 0;
44b18693 67pgprot_t pgprot_user;
ae8f1541 68pgprot_t pgprot_kernel;
cc577c26
CD
69pgprot_t pgprot_hyp_device;
70pgprot_t pgprot_s2;
71pgprot_t pgprot_s2_device;
ae8f1541 72
44b18693 73EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
74EXPORT_SYMBOL(pgprot_kernel);
75
76struct cachepolicy {
77 const char policy[16];
78 unsigned int cr_mask;
442e70c0 79 pmdval_t pmd;
f6e3354d 80 pteval_t pte;
cc577c26 81 pteval_t pte_s2;
ae8f1541
RK
82};
83
cc577c26
CD
84#ifdef CONFIG_ARM_LPAE
85#define s2_policy(policy) policy
86#else
87#define s2_policy(policy) 0
88#endif
89
ae8f1541
RK
90static struct cachepolicy cache_policies[] __initdata = {
91 {
92 .policy = "uncached",
93 .cr_mask = CR_W|CR_C,
94 .pmd = PMD_SECT_UNCACHED,
bb30f36f 95 .pte = L_PTE_MT_UNCACHED,
cc577c26 96 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
97 }, {
98 .policy = "buffered",
99 .cr_mask = CR_C,
100 .pmd = PMD_SECT_BUFFERED,
bb30f36f 101 .pte = L_PTE_MT_BUFFERABLE,
cc577c26 102 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
103 }, {
104 .policy = "writethrough",
105 .cr_mask = 0,
106 .pmd = PMD_SECT_WT,
bb30f36f 107 .pte = L_PTE_MT_WRITETHROUGH,
cc577c26 108 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
ae8f1541
RK
109 }, {
110 .policy = "writeback",
111 .cr_mask = 0,
112 .pmd = PMD_SECT_WB,
bb30f36f 113 .pte = L_PTE_MT_WRITEBACK,
cc577c26 114 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
115 }, {
116 .policy = "writealloc",
117 .cr_mask = 0,
118 .pmd = PMD_SECT_WBWA,
bb30f36f 119 .pte = L_PTE_MT_WRITEALLOC,
cc577c26 120 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
121 }
122};
123
b849a60e 124#ifdef CONFIG_CPU_CP15
20e7e364
RK
125static unsigned long initial_pmd_value __initdata = 0;
126
ae8f1541 127/*
ca8f0b0a
RK
128 * Initialise the cache_policy variable with the initial state specified
129 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
130 * the C code sets the page tables up with the same policy as the head
131 * assembly code, which avoids an illegal state where the TLBs can get
132 * confused. See comments in early_cachepolicy() for more information.
ae8f1541 133 */
ca8f0b0a 134void __init init_default_cache_policy(unsigned long pmd)
ae8f1541
RK
135{
136 int i;
137
20e7e364
RK
138 initial_pmd_value = pmd;
139
6b3142b2 140 pmd &= PMD_SECT_CACHE_MASK;
ca8f0b0a
RK
141
142 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
143 if (cache_policies[i].pmd == pmd) {
144 cachepolicy = i;
145 break;
146 }
147
148 if (i == ARRAY_SIZE(cache_policies))
149 pr_err("ERROR: could not find cache policy\n");
150}
151
152/*
153 * These are useful for identifying cache coherency problems by allowing
154 * the cache or the cache and writebuffer to be turned off. (Note: the
155 * write buffer should not be on and the cache off).
156 */
157static int __init early_cachepolicy(char *p)
158{
159 int i, selected = -1;
160
ae8f1541
RK
161 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
162 int len = strlen(cache_policies[i].policy);
163
2b0d8c25 164 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ca8f0b0a 165 selected = i;
ae8f1541
RK
166 break;
167 }
168 }
ca8f0b0a
RK
169
170 if (selected == -1)
171 pr_err("ERROR: unknown or unsupported cache policy\n");
172
4b46d641
RK
173 /*
174 * This restriction is partly to do with the way we boot; it is
175 * unpredictable to have memory mapped using two different sets of
176 * memory attributes (shared, type, and cache attribs). We can not
177 * change these attributes once the initial assembly has setup the
178 * page tables.
179 */
ca8f0b0a
RK
180 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
181 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
182 cache_policies[cachepolicy].policy);
183 return 0;
184 }
185
186 if (selected != cachepolicy) {
187 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
188 cachepolicy = selected;
189 flush_cache_all();
190 set_cr(cr);
11179d8c 191 }
2b0d8c25 192 return 0;
ae8f1541 193}
2b0d8c25 194early_param("cachepolicy", early_cachepolicy);
ae8f1541 195
2b0d8c25 196static int __init early_nocache(char *__unused)
ae8f1541
RK
197{
198 char *p = "buffered";
4ed89f22 199 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
200 early_cachepolicy(p);
201 return 0;
ae8f1541 202}
2b0d8c25 203early_param("nocache", early_nocache);
ae8f1541 204
2b0d8c25 205static int __init early_nowrite(char *__unused)
ae8f1541
RK
206{
207 char *p = "uncached";
4ed89f22 208 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
209 early_cachepolicy(p);
210 return 0;
ae8f1541 211}
2b0d8c25 212early_param("nowb", early_nowrite);
ae8f1541 213
1b6ba46b 214#ifndef CONFIG_ARM_LPAE
2b0d8c25 215static int __init early_ecc(char *p)
ae8f1541 216{
2b0d8c25 217 if (memcmp(p, "on", 2) == 0)
ae8f1541 218 ecc_mask = PMD_PROTECTION;
2b0d8c25 219 else if (memcmp(p, "off", 3) == 0)
ae8f1541 220 ecc_mask = 0;
2b0d8c25 221 return 0;
ae8f1541 222}
2b0d8c25 223early_param("ecc", early_ecc);
1b6ba46b 224#endif
ae8f1541 225
b849a60e
UKK
226#else /* ifdef CONFIG_CPU_CP15 */
227
228static int __init early_cachepolicy(char *p)
229{
8b521cb2 230 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
b849a60e
UKK
231}
232early_param("cachepolicy", early_cachepolicy);
233
234static int __init noalign_setup(char *__unused)
235{
8b521cb2 236 pr_warn("noalign kernel parameter not supported without cp15\n");
b849a60e
UKK
237}
238__setup("noalign", noalign_setup);
239
240#endif /* ifdef CONFIG_CPU_CP15 / else */
241
36bb94ba 242#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
4d9c5b89 243#define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
b1cce6b1 244#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 245
7619751f 246static struct mem_type mem_types[] __ro_after_init = {
0af92bef 247 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
248 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
249 L_PTE_SHARED,
4d9c5b89
CD
250 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
251 s2_policy(L_PTE_S2_MT_DEV_SHARED) |
252 L_PTE_SHARED,
0af92bef 253 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 254 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
255 .domain = DOMAIN_IO,
256 },
257 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 258 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 259 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 260 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
261 .domain = DOMAIN_IO,
262 },
263 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 264 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
265 .prot_l1 = PMD_TYPE_TABLE,
266 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
267 .domain = DOMAIN_IO,
c2794437 268 },
1ad77a87 269 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 270 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 271 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 272 .prot_sect = PROT_SECT_DEVICE,
0af92bef 273 .domain = DOMAIN_IO,
ae8f1541 274 },
ebb4c658
RK
275 [MT_UNCACHED] = {
276 .prot_pte = PROT_PTE_DEVICE,
277 .prot_l1 = PMD_TYPE_TABLE,
278 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
279 .domain = DOMAIN_IO,
280 },
ae8f1541 281 [MT_CACHECLEAN] = {
9ef79635 282 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
283 .domain = DOMAIN_KERNEL,
284 },
1b6ba46b 285#ifndef CONFIG_ARM_LPAE
ae8f1541 286 [MT_MINICLEAN] = {
9ef79635 287 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
288 .domain = DOMAIN_KERNEL,
289 },
1b6ba46b 290#endif
ae8f1541
RK
291 [MT_LOW_VECTORS] = {
292 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 293 L_PTE_RDONLY,
ae8f1541 294 .prot_l1 = PMD_TYPE_TABLE,
a02d8dfd 295 .domain = DOMAIN_VECTORS,
ae8f1541
RK
296 },
297 [MT_HIGH_VECTORS] = {
298 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 299 L_PTE_USER | L_PTE_RDONLY,
ae8f1541 300 .prot_l1 = PMD_TYPE_TABLE,
a02d8dfd 301 .domain = DOMAIN_VECTORS,
ae8f1541 302 },
2e2c9de2 303 [MT_MEMORY_RWX] = {
36bb94ba 304 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 305 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 306 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
307 .domain = DOMAIN_KERNEL,
308 },
ebd4922e
RK
309 [MT_MEMORY_RW] = {
310 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
311 L_PTE_XN,
312 .prot_l1 = PMD_TYPE_TABLE,
313 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
314 .domain = DOMAIN_KERNEL,
315 },
ae8f1541 316 [MT_ROM] = {
9ef79635 317 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
318 .domain = DOMAIN_KERNEL,
319 },
2e2c9de2 320 [MT_MEMORY_RWX_NONCACHED] = {
f1a2481c 321 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 322 L_PTE_MT_BUFFERABLE,
f1a2481c 323 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
324 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
325 .domain = DOMAIN_KERNEL,
326 },
2e2c9de2 327 [MT_MEMORY_RW_DTCM] = {
f444fce3 328 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 329 L_PTE_XN,
f444fce3
LW
330 .prot_l1 = PMD_TYPE_TABLE,
331 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
332 .domain = DOMAIN_KERNEL,
cb9d7707 333 },
2e2c9de2 334 [MT_MEMORY_RWX_ITCM] = {
36bb94ba 335 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 336 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 337 .domain = DOMAIN_KERNEL,
cb9d7707 338 },
2e2c9de2 339 [MT_MEMORY_RW_SO] = {
8fb54284 340 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
93d5bf07 341 L_PTE_MT_UNCACHED | L_PTE_XN,
8fb54284
SS
342 .prot_l1 = PMD_TYPE_TABLE,
343 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
344 PMD_SECT_UNCACHED | PMD_SECT_XN,
345 .domain = DOMAIN_KERNEL,
346 },
c7909509 347 [MT_MEMORY_DMA_READY] = {
71b55663
RK
348 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
349 L_PTE_XN,
c7909509
MS
350 .prot_l1 = PMD_TYPE_TABLE,
351 .domain = DOMAIN_KERNEL,
352 },
ae8f1541
RK
353};
354
b29e9f5e
RK
355const struct mem_type *get_mem_type(unsigned int type)
356{
357 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
358}
69d3a84a 359EXPORT_SYMBOL(get_mem_type);
b29e9f5e 360
a5f4c561
SA
361static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
362
363static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
364 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
365
366static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
367{
368 return &bm_pte[pte_index(addr)];
369}
370
371static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
372{
373 return pte_offset_kernel(dir, addr);
374}
375
376static inline pmd_t * __init fixmap_pmd(unsigned long addr)
377{
378 pgd_t *pgd = pgd_offset_k(addr);
379 pud_t *pud = pud_offset(pgd, addr);
380 pmd_t *pmd = pmd_offset(pud, addr);
381
382 return pmd;
383}
384
385void __init early_fixmap_init(void)
386{
387 pmd_t *pmd;
388
389 /*
390 * The early fixmap range spans multiple pmds, for which
391 * we are not prepared:
392 */
2937367b 393 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
a5f4c561
SA
394 != FIXADDR_TOP >> PMD_SHIFT);
395
396 pmd = fixmap_pmd(FIXADDR_TOP);
397 pmd_populate_kernel(&init_mm, pmd, bm_pte);
398
399 pte_offset_fixmap = pte_offset_early_fixmap;
400}
401
99b4ac9a
KC
402/*
403 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
404 * As a result, this can only be called with preemption disabled, as under
405 * stop_machine().
406 */
407void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
408{
409 unsigned long vaddr = __fix_to_virt(idx);
a5f4c561 410 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
99b4ac9a
KC
411
412 /* Make sure fixmap region does not exceed available allocation. */
413 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
414 FIXADDR_END);
415 BUG_ON(idx >= __end_of_fixed_addresses);
416
699ee921
JM
417 /* we only support device mappings until pgprot_kernel has been set */
418 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
419 pgprot_val(pgprot_kernel) == 0))
420 return;
421
99b4ac9a
KC
422 if (pgprot_val(prot))
423 set_pte_at(NULL, vaddr, pte,
424 pfn_pte(phys >> PAGE_SHIFT, prot));
425 else
426 pte_clear(NULL, vaddr, pte);
427 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
428}
429
ae8f1541
RK
430/*
431 * Adjust the PMD section entries according to the CPU in use.
432 */
433static void __init build_mem_type_table(void)
434{
435 struct cachepolicy *cp;
436 unsigned int cr = get_cr();
442e70c0 437 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
cc577c26 438 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
ae8f1541
RK
439 int cpu_arch = cpu_architecture();
440 int i;
441
11179d8c 442 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 443#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
444 if (cachepolicy > CPOLICY_BUFFERED)
445 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 446#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
447 if (cachepolicy > CPOLICY_WRITETHROUGH)
448 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 449#endif
11179d8c 450 }
ae8f1541
RK
451 if (cpu_arch < CPU_ARCH_ARMv5) {
452 if (cachepolicy >= CPOLICY_WRITEALLOC)
453 cachepolicy = CPOLICY_WRITEBACK;
454 ecc_mask = 0;
455 }
ca8f0b0a 456
20e7e364
RK
457 if (is_smp()) {
458 if (cachepolicy != CPOLICY_WRITEALLOC) {
459 pr_warn("Forcing write-allocate cache policy for SMP\n");
460 cachepolicy = CPOLICY_WRITEALLOC;
461 }
462 if (!(initial_pmd_value & PMD_SECT_S)) {
463 pr_warn("Forcing shared mappings for SMP\n");
464 initial_pmd_value |= PMD_SECT_S;
465 }
ca8f0b0a 466 }
ae8f1541 467
1ad77a87 468 /*
b1cce6b1
RK
469 * Strip out features not present on earlier architectures.
470 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
471 * without extended page tables don't have the 'Shared' bit.
1ad77a87 472 */
b1cce6b1
RK
473 if (cpu_arch < CPU_ARCH_ARMv5)
474 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
475 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
476 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
477 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
478 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
479
480 /*
b1cce6b1
RK
481 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
482 * "update-able on write" bit on ARM610). However, Xscale and
483 * Xscale3 require this bit to be cleared.
ae8f1541 484 */
d33c43ac 485 if (cpu_is_xscale_family()) {
9ef79635 486 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 487 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
488 mem_types[i].prot_l1 &= ~PMD_BIT4;
489 }
490 } else if (cpu_arch < CPU_ARCH_ARMv6) {
491 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
492 if (mem_types[i].prot_l1)
493 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
494 if (mem_types[i].prot_sect)
495 mem_types[i].prot_sect |= PMD_BIT4;
496 }
497 }
ae8f1541 498
b1cce6b1
RK
499 /*
500 * Mark the device areas according to the CPU/architecture.
501 */
502 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
503 if (!cpu_is_xsc3()) {
504 /*
505 * Mark device regions on ARMv6+ as execute-never
506 * to prevent speculative instruction fetches.
507 */
508 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
509 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
510 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
511 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
ebd4922e
RK
512
513 /* Also setup NX memory mapping */
514 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
b1cce6b1
RK
515 }
516 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
517 /*
518 * For ARMv7 with TEX remapping,
519 * - shared device is SXCB=1100
520 * - nonshared device is SXCB=0100
521 * - write combine device mem is SXCB=0001
522 * (Uncached Normal memory)
523 */
524 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
525 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
526 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
527 } else if (cpu_is_xsc3()) {
528 /*
529 * For Xscale3,
530 * - shared device is TEXCB=00101
531 * - nonshared device is TEXCB=01000
532 * - write combine device mem is TEXCB=00100
533 * (Inner/Outer Uncacheable in xsc3 parlance)
534 */
535 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
536 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
537 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
538 } else {
539 /*
540 * For ARMv6 and ARMv7 without TEX remapping,
541 * - shared device is TEXCB=00001
542 * - nonshared device is TEXCB=01000
543 * - write combine device mem is TEXCB=00100
544 * (Uncached Normal in ARMv6 parlance).
545 */
546 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
547 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
548 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
549 }
550 } else {
551 /*
552 * On others, write combining is "Uncached/Buffered"
553 */
554 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
555 }
556
557 /*
558 * Now deal with the memory-type mappings
559 */
ae8f1541 560 cp = &cache_policies[cachepolicy];
bb30f36f 561 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
cc577c26 562 s2_pgprot = cp->pte_s2;
4d9c5b89
CD
563 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
564 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
bb30f36f 565
1d4d3715 566#ifndef CONFIG_ARM_LPAE
b6ccb980
WD
567 /*
568 * We don't use domains on ARMv6 (since this causes problems with
569 * v6/v7 kernels), so we must use a separate memory type for user
570 * r/o, kernel r/w to map the vectors page.
571 */
b6ccb980
WD
572 if (cpu_arch == CPU_ARCH_ARMv6)
573 vecs_pgprot |= L_PTE_MT_VECTORS;
1d4d3715
JL
574
575 /*
576 * Check is it with support for the PXN bit
577 * in the Short-descriptor translation table format descriptors.
578 */
579 if (cpu_arch == CPU_ARCH_ARMv7 &&
ad84f56b 580 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
1d4d3715
JL
581 user_pmd_table |= PMD_PXNTABLE;
582 }
b6ccb980 583#endif
bb30f36f 584
ae8f1541
RK
585 /*
586 * ARMv6 and above have extended page tables.
587 */
588 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 589#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
590 /*
591 * Mark cache clean areas and XIP ROM read only
592 * from SVC mode and no access from userspace.
593 */
594 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
595 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
596 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 597#endif
ae8f1541 598
20e7e364
RK
599 /*
600 * If the initial page tables were created with the S bit
601 * set, then we need to do the same here for the same
602 * reasons given in early_cachepolicy().
603 */
604 if (initial_pmd_value & PMD_SECT_S) {
f00ec48f
RK
605 user_pgprot |= L_PTE_SHARED;
606 kern_pgprot |= L_PTE_SHARED;
607 vecs_pgprot |= L_PTE_SHARED;
cc577c26 608 s2_pgprot |= L_PTE_SHARED;
f00ec48f
RK
609 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
610 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
611 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
612 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
613 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
614 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
ebd4922e
RK
615 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
616 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
c7909509 617 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
618 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
619 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
f00ec48f 620 }
ae8f1541
RK
621 }
622
e4707dd3
PW
623 /*
624 * Non-cacheable Normal - intended for memory areas that must
625 * not cause dirty cache line writebacks when used
626 */
627 if (cpu_arch >= CPU_ARCH_ARMv6) {
628 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
629 /* Non-cacheable Normal is XCB = 001 */
2e2c9de2 630 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
631 PMD_SECT_BUFFERED;
632 } else {
633 /* For both ARMv6 and non-TEX-remapping ARMv7 */
2e2c9de2 634 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
635 PMD_SECT_TEX(1);
636 }
637 } else {
2e2c9de2 638 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
e4707dd3
PW
639 }
640
1b6ba46b
CM
641#ifdef CONFIG_ARM_LPAE
642 /*
643 * Do not generate access flag faults for the kernel mappings.
644 */
645 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
646 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
647 if (mem_types[i].prot_sect)
648 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
649 }
650 kern_pgprot |= PTE_EXT_AF;
651 vecs_pgprot |= PTE_EXT_AF;
1d4d3715
JL
652
653 /*
654 * Set PXN for user mappings
655 */
656 user_pgprot |= PTE_EXT_PXN;
1b6ba46b
CM
657#endif
658
ae8f1541 659 for (i = 0; i < 16; i++) {
864aa04c 660 pteval_t v = pgprot_val(protection_map[i]);
bb30f36f 661 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
662 }
663
bb30f36f
RK
664 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
665 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 666
44b18693 667 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 668 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 669 L_PTE_DIRTY | kern_pgprot);
cc577c26
CD
670 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
671 pgprot_s2_device = __pgprot(s2_device_pgprot);
672 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
ae8f1541
RK
673
674 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
675 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
2e2c9de2
RK
676 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
677 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
ebd4922e
RK
678 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
679 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
c7909509 680 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
2e2c9de2 681 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
682 mem_types[MT_ROM].prot_sect |= cp->pmd;
683
684 switch (cp->pmd) {
685 case PMD_SECT_WT:
686 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
687 break;
688 case PMD_SECT_WB:
689 case PMD_SECT_WBWA:
690 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
691 break;
692 }
905b5797
MS
693 pr_info("Memory policy: %sData cache %s\n",
694 ecc_mask ? "ECC enabled, " : "", cp->policy);
2497f0a8
RK
695
696 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
697 struct mem_type *t = &mem_types[i];
698 if (t->prot_l1)
699 t->prot_l1 |= PMD_DOMAIN(t->domain);
700 if (t->prot_sect)
701 t->prot_sect |= PMD_DOMAIN(t->domain);
702 }
ae8f1541
RK
703}
704
d907387c
CM
705#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
706pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
707 unsigned long size, pgprot_t vma_prot)
708{
709 if (!pfn_valid(pfn))
710 return pgprot_noncached(vma_prot);
711 else if (file->f_flags & O_SYNC)
712 return pgprot_writecombine(vma_prot);
713 return vma_prot;
714}
715EXPORT_SYMBOL(phys_mem_access_prot);
716#endif
717
ae8f1541
RK
718#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
719
0536bdf3 720static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 721{
0536bdf3 722 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
723 memset(ptr, 0, sz);
724 return ptr;
3abe9d33
RK
725}
726
0536bdf3
NP
727static void __init *early_alloc(unsigned long sz)
728{
729 return early_alloc_aligned(sz, sz);
730}
731
c7936206
AB
732static void *__init late_alloc(unsigned long sz)
733{
734 void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
735
61444cde
AB
736 if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
737 BUG();
c7936206
AB
738 return ptr;
739}
740
3ed3a4f0 741static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
f579b2b1
AB
742 unsigned long prot,
743 void *(*alloc)(unsigned long sz))
ae8f1541 744{
24e6c699 745 if (pmd_none(*pmd)) {
f579b2b1 746 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 747 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 748 }
4bb2e27d
RK
749 BUG_ON(pmd_bad(*pmd));
750 return pte_offset_kernel(pmd, addr);
751}
ae8f1541 752
f579b2b1
AB
753static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
754 unsigned long prot)
755{
3ed3a4f0 756 return arm_pte_alloc(pmd, addr, prot, early_alloc);
f579b2b1
AB
757}
758
4bb2e27d
RK
759static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
760 unsigned long end, unsigned long pfn,
f579b2b1 761 const struct mem_type *type,
b430e55b
AB
762 void *(*alloc)(unsigned long sz),
763 bool ng)
4bb2e27d 764{
3ed3a4f0 765 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
24e6c699 766 do {
b430e55b
AB
767 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
768 ng ? PTE_EXT_NG : 0);
24e6c699
RK
769 pfn++;
770 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
771}
772
37468b30 773static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
e651eab0 774 unsigned long end, phys_addr_t phys,
b430e55b 775 const struct mem_type *type, bool ng)
ae8f1541 776{
37468b30
PYC
777 pmd_t *p = pmd;
778
e651eab0 779#ifndef CONFIG_ARM_LPAE
24e6c699 780 /*
e651eab0
S
781 * In classic MMU format, puds and pmds are folded in to
782 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
783 * group of L1 entries making up one logical pointer to
784 * an L2 table (2MB), where as PMDs refer to the individual
785 * L1 entries (1MB). Hence increment to get the correct
786 * offset for odd 1MB sections.
787 * (See arch/arm/include/asm/pgtable-2level.h)
24e6c699 788 */
e651eab0
S
789 if (addr & SECTION_SIZE)
790 pmd++;
1b6ba46b 791#endif
e651eab0 792 do {
b430e55b 793 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
e651eab0
S
794 phys += SECTION_SIZE;
795 } while (pmd++, addr += SECTION_SIZE, addr != end);
24e6c699 796
37468b30 797 flush_pmd_entry(p);
e651eab0 798}
ae8f1541 799
e651eab0
S
800static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
801 unsigned long end, phys_addr_t phys,
f579b2b1 802 const struct mem_type *type,
b430e55b 803 void *(*alloc)(unsigned long sz), bool ng)
e651eab0
S
804{
805 pmd_t *pmd = pmd_offset(pud, addr);
806 unsigned long next;
807
808 do {
24e6c699 809 /*
e651eab0
S
810 * With LPAE, we must loop over to map
811 * all the pmds for the given range.
24e6c699 812 */
e651eab0
S
813 next = pmd_addr_end(addr, end);
814
815 /*
816 * Try a section mapping - addr, next and phys must all be
817 * aligned to a section boundary.
818 */
819 if (type->prot_sect &&
820 ((addr | next | phys) & ~SECTION_MASK) == 0) {
b430e55b 821 __map_init_section(pmd, addr, next, phys, type, ng);
e651eab0
S
822 } else {
823 alloc_init_pte(pmd, addr, next,
b430e55b 824 __phys_to_pfn(phys), type, alloc, ng);
e651eab0
S
825 }
826
827 phys += next - addr;
828
829 } while (pmd++, addr = next, addr != end);
ae8f1541
RK
830}
831
14904927 832static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
20d6956d 833 unsigned long end, phys_addr_t phys,
f579b2b1 834 const struct mem_type *type,
b430e55b 835 void *(*alloc)(unsigned long sz), bool ng)
516295e5
RK
836{
837 pud_t *pud = pud_offset(pgd, addr);
838 unsigned long next;
839
840 do {
841 next = pud_addr_end(addr, end);
b430e55b 842 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
516295e5
RK
843 phys += next - addr;
844 } while (pud++, addr = next, addr != end);
845}
846
1b6ba46b 847#ifndef CONFIG_ARM_LPAE
1bdb2d4e
AB
848static void __init create_36bit_mapping(struct mm_struct *mm,
849 struct map_desc *md,
b430e55b
AB
850 const struct mem_type *type,
851 bool ng)
4a56c1e4 852{
97092e0c
RK
853 unsigned long addr, length, end;
854 phys_addr_t phys;
4a56c1e4
RK
855 pgd_t *pgd;
856
857 addr = md->virtual;
cae6292b 858 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
859 length = PAGE_ALIGN(md->length);
860
861 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
4ed89f22 862 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
29a38193 863 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
864 return;
865 }
866
867 /* N.B. ARMv6 supersections are only defined to work with domain 0.
868 * Since domain assignments can in fact be arbitrary, the
869 * 'domain == 0' check below is required to insure that ARMv6
870 * supersections are only allocated for domain 0 regardless
871 * of the actual domain assignments in use.
872 */
873 if (type->domain) {
4ed89f22 874 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
29a38193 875 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
876 return;
877 }
878
879 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
4ed89f22 880 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
29a38193 881 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
882 return;
883 }
884
885 /*
886 * Shift bits [35:32] of address into bits [23:20] of PMD
887 * (See ARMv6 spec).
888 */
889 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
890
1bdb2d4e 891 pgd = pgd_offset(mm, addr);
4a56c1e4
RK
892 end = addr + length;
893 do {
516295e5
RK
894 pud_t *pud = pud_offset(pgd, addr);
895 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
896 int i;
897
898 for (i = 0; i < 16; i++)
b430e55b
AB
899 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
900 (ng ? PMD_SECT_nG : 0));
4a56c1e4
RK
901
902 addr += SUPERSECTION_SIZE;
903 phys += SUPERSECTION_SIZE;
904 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
905 } while (addr != end);
906}
1b6ba46b 907#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 908
f579b2b1 909static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
b430e55b
AB
910 void *(*alloc)(unsigned long sz),
911 bool ng)
ae8f1541 912{
cae6292b
WD
913 unsigned long addr, length, end;
914 phys_addr_t phys;
d5c98176 915 const struct mem_type *type;
24e6c699 916 pgd_t *pgd;
ae8f1541 917
d5c98176 918 type = &mem_types[md->type];
ae8f1541 919
1b6ba46b 920#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
921 /*
922 * Catch 36-bit addresses
923 */
4a56c1e4 924 if (md->pfn >= 0x100000) {
b430e55b 925 create_36bit_mapping(mm, md, type, ng);
4a56c1e4 926 return;
ae8f1541 927 }
1b6ba46b 928#endif
ae8f1541 929
7b9c7b4d 930 addr = md->virtual & PAGE_MASK;
cae6292b 931 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 932 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 933
24e6c699 934 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
4ed89f22
RK
935 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
936 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
937 return;
938 }
939
1bdb2d4e 940 pgd = pgd_offset(mm, addr);
24e6c699
RK
941 end = addr + length;
942 do {
943 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 944
b430e55b 945 alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
ae8f1541 946
24e6c699
RK
947 phys += next - addr;
948 addr = next;
949 } while (pgd++, addr != end);
ae8f1541
RK
950}
951
1bdb2d4e
AB
952/*
953 * Create the page directory entries and any necessary
954 * page tables for the mapping specified by `md'. We
955 * are able to cope here with varying sizes and address
956 * offsets, and we take full advantage of sections and
957 * supersections.
958 */
959static void __init create_mapping(struct map_desc *md)
960{
961 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
962 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
963 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
964 return;
965 }
966
967 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
968 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
969 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
970 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
971 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
972 }
973
b430e55b 974 __create_mapping(&init_mm, md, early_alloc, false);
1bdb2d4e
AB
975}
976
c7936206
AB
977void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
978 bool ng)
979{
980#ifdef CONFIG_ARM_LPAE
981 pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
982 if (WARN_ON(!pud))
983 return;
984 pmd_alloc(mm, pud, 0);
985#endif
986 __create_mapping(mm, md, late_alloc, ng);
987}
988
ae8f1541
RK
989/*
990 * Create the architecture specific mappings
991 */
992void __init iotable_init(struct map_desc *io_desc, int nr)
993{
0536bdf3
NP
994 struct map_desc *md;
995 struct vm_struct *vm;
101eeda3 996 struct static_vm *svm;
0536bdf3
NP
997
998 if (!nr)
999 return;
ae8f1541 1000
101eeda3 1001 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
0536bdf3
NP
1002
1003 for (md = io_desc; nr; md++, nr--) {
1004 create_mapping(md);
101eeda3
JK
1005
1006 vm = &svm->vm;
0536bdf3
NP
1007 vm->addr = (void *)(md->virtual & PAGE_MASK);
1008 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
c2794437
RH
1009 vm->phys_addr = __pfn_to_phys(md->pfn);
1010 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
576d2f25 1011 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3 1012 vm->caller = iotable_init;
101eeda3 1013 add_static_vm_early(svm++);
0536bdf3 1014 }
ae8f1541
RK
1015}
1016
c2794437
RH
1017void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1018 void *caller)
1019{
1020 struct vm_struct *vm;
101eeda3
JK
1021 struct static_vm *svm;
1022
1023 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
c2794437 1024
101eeda3 1025 vm = &svm->vm;
c2794437
RH
1026 vm->addr = (void *)addr;
1027 vm->size = size;
863e99a8 1028 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
c2794437 1029 vm->caller = caller;
101eeda3 1030 add_static_vm_early(svm);
c2794437
RH
1031}
1032
19b52abe
NP
1033#ifndef CONFIG_ARM_LPAE
1034
1035/*
1036 * The Linux PMD is made of two consecutive section entries covering 2MB
1037 * (see definition in include/asm/pgtable-2level.h). However a call to
1038 * create_mapping() may optimize static mappings by using individual
1039 * 1MB section mappings. This leaves the actual PMD potentially half
1040 * initialized if the top or bottom section entry isn't used, leaving it
1041 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1042 * the virtual space left free by that unused section entry.
1043 *
1044 * Let's avoid the issue by inserting dummy vm entries covering the unused
1045 * PMD halves once the static mappings are in place.
1046 */
1047
1048static void __init pmd_empty_section_gap(unsigned long addr)
1049{
c2794437 1050 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
19b52abe
NP
1051}
1052
1053static void __init fill_pmd_gaps(void)
1054{
101eeda3 1055 struct static_vm *svm;
19b52abe
NP
1056 struct vm_struct *vm;
1057 unsigned long addr, next = 0;
1058 pmd_t *pmd;
1059
101eeda3
JK
1060 list_for_each_entry(svm, &static_vmlist, list) {
1061 vm = &svm->vm;
19b52abe
NP
1062 addr = (unsigned long)vm->addr;
1063 if (addr < next)
1064 continue;
1065
1066 /*
1067 * Check if this vm starts on an odd section boundary.
1068 * If so and the first section entry for this PMD is free
1069 * then we block the corresponding virtual address.
1070 */
1071 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1072 pmd = pmd_off_k(addr);
1073 if (pmd_none(*pmd))
1074 pmd_empty_section_gap(addr & PMD_MASK);
1075 }
1076
1077 /*
1078 * Then check if this vm ends on an odd section boundary.
1079 * If so and the second section entry for this PMD is empty
1080 * then we block the corresponding virtual address.
1081 */
1082 addr += vm->size;
1083 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1084 pmd = pmd_off_k(addr) + 1;
1085 if (pmd_none(*pmd))
1086 pmd_empty_section_gap(addr);
1087 }
1088
1089 /* no need to look at any vm entry until we hit the next PMD */
1090 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1091 }
1092}
1093
1094#else
1095#define fill_pmd_gaps() do { } while (0)
1096#endif
1097
c2794437
RH
1098#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1099static void __init pci_reserve_io(void)
1100{
101eeda3 1101 struct static_vm *svm;
c2794437 1102
101eeda3
JK
1103 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1104 if (svm)
1105 return;
c2794437 1106
c2794437
RH
1107 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1108}
1109#else
1110#define pci_reserve_io() do { } while (0)
1111#endif
1112
e5c5f2ad
RH
1113#ifdef CONFIG_DEBUG_LL
1114void __init debug_ll_io_init(void)
1115{
1116 struct map_desc map;
1117
1118 debug_ll_addr(&map.pfn, &map.virtual);
1119 if (!map.pfn || !map.virtual)
1120 return;
1121 map.pfn = __phys_to_pfn(map.pfn);
1122 map.virtual &= PAGE_MASK;
1123 map.length = PAGE_SIZE;
1124 map.type = MT_DEVICE;
ee4de5d9 1125 iotable_init(&map, 1);
e5c5f2ad
RH
1126}
1127#endif
1128
0536bdf3
NP
1129static void * __initdata vmalloc_min =
1130 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
1131
1132/*
1133 * vmalloc=size forces the vmalloc area to be exactly 'size'
1134 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 1135 * area - the default is 240m.
6c5da7ac 1136 */
2b0d8c25 1137static int __init early_vmalloc(char *arg)
6c5da7ac 1138{
79612395 1139 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
1140
1141 if (vmalloc_reserve < SZ_16M) {
1142 vmalloc_reserve = SZ_16M;
4ed89f22 1143 pr_warn("vmalloc area too small, limiting to %luMB\n",
6c5da7ac
RK
1144 vmalloc_reserve >> 20);
1145 }
9210807c
NP
1146
1147 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1148 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
4ed89f22 1149 pr_warn("vmalloc area is too big, limiting to %luMB\n",
9210807c
NP
1150 vmalloc_reserve >> 20);
1151 }
79612395
RK
1152
1153 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 1154 return 0;
6c5da7ac 1155}
2b0d8c25 1156early_param("vmalloc", early_vmalloc);
6c5da7ac 1157
c7909509 1158phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 1159
374d446d 1160void __init adjust_lowmem_bounds(void)
60296c71 1161{
c65b7e98 1162 phys_addr_t memblock_limit = 0;
b9a01989 1163 u64 vmalloc_limit;
1c2f87c2 1164 struct memblock_region *reg;
98562656 1165 phys_addr_t lowmem_limit = 0;
60296c71 1166
b9a01989
NP
1167 /*
1168 * Let's use our own (unoptimized) equivalent of __pa() that is
1169 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1170 * The result is used as the upper bound on physical memory address
1171 * and may itself be outside the valid range for which phys_addr_t
1172 * and therefore __pa() is defined.
1173 */
1174 vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1175
1c2f87c2
LA
1176 for_each_memblock(memory, reg) {
1177 phys_addr_t block_start = reg->base;
1178 phys_addr_t block_end = reg->base + reg->size;
77f73a2c 1179
374d446d 1180 if (reg->base < vmalloc_limit) {
98562656 1181 if (block_end > lowmem_limit)
374d446d
LA
1182 /*
1183 * Compare as u64 to ensure vmalloc_limit does
1184 * not get truncated. block_end should always
1185 * fit in phys_addr_t so there should be no
1186 * issue with assignment.
1187 */
98562656 1188 lowmem_limit = min_t(u64,
374d446d
LA
1189 vmalloc_limit,
1190 block_end);
c65b7e98
RK
1191
1192 /*
965278dc 1193 * Find the first non-pmd-aligned page, and point
c65b7e98 1194 * memblock_limit at it. This relies on rounding the
965278dc
MR
1195 * limit down to be pmd-aligned, which happens at the
1196 * end of this function.
c65b7e98
RK
1197 *
1198 * With this algorithm, the start or end of almost any
965278dc
MR
1199 * bank can be non-pmd-aligned. The only exception is
1200 * that the start of the bank 0 must be section-
c65b7e98
RK
1201 * aligned, since otherwise memory would need to be
1202 * allocated when mapping the start of bank 0, which
1203 * occurs before any free memory is mapped.
1204 */
1205 if (!memblock_limit) {
965278dc 1206 if (!IS_ALIGNED(block_start, PMD_SIZE))
1c2f87c2 1207 memblock_limit = block_start;
965278dc 1208 else if (!IS_ALIGNED(block_end, PMD_SIZE))
98562656 1209 memblock_limit = lowmem_limit;
c65b7e98 1210 }
e616c591 1211
e616c591
RK
1212 }
1213 }
1c2f87c2 1214
98562656
LA
1215 arm_lowmem_limit = lowmem_limit;
1216
c7909509 1217 high_memory = __va(arm_lowmem_limit - 1) + 1;
c65b7e98
RK
1218
1219 /*
965278dc 1220 * Round the memblock limit down to a pmd size. This
c65b7e98 1221 * helps to ensure that we will allocate memory from the
965278dc 1222 * last full pmd, which should be mapped.
c65b7e98
RK
1223 */
1224 if (memblock_limit)
965278dc 1225 memblock_limit = round_down(memblock_limit, PMD_SIZE);
c65b7e98
RK
1226 if (!memblock_limit)
1227 memblock_limit = arm_lowmem_limit;
1228
374d446d
LA
1229 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1230 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1231 phys_addr_t end = memblock_end_of_DRAM();
1232
1233 pr_notice("Ignoring RAM at %pa-%pa\n",
1234 &memblock_limit, &end);
1235 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1236
1237 memblock_remove(memblock_limit, end - memblock_limit);
1238 }
1239 }
1240
c65b7e98 1241 memblock_set_current_limit(memblock_limit);
60296c71
LB
1242}
1243
4b5f32ce 1244static inline void prepare_page_table(void)
d111e8f9
RK
1245{
1246 unsigned long addr;
8df65168 1247 phys_addr_t end;
d111e8f9
RK
1248
1249 /*
1250 * Clear out all the mappings below the kernel image.
1251 */
e73fc88e 1252 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
1253 pmd_clear(pmd_off_k(addr));
1254
1255#ifdef CONFIG_XIP_KERNEL
1256 /* The XIP kernel is mapped in the module area -- skip over it */
02afa9a8 1257 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 1258#endif
e73fc88e 1259 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
1260 pmd_clear(pmd_off_k(addr));
1261
8df65168
RK
1262 /*
1263 * Find the end of the first block of lowmem.
1264 */
1265 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
1266 if (end >= arm_lowmem_limit)
1267 end = arm_lowmem_limit;
8df65168 1268
d111e8f9
RK
1269 /*
1270 * Clear out all the kernel space mappings, except for the first
0536bdf3 1271 * memory bank, up to the vmalloc region.
d111e8f9 1272 */
8df65168 1273 for (addr = __phys_to_virt(end);
0536bdf3 1274 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
1275 pmd_clear(pmd_off_k(addr));
1276}
1277
1b6ba46b
CM
1278#ifdef CONFIG_ARM_LPAE
1279/* the first page is reserved for pgd */
1280#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1281 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1282#else
e73fc88e 1283#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 1284#endif
e73fc88e 1285
d111e8f9 1286/*
2778f620 1287 * Reserve the special regions of memory
d111e8f9 1288 */
2778f620 1289void __init arm_mm_memblock_reserve(void)
d111e8f9 1290{
d111e8f9
RK
1291 /*
1292 * Reserve the page tables. These are already in use,
1293 * and can only be in node 0.
1294 */
e73fc88e 1295 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 1296
d111e8f9
RK
1297#ifdef CONFIG_SA1111
1298 /*
1299 * Because of the SA1111 DMA bug, we want to preserve our
1300 * precious DMA-able memory...
1301 */
2778f620 1302 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 1303#endif
d111e8f9
RK
1304}
1305
1306/*
0536bdf3 1307 * Set up the device mappings. Since we clear out the page tables for all
a5f4c561
SA
1308 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1309 * device mappings. This means earlycon can be used to debug this function
1310 * Any other function or debugging method which may touch any device _will_
1311 * crash the kernel.
d111e8f9 1312 */
ff69a4c8 1313static void __init devicemaps_init(const struct machine_desc *mdesc)
d111e8f9
RK
1314{
1315 struct map_desc map;
1316 unsigned long addr;
94e5a85b 1317 void *vectors;
d111e8f9
RK
1318
1319 /*
1320 * Allocate the vector page early.
1321 */
19accfd3 1322 vectors = early_alloc(PAGE_SIZE * 2);
94e5a85b
RK
1323
1324 early_trap_init(vectors);
d111e8f9 1325
a5f4c561
SA
1326 /*
1327 * Clear page table except top pmd used by early fixmaps
1328 */
1329 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
d111e8f9
RK
1330 pmd_clear(pmd_off_k(addr));
1331
1332 /*
1333 * Map the kernel if it is XIP.
1334 * It is always first in the modulearea.
1335 */
1336#ifdef CONFIG_XIP_KERNEL
1337 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1338 map.virtual = MODULES_VADDR;
02afa9a8 1339 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1340 map.type = MT_ROM;
1341 create_mapping(&map);
1342#endif
1343
1344 /*
1345 * Map the cache flushing regions.
1346 */
1347#ifdef FLUSH_BASE
1348 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1349 map.virtual = FLUSH_BASE;
1350 map.length = SZ_1M;
1351 map.type = MT_CACHECLEAN;
1352 create_mapping(&map);
1353#endif
1354#ifdef FLUSH_BASE_MINICACHE
1355 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1356 map.virtual = FLUSH_BASE_MINICACHE;
1357 map.length = SZ_1M;
1358 map.type = MT_MINICLEAN;
1359 create_mapping(&map);
1360#endif
1361
1362 /*
1363 * Create a mapping for the machine vectors at the high-vectors
1364 * location (0xffff0000). If we aren't using high-vectors, also
1365 * create a mapping at the low-vectors virtual address.
1366 */
94e5a85b 1367 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1368 map.virtual = 0xffff0000;
1369 map.length = PAGE_SIZE;
a5463cd3 1370#ifdef CONFIG_KUSER_HELPERS
d111e8f9 1371 map.type = MT_HIGH_VECTORS;
a5463cd3
RK
1372#else
1373 map.type = MT_LOW_VECTORS;
1374#endif
d111e8f9
RK
1375 create_mapping(&map);
1376
1377 if (!vectors_high()) {
1378 map.virtual = 0;
19accfd3 1379 map.length = PAGE_SIZE * 2;
d111e8f9
RK
1380 map.type = MT_LOW_VECTORS;
1381 create_mapping(&map);
1382 }
1383
19accfd3
RK
1384 /* Now create a kernel read-only mapping */
1385 map.pfn += 1;
1386 map.virtual = 0xffff0000 + PAGE_SIZE;
1387 map.length = PAGE_SIZE;
1388 map.type = MT_LOW_VECTORS;
1389 create_mapping(&map);
1390
d111e8f9
RK
1391 /*
1392 * Ask the machine support to map in the statically mapped devices.
1393 */
1394 if (mdesc->map_io)
1395 mdesc->map_io();
bc37324e
MR
1396 else
1397 debug_ll_io_init();
19b52abe 1398 fill_pmd_gaps();
d111e8f9 1399
c2794437
RH
1400 /* Reserve fixed i/o space in VMALLOC region */
1401 pci_reserve_io();
1402
d111e8f9
RK
1403 /*
1404 * Finally flush the caches and tlb to ensure that we're in a
1405 * consistent state wrt the writebuffer. This also ensures that
1406 * any write-allocated cache lines in the vector page are written
1407 * back. After this point, we can start to touch devices again.
1408 */
1409 local_flush_tlb_all();
1410 flush_cache_all();
bbeb9209
LS
1411
1412 /* Enable asynchronous aborts */
9254970c 1413 early_abt_enable();
d111e8f9
RK
1414}
1415
d73cd428
NP
1416static void __init kmap_init(void)
1417{
1418#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1419 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1420 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428 1421#endif
836a2418
RH
1422
1423 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1424 _PAGE_KERNEL_TABLE);
d73cd428
NP
1425}
1426
a2227120
RK
1427static void __init map_lowmem(void)
1428{
8df65168 1429 struct memblock_region *reg;
a09975bf 1430 phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
ac084688 1431 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
a2227120
RK
1432
1433 /* Map all the lowmem memory banks. */
8df65168
RK
1434 for_each_memblock(memory, reg) {
1435 phys_addr_t start = reg->base;
1436 phys_addr_t end = start + reg->size;
1437 struct map_desc map;
1438
09414d00
AB
1439 if (memblock_is_nomap(reg))
1440 continue;
1441
c7909509
MS
1442 if (end > arm_lowmem_limit)
1443 end = arm_lowmem_limit;
8df65168
RK
1444 if (start >= end)
1445 break;
1446
1e6b4811 1447 if (end < kernel_x_start) {
ebd4922e
RK
1448 map.pfn = __phys_to_pfn(start);
1449 map.virtual = __phys_to_virt(start);
1450 map.length = end - start;
1451 map.type = MT_MEMORY_RWX;
a2227120 1452
1e6b4811
KC
1453 create_mapping(&map);
1454 } else if (start >= kernel_x_end) {
1455 map.pfn = __phys_to_pfn(start);
1456 map.virtual = __phys_to_virt(start);
1457 map.length = end - start;
1458 map.type = MT_MEMORY_RW;
1459
ebd4922e
RK
1460 create_mapping(&map);
1461 } else {
1462 /* This better cover the entire kernel */
1463 if (start < kernel_x_start) {
1464 map.pfn = __phys_to_pfn(start);
1465 map.virtual = __phys_to_virt(start);
1466 map.length = kernel_x_start - start;
1467 map.type = MT_MEMORY_RW;
1468
1469 create_mapping(&map);
1470 }
1471
1472 map.pfn = __phys_to_pfn(kernel_x_start);
1473 map.virtual = __phys_to_virt(kernel_x_start);
1474 map.length = kernel_x_end - kernel_x_start;
1475 map.type = MT_MEMORY_RWX;
1476
1477 create_mapping(&map);
1478
1479 if (kernel_x_end < end) {
1480 map.pfn = __phys_to_pfn(kernel_x_end);
1481 map.virtual = __phys_to_virt(kernel_x_end);
1482 map.length = end - kernel_x_end;
1483 map.type = MT_MEMORY_RW;
1484
1485 create_mapping(&map);
1486 }
1487 }
a2227120
RK
1488 }
1489}
1490
d8dc7fbd
RK
1491#ifdef CONFIG_ARM_PV_FIXUP
1492extern unsigned long __atags_pointer;
1493typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1494pgtables_remap lpae_pgtables_remap_asm;
1495
a77e0c7b
SS
1496/*
1497 * early_paging_init() recreates boot time page table setup, allowing machines
1498 * to switch over to a high (>4G) address space on LPAE systems
1499 */
699ee921 1500static void __init early_paging_init(const struct machine_desc *mdesc)
a77e0c7b 1501{
d8dc7fbd
RK
1502 pgtables_remap *lpae_pgtables_remap;
1503 unsigned long pa_pgd;
1504 unsigned int cr, ttbcr;
c8ca2b4b 1505 long long offset;
d8dc7fbd 1506 void *boot_data;
a77e0c7b 1507
c0b759d8 1508 if (!mdesc->pv_fixup)
a77e0c7b
SS
1509 return;
1510
c0b759d8 1511 offset = mdesc->pv_fixup();
c8ca2b4b
RK
1512 if (offset == 0)
1513 return;
a77e0c7b 1514
d8dc7fbd
RK
1515 /*
1516 * Get the address of the remap function in the 1:1 identity
1517 * mapping setup by the early page table assembly code. We
1518 * must get this prior to the pv update. The following barrier
1519 * ensures that this is complete before we fixup any P:V offsets.
1520 */
1521 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1522 pa_pgd = __pa(swapper_pg_dir);
1523 boot_data = __va(__atags_pointer);
1524 barrier();
a77e0c7b 1525
39b74fe8
RK
1526 pr_info("Switching physical address space to 0x%08llx\n",
1527 (u64)PHYS_OFFSET + offset);
a77e0c7b 1528
c8ca2b4b
RK
1529 /* Re-set the phys pfn offset, and the pv offset */
1530 __pv_offset += offset;
1531 __pv_phys_pfn_offset += PFN_DOWN(offset);
a77e0c7b
SS
1532
1533 /* Run the patch stub to update the constants */
1534 fixup_pv_table(&__pv_table_begin,
1535 (&__pv_table_end - &__pv_table_begin) << 2);
1536
1537 /*
d8dc7fbd
RK
1538 * We changing not only the virtual to physical mapping, but also
1539 * the physical addresses used to access memory. We need to flush
1540 * all levels of cache in the system with caching disabled to
1541 * ensure that all data is written back, and nothing is prefetched
1542 * into the caches. We also need to prevent the TLB walkers
1543 * allocating into the caches too. Note that this is ARMv7 LPAE
1544 * specific.
3bb70de6 1545 */
d8dc7fbd
RK
1546 cr = get_cr();
1547 set_cr(cr & ~(CR_I | CR_C));
1548 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1549 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1550 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
a77e0c7b 1551 flush_cache_all();
3bb70de6
RK
1552
1553 /*
d8dc7fbd
RK
1554 * Fixup the page tables - this must be in the idmap region as
1555 * we need to disable the MMU to do this safely, and hence it
1556 * needs to be assembly. It's fairly simple, as we're using the
1557 * temporary tables setup by the initial assembly code.
3bb70de6 1558 */
d8dc7fbd 1559 lpae_pgtables_remap(offset, pa_pgd, boot_data);
3bb70de6 1560
d8dc7fbd
RK
1561 /* Re-enable the caches and cacheable TLB walks */
1562 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1563 set_cr(cr);
a77e0c7b
SS
1564}
1565
1566#else
1567
699ee921 1568static void __init early_paging_init(const struct machine_desc *mdesc)
a77e0c7b 1569{
c8ca2b4b
RK
1570 long long offset;
1571
c0b759d8 1572 if (!mdesc->pv_fixup)
c8ca2b4b
RK
1573 return;
1574
c0b759d8 1575 offset = mdesc->pv_fixup();
c8ca2b4b
RK
1576 if (offset == 0)
1577 return;
1578
1579 pr_crit("Physical address space modification is only to support Keystone2.\n");
1580 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1581 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1582 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
a77e0c7b
SS
1583}
1584
1585#endif
1586
a5f4c561
SA
1587static void __init early_fixmap_shutdown(void)
1588{
1589 int i;
1590 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1591
1592 pte_offset_fixmap = pte_offset_late_fixmap;
1593 pmd_clear(fixmap_pmd(va));
1594 local_flush_tlb_kernel_page(va);
1595
1596 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1597 pte_t *pte;
1598 struct map_desc map;
1599
1600 map.virtual = fix_to_virt(i);
1601 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1602
1603 /* Only i/o device mappings are supported ATM */
1604 if (pte_none(*pte) ||
1605 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1606 continue;
1607
1608 map.pfn = pte_pfn(*pte);
1609 map.type = MT_DEVICE;
1610 map.length = PAGE_SIZE;
1611
1612 create_mapping(&map);
1613 }
1614}
1615
d111e8f9
RK
1616/*
1617 * paging_init() sets up the page tables, initialises the zone memory
1618 * maps, and sets up the zero page, bad page and bad page tables.
1619 */
ff69a4c8 1620void __init paging_init(const struct machine_desc *mdesc)
d111e8f9
RK
1621{
1622 void *zero_page;
1623
4b5f32ce 1624 prepare_page_table();
a2227120 1625 map_lowmem();
3de1f52a 1626 memblock_set_current_limit(arm_lowmem_limit);
c7909509 1627 dma_contiguous_remap();
a5f4c561 1628 early_fixmap_shutdown();
d111e8f9 1629 devicemaps_init(mdesc);
d73cd428 1630 kmap_init();
de40614e 1631 tcm_init();
d111e8f9
RK
1632
1633 top_pmd = pmd_off_k(0xffff0000);
1634
3abe9d33
RK
1635 /* allocate the zero page. */
1636 zero_page = early_alloc(PAGE_SIZE);
2778f620 1637
8d717a52 1638 bootmem_init();
2778f620 1639
d111e8f9 1640 empty_zero_page = virt_to_page(zero_page);
421fe93c 1641 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1642}
699ee921
JM
1643
1644void __init early_mm_init(const struct machine_desc *mdesc)
1645{
1646 build_mem_type_table();
1647 early_paging_init(mdesc);
1648}