]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/arm/mm/mmu.c
Merge branch 'kvm-arm/vgic-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
158e8bfe 19#include <linux/sizes.h>
d111e8f9 20
15d07dc9 21#include <asm/cp15.h>
0ba8b9b2 22#include <asm/cputype.h>
37efe642 23#include <asm/sections.h>
3f973e22 24#include <asm/cachetype.h>
d111e8f9 25#include <asm/setup.h>
e616c591 26#include <asm/smp_plat.h>
d111e8f9 27#include <asm/tlb.h>
d73cd428 28#include <asm/highmem.h>
9f97da78 29#include <asm/system_info.h>
247055aa 30#include <asm/traps.h>
d111e8f9
RK
31
32#include <asm/mach/arch.h>
33#include <asm/mach/map.h>
c2794437 34#include <asm/mach/pci.h>
d111e8f9
RK
35
36#include "mm.h"
37
d111e8f9
RK
38/*
39 * empty_zero_page is a special page that is used for
40 * zero-initialized data and COW.
41 */
42struct page *empty_zero_page;
3653f3ab 43EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
44
45/*
46 * The pmd table for the upper-most set of pages.
47 */
48pmd_t *top_pmd;
49
ae8f1541
RK
50#define CPOLICY_UNCACHED 0
51#define CPOLICY_BUFFERED 1
52#define CPOLICY_WRITETHROUGH 2
53#define CPOLICY_WRITEBACK 3
54#define CPOLICY_WRITEALLOC 4
55
56static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
57static unsigned int ecc_mask __initdata = 0;
44b18693 58pgprot_t pgprot_user;
ae8f1541 59pgprot_t pgprot_kernel;
cc577c26
CD
60pgprot_t pgprot_hyp_device;
61pgprot_t pgprot_s2;
62pgprot_t pgprot_s2_device;
ae8f1541 63
44b18693 64EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
65EXPORT_SYMBOL(pgprot_kernel);
66
67struct cachepolicy {
68 const char policy[16];
69 unsigned int cr_mask;
442e70c0 70 pmdval_t pmd;
f6e3354d 71 pteval_t pte;
cc577c26 72 pteval_t pte_s2;
ae8f1541
RK
73};
74
cc577c26
CD
75#ifdef CONFIG_ARM_LPAE
76#define s2_policy(policy) policy
77#else
78#define s2_policy(policy) 0
79#endif
80
ae8f1541
RK
81static struct cachepolicy cache_policies[] __initdata = {
82 {
83 .policy = "uncached",
84 .cr_mask = CR_W|CR_C,
85 .pmd = PMD_SECT_UNCACHED,
bb30f36f 86 .pte = L_PTE_MT_UNCACHED,
cc577c26 87 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
88 }, {
89 .policy = "buffered",
90 .cr_mask = CR_C,
91 .pmd = PMD_SECT_BUFFERED,
bb30f36f 92 .pte = L_PTE_MT_BUFFERABLE,
cc577c26 93 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
94 }, {
95 .policy = "writethrough",
96 .cr_mask = 0,
97 .pmd = PMD_SECT_WT,
bb30f36f 98 .pte = L_PTE_MT_WRITETHROUGH,
cc577c26 99 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
ae8f1541
RK
100 }, {
101 .policy = "writeback",
102 .cr_mask = 0,
103 .pmd = PMD_SECT_WB,
bb30f36f 104 .pte = L_PTE_MT_WRITEBACK,
cc577c26 105 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
106 }, {
107 .policy = "writealloc",
108 .cr_mask = 0,
109 .pmd = PMD_SECT_WBWA,
bb30f36f 110 .pte = L_PTE_MT_WRITEALLOC,
cc577c26 111 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
112 }
113};
114
115/*
6cbdc8c5 116 * These are useful for identifying cache coherency
ae8f1541
RK
117 * problems by allowing the cache or the cache and
118 * writebuffer to be turned off. (Note: the write
119 * buffer should not be on and the cache off).
120 */
2b0d8c25 121static int __init early_cachepolicy(char *p)
ae8f1541
RK
122{
123 int i;
124
125 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
126 int len = strlen(cache_policies[i].policy);
127
2b0d8c25 128 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
129 cachepolicy = i;
130 cr_alignment &= ~cache_policies[i].cr_mask;
131 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
132 break;
133 }
134 }
135 if (i == ARRAY_SIZE(cache_policies))
136 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
137 /*
138 * This restriction is partly to do with the way we boot; it is
139 * unpredictable to have memory mapped using two different sets of
140 * memory attributes (shared, type, and cache attribs). We can not
141 * change these attributes once the initial assembly has setup the
142 * page tables.
143 */
11179d8c
CM
144 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
145 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
146 cachepolicy = CPOLICY_WRITEBACK;
147 }
ae8f1541
RK
148 flush_cache_all();
149 set_cr(cr_alignment);
2b0d8c25 150 return 0;
ae8f1541 151}
2b0d8c25 152early_param("cachepolicy", early_cachepolicy);
ae8f1541 153
2b0d8c25 154static int __init early_nocache(char *__unused)
ae8f1541
RK
155{
156 char *p = "buffered";
157 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
158 early_cachepolicy(p);
159 return 0;
ae8f1541 160}
2b0d8c25 161early_param("nocache", early_nocache);
ae8f1541 162
2b0d8c25 163static int __init early_nowrite(char *__unused)
ae8f1541
RK
164{
165 char *p = "uncached";
166 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
167 early_cachepolicy(p);
168 return 0;
ae8f1541 169}
2b0d8c25 170early_param("nowb", early_nowrite);
ae8f1541 171
1b6ba46b 172#ifndef CONFIG_ARM_LPAE
2b0d8c25 173static int __init early_ecc(char *p)
ae8f1541 174{
2b0d8c25 175 if (memcmp(p, "on", 2) == 0)
ae8f1541 176 ecc_mask = PMD_PROTECTION;
2b0d8c25 177 else if (memcmp(p, "off", 3) == 0)
ae8f1541 178 ecc_mask = 0;
2b0d8c25 179 return 0;
ae8f1541 180}
2b0d8c25 181early_param("ecc", early_ecc);
1b6ba46b 182#endif
ae8f1541
RK
183
184static int __init noalign_setup(char *__unused)
185{
186 cr_alignment &= ~CR_A;
187 cr_no_alignment &= ~CR_A;
188 set_cr(cr_alignment);
189 return 1;
190}
191__setup("noalign", noalign_setup);
192
255d1f86
RK
193#ifndef CONFIG_SMP
194void adjust_cr(unsigned long mask, unsigned long set)
195{
196 unsigned long flags;
197
198 mask &= ~CR_A;
199
200 set &= mask;
201
202 local_irq_save(flags);
203
204 cr_no_alignment = (cr_no_alignment & ~mask) | set;
205 cr_alignment = (cr_alignment & ~mask) | set;
206
207 set_cr((get_cr() & ~mask) | set);
208
209 local_irq_restore(flags);
210}
211#endif
212
36bb94ba 213#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
b1cce6b1 214#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 215
b29e9f5e 216static struct mem_type mem_types[] = {
0af92bef 217 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
218 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
219 L_PTE_SHARED,
0af92bef 220 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 221 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
222 .domain = DOMAIN_IO,
223 },
224 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 225 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 226 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 227 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
228 .domain = DOMAIN_IO,
229 },
230 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 231 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
232 .prot_l1 = PMD_TYPE_TABLE,
233 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
234 .domain = DOMAIN_IO,
c2794437 235 },
1ad77a87 236 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 237 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 238 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 239 .prot_sect = PROT_SECT_DEVICE,
0af92bef 240 .domain = DOMAIN_IO,
ae8f1541 241 },
ebb4c658
RK
242 [MT_UNCACHED] = {
243 .prot_pte = PROT_PTE_DEVICE,
244 .prot_l1 = PMD_TYPE_TABLE,
245 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
246 .domain = DOMAIN_IO,
247 },
ae8f1541 248 [MT_CACHECLEAN] = {
9ef79635 249 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
250 .domain = DOMAIN_KERNEL,
251 },
1b6ba46b 252#ifndef CONFIG_ARM_LPAE
ae8f1541 253 [MT_MINICLEAN] = {
9ef79635 254 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
255 .domain = DOMAIN_KERNEL,
256 },
1b6ba46b 257#endif
ae8f1541
RK
258 [MT_LOW_VECTORS] = {
259 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 260 L_PTE_RDONLY,
ae8f1541
RK
261 .prot_l1 = PMD_TYPE_TABLE,
262 .domain = DOMAIN_USER,
263 },
264 [MT_HIGH_VECTORS] = {
265 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 266 L_PTE_USER | L_PTE_RDONLY,
ae8f1541
RK
267 .prot_l1 = PMD_TYPE_TABLE,
268 .domain = DOMAIN_USER,
269 },
270 [MT_MEMORY] = {
36bb94ba 271 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 272 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 273 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
274 .domain = DOMAIN_KERNEL,
275 },
276 [MT_ROM] = {
9ef79635 277 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
278 .domain = DOMAIN_KERNEL,
279 },
e4707dd3 280 [MT_MEMORY_NONCACHED] = {
f1a2481c 281 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 282 L_PTE_MT_BUFFERABLE,
f1a2481c 283 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
284 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
285 .domain = DOMAIN_KERNEL,
286 },
cb9d7707 287 [MT_MEMORY_DTCM] = {
f444fce3 288 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 289 L_PTE_XN,
f444fce3
LW
290 .prot_l1 = PMD_TYPE_TABLE,
291 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
292 .domain = DOMAIN_KERNEL,
cb9d7707
LW
293 },
294 [MT_MEMORY_ITCM] = {
36bb94ba 295 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 296 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 297 .domain = DOMAIN_KERNEL,
cb9d7707 298 },
8fb54284
SS
299 [MT_MEMORY_SO] = {
300 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
93d5bf07 301 L_PTE_MT_UNCACHED | L_PTE_XN,
8fb54284
SS
302 .prot_l1 = PMD_TYPE_TABLE,
303 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
304 PMD_SECT_UNCACHED | PMD_SECT_XN,
305 .domain = DOMAIN_KERNEL,
306 },
c7909509
MS
307 [MT_MEMORY_DMA_READY] = {
308 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
309 .prot_l1 = PMD_TYPE_TABLE,
310 .domain = DOMAIN_KERNEL,
311 },
ae8f1541
RK
312};
313
b29e9f5e
RK
314const struct mem_type *get_mem_type(unsigned int type)
315{
316 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
317}
69d3a84a 318EXPORT_SYMBOL(get_mem_type);
b29e9f5e 319
ae8f1541
RK
320/*
321 * Adjust the PMD section entries according to the CPU in use.
322 */
323static void __init build_mem_type_table(void)
324{
325 struct cachepolicy *cp;
326 unsigned int cr = get_cr();
442e70c0 327 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
cc577c26 328 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
ae8f1541
RK
329 int cpu_arch = cpu_architecture();
330 int i;
331
11179d8c 332 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 333#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
334 if (cachepolicy > CPOLICY_BUFFERED)
335 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 336#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
337 if (cachepolicy > CPOLICY_WRITETHROUGH)
338 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 339#endif
11179d8c 340 }
ae8f1541
RK
341 if (cpu_arch < CPU_ARCH_ARMv5) {
342 if (cachepolicy >= CPOLICY_WRITEALLOC)
343 cachepolicy = CPOLICY_WRITEBACK;
344 ecc_mask = 0;
345 }
f00ec48f
RK
346 if (is_smp())
347 cachepolicy = CPOLICY_WRITEALLOC;
ae8f1541 348
1ad77a87 349 /*
b1cce6b1
RK
350 * Strip out features not present on earlier architectures.
351 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
352 * without extended page tables don't have the 'Shared' bit.
1ad77a87 353 */
b1cce6b1
RK
354 if (cpu_arch < CPU_ARCH_ARMv5)
355 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
356 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
357 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
358 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
359 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
360
361 /*
b1cce6b1
RK
362 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
363 * "update-able on write" bit on ARM610). However, Xscale and
364 * Xscale3 require this bit to be cleared.
ae8f1541 365 */
b1cce6b1 366 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 367 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 368 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
369 mem_types[i].prot_l1 &= ~PMD_BIT4;
370 }
371 } else if (cpu_arch < CPU_ARCH_ARMv6) {
372 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
373 if (mem_types[i].prot_l1)
374 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
375 if (mem_types[i].prot_sect)
376 mem_types[i].prot_sect |= PMD_BIT4;
377 }
378 }
ae8f1541 379
b1cce6b1
RK
380 /*
381 * Mark the device areas according to the CPU/architecture.
382 */
383 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
384 if (!cpu_is_xsc3()) {
385 /*
386 * Mark device regions on ARMv6+ as execute-never
387 * to prevent speculative instruction fetches.
388 */
389 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
390 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
391 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
392 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
393 }
394 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
395 /*
396 * For ARMv7 with TEX remapping,
397 * - shared device is SXCB=1100
398 * - nonshared device is SXCB=0100
399 * - write combine device mem is SXCB=0001
400 * (Uncached Normal memory)
401 */
402 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
403 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
404 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
405 } else if (cpu_is_xsc3()) {
406 /*
407 * For Xscale3,
408 * - shared device is TEXCB=00101
409 * - nonshared device is TEXCB=01000
410 * - write combine device mem is TEXCB=00100
411 * (Inner/Outer Uncacheable in xsc3 parlance)
412 */
413 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
414 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
415 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
416 } else {
417 /*
418 * For ARMv6 and ARMv7 without TEX remapping,
419 * - shared device is TEXCB=00001
420 * - nonshared device is TEXCB=01000
421 * - write combine device mem is TEXCB=00100
422 * (Uncached Normal in ARMv6 parlance).
423 */
424 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
425 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
426 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
427 }
428 } else {
429 /*
430 * On others, write combining is "Uncached/Buffered"
431 */
432 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
433 }
434
435 /*
436 * Now deal with the memory-type mappings
437 */
ae8f1541 438 cp = &cache_policies[cachepolicy];
bb30f36f 439 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
cc577c26
CD
440 s2_pgprot = cp->pte_s2;
441 hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
bb30f36f 442
ae8f1541
RK
443 /*
444 * ARMv6 and above have extended page tables.
445 */
446 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 447#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
448 /*
449 * Mark cache clean areas and XIP ROM read only
450 * from SVC mode and no access from userspace.
451 */
452 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
453 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
454 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 455#endif
ae8f1541 456
f00ec48f
RK
457 if (is_smp()) {
458 /*
459 * Mark memory with the "shared" attribute
460 * for SMP systems
461 */
462 user_pgprot |= L_PTE_SHARED;
463 kern_pgprot |= L_PTE_SHARED;
464 vecs_pgprot |= L_PTE_SHARED;
cc577c26 465 s2_pgprot |= L_PTE_SHARED;
f00ec48f
RK
466 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
467 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
468 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
469 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
470 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
471 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
c7909509 472 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
f00ec48f
RK
473 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
474 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
475 }
ae8f1541
RK
476 }
477
e4707dd3
PW
478 /*
479 * Non-cacheable Normal - intended for memory areas that must
480 * not cause dirty cache line writebacks when used
481 */
482 if (cpu_arch >= CPU_ARCH_ARMv6) {
483 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
484 /* Non-cacheable Normal is XCB = 001 */
485 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
486 PMD_SECT_BUFFERED;
487 } else {
488 /* For both ARMv6 and non-TEX-remapping ARMv7 */
489 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
490 PMD_SECT_TEX(1);
491 }
492 } else {
493 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
494 }
495
1b6ba46b
CM
496#ifdef CONFIG_ARM_LPAE
497 /*
498 * Do not generate access flag faults for the kernel mappings.
499 */
500 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
501 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
502 if (mem_types[i].prot_sect)
503 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
504 }
505 kern_pgprot |= PTE_EXT_AF;
506 vecs_pgprot |= PTE_EXT_AF;
507#endif
508
ae8f1541 509 for (i = 0; i < 16; i++) {
864aa04c 510 pteval_t v = pgprot_val(protection_map[i]);
bb30f36f 511 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
512 }
513
bb30f36f
RK
514 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
515 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 516
44b18693 517 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 518 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 519 L_PTE_DIRTY | kern_pgprot);
cc577c26
CD
520 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
521 pgprot_s2_device = __pgprot(s2_device_pgprot);
522 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
ae8f1541
RK
523
524 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
525 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
526 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
f1a2481c 527 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
c7909509 528 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
f1a2481c 529 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
530 mem_types[MT_ROM].prot_sect |= cp->pmd;
531
532 switch (cp->pmd) {
533 case PMD_SECT_WT:
534 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
535 break;
536 case PMD_SECT_WB:
537 case PMD_SECT_WBWA:
538 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
539 break;
540 }
541 printk("Memory policy: ECC %sabled, Data cache %s\n",
542 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
543
544 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
545 struct mem_type *t = &mem_types[i];
546 if (t->prot_l1)
547 t->prot_l1 |= PMD_DOMAIN(t->domain);
548 if (t->prot_sect)
549 t->prot_sect |= PMD_DOMAIN(t->domain);
550 }
ae8f1541
RK
551}
552
d907387c
CM
553#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
554pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
555 unsigned long size, pgprot_t vma_prot)
556{
557 if (!pfn_valid(pfn))
558 return pgprot_noncached(vma_prot);
559 else if (file->f_flags & O_SYNC)
560 return pgprot_writecombine(vma_prot);
561 return vma_prot;
562}
563EXPORT_SYMBOL(phys_mem_access_prot);
564#endif
565
ae8f1541
RK
566#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
567
0536bdf3 568static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 569{
0536bdf3 570 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
571 memset(ptr, 0, sz);
572 return ptr;
3abe9d33
RK
573}
574
0536bdf3
NP
575static void __init *early_alloc(unsigned long sz)
576{
577 return early_alloc_aligned(sz, sz);
578}
579
4bb2e27d 580static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 581{
24e6c699 582 if (pmd_none(*pmd)) {
410f1483 583 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 584 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 585 }
4bb2e27d
RK
586 BUG_ON(pmd_bad(*pmd));
587 return pte_offset_kernel(pmd, addr);
588}
ae8f1541 589
4bb2e27d
RK
590static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
591 unsigned long end, unsigned long pfn,
592 const struct mem_type *type)
593{
594 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 595 do {
40d192b6 596 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
597 pfn++;
598 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
599}
600
516295e5 601static void __init alloc_init_section(pud_t *pud, unsigned long addr,
97092e0c 602 unsigned long end, phys_addr_t phys,
24e6c699 603 const struct mem_type *type)
ae8f1541 604{
516295e5 605 pmd_t *pmd = pmd_offset(pud, addr);
ae8f1541 606
24e6c699
RK
607 /*
608 * Try a section mapping - end, addr and phys must all be aligned
609 * to a section boundary. Note that PMDs refer to the individual
610 * L1 entries, whereas PGDs refer to a group of L1 entries making
611 * up one logical pointer to an L2 table.
612 */
c7909509 613 if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
24e6c699 614 pmd_t *p = pmd;
ae8f1541 615
1b6ba46b 616#ifndef CONFIG_ARM_LPAE
24e6c699
RK
617 if (addr & SECTION_SIZE)
618 pmd++;
1b6ba46b 619#endif
24e6c699
RK
620
621 do {
622 *pmd = __pmd(phys | type->prot_sect);
623 phys += SECTION_SIZE;
624 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 625
24e6c699
RK
626 flush_pmd_entry(p);
627 } else {
628 /*
629 * No need to loop; pte's aren't interested in the
630 * individual L1 entries.
631 */
632 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
633 }
ae8f1541
RK
634}
635
14904927
SB
636static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
637 unsigned long end, unsigned long phys, const struct mem_type *type)
516295e5
RK
638{
639 pud_t *pud = pud_offset(pgd, addr);
640 unsigned long next;
641
642 do {
643 next = pud_addr_end(addr, end);
644 alloc_init_section(pud, addr, next, phys, type);
645 phys += next - addr;
646 } while (pud++, addr = next, addr != end);
647}
648
1b6ba46b 649#ifndef CONFIG_ARM_LPAE
4a56c1e4
RK
650static void __init create_36bit_mapping(struct map_desc *md,
651 const struct mem_type *type)
652{
97092e0c
RK
653 unsigned long addr, length, end;
654 phys_addr_t phys;
4a56c1e4
RK
655 pgd_t *pgd;
656
657 addr = md->virtual;
cae6292b 658 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
659 length = PAGE_ALIGN(md->length);
660
661 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
662 printk(KERN_ERR "MM: CPU does not support supersection "
663 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 664 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
665 return;
666 }
667
668 /* N.B. ARMv6 supersections are only defined to work with domain 0.
669 * Since domain assignments can in fact be arbitrary, the
670 * 'domain == 0' check below is required to insure that ARMv6
671 * supersections are only allocated for domain 0 regardless
672 * of the actual domain assignments in use.
673 */
674 if (type->domain) {
675 printk(KERN_ERR "MM: invalid domain in supersection "
676 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 677 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
678 return;
679 }
680
681 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
29a38193
WD
682 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
683 " at 0x%08lx invalid alignment\n",
684 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
685 return;
686 }
687
688 /*
689 * Shift bits [35:32] of address into bits [23:20] of PMD
690 * (See ARMv6 spec).
691 */
692 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
693
694 pgd = pgd_offset_k(addr);
695 end = addr + length;
696 do {
516295e5
RK
697 pud_t *pud = pud_offset(pgd, addr);
698 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
699 int i;
700
701 for (i = 0; i < 16; i++)
702 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
703
704 addr += SUPERSECTION_SIZE;
705 phys += SUPERSECTION_SIZE;
706 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
707 } while (addr != end);
708}
1b6ba46b 709#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 710
ae8f1541
RK
711/*
712 * Create the page directory entries and any necessary
713 * page tables for the mapping specified by `md'. We
714 * are able to cope here with varying sizes and address
715 * offsets, and we take full advantage of sections and
716 * supersections.
717 */
a2227120 718static void __init create_mapping(struct map_desc *md)
ae8f1541 719{
cae6292b
WD
720 unsigned long addr, length, end;
721 phys_addr_t phys;
d5c98176 722 const struct mem_type *type;
24e6c699 723 pgd_t *pgd;
ae8f1541
RK
724
725 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
29a38193
WD
726 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
727 " at 0x%08lx in user region\n",
728 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
729 return;
730 }
731
732 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
0536bdf3
NP
733 md->virtual >= PAGE_OFFSET &&
734 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
29a38193 735 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
0536bdf3 736 " at 0x%08lx out of vmalloc space\n",
29a38193 737 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
738 }
739
d5c98176 740 type = &mem_types[md->type];
ae8f1541 741
1b6ba46b 742#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
743 /*
744 * Catch 36-bit addresses
745 */
4a56c1e4
RK
746 if (md->pfn >= 0x100000) {
747 create_36bit_mapping(md, type);
748 return;
ae8f1541 749 }
1b6ba46b 750#endif
ae8f1541 751
7b9c7b4d 752 addr = md->virtual & PAGE_MASK;
cae6292b 753 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 754 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 755
24e6c699 756 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
29a38193 757 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
ae8f1541 758 "be mapped using pages, ignoring.\n",
29a38193 759 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
760 return;
761 }
762
24e6c699
RK
763 pgd = pgd_offset_k(addr);
764 end = addr + length;
765 do {
766 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 767
516295e5 768 alloc_init_pud(pgd, addr, next, phys, type);
ae8f1541 769
24e6c699
RK
770 phys += next - addr;
771 addr = next;
772 } while (pgd++, addr != end);
ae8f1541
RK
773}
774
775/*
776 * Create the architecture specific mappings
777 */
778void __init iotable_init(struct map_desc *io_desc, int nr)
779{
0536bdf3
NP
780 struct map_desc *md;
781 struct vm_struct *vm;
101eeda3 782 struct static_vm *svm;
0536bdf3
NP
783
784 if (!nr)
785 return;
ae8f1541 786
101eeda3 787 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
0536bdf3
NP
788
789 for (md = io_desc; nr; md++, nr--) {
790 create_mapping(md);
101eeda3
JK
791
792 vm = &svm->vm;
0536bdf3
NP
793 vm->addr = (void *)(md->virtual & PAGE_MASK);
794 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
c2794437
RH
795 vm->phys_addr = __pfn_to_phys(md->pfn);
796 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
576d2f25 797 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3 798 vm->caller = iotable_init;
101eeda3 799 add_static_vm_early(svm++);
0536bdf3 800 }
ae8f1541
RK
801}
802
c2794437
RH
803void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
804 void *caller)
805{
806 struct vm_struct *vm;
101eeda3
JK
807 struct static_vm *svm;
808
809 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
c2794437 810
101eeda3 811 vm = &svm->vm;
c2794437
RH
812 vm->addr = (void *)addr;
813 vm->size = size;
863e99a8 814 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
c2794437 815 vm->caller = caller;
101eeda3 816 add_static_vm_early(svm);
c2794437
RH
817}
818
19b52abe
NP
819#ifndef CONFIG_ARM_LPAE
820
821/*
822 * The Linux PMD is made of two consecutive section entries covering 2MB
823 * (see definition in include/asm/pgtable-2level.h). However a call to
824 * create_mapping() may optimize static mappings by using individual
825 * 1MB section mappings. This leaves the actual PMD potentially half
826 * initialized if the top or bottom section entry isn't used, leaving it
827 * open to problems if a subsequent ioremap() or vmalloc() tries to use
828 * the virtual space left free by that unused section entry.
829 *
830 * Let's avoid the issue by inserting dummy vm entries covering the unused
831 * PMD halves once the static mappings are in place.
832 */
833
834static void __init pmd_empty_section_gap(unsigned long addr)
835{
c2794437 836 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
19b52abe
NP
837}
838
839static void __init fill_pmd_gaps(void)
840{
101eeda3 841 struct static_vm *svm;
19b52abe
NP
842 struct vm_struct *vm;
843 unsigned long addr, next = 0;
844 pmd_t *pmd;
845
101eeda3
JK
846 list_for_each_entry(svm, &static_vmlist, list) {
847 vm = &svm->vm;
19b52abe
NP
848 addr = (unsigned long)vm->addr;
849 if (addr < next)
850 continue;
851
852 /*
853 * Check if this vm starts on an odd section boundary.
854 * If so and the first section entry for this PMD is free
855 * then we block the corresponding virtual address.
856 */
857 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
858 pmd = pmd_off_k(addr);
859 if (pmd_none(*pmd))
860 pmd_empty_section_gap(addr & PMD_MASK);
861 }
862
863 /*
864 * Then check if this vm ends on an odd section boundary.
865 * If so and the second section entry for this PMD is empty
866 * then we block the corresponding virtual address.
867 */
868 addr += vm->size;
869 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
870 pmd = pmd_off_k(addr) + 1;
871 if (pmd_none(*pmd))
872 pmd_empty_section_gap(addr);
873 }
874
875 /* no need to look at any vm entry until we hit the next PMD */
876 next = (addr + PMD_SIZE - 1) & PMD_MASK;
877 }
878}
879
880#else
881#define fill_pmd_gaps() do { } while (0)
882#endif
883
c2794437
RH
884#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
885static void __init pci_reserve_io(void)
886{
101eeda3 887 struct static_vm *svm;
c2794437 888
101eeda3
JK
889 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
890 if (svm)
891 return;
c2794437 892
c2794437
RH
893 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
894}
895#else
896#define pci_reserve_io() do { } while (0)
897#endif
898
e5c5f2ad
RH
899#ifdef CONFIG_DEBUG_LL
900void __init debug_ll_io_init(void)
901{
902 struct map_desc map;
903
904 debug_ll_addr(&map.pfn, &map.virtual);
905 if (!map.pfn || !map.virtual)
906 return;
907 map.pfn = __phys_to_pfn(map.pfn);
908 map.virtual &= PAGE_MASK;
909 map.length = PAGE_SIZE;
910 map.type = MT_DEVICE;
911 create_mapping(&map);
912}
913#endif
914
0536bdf3
NP
915static void * __initdata vmalloc_min =
916 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
917
918/*
919 * vmalloc=size forces the vmalloc area to be exactly 'size'
920 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 921 * area - the default is 240m.
6c5da7ac 922 */
2b0d8c25 923static int __init early_vmalloc(char *arg)
6c5da7ac 924{
79612395 925 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
926
927 if (vmalloc_reserve < SZ_16M) {
928 vmalloc_reserve = SZ_16M;
929 printk(KERN_WARNING
930 "vmalloc area too small, limiting to %luMB\n",
931 vmalloc_reserve >> 20);
932 }
9210807c
NP
933
934 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
935 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
936 printk(KERN_WARNING
937 "vmalloc area is too big, limiting to %luMB\n",
938 vmalloc_reserve >> 20);
939 }
79612395
RK
940
941 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 942 return 0;
6c5da7ac 943}
2b0d8c25 944early_param("vmalloc", early_vmalloc);
6c5da7ac 945
c7909509 946phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 947
0371d3f7 948void __init sanity_check_meminfo(void)
60296c71 949{
dde5828f 950 int i, j, highmem = 0;
60296c71 951
4b5f32ce 952 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
953 struct membank *bank = &meminfo.bank[j];
954 *bank = meminfo.bank[i];
60296c71 955
77f73a2c
WD
956 if (bank->start > ULONG_MAX)
957 highmem = 1;
958
a1bbaec0 959#ifdef CONFIG_HIGHMEM
40f7bfe4 960 if (__va(bank->start) >= vmalloc_min ||
dde5828f
RK
961 __va(bank->start) < (void *)PAGE_OFFSET)
962 highmem = 1;
963
964 bank->highmem = highmem;
965
a1bbaec0
NP
966 /*
967 * Split those memory banks which are partially overlapping
968 * the vmalloc area greatly simplifying things later.
969 */
77f73a2c 970 if (!highmem && __va(bank->start) < vmalloc_min &&
79612395 971 bank->size > vmalloc_min - __va(bank->start)) {
a1bbaec0
NP
972 if (meminfo.nr_banks >= NR_BANKS) {
973 printk(KERN_CRIT "NR_BANKS too low, "
974 "ignoring high memory\n");
975 } else {
976 memmove(bank + 1, bank,
977 (meminfo.nr_banks - i) * sizeof(*bank));
978 meminfo.nr_banks++;
979 i++;
79612395
RK
980 bank[1].size -= vmalloc_min - __va(bank->start);
981 bank[1].start = __pa(vmalloc_min - 1) + 1;
dde5828f 982 bank[1].highmem = highmem = 1;
a1bbaec0
NP
983 j++;
984 }
79612395 985 bank->size = vmalloc_min - __va(bank->start);
a1bbaec0
NP
986 }
987#else
041d785f
RK
988 bank->highmem = highmem;
989
77f73a2c
WD
990 /*
991 * Highmem banks not allowed with !CONFIG_HIGHMEM.
992 */
993 if (highmem) {
994 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
995 "(!CONFIG_HIGHMEM).\n",
996 (unsigned long long)bank->start,
997 (unsigned long long)bank->start + bank->size - 1);
998 continue;
999 }
1000
a1bbaec0
NP
1001 /*
1002 * Check whether this memory bank would entirely overlap
1003 * the vmalloc area.
1004 */
79612395 1005 if (__va(bank->start) >= vmalloc_min ||
f0bba9f9 1006 __va(bank->start) < (void *)PAGE_OFFSET) {
e33b9d08 1007 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
a1bbaec0 1008 "(vmalloc region overlap).\n",
e33b9d08
RK
1009 (unsigned long long)bank->start,
1010 (unsigned long long)bank->start + bank->size - 1);
a1bbaec0
NP
1011 continue;
1012 }
60296c71 1013
a1bbaec0
NP
1014 /*
1015 * Check whether this memory bank would partially overlap
1016 * the vmalloc area.
1017 */
36418c51
JA
1018 if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
1019 __va(bank->start + bank->size - 1) <= __va(bank->start)) {
79612395 1020 unsigned long newsize = vmalloc_min - __va(bank->start);
e33b9d08
RK
1021 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1022 "to -%.8llx (vmalloc region overlap).\n",
1023 (unsigned long long)bank->start,
1024 (unsigned long long)bank->start + bank->size - 1,
1025 (unsigned long long)bank->start + newsize - 1);
a1bbaec0
NP
1026 bank->size = newsize;
1027 }
1028#endif
c7909509
MS
1029 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1030 arm_lowmem_limit = bank->start + bank->size;
40f7bfe4 1031
a1bbaec0 1032 j++;
60296c71 1033 }
e616c591
RK
1034#ifdef CONFIG_HIGHMEM
1035 if (highmem) {
1036 const char *reason = NULL;
1037
1038 if (cache_is_vipt_aliasing()) {
1039 /*
1040 * Interactions between kmap and other mappings
1041 * make highmem support with aliasing VIPT caches
1042 * rather difficult.
1043 */
1044 reason = "with VIPT aliasing cache";
e616c591
RK
1045 }
1046 if (reason) {
1047 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1048 reason);
1049 while (j > 0 && meminfo.bank[j - 1].highmem)
1050 j--;
1051 }
1052 }
1053#endif
4b5f32ce 1054 meminfo.nr_banks = j;
c7909509
MS
1055 high_memory = __va(arm_lowmem_limit - 1) + 1;
1056 memblock_set_current_limit(arm_lowmem_limit);
60296c71
LB
1057}
1058
4b5f32ce 1059static inline void prepare_page_table(void)
d111e8f9
RK
1060{
1061 unsigned long addr;
8df65168 1062 phys_addr_t end;
d111e8f9
RK
1063
1064 /*
1065 * Clear out all the mappings below the kernel image.
1066 */
e73fc88e 1067 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
1068 pmd_clear(pmd_off_k(addr));
1069
1070#ifdef CONFIG_XIP_KERNEL
1071 /* The XIP kernel is mapped in the module area -- skip over it */
e73fc88e 1072 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 1073#endif
e73fc88e 1074 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
1075 pmd_clear(pmd_off_k(addr));
1076
8df65168
RK
1077 /*
1078 * Find the end of the first block of lowmem.
1079 */
1080 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
1081 if (end >= arm_lowmem_limit)
1082 end = arm_lowmem_limit;
8df65168 1083
d111e8f9
RK
1084 /*
1085 * Clear out all the kernel space mappings, except for the first
0536bdf3 1086 * memory bank, up to the vmalloc region.
d111e8f9 1087 */
8df65168 1088 for (addr = __phys_to_virt(end);
0536bdf3 1089 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
1090 pmd_clear(pmd_off_k(addr));
1091}
1092
1b6ba46b
CM
1093#ifdef CONFIG_ARM_LPAE
1094/* the first page is reserved for pgd */
1095#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1096 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1097#else
e73fc88e 1098#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 1099#endif
e73fc88e 1100
d111e8f9 1101/*
2778f620 1102 * Reserve the special regions of memory
d111e8f9 1103 */
2778f620 1104void __init arm_mm_memblock_reserve(void)
d111e8f9 1105{
d111e8f9
RK
1106 /*
1107 * Reserve the page tables. These are already in use,
1108 * and can only be in node 0.
1109 */
e73fc88e 1110 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 1111
d111e8f9
RK
1112#ifdef CONFIG_SA1111
1113 /*
1114 * Because of the SA1111 DMA bug, we want to preserve our
1115 * precious DMA-able memory...
1116 */
2778f620 1117 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 1118#endif
d111e8f9
RK
1119}
1120
1121/*
0536bdf3
NP
1122 * Set up the device mappings. Since we clear out the page tables for all
1123 * mappings above VMALLOC_START, we will remove any debug device mappings.
d111e8f9
RK
1124 * This means you have to be careful how you debug this function, or any
1125 * called function. This means you can't use any function or debugging
1126 * method which may touch any device, otherwise the kernel _will_ crash.
1127 */
1128static void __init devicemaps_init(struct machine_desc *mdesc)
1129{
1130 struct map_desc map;
1131 unsigned long addr;
94e5a85b 1132 void *vectors;
d111e8f9
RK
1133
1134 /*
1135 * Allocate the vector page early.
1136 */
94e5a85b
RK
1137 vectors = early_alloc(PAGE_SIZE);
1138
1139 early_trap_init(vectors);
d111e8f9 1140
0536bdf3 1141 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
d111e8f9
RK
1142 pmd_clear(pmd_off_k(addr));
1143
1144 /*
1145 * Map the kernel if it is XIP.
1146 * It is always first in the modulearea.
1147 */
1148#ifdef CONFIG_XIP_KERNEL
1149 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1150 map.virtual = MODULES_VADDR;
37efe642 1151 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1152 map.type = MT_ROM;
1153 create_mapping(&map);
1154#endif
1155
1156 /*
1157 * Map the cache flushing regions.
1158 */
1159#ifdef FLUSH_BASE
1160 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1161 map.virtual = FLUSH_BASE;
1162 map.length = SZ_1M;
1163 map.type = MT_CACHECLEAN;
1164 create_mapping(&map);
1165#endif
1166#ifdef FLUSH_BASE_MINICACHE
1167 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1168 map.virtual = FLUSH_BASE_MINICACHE;
1169 map.length = SZ_1M;
1170 map.type = MT_MINICLEAN;
1171 create_mapping(&map);
1172#endif
1173
1174 /*
1175 * Create a mapping for the machine vectors at the high-vectors
1176 * location (0xffff0000). If we aren't using high-vectors, also
1177 * create a mapping at the low-vectors virtual address.
1178 */
94e5a85b 1179 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1180 map.virtual = 0xffff0000;
1181 map.length = PAGE_SIZE;
1182 map.type = MT_HIGH_VECTORS;
1183 create_mapping(&map);
1184
1185 if (!vectors_high()) {
1186 map.virtual = 0;
1187 map.type = MT_LOW_VECTORS;
1188 create_mapping(&map);
1189 }
1190
1191 /*
1192 * Ask the machine support to map in the statically mapped devices.
1193 */
1194 if (mdesc->map_io)
1195 mdesc->map_io();
19b52abe 1196 fill_pmd_gaps();
d111e8f9 1197
c2794437
RH
1198 /* Reserve fixed i/o space in VMALLOC region */
1199 pci_reserve_io();
1200
d111e8f9
RK
1201 /*
1202 * Finally flush the caches and tlb to ensure that we're in a
1203 * consistent state wrt the writebuffer. This also ensures that
1204 * any write-allocated cache lines in the vector page are written
1205 * back. After this point, we can start to touch devices again.
1206 */
1207 local_flush_tlb_all();
1208 flush_cache_all();
1209}
1210
d73cd428
NP
1211static void __init kmap_init(void)
1212{
1213#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1214 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1215 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428
NP
1216#endif
1217}
1218
a2227120
RK
1219static void __init map_lowmem(void)
1220{
8df65168 1221 struct memblock_region *reg;
a2227120
RK
1222
1223 /* Map all the lowmem memory banks. */
8df65168
RK
1224 for_each_memblock(memory, reg) {
1225 phys_addr_t start = reg->base;
1226 phys_addr_t end = start + reg->size;
1227 struct map_desc map;
1228
c7909509
MS
1229 if (end > arm_lowmem_limit)
1230 end = arm_lowmem_limit;
8df65168
RK
1231 if (start >= end)
1232 break;
1233
1234 map.pfn = __phys_to_pfn(start);
1235 map.virtual = __phys_to_virt(start);
1236 map.length = end - start;
1237 map.type = MT_MEMORY;
a2227120 1238
8df65168 1239 create_mapping(&map);
a2227120
RK
1240 }
1241}
1242
d111e8f9
RK
1243/*
1244 * paging_init() sets up the page tables, initialises the zone memory
1245 * maps, and sets up the zero page, bad page and bad page tables.
1246 */
4b5f32ce 1247void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1248{
1249 void *zero_page;
1250
c7909509 1251 memblock_set_current_limit(arm_lowmem_limit);
0371d3f7 1252
d111e8f9 1253 build_mem_type_table();
4b5f32ce 1254 prepare_page_table();
a2227120 1255 map_lowmem();
c7909509 1256 dma_contiguous_remap();
d111e8f9 1257 devicemaps_init(mdesc);
d73cd428 1258 kmap_init();
d111e8f9
RK
1259
1260 top_pmd = pmd_off_k(0xffff0000);
1261
3abe9d33
RK
1262 /* allocate the zero page. */
1263 zero_page = early_alloc(PAGE_SIZE);
2778f620 1264
8d717a52 1265 bootmem_init();
2778f620 1266
d111e8f9 1267 empty_zero_page = virt_to_page(zero_page);
421fe93c 1268 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1269}