]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm/mm/mmu.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
158e8bfe 19#include <linux/sizes.h>
d111e8f9 20
15d07dc9 21#include <asm/cp15.h>
0ba8b9b2 22#include <asm/cputype.h>
37efe642 23#include <asm/sections.h>
3f973e22 24#include <asm/cachetype.h>
99b4ac9a 25#include <asm/fixmap.h>
ebd4922e 26#include <asm/sections.h>
d111e8f9 27#include <asm/setup.h>
e616c591 28#include <asm/smp_plat.h>
d111e8f9 29#include <asm/tlb.h>
d73cd428 30#include <asm/highmem.h>
9f97da78 31#include <asm/system_info.h>
247055aa 32#include <asm/traps.h>
a77e0c7b
SS
33#include <asm/procinfo.h>
34#include <asm/memory.h>
d111e8f9
RK
35
36#include <asm/mach/arch.h>
37#include <asm/mach/map.h>
c2794437 38#include <asm/mach/pci.h>
a05e54c1 39#include <asm/fixmap.h>
d111e8f9 40
9254970c 41#include "fault.h"
d111e8f9 42#include "mm.h"
de40614e 43#include "tcm.h"
d111e8f9 44
d111e8f9
RK
45/*
46 * empty_zero_page is a special page that is used for
47 * zero-initialized data and COW.
48 */
49struct page *empty_zero_page;
3653f3ab 50EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
51
52/*
53 * The pmd table for the upper-most set of pages.
54 */
55pmd_t *top_pmd;
56
1d4d3715
JL
57pmdval_t user_pmd_table = _PAGE_USER_TABLE;
58
ae8f1541
RK
59#define CPOLICY_UNCACHED 0
60#define CPOLICY_BUFFERED 1
61#define CPOLICY_WRITETHROUGH 2
62#define CPOLICY_WRITEBACK 3
63#define CPOLICY_WRITEALLOC 4
64
65static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
66static unsigned int ecc_mask __initdata = 0;
44b18693 67pgprot_t pgprot_user;
ae8f1541 68pgprot_t pgprot_kernel;
cc577c26
CD
69pgprot_t pgprot_hyp_device;
70pgprot_t pgprot_s2;
71pgprot_t pgprot_s2_device;
ae8f1541 72
44b18693 73EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
74EXPORT_SYMBOL(pgprot_kernel);
75
76struct cachepolicy {
77 const char policy[16];
78 unsigned int cr_mask;
442e70c0 79 pmdval_t pmd;
f6e3354d 80 pteval_t pte;
cc577c26 81 pteval_t pte_s2;
ae8f1541
RK
82};
83
cc577c26
CD
84#ifdef CONFIG_ARM_LPAE
85#define s2_policy(policy) policy
86#else
87#define s2_policy(policy) 0
88#endif
89
cf763e4e
MZ
90unsigned long kimage_voffset __ro_after_init;
91
ae8f1541
RK
92static struct cachepolicy cache_policies[] __initdata = {
93 {
94 .policy = "uncached",
95 .cr_mask = CR_W|CR_C,
96 .pmd = PMD_SECT_UNCACHED,
bb30f36f 97 .pte = L_PTE_MT_UNCACHED,
cc577c26 98 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
99 }, {
100 .policy = "buffered",
101 .cr_mask = CR_C,
102 .pmd = PMD_SECT_BUFFERED,
bb30f36f 103 .pte = L_PTE_MT_BUFFERABLE,
cc577c26 104 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
105 }, {
106 .policy = "writethrough",
107 .cr_mask = 0,
108 .pmd = PMD_SECT_WT,
bb30f36f 109 .pte = L_PTE_MT_WRITETHROUGH,
cc577c26 110 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
ae8f1541
RK
111 }, {
112 .policy = "writeback",
113 .cr_mask = 0,
114 .pmd = PMD_SECT_WB,
bb30f36f 115 .pte = L_PTE_MT_WRITEBACK,
cc577c26 116 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
117 }, {
118 .policy = "writealloc",
119 .cr_mask = 0,
120 .pmd = PMD_SECT_WBWA,
bb30f36f 121 .pte = L_PTE_MT_WRITEALLOC,
cc577c26 122 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
123 }
124};
125
b849a60e 126#ifdef CONFIG_CPU_CP15
20e7e364
RK
127static unsigned long initial_pmd_value __initdata = 0;
128
ae8f1541 129/*
ca8f0b0a
RK
130 * Initialise the cache_policy variable with the initial state specified
131 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
132 * the C code sets the page tables up with the same policy as the head
133 * assembly code, which avoids an illegal state where the TLBs can get
134 * confused. See comments in early_cachepolicy() for more information.
ae8f1541 135 */
ca8f0b0a 136void __init init_default_cache_policy(unsigned long pmd)
ae8f1541
RK
137{
138 int i;
139
20e7e364
RK
140 initial_pmd_value = pmd;
141
6b3142b2 142 pmd &= PMD_SECT_CACHE_MASK;
ca8f0b0a
RK
143
144 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
145 if (cache_policies[i].pmd == pmd) {
146 cachepolicy = i;
147 break;
148 }
149
150 if (i == ARRAY_SIZE(cache_policies))
151 pr_err("ERROR: could not find cache policy\n");
152}
153
154/*
155 * These are useful for identifying cache coherency problems by allowing
156 * the cache or the cache and writebuffer to be turned off. (Note: the
157 * write buffer should not be on and the cache off).
158 */
159static int __init early_cachepolicy(char *p)
160{
161 int i, selected = -1;
162
ae8f1541
RK
163 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
164 int len = strlen(cache_policies[i].policy);
165
2b0d8c25 166 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ca8f0b0a 167 selected = i;
ae8f1541
RK
168 break;
169 }
170 }
ca8f0b0a
RK
171
172 if (selected == -1)
173 pr_err("ERROR: unknown or unsupported cache policy\n");
174
4b46d641
RK
175 /*
176 * This restriction is partly to do with the way we boot; it is
177 * unpredictable to have memory mapped using two different sets of
178 * memory attributes (shared, type, and cache attribs). We can not
179 * change these attributes once the initial assembly has setup the
180 * page tables.
181 */
ca8f0b0a
RK
182 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
183 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
184 cache_policies[cachepolicy].policy);
185 return 0;
186 }
187
188 if (selected != cachepolicy) {
189 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
190 cachepolicy = selected;
191 flush_cache_all();
192 set_cr(cr);
11179d8c 193 }
2b0d8c25 194 return 0;
ae8f1541 195}
2b0d8c25 196early_param("cachepolicy", early_cachepolicy);
ae8f1541 197
2b0d8c25 198static int __init early_nocache(char *__unused)
ae8f1541
RK
199{
200 char *p = "buffered";
4ed89f22 201 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
202 early_cachepolicy(p);
203 return 0;
ae8f1541 204}
2b0d8c25 205early_param("nocache", early_nocache);
ae8f1541 206
2b0d8c25 207static int __init early_nowrite(char *__unused)
ae8f1541
RK
208{
209 char *p = "uncached";
4ed89f22 210 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
211 early_cachepolicy(p);
212 return 0;
ae8f1541 213}
2b0d8c25 214early_param("nowb", early_nowrite);
ae8f1541 215
1b6ba46b 216#ifndef CONFIG_ARM_LPAE
2b0d8c25 217static int __init early_ecc(char *p)
ae8f1541 218{
2b0d8c25 219 if (memcmp(p, "on", 2) == 0)
ae8f1541 220 ecc_mask = PMD_PROTECTION;
2b0d8c25 221 else if (memcmp(p, "off", 3) == 0)
ae8f1541 222 ecc_mask = 0;
2b0d8c25 223 return 0;
ae8f1541 224}
2b0d8c25 225early_param("ecc", early_ecc);
1b6ba46b 226#endif
ae8f1541 227
b849a60e
UKK
228#else /* ifdef CONFIG_CPU_CP15 */
229
230static int __init early_cachepolicy(char *p)
231{
8b521cb2 232 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
b849a60e
UKK
233}
234early_param("cachepolicy", early_cachepolicy);
235
236static int __init noalign_setup(char *__unused)
237{
8b521cb2 238 pr_warn("noalign kernel parameter not supported without cp15\n");
b849a60e
UKK
239}
240__setup("noalign", noalign_setup);
241
242#endif /* ifdef CONFIG_CPU_CP15 / else */
243
36bb94ba 244#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
4d9c5b89 245#define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
b1cce6b1 246#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 247
7619751f 248static struct mem_type mem_types[] __ro_after_init = {
0af92bef 249 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
250 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
251 L_PTE_SHARED,
4d9c5b89
CD
252 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
253 s2_policy(L_PTE_S2_MT_DEV_SHARED) |
254 L_PTE_SHARED,
0af92bef 255 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 256 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
257 .domain = DOMAIN_IO,
258 },
259 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 260 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 261 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 262 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
263 .domain = DOMAIN_IO,
264 },
265 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 266 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
267 .prot_l1 = PMD_TYPE_TABLE,
268 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
269 .domain = DOMAIN_IO,
c2794437 270 },
1ad77a87 271 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 272 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 273 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 274 .prot_sect = PROT_SECT_DEVICE,
0af92bef 275 .domain = DOMAIN_IO,
ae8f1541 276 },
ebb4c658
RK
277 [MT_UNCACHED] = {
278 .prot_pte = PROT_PTE_DEVICE,
279 .prot_l1 = PMD_TYPE_TABLE,
280 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
281 .domain = DOMAIN_IO,
282 },
ae8f1541 283 [MT_CACHECLEAN] = {
9ef79635 284 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
285 .domain = DOMAIN_KERNEL,
286 },
1b6ba46b 287#ifndef CONFIG_ARM_LPAE
ae8f1541 288 [MT_MINICLEAN] = {
9ef79635 289 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
290 .domain = DOMAIN_KERNEL,
291 },
1b6ba46b 292#endif
ae8f1541
RK
293 [MT_LOW_VECTORS] = {
294 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 295 L_PTE_RDONLY,
ae8f1541 296 .prot_l1 = PMD_TYPE_TABLE,
a02d8dfd 297 .domain = DOMAIN_VECTORS,
ae8f1541
RK
298 },
299 [MT_HIGH_VECTORS] = {
300 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 301 L_PTE_USER | L_PTE_RDONLY,
ae8f1541 302 .prot_l1 = PMD_TYPE_TABLE,
a02d8dfd 303 .domain = DOMAIN_VECTORS,
ae8f1541 304 },
2e2c9de2 305 [MT_MEMORY_RWX] = {
36bb94ba 306 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 307 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 308 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
309 .domain = DOMAIN_KERNEL,
310 },
ebd4922e
RK
311 [MT_MEMORY_RW] = {
312 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
313 L_PTE_XN,
314 .prot_l1 = PMD_TYPE_TABLE,
315 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
316 .domain = DOMAIN_KERNEL,
317 },
ae8f1541 318 [MT_ROM] = {
9ef79635 319 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
320 .domain = DOMAIN_KERNEL,
321 },
2e2c9de2 322 [MT_MEMORY_RWX_NONCACHED] = {
f1a2481c 323 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 324 L_PTE_MT_BUFFERABLE,
f1a2481c 325 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
326 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
327 .domain = DOMAIN_KERNEL,
328 },
2e2c9de2 329 [MT_MEMORY_RW_DTCM] = {
f444fce3 330 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 331 L_PTE_XN,
f444fce3
LW
332 .prot_l1 = PMD_TYPE_TABLE,
333 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
334 .domain = DOMAIN_KERNEL,
cb9d7707 335 },
2e2c9de2 336 [MT_MEMORY_RWX_ITCM] = {
36bb94ba 337 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 338 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 339 .domain = DOMAIN_KERNEL,
cb9d7707 340 },
2e2c9de2 341 [MT_MEMORY_RW_SO] = {
8fb54284 342 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
93d5bf07 343 L_PTE_MT_UNCACHED | L_PTE_XN,
8fb54284
SS
344 .prot_l1 = PMD_TYPE_TABLE,
345 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
346 PMD_SECT_UNCACHED | PMD_SECT_XN,
347 .domain = DOMAIN_KERNEL,
348 },
c7909509 349 [MT_MEMORY_DMA_READY] = {
71b55663
RK
350 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
351 L_PTE_XN,
c7909509
MS
352 .prot_l1 = PMD_TYPE_TABLE,
353 .domain = DOMAIN_KERNEL,
354 },
ae8f1541
RK
355};
356
b29e9f5e
RK
357const struct mem_type *get_mem_type(unsigned int type)
358{
359 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
360}
69d3a84a 361EXPORT_SYMBOL(get_mem_type);
b29e9f5e 362
a5f4c561
SA
363static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
364
365static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
366 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
367
368static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
369{
370 return &bm_pte[pte_index(addr)];
371}
372
373static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
374{
375 return pte_offset_kernel(dir, addr);
376}
377
378static inline pmd_t * __init fixmap_pmd(unsigned long addr)
379{
380 pgd_t *pgd = pgd_offset_k(addr);
381 pud_t *pud = pud_offset(pgd, addr);
382 pmd_t *pmd = pmd_offset(pud, addr);
383
384 return pmd;
385}
386
387void __init early_fixmap_init(void)
388{
389 pmd_t *pmd;
390
391 /*
392 * The early fixmap range spans multiple pmds, for which
393 * we are not prepared:
394 */
2937367b 395 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
a5f4c561
SA
396 != FIXADDR_TOP >> PMD_SHIFT);
397
398 pmd = fixmap_pmd(FIXADDR_TOP);
399 pmd_populate_kernel(&init_mm, pmd, bm_pte);
400
401 pte_offset_fixmap = pte_offset_early_fixmap;
402}
403
99b4ac9a
KC
404/*
405 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
406 * As a result, this can only be called with preemption disabled, as under
407 * stop_machine().
408 */
409void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
410{
411 unsigned long vaddr = __fix_to_virt(idx);
a5f4c561 412 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
99b4ac9a
KC
413
414 /* Make sure fixmap region does not exceed available allocation. */
415 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
416 FIXADDR_END);
417 BUG_ON(idx >= __end_of_fixed_addresses);
418
b089c31c
JM
419 /* we only support device mappings until pgprot_kernel has been set */
420 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
421 pgprot_val(pgprot_kernel) == 0))
422 return;
423
99b4ac9a
KC
424 if (pgprot_val(prot))
425 set_pte_at(NULL, vaddr, pte,
426 pfn_pte(phys >> PAGE_SHIFT, prot));
427 else
428 pte_clear(NULL, vaddr, pte);
429 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
430}
431
ae8f1541
RK
432/*
433 * Adjust the PMD section entries according to the CPU in use.
434 */
435static void __init build_mem_type_table(void)
436{
437 struct cachepolicy *cp;
438 unsigned int cr = get_cr();
442e70c0 439 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
cc577c26 440 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
ae8f1541
RK
441 int cpu_arch = cpu_architecture();
442 int i;
443
11179d8c 444 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 445#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
446 if (cachepolicy > CPOLICY_BUFFERED)
447 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 448#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
449 if (cachepolicy > CPOLICY_WRITETHROUGH)
450 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 451#endif
11179d8c 452 }
ae8f1541
RK
453 if (cpu_arch < CPU_ARCH_ARMv5) {
454 if (cachepolicy >= CPOLICY_WRITEALLOC)
455 cachepolicy = CPOLICY_WRITEBACK;
456 ecc_mask = 0;
457 }
ca8f0b0a 458
20e7e364
RK
459 if (is_smp()) {
460 if (cachepolicy != CPOLICY_WRITEALLOC) {
461 pr_warn("Forcing write-allocate cache policy for SMP\n");
462 cachepolicy = CPOLICY_WRITEALLOC;
463 }
464 if (!(initial_pmd_value & PMD_SECT_S)) {
465 pr_warn("Forcing shared mappings for SMP\n");
466 initial_pmd_value |= PMD_SECT_S;
467 }
ca8f0b0a 468 }
ae8f1541 469
1ad77a87 470 /*
b1cce6b1
RK
471 * Strip out features not present on earlier architectures.
472 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
473 * without extended page tables don't have the 'Shared' bit.
1ad77a87 474 */
b1cce6b1
RK
475 if (cpu_arch < CPU_ARCH_ARMv5)
476 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
477 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
478 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
479 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
480 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
481
482 /*
b1cce6b1
RK
483 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
484 * "update-able on write" bit on ARM610). However, Xscale and
485 * Xscale3 require this bit to be cleared.
ae8f1541 486 */
d33c43ac 487 if (cpu_is_xscale_family()) {
9ef79635 488 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 489 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
490 mem_types[i].prot_l1 &= ~PMD_BIT4;
491 }
492 } else if (cpu_arch < CPU_ARCH_ARMv6) {
493 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
494 if (mem_types[i].prot_l1)
495 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
496 if (mem_types[i].prot_sect)
497 mem_types[i].prot_sect |= PMD_BIT4;
498 }
499 }
ae8f1541 500
b1cce6b1
RK
501 /*
502 * Mark the device areas according to the CPU/architecture.
503 */
504 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
505 if (!cpu_is_xsc3()) {
506 /*
507 * Mark device regions on ARMv6+ as execute-never
508 * to prevent speculative instruction fetches.
509 */
510 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
511 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
512 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
513 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
ebd4922e
RK
514
515 /* Also setup NX memory mapping */
516 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
b1cce6b1
RK
517 }
518 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
519 /*
520 * For ARMv7 with TEX remapping,
521 * - shared device is SXCB=1100
522 * - nonshared device is SXCB=0100
523 * - write combine device mem is SXCB=0001
524 * (Uncached Normal memory)
525 */
526 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
527 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
528 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
529 } else if (cpu_is_xsc3()) {
530 /*
531 * For Xscale3,
532 * - shared device is TEXCB=00101
533 * - nonshared device is TEXCB=01000
534 * - write combine device mem is TEXCB=00100
535 * (Inner/Outer Uncacheable in xsc3 parlance)
536 */
537 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
538 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
539 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
540 } else {
541 /*
542 * For ARMv6 and ARMv7 without TEX remapping,
543 * - shared device is TEXCB=00001
544 * - nonshared device is TEXCB=01000
545 * - write combine device mem is TEXCB=00100
546 * (Uncached Normal in ARMv6 parlance).
547 */
548 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
549 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
550 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
551 }
552 } else {
553 /*
554 * On others, write combining is "Uncached/Buffered"
555 */
556 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
557 }
558
559 /*
560 * Now deal with the memory-type mappings
561 */
ae8f1541 562 cp = &cache_policies[cachepolicy];
bb30f36f 563 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
cc577c26 564 s2_pgprot = cp->pte_s2;
4d9c5b89
CD
565 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
566 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
bb30f36f 567
1d4d3715 568#ifndef CONFIG_ARM_LPAE
b6ccb980
WD
569 /*
570 * We don't use domains on ARMv6 (since this causes problems with
571 * v6/v7 kernels), so we must use a separate memory type for user
572 * r/o, kernel r/w to map the vectors page.
573 */
b6ccb980
WD
574 if (cpu_arch == CPU_ARCH_ARMv6)
575 vecs_pgprot |= L_PTE_MT_VECTORS;
1d4d3715
JL
576
577 /*
578 * Check is it with support for the PXN bit
579 * in the Short-descriptor translation table format descriptors.
580 */
581 if (cpu_arch == CPU_ARCH_ARMv7 &&
ad84f56b 582 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
1d4d3715
JL
583 user_pmd_table |= PMD_PXNTABLE;
584 }
b6ccb980 585#endif
bb30f36f 586
ae8f1541
RK
587 /*
588 * ARMv6 and above have extended page tables.
589 */
590 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 591#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
592 /*
593 * Mark cache clean areas and XIP ROM read only
594 * from SVC mode and no access from userspace.
595 */
596 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
597 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
598 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 599#endif
ae8f1541 600
20e7e364
RK
601 /*
602 * If the initial page tables were created with the S bit
603 * set, then we need to do the same here for the same
604 * reasons given in early_cachepolicy().
605 */
606 if (initial_pmd_value & PMD_SECT_S) {
f00ec48f
RK
607 user_pgprot |= L_PTE_SHARED;
608 kern_pgprot |= L_PTE_SHARED;
609 vecs_pgprot |= L_PTE_SHARED;
cc577c26 610 s2_pgprot |= L_PTE_SHARED;
f00ec48f
RK
611 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
612 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
613 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
614 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
615 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
616 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
ebd4922e
RK
617 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
618 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
c7909509 619 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
620 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
621 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
f00ec48f 622 }
ae8f1541
RK
623 }
624
e4707dd3
PW
625 /*
626 * Non-cacheable Normal - intended for memory areas that must
627 * not cause dirty cache line writebacks when used
628 */
629 if (cpu_arch >= CPU_ARCH_ARMv6) {
630 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
631 /* Non-cacheable Normal is XCB = 001 */
2e2c9de2 632 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
633 PMD_SECT_BUFFERED;
634 } else {
635 /* For both ARMv6 and non-TEX-remapping ARMv7 */
2e2c9de2 636 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
637 PMD_SECT_TEX(1);
638 }
639 } else {
2e2c9de2 640 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
e4707dd3
PW
641 }
642
1b6ba46b
CM
643#ifdef CONFIG_ARM_LPAE
644 /*
645 * Do not generate access flag faults for the kernel mappings.
646 */
647 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
648 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
649 if (mem_types[i].prot_sect)
650 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
651 }
652 kern_pgprot |= PTE_EXT_AF;
653 vecs_pgprot |= PTE_EXT_AF;
1d4d3715
JL
654
655 /*
656 * Set PXN for user mappings
657 */
658 user_pgprot |= PTE_EXT_PXN;
1b6ba46b
CM
659#endif
660
ae8f1541 661 for (i = 0; i < 16; i++) {
864aa04c 662 pteval_t v = pgprot_val(protection_map[i]);
bb30f36f 663 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
664 }
665
bb30f36f
RK
666 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
667 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 668
44b18693 669 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 670 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 671 L_PTE_DIRTY | kern_pgprot);
cc577c26
CD
672 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
673 pgprot_s2_device = __pgprot(s2_device_pgprot);
674 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
ae8f1541
RK
675
676 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
677 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
2e2c9de2
RK
678 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
679 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
ebd4922e
RK
680 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
681 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
c7909509 682 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
2e2c9de2 683 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
684 mem_types[MT_ROM].prot_sect |= cp->pmd;
685
686 switch (cp->pmd) {
687 case PMD_SECT_WT:
688 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
689 break;
690 case PMD_SECT_WB:
691 case PMD_SECT_WBWA:
692 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
693 break;
694 }
905b5797
MS
695 pr_info("Memory policy: %sData cache %s\n",
696 ecc_mask ? "ECC enabled, " : "", cp->policy);
2497f0a8
RK
697
698 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
699 struct mem_type *t = &mem_types[i];
700 if (t->prot_l1)
701 t->prot_l1 |= PMD_DOMAIN(t->domain);
702 if (t->prot_sect)
703 t->prot_sect |= PMD_DOMAIN(t->domain);
704 }
ae8f1541
RK
705}
706
d907387c
CM
707#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
708pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
709 unsigned long size, pgprot_t vma_prot)
710{
711 if (!pfn_valid(pfn))
712 return pgprot_noncached(vma_prot);
713 else if (file->f_flags & O_SYNC)
714 return pgprot_writecombine(vma_prot);
715 return vma_prot;
716}
717EXPORT_SYMBOL(phys_mem_access_prot);
718#endif
719
ae8f1541
RK
720#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
721
0536bdf3 722static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 723{
0536bdf3 724 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
725 memset(ptr, 0, sz);
726 return ptr;
3abe9d33
RK
727}
728
0536bdf3
NP
729static void __init *early_alloc(unsigned long sz)
730{
731 return early_alloc_aligned(sz, sz);
732}
733
c7936206
AB
734static void *__init late_alloc(unsigned long sz)
735{
736 void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
737
61444cde
AB
738 if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
739 BUG();
c7936206
AB
740 return ptr;
741}
742
3ed3a4f0 743static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
f579b2b1
AB
744 unsigned long prot,
745 void *(*alloc)(unsigned long sz))
ae8f1541 746{
24e6c699 747 if (pmd_none(*pmd)) {
f579b2b1 748 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 749 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 750 }
4bb2e27d
RK
751 BUG_ON(pmd_bad(*pmd));
752 return pte_offset_kernel(pmd, addr);
753}
ae8f1541 754
f579b2b1
AB
755static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
756 unsigned long prot)
757{
3ed3a4f0 758 return arm_pte_alloc(pmd, addr, prot, early_alloc);
f579b2b1
AB
759}
760
4bb2e27d
RK
761static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
762 unsigned long end, unsigned long pfn,
f579b2b1 763 const struct mem_type *type,
b430e55b
AB
764 void *(*alloc)(unsigned long sz),
765 bool ng)
4bb2e27d 766{
3ed3a4f0 767 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
24e6c699 768 do {
b430e55b
AB
769 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
770 ng ? PTE_EXT_NG : 0);
24e6c699
RK
771 pfn++;
772 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
773}
774
37468b30 775static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
e651eab0 776 unsigned long end, phys_addr_t phys,
b430e55b 777 const struct mem_type *type, bool ng)
ae8f1541 778{
37468b30
PYC
779 pmd_t *p = pmd;
780
e651eab0 781#ifndef CONFIG_ARM_LPAE
24e6c699 782 /*
e651eab0
S
783 * In classic MMU format, puds and pmds are folded in to
784 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
785 * group of L1 entries making up one logical pointer to
786 * an L2 table (2MB), where as PMDs refer to the individual
787 * L1 entries (1MB). Hence increment to get the correct
788 * offset for odd 1MB sections.
789 * (See arch/arm/include/asm/pgtable-2level.h)
24e6c699 790 */
e651eab0
S
791 if (addr & SECTION_SIZE)
792 pmd++;
1b6ba46b 793#endif
e651eab0 794 do {
b430e55b 795 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
e651eab0
S
796 phys += SECTION_SIZE;
797 } while (pmd++, addr += SECTION_SIZE, addr != end);
24e6c699 798
37468b30 799 flush_pmd_entry(p);
e651eab0 800}
ae8f1541 801
e651eab0
S
802static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
803 unsigned long end, phys_addr_t phys,
f579b2b1 804 const struct mem_type *type,
b430e55b 805 void *(*alloc)(unsigned long sz), bool ng)
e651eab0
S
806{
807 pmd_t *pmd = pmd_offset(pud, addr);
808 unsigned long next;
809
810 do {
24e6c699 811 /*
e651eab0
S
812 * With LPAE, we must loop over to map
813 * all the pmds for the given range.
24e6c699 814 */
e651eab0
S
815 next = pmd_addr_end(addr, end);
816
817 /*
818 * Try a section mapping - addr, next and phys must all be
819 * aligned to a section boundary.
820 */
821 if (type->prot_sect &&
822 ((addr | next | phys) & ~SECTION_MASK) == 0) {
b430e55b 823 __map_init_section(pmd, addr, next, phys, type, ng);
e651eab0
S
824 } else {
825 alloc_init_pte(pmd, addr, next,
b430e55b 826 __phys_to_pfn(phys), type, alloc, ng);
e651eab0
S
827 }
828
829 phys += next - addr;
830
831 } while (pmd++, addr = next, addr != end);
ae8f1541
RK
832}
833
14904927 834static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
20d6956d 835 unsigned long end, phys_addr_t phys,
f579b2b1 836 const struct mem_type *type,
b430e55b 837 void *(*alloc)(unsigned long sz), bool ng)
516295e5
RK
838{
839 pud_t *pud = pud_offset(pgd, addr);
840 unsigned long next;
841
842 do {
843 next = pud_addr_end(addr, end);
b430e55b 844 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
516295e5
RK
845 phys += next - addr;
846 } while (pud++, addr = next, addr != end);
847}
848
1b6ba46b 849#ifndef CONFIG_ARM_LPAE
1bdb2d4e
AB
850static void __init create_36bit_mapping(struct mm_struct *mm,
851 struct map_desc *md,
b430e55b
AB
852 const struct mem_type *type,
853 bool ng)
4a56c1e4 854{
97092e0c
RK
855 unsigned long addr, length, end;
856 phys_addr_t phys;
4a56c1e4
RK
857 pgd_t *pgd;
858
859 addr = md->virtual;
cae6292b 860 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
861 length = PAGE_ALIGN(md->length);
862
863 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
4ed89f22 864 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
29a38193 865 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
866 return;
867 }
868
869 /* N.B. ARMv6 supersections are only defined to work with domain 0.
870 * Since domain assignments can in fact be arbitrary, the
871 * 'domain == 0' check below is required to insure that ARMv6
872 * supersections are only allocated for domain 0 regardless
873 * of the actual domain assignments in use.
874 */
875 if (type->domain) {
4ed89f22 876 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
29a38193 877 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
878 return;
879 }
880
881 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
4ed89f22 882 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
29a38193 883 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
884 return;
885 }
886
887 /*
888 * Shift bits [35:32] of address into bits [23:20] of PMD
889 * (See ARMv6 spec).
890 */
891 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
892
1bdb2d4e 893 pgd = pgd_offset(mm, addr);
4a56c1e4
RK
894 end = addr + length;
895 do {
516295e5
RK
896 pud_t *pud = pud_offset(pgd, addr);
897 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
898 int i;
899
900 for (i = 0; i < 16; i++)
b430e55b
AB
901 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
902 (ng ? PMD_SECT_nG : 0));
4a56c1e4
RK
903
904 addr += SUPERSECTION_SIZE;
905 phys += SUPERSECTION_SIZE;
906 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
907 } while (addr != end);
908}
1b6ba46b 909#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 910
f579b2b1 911static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
b430e55b
AB
912 void *(*alloc)(unsigned long sz),
913 bool ng)
ae8f1541 914{
cae6292b
WD
915 unsigned long addr, length, end;
916 phys_addr_t phys;
d5c98176 917 const struct mem_type *type;
24e6c699 918 pgd_t *pgd;
ae8f1541 919
d5c98176 920 type = &mem_types[md->type];
ae8f1541 921
1b6ba46b 922#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
923 /*
924 * Catch 36-bit addresses
925 */
4a56c1e4 926 if (md->pfn >= 0x100000) {
b430e55b 927 create_36bit_mapping(mm, md, type, ng);
4a56c1e4 928 return;
ae8f1541 929 }
1b6ba46b 930#endif
ae8f1541 931
7b9c7b4d 932 addr = md->virtual & PAGE_MASK;
cae6292b 933 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 934 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 935
24e6c699 936 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
4ed89f22
RK
937 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
938 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
939 return;
940 }
941
1bdb2d4e 942 pgd = pgd_offset(mm, addr);
24e6c699
RK
943 end = addr + length;
944 do {
945 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 946
b430e55b 947 alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
ae8f1541 948
24e6c699
RK
949 phys += next - addr;
950 addr = next;
951 } while (pgd++, addr != end);
ae8f1541
RK
952}
953
1bdb2d4e
AB
954/*
955 * Create the page directory entries and any necessary
956 * page tables for the mapping specified by `md'. We
957 * are able to cope here with varying sizes and address
958 * offsets, and we take full advantage of sections and
959 * supersections.
960 */
961static void __init create_mapping(struct map_desc *md)
962{
963 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
964 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
965 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
966 return;
967 }
968
969 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
970 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
971 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
972 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
973 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
974 }
975
b430e55b 976 __create_mapping(&init_mm, md, early_alloc, false);
1bdb2d4e
AB
977}
978
c7936206
AB
979void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
980 bool ng)
981{
982#ifdef CONFIG_ARM_LPAE
983 pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
984 if (WARN_ON(!pud))
985 return;
986 pmd_alloc(mm, pud, 0);
987#endif
988 __create_mapping(mm, md, late_alloc, ng);
989}
990
ae8f1541
RK
991/*
992 * Create the architecture specific mappings
993 */
994void __init iotable_init(struct map_desc *io_desc, int nr)
995{
0536bdf3
NP
996 struct map_desc *md;
997 struct vm_struct *vm;
101eeda3 998 struct static_vm *svm;
0536bdf3
NP
999
1000 if (!nr)
1001 return;
ae8f1541 1002
101eeda3 1003 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
0536bdf3
NP
1004
1005 for (md = io_desc; nr; md++, nr--) {
1006 create_mapping(md);
101eeda3
JK
1007
1008 vm = &svm->vm;
0536bdf3
NP
1009 vm->addr = (void *)(md->virtual & PAGE_MASK);
1010 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
c2794437
RH
1011 vm->phys_addr = __pfn_to_phys(md->pfn);
1012 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
576d2f25 1013 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3 1014 vm->caller = iotable_init;
101eeda3 1015 add_static_vm_early(svm++);
0536bdf3 1016 }
ae8f1541
RK
1017}
1018
c2794437
RH
1019void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1020 void *caller)
1021{
1022 struct vm_struct *vm;
101eeda3
JK
1023 struct static_vm *svm;
1024
1025 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
c2794437 1026
101eeda3 1027 vm = &svm->vm;
c2794437
RH
1028 vm->addr = (void *)addr;
1029 vm->size = size;
863e99a8 1030 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
c2794437 1031 vm->caller = caller;
101eeda3 1032 add_static_vm_early(svm);
c2794437
RH
1033}
1034
19b52abe
NP
1035#ifndef CONFIG_ARM_LPAE
1036
1037/*
1038 * The Linux PMD is made of two consecutive section entries covering 2MB
1039 * (see definition in include/asm/pgtable-2level.h). However a call to
1040 * create_mapping() may optimize static mappings by using individual
1041 * 1MB section mappings. This leaves the actual PMD potentially half
1042 * initialized if the top or bottom section entry isn't used, leaving it
1043 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1044 * the virtual space left free by that unused section entry.
1045 *
1046 * Let's avoid the issue by inserting dummy vm entries covering the unused
1047 * PMD halves once the static mappings are in place.
1048 */
1049
1050static void __init pmd_empty_section_gap(unsigned long addr)
1051{
c2794437 1052 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
19b52abe
NP
1053}
1054
1055static void __init fill_pmd_gaps(void)
1056{
101eeda3 1057 struct static_vm *svm;
19b52abe
NP
1058 struct vm_struct *vm;
1059 unsigned long addr, next = 0;
1060 pmd_t *pmd;
1061
101eeda3
JK
1062 list_for_each_entry(svm, &static_vmlist, list) {
1063 vm = &svm->vm;
19b52abe
NP
1064 addr = (unsigned long)vm->addr;
1065 if (addr < next)
1066 continue;
1067
1068 /*
1069 * Check if this vm starts on an odd section boundary.
1070 * If so and the first section entry for this PMD is free
1071 * then we block the corresponding virtual address.
1072 */
1073 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1074 pmd = pmd_off_k(addr);
1075 if (pmd_none(*pmd))
1076 pmd_empty_section_gap(addr & PMD_MASK);
1077 }
1078
1079 /*
1080 * Then check if this vm ends on an odd section boundary.
1081 * If so and the second section entry for this PMD is empty
1082 * then we block the corresponding virtual address.
1083 */
1084 addr += vm->size;
1085 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1086 pmd = pmd_off_k(addr) + 1;
1087 if (pmd_none(*pmd))
1088 pmd_empty_section_gap(addr);
1089 }
1090
1091 /* no need to look at any vm entry until we hit the next PMD */
1092 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1093 }
1094}
1095
1096#else
1097#define fill_pmd_gaps() do { } while (0)
1098#endif
1099
c2794437
RH
1100#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1101static void __init pci_reserve_io(void)
1102{
101eeda3 1103 struct static_vm *svm;
c2794437 1104
101eeda3
JK
1105 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1106 if (svm)
1107 return;
c2794437 1108
c2794437
RH
1109 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1110}
1111#else
1112#define pci_reserve_io() do { } while (0)
1113#endif
1114
e5c5f2ad
RH
1115#ifdef CONFIG_DEBUG_LL
1116void __init debug_ll_io_init(void)
1117{
1118 struct map_desc map;
1119
1120 debug_ll_addr(&map.pfn, &map.virtual);
1121 if (!map.pfn || !map.virtual)
1122 return;
1123 map.pfn = __phys_to_pfn(map.pfn);
1124 map.virtual &= PAGE_MASK;
1125 map.length = PAGE_SIZE;
1126 map.type = MT_DEVICE;
ee4de5d9 1127 iotable_init(&map, 1);
e5c5f2ad
RH
1128}
1129#endif
1130
0536bdf3
NP
1131static void * __initdata vmalloc_min =
1132 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
1133
1134/*
1135 * vmalloc=size forces the vmalloc area to be exactly 'size'
1136 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 1137 * area - the default is 240m.
6c5da7ac 1138 */
2b0d8c25 1139static int __init early_vmalloc(char *arg)
6c5da7ac 1140{
79612395 1141 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
1142
1143 if (vmalloc_reserve < SZ_16M) {
1144 vmalloc_reserve = SZ_16M;
4ed89f22 1145 pr_warn("vmalloc area too small, limiting to %luMB\n",
6c5da7ac
RK
1146 vmalloc_reserve >> 20);
1147 }
9210807c
NP
1148
1149 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1150 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
4ed89f22 1151 pr_warn("vmalloc area is too big, limiting to %luMB\n",
9210807c
NP
1152 vmalloc_reserve >> 20);
1153 }
79612395
RK
1154
1155 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 1156 return 0;
6c5da7ac 1157}
2b0d8c25 1158early_param("vmalloc", early_vmalloc);
6c5da7ac 1159
c7909509 1160phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 1161
374d446d 1162void __init adjust_lowmem_bounds(void)
60296c71 1163{
c65b7e98 1164 phys_addr_t memblock_limit = 0;
b9a01989 1165 u64 vmalloc_limit;
1c2f87c2 1166 struct memblock_region *reg;
98562656 1167 phys_addr_t lowmem_limit = 0;
60296c71 1168
b9a01989
NP
1169 /*
1170 * Let's use our own (unoptimized) equivalent of __pa() that is
1171 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1172 * The result is used as the upper bound on physical memory address
1173 * and may itself be outside the valid range for which phys_addr_t
1174 * and therefore __pa() is defined.
1175 */
1176 vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1177
1c2f87c2
LA
1178 for_each_memblock(memory, reg) {
1179 phys_addr_t block_start = reg->base;
1180 phys_addr_t block_end = reg->base + reg->size;
77f73a2c 1181
374d446d 1182 if (reg->base < vmalloc_limit) {
98562656 1183 if (block_end > lowmem_limit)
374d446d
LA
1184 /*
1185 * Compare as u64 to ensure vmalloc_limit does
1186 * not get truncated. block_end should always
1187 * fit in phys_addr_t so there should be no
1188 * issue with assignment.
1189 */
98562656 1190 lowmem_limit = min_t(u64,
374d446d
LA
1191 vmalloc_limit,
1192 block_end);
c65b7e98
RK
1193
1194 /*
965278dc 1195 * Find the first non-pmd-aligned page, and point
c65b7e98 1196 * memblock_limit at it. This relies on rounding the
965278dc
MR
1197 * limit down to be pmd-aligned, which happens at the
1198 * end of this function.
c65b7e98
RK
1199 *
1200 * With this algorithm, the start or end of almost any
965278dc
MR
1201 * bank can be non-pmd-aligned. The only exception is
1202 * that the start of the bank 0 must be section-
c65b7e98
RK
1203 * aligned, since otherwise memory would need to be
1204 * allocated when mapping the start of bank 0, which
1205 * occurs before any free memory is mapped.
1206 */
1207 if (!memblock_limit) {
965278dc 1208 if (!IS_ALIGNED(block_start, PMD_SIZE))
1c2f87c2 1209 memblock_limit = block_start;
965278dc 1210 else if (!IS_ALIGNED(block_end, PMD_SIZE))
98562656 1211 memblock_limit = lowmem_limit;
c65b7e98 1212 }
e616c591 1213
e616c591
RK
1214 }
1215 }
1c2f87c2 1216
98562656
LA
1217 arm_lowmem_limit = lowmem_limit;
1218
c7909509 1219 high_memory = __va(arm_lowmem_limit - 1) + 1;
c65b7e98 1220
9e25ebfe
DB
1221 if (!memblock_limit)
1222 memblock_limit = arm_lowmem_limit;
1223
c65b7e98 1224 /*
965278dc 1225 * Round the memblock limit down to a pmd size. This
c65b7e98 1226 * helps to ensure that we will allocate memory from the
965278dc 1227 * last full pmd, which should be mapped.
c65b7e98 1228 */
9e25ebfe 1229 memblock_limit = round_down(memblock_limit, PMD_SIZE);
c65b7e98 1230
374d446d
LA
1231 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1232 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1233 phys_addr_t end = memblock_end_of_DRAM();
1234
1235 pr_notice("Ignoring RAM at %pa-%pa\n",
1236 &memblock_limit, &end);
1237 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1238
1239 memblock_remove(memblock_limit, end - memblock_limit);
1240 }
1241 }
1242
c65b7e98 1243 memblock_set_current_limit(memblock_limit);
60296c71
LB
1244}
1245
4b5f32ce 1246static inline void prepare_page_table(void)
d111e8f9
RK
1247{
1248 unsigned long addr;
8df65168 1249 phys_addr_t end;
d111e8f9
RK
1250
1251 /*
1252 * Clear out all the mappings below the kernel image.
1253 */
e73fc88e 1254 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
1255 pmd_clear(pmd_off_k(addr));
1256
1257#ifdef CONFIG_XIP_KERNEL
1258 /* The XIP kernel is mapped in the module area -- skip over it */
02afa9a8 1259 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 1260#endif
e73fc88e 1261 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
1262 pmd_clear(pmd_off_k(addr));
1263
8df65168
RK
1264 /*
1265 * Find the end of the first block of lowmem.
1266 */
1267 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
1268 if (end >= arm_lowmem_limit)
1269 end = arm_lowmem_limit;
8df65168 1270
d111e8f9
RK
1271 /*
1272 * Clear out all the kernel space mappings, except for the first
0536bdf3 1273 * memory bank, up to the vmalloc region.
d111e8f9 1274 */
8df65168 1275 for (addr = __phys_to_virt(end);
0536bdf3 1276 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
1277 pmd_clear(pmd_off_k(addr));
1278}
1279
1b6ba46b
CM
1280#ifdef CONFIG_ARM_LPAE
1281/* the first page is reserved for pgd */
1282#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1283 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1284#else
e73fc88e 1285#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 1286#endif
e73fc88e 1287
d111e8f9 1288/*
2778f620 1289 * Reserve the special regions of memory
d111e8f9 1290 */
2778f620 1291void __init arm_mm_memblock_reserve(void)
d111e8f9 1292{
d111e8f9
RK
1293 /*
1294 * Reserve the page tables. These are already in use,
1295 * and can only be in node 0.
1296 */
e73fc88e 1297 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 1298
d111e8f9
RK
1299#ifdef CONFIG_SA1111
1300 /*
1301 * Because of the SA1111 DMA bug, we want to preserve our
1302 * precious DMA-able memory...
1303 */
2778f620 1304 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 1305#endif
d111e8f9
RK
1306}
1307
1308/*
0536bdf3 1309 * Set up the device mappings. Since we clear out the page tables for all
a5f4c561
SA
1310 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1311 * device mappings. This means earlycon can be used to debug this function
1312 * Any other function or debugging method which may touch any device _will_
1313 * crash the kernel.
d111e8f9 1314 */
ff69a4c8 1315static void __init devicemaps_init(const struct machine_desc *mdesc)
d111e8f9
RK
1316{
1317 struct map_desc map;
1318 unsigned long addr;
94e5a85b 1319 void *vectors;
d111e8f9
RK
1320
1321 /*
1322 * Allocate the vector page early.
1323 */
19accfd3 1324 vectors = early_alloc(PAGE_SIZE * 2);
94e5a85b
RK
1325
1326 early_trap_init(vectors);
d111e8f9 1327
a5f4c561
SA
1328 /*
1329 * Clear page table except top pmd used by early fixmaps
1330 */
1331 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
d111e8f9
RK
1332 pmd_clear(pmd_off_k(addr));
1333
1334 /*
1335 * Map the kernel if it is XIP.
1336 * It is always first in the modulearea.
1337 */
1338#ifdef CONFIG_XIP_KERNEL
1339 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1340 map.virtual = MODULES_VADDR;
02afa9a8 1341 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1342 map.type = MT_ROM;
1343 create_mapping(&map);
1344#endif
1345
1346 /*
1347 * Map the cache flushing regions.
1348 */
1349#ifdef FLUSH_BASE
1350 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1351 map.virtual = FLUSH_BASE;
1352 map.length = SZ_1M;
1353 map.type = MT_CACHECLEAN;
1354 create_mapping(&map);
1355#endif
1356#ifdef FLUSH_BASE_MINICACHE
1357 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1358 map.virtual = FLUSH_BASE_MINICACHE;
1359 map.length = SZ_1M;
1360 map.type = MT_MINICLEAN;
1361 create_mapping(&map);
1362#endif
1363
1364 /*
1365 * Create a mapping for the machine vectors at the high-vectors
1366 * location (0xffff0000). If we aren't using high-vectors, also
1367 * create a mapping at the low-vectors virtual address.
1368 */
94e5a85b 1369 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1370 map.virtual = 0xffff0000;
1371 map.length = PAGE_SIZE;
a5463cd3 1372#ifdef CONFIG_KUSER_HELPERS
d111e8f9 1373 map.type = MT_HIGH_VECTORS;
a5463cd3
RK
1374#else
1375 map.type = MT_LOW_VECTORS;
1376#endif
d111e8f9
RK
1377 create_mapping(&map);
1378
1379 if (!vectors_high()) {
1380 map.virtual = 0;
19accfd3 1381 map.length = PAGE_SIZE * 2;
d111e8f9
RK
1382 map.type = MT_LOW_VECTORS;
1383 create_mapping(&map);
1384 }
1385
19accfd3
RK
1386 /* Now create a kernel read-only mapping */
1387 map.pfn += 1;
1388 map.virtual = 0xffff0000 + PAGE_SIZE;
1389 map.length = PAGE_SIZE;
1390 map.type = MT_LOW_VECTORS;
1391 create_mapping(&map);
1392
d111e8f9
RK
1393 /*
1394 * Ask the machine support to map in the statically mapped devices.
1395 */
1396 if (mdesc->map_io)
1397 mdesc->map_io();
bc37324e
MR
1398 else
1399 debug_ll_io_init();
19b52abe 1400 fill_pmd_gaps();
d111e8f9 1401
c2794437
RH
1402 /* Reserve fixed i/o space in VMALLOC region */
1403 pci_reserve_io();
1404
d111e8f9
RK
1405 /*
1406 * Finally flush the caches and tlb to ensure that we're in a
1407 * consistent state wrt the writebuffer. This also ensures that
1408 * any write-allocated cache lines in the vector page are written
1409 * back. After this point, we can start to touch devices again.
1410 */
1411 local_flush_tlb_all();
1412 flush_cache_all();
bbeb9209
LS
1413
1414 /* Enable asynchronous aborts */
9254970c 1415 early_abt_enable();
d111e8f9
RK
1416}
1417
d73cd428
NP
1418static void __init kmap_init(void)
1419{
1420#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1421 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1422 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428 1423#endif
836a2418
RH
1424
1425 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1426 _PAGE_KERNEL_TABLE);
d73cd428
NP
1427}
1428
a2227120
RK
1429static void __init map_lowmem(void)
1430{
8df65168 1431 struct memblock_region *reg;
a09975bf 1432 phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
ac084688 1433 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
a2227120
RK
1434
1435 /* Map all the lowmem memory banks. */
8df65168
RK
1436 for_each_memblock(memory, reg) {
1437 phys_addr_t start = reg->base;
1438 phys_addr_t end = start + reg->size;
1439 struct map_desc map;
1440
09414d00
AB
1441 if (memblock_is_nomap(reg))
1442 continue;
1443
c7909509
MS
1444 if (end > arm_lowmem_limit)
1445 end = arm_lowmem_limit;
8df65168
RK
1446 if (start >= end)
1447 break;
1448
1e6b4811 1449 if (end < kernel_x_start) {
ebd4922e
RK
1450 map.pfn = __phys_to_pfn(start);
1451 map.virtual = __phys_to_virt(start);
1452 map.length = end - start;
1453 map.type = MT_MEMORY_RWX;
a2227120 1454
1e6b4811
KC
1455 create_mapping(&map);
1456 } else if (start >= kernel_x_end) {
1457 map.pfn = __phys_to_pfn(start);
1458 map.virtual = __phys_to_virt(start);
1459 map.length = end - start;
1460 map.type = MT_MEMORY_RW;
1461
ebd4922e
RK
1462 create_mapping(&map);
1463 } else {
1464 /* This better cover the entire kernel */
1465 if (start < kernel_x_start) {
1466 map.pfn = __phys_to_pfn(start);
1467 map.virtual = __phys_to_virt(start);
1468 map.length = kernel_x_start - start;
1469 map.type = MT_MEMORY_RW;
1470
1471 create_mapping(&map);
1472 }
1473
1474 map.pfn = __phys_to_pfn(kernel_x_start);
1475 map.virtual = __phys_to_virt(kernel_x_start);
1476 map.length = kernel_x_end - kernel_x_start;
1477 map.type = MT_MEMORY_RWX;
1478
1479 create_mapping(&map);
1480
1481 if (kernel_x_end < end) {
1482 map.pfn = __phys_to_pfn(kernel_x_end);
1483 map.virtual = __phys_to_virt(kernel_x_end);
1484 map.length = end - kernel_x_end;
1485 map.type = MT_MEMORY_RW;
1486
1487 create_mapping(&map);
1488 }
1489 }
a2227120
RK
1490 }
1491}
1492
d8dc7fbd
RK
1493#ifdef CONFIG_ARM_PV_FIXUP
1494extern unsigned long __atags_pointer;
1495typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1496pgtables_remap lpae_pgtables_remap_asm;
1497
a77e0c7b
SS
1498/*
1499 * early_paging_init() recreates boot time page table setup, allowing machines
1500 * to switch over to a high (>4G) address space on LPAE systems
1501 */
b089c31c 1502static void __init early_paging_init(const struct machine_desc *mdesc)
a77e0c7b 1503{
d8dc7fbd
RK
1504 pgtables_remap *lpae_pgtables_remap;
1505 unsigned long pa_pgd;
1506 unsigned int cr, ttbcr;
c8ca2b4b 1507 long long offset;
d8dc7fbd 1508 void *boot_data;
a77e0c7b 1509
c0b759d8 1510 if (!mdesc->pv_fixup)
a77e0c7b
SS
1511 return;
1512
c0b759d8 1513 offset = mdesc->pv_fixup();
c8ca2b4b
RK
1514 if (offset == 0)
1515 return;
a77e0c7b 1516
d8dc7fbd
RK
1517 /*
1518 * Get the address of the remap function in the 1:1 identity
1519 * mapping setup by the early page table assembly code. We
1520 * must get this prior to the pv update. The following barrier
1521 * ensures that this is complete before we fixup any P:V offsets.
1522 */
1523 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1524 pa_pgd = __pa(swapper_pg_dir);
1525 boot_data = __va(__atags_pointer);
1526 barrier();
a77e0c7b 1527
39b74fe8
RK
1528 pr_info("Switching physical address space to 0x%08llx\n",
1529 (u64)PHYS_OFFSET + offset);
a77e0c7b 1530
c8ca2b4b
RK
1531 /* Re-set the phys pfn offset, and the pv offset */
1532 __pv_offset += offset;
1533 __pv_phys_pfn_offset += PFN_DOWN(offset);
a77e0c7b
SS
1534
1535 /* Run the patch stub to update the constants */
1536 fixup_pv_table(&__pv_table_begin,
1537 (&__pv_table_end - &__pv_table_begin) << 2);
1538
1539 /*
d8dc7fbd
RK
1540 * We changing not only the virtual to physical mapping, but also
1541 * the physical addresses used to access memory. We need to flush
1542 * all levels of cache in the system with caching disabled to
1543 * ensure that all data is written back, and nothing is prefetched
1544 * into the caches. We also need to prevent the TLB walkers
1545 * allocating into the caches too. Note that this is ARMv7 LPAE
1546 * specific.
3bb70de6 1547 */
d8dc7fbd
RK
1548 cr = get_cr();
1549 set_cr(cr & ~(CR_I | CR_C));
1550 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1551 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1552 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
a77e0c7b 1553 flush_cache_all();
3bb70de6
RK
1554
1555 /*
d8dc7fbd
RK
1556 * Fixup the page tables - this must be in the idmap region as
1557 * we need to disable the MMU to do this safely, and hence it
1558 * needs to be assembly. It's fairly simple, as we're using the
1559 * temporary tables setup by the initial assembly code.
3bb70de6 1560 */
d8dc7fbd 1561 lpae_pgtables_remap(offset, pa_pgd, boot_data);
3bb70de6 1562
d8dc7fbd
RK
1563 /* Re-enable the caches and cacheable TLB walks */
1564 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1565 set_cr(cr);
a77e0c7b
SS
1566}
1567
1568#else
1569
b089c31c 1570static void __init early_paging_init(const struct machine_desc *mdesc)
a77e0c7b 1571{
c8ca2b4b
RK
1572 long long offset;
1573
c0b759d8 1574 if (!mdesc->pv_fixup)
c8ca2b4b
RK
1575 return;
1576
c0b759d8 1577 offset = mdesc->pv_fixup();
c8ca2b4b
RK
1578 if (offset == 0)
1579 return;
1580
1581 pr_crit("Physical address space modification is only to support Keystone2.\n");
1582 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1583 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1584 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
a77e0c7b
SS
1585}
1586
1587#endif
1588
a5f4c561
SA
1589static void __init early_fixmap_shutdown(void)
1590{
1591 int i;
1592 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1593
1594 pte_offset_fixmap = pte_offset_late_fixmap;
1595 pmd_clear(fixmap_pmd(va));
1596 local_flush_tlb_kernel_page(va);
1597
1598 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1599 pte_t *pte;
1600 struct map_desc map;
1601
1602 map.virtual = fix_to_virt(i);
1603 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1604
1605 /* Only i/o device mappings are supported ATM */
1606 if (pte_none(*pte) ||
1607 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1608 continue;
1609
1610 map.pfn = pte_pfn(*pte);
1611 map.type = MT_DEVICE;
1612 map.length = PAGE_SIZE;
1613
1614 create_mapping(&map);
1615 }
1616}
1617
d111e8f9
RK
1618/*
1619 * paging_init() sets up the page tables, initialises the zone memory
1620 * maps, and sets up the zero page, bad page and bad page tables.
1621 */
ff69a4c8 1622void __init paging_init(const struct machine_desc *mdesc)
d111e8f9
RK
1623{
1624 void *zero_page;
1625
4b5f32ce 1626 prepare_page_table();
a2227120 1627 map_lowmem();
3de1f52a 1628 memblock_set_current_limit(arm_lowmem_limit);
c7909509 1629 dma_contiguous_remap();
a5f4c561 1630 early_fixmap_shutdown();
d111e8f9 1631 devicemaps_init(mdesc);
d73cd428 1632 kmap_init();
de40614e 1633 tcm_init();
d111e8f9
RK
1634
1635 top_pmd = pmd_off_k(0xffff0000);
1636
3abe9d33
RK
1637 /* allocate the zero page. */
1638 zero_page = early_alloc(PAGE_SIZE);
2778f620 1639
8d717a52 1640 bootmem_init();
2778f620 1641
d111e8f9 1642 empty_zero_page = virt_to_page(zero_page);
421fe93c 1643 __flush_dcache_page(NULL, empty_zero_page);
cf763e4e
MZ
1644
1645 /* Compute the virt/idmap offset, mostly for the sake of KVM */
1646 kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
d111e8f9 1647}
b089c31c
JM
1648
1649void __init early_mm_init(const struct machine_desc *mdesc)
1650{
1651 build_mem_type_table();
1652 early_paging_init(mdesc);
1653}