]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/arm/mm/mmu.c
ARM: LPAE: Add identity mapping support for the 3-level page table format
[mirror_ubuntu-zesty-kernel.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
d111e8f9 18
0ba8b9b2 19#include <asm/cputype.h>
37efe642 20#include <asm/sections.h>
3f973e22 21#include <asm/cachetype.h>
d111e8f9
RK
22#include <asm/setup.h>
23#include <asm/sizes.h>
e616c591 24#include <asm/smp_plat.h>
d111e8f9 25#include <asm/tlb.h>
d73cd428 26#include <asm/highmem.h>
247055aa 27#include <asm/traps.h>
d111e8f9
RK
28
29#include <asm/mach/arch.h>
30#include <asm/mach/map.h>
31
32#include "mm.h"
33
d111e8f9
RK
34/*
35 * empty_zero_page is a special page that is used for
36 * zero-initialized data and COW.
37 */
38struct page *empty_zero_page;
3653f3ab 39EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
40
41/*
42 * The pmd table for the upper-most set of pages.
43 */
44pmd_t *top_pmd;
45
ae8f1541
RK
46#define CPOLICY_UNCACHED 0
47#define CPOLICY_BUFFERED 1
48#define CPOLICY_WRITETHROUGH 2
49#define CPOLICY_WRITEBACK 3
50#define CPOLICY_WRITEALLOC 4
51
52static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
53static unsigned int ecc_mask __initdata = 0;
44b18693 54pgprot_t pgprot_user;
ae8f1541
RK
55pgprot_t pgprot_kernel;
56
44b18693 57EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
58EXPORT_SYMBOL(pgprot_kernel);
59
60struct cachepolicy {
61 const char policy[16];
62 unsigned int cr_mask;
442e70c0 63 pmdval_t pmd;
f6e3354d 64 pteval_t pte;
ae8f1541
RK
65};
66
67static struct cachepolicy cache_policies[] __initdata = {
68 {
69 .policy = "uncached",
70 .cr_mask = CR_W|CR_C,
71 .pmd = PMD_SECT_UNCACHED,
bb30f36f 72 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
73 }, {
74 .policy = "buffered",
75 .cr_mask = CR_C,
76 .pmd = PMD_SECT_BUFFERED,
bb30f36f 77 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
78 }, {
79 .policy = "writethrough",
80 .cr_mask = 0,
81 .pmd = PMD_SECT_WT,
bb30f36f 82 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
83 }, {
84 .policy = "writeback",
85 .cr_mask = 0,
86 .pmd = PMD_SECT_WB,
bb30f36f 87 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
88 }, {
89 .policy = "writealloc",
90 .cr_mask = 0,
91 .pmd = PMD_SECT_WBWA,
bb30f36f 92 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
93 }
94};
95
96/*
6cbdc8c5 97 * These are useful for identifying cache coherency
ae8f1541
RK
98 * problems by allowing the cache or the cache and
99 * writebuffer to be turned off. (Note: the write
100 * buffer should not be on and the cache off).
101 */
2b0d8c25 102static int __init early_cachepolicy(char *p)
ae8f1541
RK
103{
104 int i;
105
106 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
107 int len = strlen(cache_policies[i].policy);
108
2b0d8c25 109 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
110 cachepolicy = i;
111 cr_alignment &= ~cache_policies[i].cr_mask;
112 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
113 break;
114 }
115 }
116 if (i == ARRAY_SIZE(cache_policies))
117 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
118 /*
119 * This restriction is partly to do with the way we boot; it is
120 * unpredictable to have memory mapped using two different sets of
121 * memory attributes (shared, type, and cache attribs). We can not
122 * change these attributes once the initial assembly has setup the
123 * page tables.
124 */
11179d8c
CM
125 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
126 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
127 cachepolicy = CPOLICY_WRITEBACK;
128 }
ae8f1541
RK
129 flush_cache_all();
130 set_cr(cr_alignment);
2b0d8c25 131 return 0;
ae8f1541 132}
2b0d8c25 133early_param("cachepolicy", early_cachepolicy);
ae8f1541 134
2b0d8c25 135static int __init early_nocache(char *__unused)
ae8f1541
RK
136{
137 char *p = "buffered";
138 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
139 early_cachepolicy(p);
140 return 0;
ae8f1541 141}
2b0d8c25 142early_param("nocache", early_nocache);
ae8f1541 143
2b0d8c25 144static int __init early_nowrite(char *__unused)
ae8f1541
RK
145{
146 char *p = "uncached";
147 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
148 early_cachepolicy(p);
149 return 0;
ae8f1541 150}
2b0d8c25 151early_param("nowb", early_nowrite);
ae8f1541 152
1b6ba46b 153#ifndef CONFIG_ARM_LPAE
2b0d8c25 154static int __init early_ecc(char *p)
ae8f1541 155{
2b0d8c25 156 if (memcmp(p, "on", 2) == 0)
ae8f1541 157 ecc_mask = PMD_PROTECTION;
2b0d8c25 158 else if (memcmp(p, "off", 3) == 0)
ae8f1541 159 ecc_mask = 0;
2b0d8c25 160 return 0;
ae8f1541 161}
2b0d8c25 162early_param("ecc", early_ecc);
1b6ba46b 163#endif
ae8f1541
RK
164
165static int __init noalign_setup(char *__unused)
166{
167 cr_alignment &= ~CR_A;
168 cr_no_alignment &= ~CR_A;
169 set_cr(cr_alignment);
170 return 1;
171}
172__setup("noalign", noalign_setup);
173
255d1f86
RK
174#ifndef CONFIG_SMP
175void adjust_cr(unsigned long mask, unsigned long set)
176{
177 unsigned long flags;
178
179 mask &= ~CR_A;
180
181 set &= mask;
182
183 local_irq_save(flags);
184
185 cr_no_alignment = (cr_no_alignment & ~mask) | set;
186 cr_alignment = (cr_alignment & ~mask) | set;
187
188 set_cr((get_cr() & ~mask) | set);
189
190 local_irq_restore(flags);
191}
192#endif
193
36bb94ba 194#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
b1cce6b1 195#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 196
b29e9f5e 197static struct mem_type mem_types[] = {
0af92bef 198 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
199 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
200 L_PTE_SHARED,
0af92bef 201 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 202 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
203 .domain = DOMAIN_IO,
204 },
205 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 206 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 207 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 208 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
209 .domain = DOMAIN_IO,
210 },
211 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 212 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
213 .prot_l1 = PMD_TYPE_TABLE,
214 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
215 .domain = DOMAIN_IO,
216 },
1ad77a87 217 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 218 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 219 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 220 .prot_sect = PROT_SECT_DEVICE,
0af92bef 221 .domain = DOMAIN_IO,
ae8f1541 222 },
ebb4c658
RK
223 [MT_UNCACHED] = {
224 .prot_pte = PROT_PTE_DEVICE,
225 .prot_l1 = PMD_TYPE_TABLE,
226 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
227 .domain = DOMAIN_IO,
228 },
ae8f1541 229 [MT_CACHECLEAN] = {
9ef79635 230 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
231 .domain = DOMAIN_KERNEL,
232 },
1b6ba46b 233#ifndef CONFIG_ARM_LPAE
ae8f1541 234 [MT_MINICLEAN] = {
9ef79635 235 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
236 .domain = DOMAIN_KERNEL,
237 },
1b6ba46b 238#endif
ae8f1541
RK
239 [MT_LOW_VECTORS] = {
240 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 241 L_PTE_RDONLY,
ae8f1541
RK
242 .prot_l1 = PMD_TYPE_TABLE,
243 .domain = DOMAIN_USER,
244 },
245 [MT_HIGH_VECTORS] = {
246 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 247 L_PTE_USER | L_PTE_RDONLY,
ae8f1541
RK
248 .prot_l1 = PMD_TYPE_TABLE,
249 .domain = DOMAIN_USER,
250 },
251 [MT_MEMORY] = {
36bb94ba 252 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 253 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 254 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
255 .domain = DOMAIN_KERNEL,
256 },
257 [MT_ROM] = {
9ef79635 258 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
259 .domain = DOMAIN_KERNEL,
260 },
e4707dd3 261 [MT_MEMORY_NONCACHED] = {
f1a2481c 262 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 263 L_PTE_MT_BUFFERABLE,
f1a2481c 264 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
265 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
266 .domain = DOMAIN_KERNEL,
267 },
cb9d7707 268 [MT_MEMORY_DTCM] = {
f444fce3 269 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 270 L_PTE_XN,
f444fce3
LW
271 .prot_l1 = PMD_TYPE_TABLE,
272 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
273 .domain = DOMAIN_KERNEL,
cb9d7707
LW
274 },
275 [MT_MEMORY_ITCM] = {
36bb94ba 276 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 277 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 278 .domain = DOMAIN_KERNEL,
cb9d7707 279 },
8fb54284
SS
280 [MT_MEMORY_SO] = {
281 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
282 L_PTE_MT_UNCACHED,
283 .prot_l1 = PMD_TYPE_TABLE,
284 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
285 PMD_SECT_UNCACHED | PMD_SECT_XN,
286 .domain = DOMAIN_KERNEL,
287 },
ae8f1541
RK
288};
289
b29e9f5e
RK
290const struct mem_type *get_mem_type(unsigned int type)
291{
292 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
293}
69d3a84a 294EXPORT_SYMBOL(get_mem_type);
b29e9f5e 295
ae8f1541
RK
296/*
297 * Adjust the PMD section entries according to the CPU in use.
298 */
299static void __init build_mem_type_table(void)
300{
301 struct cachepolicy *cp;
302 unsigned int cr = get_cr();
442e70c0 303 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
304 int cpu_arch = cpu_architecture();
305 int i;
306
11179d8c 307 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 308#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
309 if (cachepolicy > CPOLICY_BUFFERED)
310 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 311#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
312 if (cachepolicy > CPOLICY_WRITETHROUGH)
313 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 314#endif
11179d8c 315 }
ae8f1541
RK
316 if (cpu_arch < CPU_ARCH_ARMv5) {
317 if (cachepolicy >= CPOLICY_WRITEALLOC)
318 cachepolicy = CPOLICY_WRITEBACK;
319 ecc_mask = 0;
320 }
f00ec48f
RK
321 if (is_smp())
322 cachepolicy = CPOLICY_WRITEALLOC;
ae8f1541 323
1ad77a87 324 /*
b1cce6b1
RK
325 * Strip out features not present on earlier architectures.
326 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
327 * without extended page tables don't have the 'Shared' bit.
1ad77a87 328 */
b1cce6b1
RK
329 if (cpu_arch < CPU_ARCH_ARMv5)
330 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
331 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
332 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
333 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
334 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
335
336 /*
b1cce6b1
RK
337 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
338 * "update-able on write" bit on ARM610). However, Xscale and
339 * Xscale3 require this bit to be cleared.
ae8f1541 340 */
b1cce6b1 341 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 342 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 343 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
344 mem_types[i].prot_l1 &= ~PMD_BIT4;
345 }
346 } else if (cpu_arch < CPU_ARCH_ARMv6) {
347 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
348 if (mem_types[i].prot_l1)
349 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
350 if (mem_types[i].prot_sect)
351 mem_types[i].prot_sect |= PMD_BIT4;
352 }
353 }
ae8f1541 354
b1cce6b1
RK
355 /*
356 * Mark the device areas according to the CPU/architecture.
357 */
358 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
359 if (!cpu_is_xsc3()) {
360 /*
361 * Mark device regions on ARMv6+ as execute-never
362 * to prevent speculative instruction fetches.
363 */
364 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
365 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
366 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
367 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
368 }
369 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
370 /*
371 * For ARMv7 with TEX remapping,
372 * - shared device is SXCB=1100
373 * - nonshared device is SXCB=0100
374 * - write combine device mem is SXCB=0001
375 * (Uncached Normal memory)
376 */
377 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
378 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
379 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
380 } else if (cpu_is_xsc3()) {
381 /*
382 * For Xscale3,
383 * - shared device is TEXCB=00101
384 * - nonshared device is TEXCB=01000
385 * - write combine device mem is TEXCB=00100
386 * (Inner/Outer Uncacheable in xsc3 parlance)
387 */
388 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
389 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
390 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
391 } else {
392 /*
393 * For ARMv6 and ARMv7 without TEX remapping,
394 * - shared device is TEXCB=00001
395 * - nonshared device is TEXCB=01000
396 * - write combine device mem is TEXCB=00100
397 * (Uncached Normal in ARMv6 parlance).
398 */
399 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
400 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
401 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
402 }
403 } else {
404 /*
405 * On others, write combining is "Uncached/Buffered"
406 */
407 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
408 }
409
410 /*
411 * Now deal with the memory-type mappings
412 */
ae8f1541 413 cp = &cache_policies[cachepolicy];
bb30f36f
RK
414 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
415
bb30f36f
RK
416 /*
417 * Only use write-through for non-SMP systems
418 */
f00ec48f 419 if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
bb30f36f 420 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
ae8f1541
RK
421
422 /*
423 * Enable CPU-specific coherency if supported.
424 * (Only available on XSC3 at the moment.)
425 */
f1a2481c 426 if (arch_is_coherent() && cpu_is_xsc3()) {
b1cce6b1 427 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
f1a2481c
SS
428 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
429 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
430 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
431 }
ae8f1541
RK
432 /*
433 * ARMv6 and above have extended page tables.
434 */
435 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 436#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
437 /*
438 * Mark cache clean areas and XIP ROM read only
439 * from SVC mode and no access from userspace.
440 */
441 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
442 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
443 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 444#endif
ae8f1541 445
f00ec48f
RK
446 if (is_smp()) {
447 /*
448 * Mark memory with the "shared" attribute
449 * for SMP systems
450 */
451 user_pgprot |= L_PTE_SHARED;
452 kern_pgprot |= L_PTE_SHARED;
453 vecs_pgprot |= L_PTE_SHARED;
454 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
455 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
456 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
457 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
458 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
459 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
460 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
461 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
462 }
ae8f1541
RK
463 }
464
e4707dd3
PW
465 /*
466 * Non-cacheable Normal - intended for memory areas that must
467 * not cause dirty cache line writebacks when used
468 */
469 if (cpu_arch >= CPU_ARCH_ARMv6) {
470 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
471 /* Non-cacheable Normal is XCB = 001 */
472 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
473 PMD_SECT_BUFFERED;
474 } else {
475 /* For both ARMv6 and non-TEX-remapping ARMv7 */
476 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
477 PMD_SECT_TEX(1);
478 }
479 } else {
480 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
481 }
482
1b6ba46b
CM
483#ifdef CONFIG_ARM_LPAE
484 /*
485 * Do not generate access flag faults for the kernel mappings.
486 */
487 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
488 mem_types[i].prot_pte |= PTE_EXT_AF;
489 mem_types[i].prot_sect |= PMD_SECT_AF;
490 }
491 kern_pgprot |= PTE_EXT_AF;
492 vecs_pgprot |= PTE_EXT_AF;
493#endif
494
ae8f1541
RK
495 for (i = 0; i < 16; i++) {
496 unsigned long v = pgprot_val(protection_map[i]);
bb30f36f 497 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
498 }
499
bb30f36f
RK
500 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
501 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 502
44b18693 503 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 504 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 505 L_PTE_DIRTY | kern_pgprot);
ae8f1541
RK
506
507 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
508 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
509 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
f1a2481c
SS
510 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
511 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
512 mem_types[MT_ROM].prot_sect |= cp->pmd;
513
514 switch (cp->pmd) {
515 case PMD_SECT_WT:
516 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
517 break;
518 case PMD_SECT_WB:
519 case PMD_SECT_WBWA:
520 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
521 break;
522 }
523 printk("Memory policy: ECC %sabled, Data cache %s\n",
524 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
525
526 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
527 struct mem_type *t = &mem_types[i];
528 if (t->prot_l1)
529 t->prot_l1 |= PMD_DOMAIN(t->domain);
530 if (t->prot_sect)
531 t->prot_sect |= PMD_DOMAIN(t->domain);
532 }
ae8f1541
RK
533}
534
d907387c
CM
535#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
536pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
537 unsigned long size, pgprot_t vma_prot)
538{
539 if (!pfn_valid(pfn))
540 return pgprot_noncached(vma_prot);
541 else if (file->f_flags & O_SYNC)
542 return pgprot_writecombine(vma_prot);
543 return vma_prot;
544}
545EXPORT_SYMBOL(phys_mem_access_prot);
546#endif
547
ae8f1541
RK
548#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
549
3abe9d33
RK
550static void __init *early_alloc(unsigned long sz)
551{
2778f620
RK
552 void *ptr = __va(memblock_alloc(sz, sz));
553 memset(ptr, 0, sz);
554 return ptr;
3abe9d33
RK
555}
556
4bb2e27d 557static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 558{
24e6c699 559 if (pmd_none(*pmd)) {
410f1483 560 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 561 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 562 }
4bb2e27d
RK
563 BUG_ON(pmd_bad(*pmd));
564 return pte_offset_kernel(pmd, addr);
565}
ae8f1541 566
4bb2e27d
RK
567static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
568 unsigned long end, unsigned long pfn,
569 const struct mem_type *type)
570{
571 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 572 do {
40d192b6 573 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
574 pfn++;
575 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
576}
577
516295e5 578static void __init alloc_init_section(pud_t *pud, unsigned long addr,
97092e0c 579 unsigned long end, phys_addr_t phys,
24e6c699 580 const struct mem_type *type)
ae8f1541 581{
516295e5 582 pmd_t *pmd = pmd_offset(pud, addr);
ae8f1541 583
24e6c699
RK
584 /*
585 * Try a section mapping - end, addr and phys must all be aligned
586 * to a section boundary. Note that PMDs refer to the individual
587 * L1 entries, whereas PGDs refer to a group of L1 entries making
588 * up one logical pointer to an L2 table.
589 */
590 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
591 pmd_t *p = pmd;
ae8f1541 592
1b6ba46b 593#ifndef CONFIG_ARM_LPAE
24e6c699
RK
594 if (addr & SECTION_SIZE)
595 pmd++;
1b6ba46b 596#endif
24e6c699
RK
597
598 do {
599 *pmd = __pmd(phys | type->prot_sect);
600 phys += SECTION_SIZE;
601 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 602
24e6c699
RK
603 flush_pmd_entry(p);
604 } else {
605 /*
606 * No need to loop; pte's aren't interested in the
607 * individual L1 entries.
608 */
609 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
610 }
ae8f1541
RK
611}
612
516295e5
RK
613static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
614 unsigned long phys, const struct mem_type *type)
615{
616 pud_t *pud = pud_offset(pgd, addr);
617 unsigned long next;
618
619 do {
620 next = pud_addr_end(addr, end);
621 alloc_init_section(pud, addr, next, phys, type);
622 phys += next - addr;
623 } while (pud++, addr = next, addr != end);
624}
625
1b6ba46b 626#ifndef CONFIG_ARM_LPAE
4a56c1e4
RK
627static void __init create_36bit_mapping(struct map_desc *md,
628 const struct mem_type *type)
629{
97092e0c
RK
630 unsigned long addr, length, end;
631 phys_addr_t phys;
4a56c1e4
RK
632 pgd_t *pgd;
633
634 addr = md->virtual;
cae6292b 635 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
636 length = PAGE_ALIGN(md->length);
637
638 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
639 printk(KERN_ERR "MM: CPU does not support supersection "
640 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 641 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
642 return;
643 }
644
645 /* N.B. ARMv6 supersections are only defined to work with domain 0.
646 * Since domain assignments can in fact be arbitrary, the
647 * 'domain == 0' check below is required to insure that ARMv6
648 * supersections are only allocated for domain 0 regardless
649 * of the actual domain assignments in use.
650 */
651 if (type->domain) {
652 printk(KERN_ERR "MM: invalid domain in supersection "
653 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 654 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
655 return;
656 }
657
658 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
29a38193
WD
659 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
660 " at 0x%08lx invalid alignment\n",
661 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
662 return;
663 }
664
665 /*
666 * Shift bits [35:32] of address into bits [23:20] of PMD
667 * (See ARMv6 spec).
668 */
669 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
670
671 pgd = pgd_offset_k(addr);
672 end = addr + length;
673 do {
516295e5
RK
674 pud_t *pud = pud_offset(pgd, addr);
675 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
676 int i;
677
678 for (i = 0; i < 16; i++)
679 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
680
681 addr += SUPERSECTION_SIZE;
682 phys += SUPERSECTION_SIZE;
683 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
684 } while (addr != end);
685}
1b6ba46b 686#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 687
ae8f1541
RK
688/*
689 * Create the page directory entries and any necessary
690 * page tables for the mapping specified by `md'. We
691 * are able to cope here with varying sizes and address
692 * offsets, and we take full advantage of sections and
693 * supersections.
694 */
a2227120 695static void __init create_mapping(struct map_desc *md)
ae8f1541 696{
cae6292b
WD
697 unsigned long addr, length, end;
698 phys_addr_t phys;
d5c98176 699 const struct mem_type *type;
24e6c699 700 pgd_t *pgd;
ae8f1541
RK
701
702 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
29a38193
WD
703 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
704 " at 0x%08lx in user region\n",
705 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
706 return;
707 }
708
709 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
710 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
29a38193
WD
711 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
712 " at 0x%08lx overlaps vmalloc space\n",
713 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
714 }
715
d5c98176 716 type = &mem_types[md->type];
ae8f1541 717
1b6ba46b 718#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
719 /*
720 * Catch 36-bit addresses
721 */
4a56c1e4
RK
722 if (md->pfn >= 0x100000) {
723 create_36bit_mapping(md, type);
724 return;
ae8f1541 725 }
1b6ba46b 726#endif
ae8f1541 727
7b9c7b4d 728 addr = md->virtual & PAGE_MASK;
cae6292b 729 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 730 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 731
24e6c699 732 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
29a38193 733 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
ae8f1541 734 "be mapped using pages, ignoring.\n",
29a38193 735 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
736 return;
737 }
738
24e6c699
RK
739 pgd = pgd_offset_k(addr);
740 end = addr + length;
741 do {
742 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 743
516295e5 744 alloc_init_pud(pgd, addr, next, phys, type);
ae8f1541 745
24e6c699
RK
746 phys += next - addr;
747 addr = next;
748 } while (pgd++, addr != end);
ae8f1541
RK
749}
750
751/*
752 * Create the architecture specific mappings
753 */
754void __init iotable_init(struct map_desc *io_desc, int nr)
755{
756 int i;
757
758 for (i = 0; i < nr; i++)
759 create_mapping(io_desc + i);
760}
761
79612395 762static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
6c5da7ac
RK
763
764/*
765 * vmalloc=size forces the vmalloc area to be exactly 'size'
766 * bytes. This can be used to increase (or decrease) the vmalloc
767 * area - the default is 128m.
768 */
2b0d8c25 769static int __init early_vmalloc(char *arg)
6c5da7ac 770{
79612395 771 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
772
773 if (vmalloc_reserve < SZ_16M) {
774 vmalloc_reserve = SZ_16M;
775 printk(KERN_WARNING
776 "vmalloc area too small, limiting to %luMB\n",
777 vmalloc_reserve >> 20);
778 }
9210807c
NP
779
780 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
781 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
782 printk(KERN_WARNING
783 "vmalloc area is too big, limiting to %luMB\n",
784 vmalloc_reserve >> 20);
785 }
79612395
RK
786
787 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 788 return 0;
6c5da7ac 789}
2b0d8c25 790early_param("vmalloc", early_vmalloc);
6c5da7ac 791
8df65168
RK
792static phys_addr_t lowmem_limit __initdata = 0;
793
0371d3f7 794void __init sanity_check_meminfo(void)
60296c71 795{
dde5828f 796 int i, j, highmem = 0;
60296c71 797
4b5f32ce 798 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
799 struct membank *bank = &meminfo.bank[j];
800 *bank = meminfo.bank[i];
60296c71 801
a1bbaec0 802#ifdef CONFIG_HIGHMEM
40f7bfe4 803 if (__va(bank->start) >= vmalloc_min ||
dde5828f
RK
804 __va(bank->start) < (void *)PAGE_OFFSET)
805 highmem = 1;
806
807 bank->highmem = highmem;
808
a1bbaec0
NP
809 /*
810 * Split those memory banks which are partially overlapping
811 * the vmalloc area greatly simplifying things later.
812 */
79612395
RK
813 if (__va(bank->start) < vmalloc_min &&
814 bank->size > vmalloc_min - __va(bank->start)) {
a1bbaec0
NP
815 if (meminfo.nr_banks >= NR_BANKS) {
816 printk(KERN_CRIT "NR_BANKS too low, "
817 "ignoring high memory\n");
818 } else {
819 memmove(bank + 1, bank,
820 (meminfo.nr_banks - i) * sizeof(*bank));
821 meminfo.nr_banks++;
822 i++;
79612395
RK
823 bank[1].size -= vmalloc_min - __va(bank->start);
824 bank[1].start = __pa(vmalloc_min - 1) + 1;
dde5828f 825 bank[1].highmem = highmem = 1;
a1bbaec0
NP
826 j++;
827 }
79612395 828 bank->size = vmalloc_min - __va(bank->start);
a1bbaec0
NP
829 }
830#else
041d785f
RK
831 bank->highmem = highmem;
832
a1bbaec0
NP
833 /*
834 * Check whether this memory bank would entirely overlap
835 * the vmalloc area.
836 */
79612395 837 if (__va(bank->start) >= vmalloc_min ||
f0bba9f9 838 __va(bank->start) < (void *)PAGE_OFFSET) {
e33b9d08 839 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
a1bbaec0 840 "(vmalloc region overlap).\n",
e33b9d08
RK
841 (unsigned long long)bank->start,
842 (unsigned long long)bank->start + bank->size - 1);
a1bbaec0
NP
843 continue;
844 }
60296c71 845
a1bbaec0
NP
846 /*
847 * Check whether this memory bank would partially overlap
848 * the vmalloc area.
849 */
79612395 850 if (__va(bank->start + bank->size) > vmalloc_min ||
a1bbaec0 851 __va(bank->start + bank->size) < __va(bank->start)) {
79612395 852 unsigned long newsize = vmalloc_min - __va(bank->start);
e33b9d08
RK
853 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
854 "to -%.8llx (vmalloc region overlap).\n",
855 (unsigned long long)bank->start,
856 (unsigned long long)bank->start + bank->size - 1,
857 (unsigned long long)bank->start + newsize - 1);
a1bbaec0
NP
858 bank->size = newsize;
859 }
860#endif
40f7bfe4
WD
861 if (!bank->highmem && bank->start + bank->size > lowmem_limit)
862 lowmem_limit = bank->start + bank->size;
863
a1bbaec0 864 j++;
60296c71 865 }
e616c591
RK
866#ifdef CONFIG_HIGHMEM
867 if (highmem) {
868 const char *reason = NULL;
869
870 if (cache_is_vipt_aliasing()) {
871 /*
872 * Interactions between kmap and other mappings
873 * make highmem support with aliasing VIPT caches
874 * rather difficult.
875 */
876 reason = "with VIPT aliasing cache";
e616c591
RK
877 }
878 if (reason) {
879 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
880 reason);
881 while (j > 0 && meminfo.bank[j - 1].highmem)
882 j--;
883 }
884 }
885#endif
4b5f32ce 886 meminfo.nr_banks = j;
40f7bfe4 887 memblock_set_current_limit(lowmem_limit);
60296c71
LB
888}
889
4b5f32ce 890static inline void prepare_page_table(void)
d111e8f9
RK
891{
892 unsigned long addr;
8df65168 893 phys_addr_t end;
d111e8f9
RK
894
895 /*
896 * Clear out all the mappings below the kernel image.
897 */
e73fc88e 898 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
899 pmd_clear(pmd_off_k(addr));
900
901#ifdef CONFIG_XIP_KERNEL
902 /* The XIP kernel is mapped in the module area -- skip over it */
e73fc88e 903 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 904#endif
e73fc88e 905 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
906 pmd_clear(pmd_off_k(addr));
907
8df65168
RK
908 /*
909 * Find the end of the first block of lowmem.
910 */
911 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
912 if (end >= lowmem_limit)
913 end = lowmem_limit;
914
d111e8f9
RK
915 /*
916 * Clear out all the kernel space mappings, except for the first
917 * memory bank, up to the end of the vmalloc region.
918 */
8df65168 919 for (addr = __phys_to_virt(end);
e73fc88e 920 addr < VMALLOC_END; addr += PMD_SIZE)
d111e8f9
RK
921 pmd_clear(pmd_off_k(addr));
922}
923
1b6ba46b
CM
924#ifdef CONFIG_ARM_LPAE
925/* the first page is reserved for pgd */
926#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
927 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
928#else
e73fc88e 929#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 930#endif
e73fc88e 931
d111e8f9 932/*
2778f620 933 * Reserve the special regions of memory
d111e8f9 934 */
2778f620 935void __init arm_mm_memblock_reserve(void)
d111e8f9 936{
d111e8f9
RK
937 /*
938 * Reserve the page tables. These are already in use,
939 * and can only be in node 0.
940 */
e73fc88e 941 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 942
d111e8f9
RK
943#ifdef CONFIG_SA1111
944 /*
945 * Because of the SA1111 DMA bug, we want to preserve our
946 * precious DMA-able memory...
947 */
2778f620 948 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 949#endif
d111e8f9
RK
950}
951
952/*
953 * Set up device the mappings. Since we clear out the page tables for all
954 * mappings above VMALLOC_END, we will remove any debug device mappings.
955 * This means you have to be careful how you debug this function, or any
956 * called function. This means you can't use any function or debugging
957 * method which may touch any device, otherwise the kernel _will_ crash.
958 */
959static void __init devicemaps_init(struct machine_desc *mdesc)
960{
961 struct map_desc map;
962 unsigned long addr;
d111e8f9
RK
963
964 /*
965 * Allocate the vector page early.
966 */
247055aa 967 vectors_page = early_alloc(PAGE_SIZE);
d111e8f9 968
e73fc88e 969 for (addr = VMALLOC_END; addr; addr += PMD_SIZE)
d111e8f9
RK
970 pmd_clear(pmd_off_k(addr));
971
972 /*
973 * Map the kernel if it is XIP.
974 * It is always first in the modulearea.
975 */
976#ifdef CONFIG_XIP_KERNEL
977 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 978 map.virtual = MODULES_VADDR;
37efe642 979 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
980 map.type = MT_ROM;
981 create_mapping(&map);
982#endif
983
984 /*
985 * Map the cache flushing regions.
986 */
987#ifdef FLUSH_BASE
988 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
989 map.virtual = FLUSH_BASE;
990 map.length = SZ_1M;
991 map.type = MT_CACHECLEAN;
992 create_mapping(&map);
993#endif
994#ifdef FLUSH_BASE_MINICACHE
995 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
996 map.virtual = FLUSH_BASE_MINICACHE;
997 map.length = SZ_1M;
998 map.type = MT_MINICLEAN;
999 create_mapping(&map);
1000#endif
1001
1002 /*
1003 * Create a mapping for the machine vectors at the high-vectors
1004 * location (0xffff0000). If we aren't using high-vectors, also
1005 * create a mapping at the low-vectors virtual address.
1006 */
247055aa 1007 map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
d111e8f9
RK
1008 map.virtual = 0xffff0000;
1009 map.length = PAGE_SIZE;
1010 map.type = MT_HIGH_VECTORS;
1011 create_mapping(&map);
1012
1013 if (!vectors_high()) {
1014 map.virtual = 0;
1015 map.type = MT_LOW_VECTORS;
1016 create_mapping(&map);
1017 }
1018
1019 /*
1020 * Ask the machine support to map in the statically mapped devices.
1021 */
1022 if (mdesc->map_io)
1023 mdesc->map_io();
1024
1025 /*
1026 * Finally flush the caches and tlb to ensure that we're in a
1027 * consistent state wrt the writebuffer. This also ensures that
1028 * any write-allocated cache lines in the vector page are written
1029 * back. After this point, we can start to touch devices again.
1030 */
1031 local_flush_tlb_all();
1032 flush_cache_all();
1033}
1034
d73cd428
NP
1035static void __init kmap_init(void)
1036{
1037#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1038 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1039 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428
NP
1040#endif
1041}
1042
a2227120
RK
1043static void __init map_lowmem(void)
1044{
8df65168 1045 struct memblock_region *reg;
a2227120
RK
1046
1047 /* Map all the lowmem memory banks. */
8df65168
RK
1048 for_each_memblock(memory, reg) {
1049 phys_addr_t start = reg->base;
1050 phys_addr_t end = start + reg->size;
1051 struct map_desc map;
1052
1053 if (end > lowmem_limit)
1054 end = lowmem_limit;
1055 if (start >= end)
1056 break;
1057
1058 map.pfn = __phys_to_pfn(start);
1059 map.virtual = __phys_to_virt(start);
1060 map.length = end - start;
1061 map.type = MT_MEMORY;
a2227120 1062
8df65168 1063 create_mapping(&map);
a2227120
RK
1064 }
1065}
1066
d111e8f9
RK
1067/*
1068 * paging_init() sets up the page tables, initialises the zone memory
1069 * maps, and sets up the zero page, bad page and bad page tables.
1070 */
4b5f32ce 1071void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1072{
1073 void *zero_page;
1074
0371d3f7
RK
1075 memblock_set_current_limit(lowmem_limit);
1076
d111e8f9 1077 build_mem_type_table();
4b5f32ce 1078 prepare_page_table();
a2227120 1079 map_lowmem();
d111e8f9 1080 devicemaps_init(mdesc);
d73cd428 1081 kmap_init();
d111e8f9
RK
1082
1083 top_pmd = pmd_off_k(0xffff0000);
1084
3abe9d33
RK
1085 /* allocate the zero page. */
1086 zero_page = early_alloc(PAGE_SIZE);
2778f620 1087
8d717a52 1088 bootmem_init();
2778f620 1089
d111e8f9 1090 empty_zero_page = virt_to_page(zero_page);
421fe93c 1091 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1092}