]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/arm/net/bpf_jit_32.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / arch / arm / net / bpf_jit_32.c
CommitLineData
b886d83c 1// SPDX-License-Identifier: GPL-2.0-only
ddecdfce 2/*
39c13c20 3 * Just-In-Time compiler for eBPF filters on 32bit ARM
ddecdfce 4 *
39c13c20 5 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
ddecdfce 6 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
ddecdfce
MG
7 */
8
39c13c20 9#include <linux/bpf.h>
ddecdfce
MG
10#include <linux/bitops.h>
11#include <linux/compiler.h>
12#include <linux/errno.h>
13#include <linux/filter.h>
ddecdfce
MG
14#include <linux/netdevice.h>
15#include <linux/string.h>
16#include <linux/slab.h>
bf0098f2 17#include <linux/if_vlan.h>
e8b56d55 18
ddecdfce
MG
19#include <asm/cacheflush.h>
20#include <asm/hwcap.h>
3460743e 21#include <asm/opcodes.h>
8c9602d3 22#include <asm/system_info.h>
ddecdfce
MG
23
24#include "bpf_jit_32.h"
25
70ec3a6c 26/*
0005e55a 27 * eBPF prog stack layout:
70ec3a6c
RK
28 *
29 * high
0005e55a
RK
30 * original ARM_SP => +-----+
31 * | | callee saved registers
32 * +-----+ <= (BPF_FP + SCRATCH_SIZE)
70ec3a6c 33 * | ... | eBPF JIT scratch space
0005e55a
RK
34 * eBPF fp register => +-----+
35 * (BPF_FP) | ... | eBPF prog stack
70ec3a6c
RK
36 * +-----+
37 * |RSVD | JIT scratchpad
0005e55a 38 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
70ec3a6c
RK
39 * | |
40 * | ... | Function call stack
41 * | |
42 * +-----+
43 * low
0005e55a
RK
44 *
45 * The callee saved registers depends on whether frame pointers are enabled.
46 * With frame pointers (to be compliant with the ABI):
47 *
bef8968d
RK
48 * high
49 * original ARM_SP => +--------------+ \
50 * | pc | |
51 * current ARM_FP => +--------------+ } callee saved registers
52 * |r4-r9,fp,ip,lr| |
53 * +--------------+ /
54 * low
0005e55a
RK
55 *
56 * Without frame pointers:
57 *
bef8968d
RK
58 * high
59 * original ARM_SP => +--------------+
60 * | r4-r9,fp,lr | callee saved registers
61 * current ARM_FP => +--------------+
62 * low
02088d9b
RK
63 *
64 * When popping registers off the stack at the end of a BPF function, we
65 * reference them via the current ARM_FP register.
70ec3a6c 66 */
02088d9b 67#define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
bef8968d 68 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
02088d9b
RK
69 1 << ARM_FP)
70#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
71#define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
70ec3a6c 72
d449ceb1
RK
73enum {
74 /* Stack layout - these are offsets from (top of stack - 4) */
75 BPF_R2_HI,
76 BPF_R2_LO,
77 BPF_R3_HI,
78 BPF_R3_LO,
79 BPF_R4_HI,
80 BPF_R4_LO,
81 BPF_R5_HI,
82 BPF_R5_LO,
83 BPF_R7_HI,
84 BPF_R7_LO,
85 BPF_R8_HI,
86 BPF_R8_LO,
87 BPF_R9_HI,
88 BPF_R9_LO,
89 BPF_FP_HI,
90 BPF_FP_LO,
91 BPF_TC_HI,
92 BPF_TC_LO,
93 BPF_AX_HI,
94 BPF_AX_LO,
95 /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
96 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
97 * BPF_REG_FP and Tail call counts.
98 */
99 BPF_JIT_SCRATCH_REGS,
100};
101
1c35ba12
RK
102/*
103 * Negative "register" values indicate the register is stored on the stack
104 * and are the offset from the top of the eBPF JIT scratch space.
105 */
106#define STACK_OFFSET(k) (-4 - (k) * 4)
d449ceb1
RK
107#define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4)
108
96cced4e
RK
109#ifdef CONFIG_FRAME_POINTER
110#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
111#else
112#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
113#endif
114
39c13c20
SB
115#define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
116#define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
117#define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
118
39c13c20
SB
119#define FLAG_IMM_OVERFLOW (1 << 0)
120
ddecdfce 121/*
39c13c20
SB
122 * Map eBPF registers to ARM 32bit registers or stack scratch space.
123 *
124 * 1. First argument is passed using the arm 32bit registers and rest of the
125 * arguments are passed on stack scratch space.
2b589a7e 126 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
39c13c20
SB
127 * arguments are mapped to scratch space on stack.
128 * 3. We need two 64 bit temp registers to do complex operations on eBPF
129 * registers.
130 *
131 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
132 * registers, we have to map each eBPF registers with two arm 32 bit regs or
133 * scratch memory space and we have to build eBPF 64 bit register from those.
ddecdfce 134 *
ddecdfce 135 */
1c35ba12 136static const s8 bpf2a32[][2] = {
39c13c20
SB
137 /* return value from in-kernel function, and exit value from eBPF */
138 [BPF_REG_0] = {ARM_R1, ARM_R0},
139 /* arguments from eBPF program to in-kernel function */
140 [BPF_REG_1] = {ARM_R3, ARM_R2},
141 /* Stored on stack scratch space */
d449ceb1
RK
142 [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
143 [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
144 [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
145 [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
39c13c20
SB
146 /* callee saved registers that in-kernel function will preserve */
147 [BPF_REG_6] = {ARM_R5, ARM_R4},
148 /* Stored on stack scratch space */
d449ceb1
RK
149 [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
150 [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
151 [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
39c13c20 152 /* Read only Frame Pointer to access Stack */
d449ceb1 153 [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
39c13c20
SB
154 /* Temporary Register for internal BPF JIT, can be used
155 * for constant blindings and others.
156 */
157 [TMP_REG_1] = {ARM_R7, ARM_R6},
bef8968d 158 [TMP_REG_2] = {ARM_R9, ARM_R8},
39c13c20 159 /* Tail call count. Stored on stack scratch space. */
d449ceb1 160 [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
39c13c20
SB
161 /* temporary register for blinding constants.
162 * Stored on stack scratch space.
163 */
d449ceb1 164 [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
39c13c20 165};
ddecdfce 166
39c13c20
SB
167#define dst_lo dst[1]
168#define dst_hi dst[0]
169#define src_lo src[1]
170#define src_hi src[0]
ddecdfce 171
39c13c20
SB
172/*
173 * JIT Context:
174 *
175 * prog : bpf_prog
176 * idx : index of current last JITed instruction.
177 * prologue_bytes : bytes used in prologue.
178 * epilogue_offset : offset of epilogue starting.
39c13c20
SB
179 * offsets : array of eBPF instruction offsets in
180 * JITed code.
181 * target : final JITed code.
182 * epilogue_bytes : no of bytes used in epilogue.
183 * imm_count : no of immediate counts used for global
184 * variables.
185 * imms : array of global variable addresses.
186 */
ddecdfce
MG
187
188struct jit_ctx {
39c13c20
SB
189 const struct bpf_prog *prog;
190 unsigned int idx;
191 unsigned int prologue_bytes;
192 unsigned int epilogue_offset;
8c9602d3 193 unsigned int cpu_architecture;
ddecdfce
MG
194 u32 flags;
195 u32 *offsets;
196 u32 *target;
39c13c20 197 u32 stack_size;
ddecdfce
MG
198#if __LINUX_ARM_ARCH__ < 7
199 u16 epilogue_bytes;
200 u16 imm_count;
201 u32 *imms;
202#endif
203};
204
ddecdfce 205/*
4560cdff 206 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
ddecdfce
MG
207 * (where the assembly routines like __aeabi_uidiv could cause problems).
208 */
39c13c20 209static u32 jit_udiv32(u32 dividend, u32 divisor)
ddecdfce
MG
210{
211 return dividend / divisor;
212}
213
39c13c20 214static u32 jit_mod32(u32 dividend, u32 divisor)
4560cdff
NS
215{
216 return dividend % divisor;
217}
218
ddecdfce
MG
219static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
220{
3460743e
BD
221 inst |= (cond << 28);
222 inst = __opcode_to_mem_arm(inst);
223
ddecdfce 224 if (ctx->target != NULL)
3460743e 225 ctx->target[ctx->idx] = inst;
ddecdfce
MG
226
227 ctx->idx++;
228}
229
230/*
231 * Emit an instruction that will be executed unconditionally.
232 */
233static inline void emit(u32 inst, struct jit_ctx *ctx)
234{
235 _emit(ARM_COND_AL, inst, ctx);
236}
237
1ca3b17b
RK
238/*
239 * This is rather horrid, but necessary to convert an integer constant
240 * to an immediate operand for the opcodes, and be able to detect at
241 * build time whether the constant can't be converted (iow, usable in
242 * BUILD_BUG_ON()).
243 */
244#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
245#define const_imm8m(x) \
246 ({ int r; \
247 u32 v = (x); \
248 if (!(v & ~0x000000ff)) \
249 r = imm12val(v, 0); \
250 else if (!(v & ~0xc000003f)) \
251 r = imm12val(v, 2); \
252 else if (!(v & ~0xf000000f)) \
253 r = imm12val(v, 4); \
254 else if (!(v & ~0xfc000003)) \
255 r = imm12val(v, 6); \
256 else if (!(v & ~0xff000000)) \
257 r = imm12val(v, 8); \
258 else if (!(v & ~0x3fc00000)) \
259 r = imm12val(v, 10); \
260 else if (!(v & ~0x0ff00000)) \
261 r = imm12val(v, 12); \
262 else if (!(v & ~0x03fc0000)) \
263 r = imm12val(v, 14); \
264 else if (!(v & ~0x00ff0000)) \
265 r = imm12val(v, 16); \
266 else if (!(v & ~0x003fc000)) \
267 r = imm12val(v, 18); \
268 else if (!(v & ~0x000ff000)) \
269 r = imm12val(v, 20); \
270 else if (!(v & ~0x0003fc00)) \
271 r = imm12val(v, 22); \
272 else if (!(v & ~0x0000ff00)) \
273 r = imm12val(v, 24); \
274 else if (!(v & ~0x00003fc0)) \
275 r = imm12val(v, 26); \
276 else if (!(v & ~0x00000ff0)) \
277 r = imm12val(v, 28); \
278 else if (!(v & ~0x000003fc)) \
279 r = imm12val(v, 30); \
280 else \
281 r = -1; \
282 r; })
283
39c13c20
SB
284/*
285 * Checks if immediate value can be converted to imm12(12 bits) value.
286 */
1ca3b17b 287static int imm8m(u32 x)
ddecdfce 288{
39c13c20 289 u32 rot;
ddecdfce 290
39c13c20
SB
291 for (rot = 0; rot < 16; rot++)
292 if ((x & ~ror32(0xff, 2 * rot)) == 0)
293 return rol32(x, 2 * rot) | (rot << 8);
294 return -1;
ddecdfce
MG
295}
296
1ca3b17b
RK
297#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
298
a8ef95a0
RK
299static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
300{
301 op |= rt << 12 | rn << 16;
302 if (imm12 >= 0)
303 op |= ARM_INST_LDST__U;
304 else
305 imm12 = -imm12;
828e2b90 306 return op | (imm12 & ARM_INST_LDST__IMM12);
a8ef95a0
RK
307}
308
309static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
310{
311 op |= rt << 12 | rn << 16;
312 if (imm8 >= 0)
313 op |= ARM_INST_LDST__U;
314 else
315 imm8 = -imm8;
316 return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
317}
318
319#define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
320#define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
8c9602d3 321#define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
a8ef95a0
RK
322#define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
323
324#define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
325#define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
8c9602d3 326#define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
a8ef95a0
RK
327#define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
328
39c13c20
SB
329/*
330 * Initializes the JIT space with undefined instructions.
331 */
55309dd3
DB
332static void jit_fill_hole(void *area, unsigned int size)
333{
e8b56d55 334 u32 *ptr;
55309dd3
DB
335 /* We are guaranteed to have aligned memory. */
336 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
e8b56d55 337 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
55309dd3
DB
338}
339
d1220efd
RK
340#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
341/* EABI requires the stack to be aligned to 64-bit boundaries */
342#define STACK_ALIGNMENT 8
343#else
344/* Stack must be aligned to 32-bit boundaries */
345#define STACK_ALIGNMENT 4
346#endif
ddecdfce 347
39c13c20 348/* total stack size used in JITed code */
38ca9306
DB
349#define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
350#define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
ddecdfce 351
ddecdfce
MG
352#if __LINUX_ARM_ARCH__ < 7
353
354static u16 imm_offset(u32 k, struct jit_ctx *ctx)
355{
39c13c20 356 unsigned int i = 0, offset;
ddecdfce
MG
357 u16 imm;
358
359 /* on the "fake" run we just count them (duplicates included) */
360 if (ctx->target == NULL) {
361 ctx->imm_count++;
362 return 0;
363 }
364
365 while ((i < ctx->imm_count) && ctx->imms[i]) {
366 if (ctx->imms[i] == k)
367 break;
368 i++;
369 }
370
371 if (ctx->imms[i] == 0)
372 ctx->imms[i] = k;
373
374 /* constants go just after the epilogue */
39c13c20 375 offset = ctx->offsets[ctx->prog->len - 1] * 4;
ddecdfce
MG
376 offset += ctx->prologue_bytes;
377 offset += ctx->epilogue_bytes;
378 offset += i * 4;
379
380 ctx->target[offset / 4] = k;
381
382 /* PC in ARM mode == address of the instruction + 8 */
383 imm = offset - (8 + ctx->idx * 4);
384
0b59d880
NS
385 if (imm & ~0xfff) {
386 /*
387 * literal pool is too far, signal it into flags. we
388 * can only detect it on the second pass unfortunately.
389 */
390 ctx->flags |= FLAG_IMM_OVERFLOW;
391 return 0;
392 }
393
ddecdfce
MG
394 return imm;
395}
396
397#endif /* __LINUX_ARM_ARCH__ */
398
39c13c20
SB
399static inline int bpf2a32_offset(int bpf_to, int bpf_from,
400 const struct jit_ctx *ctx) {
401 int to, from;
402
403 if (ctx->target == NULL)
404 return 0;
405 to = ctx->offsets[bpf_to];
406 from = ctx->offsets[bpf_from];
407
408 return to - from - 1;
409}
410
ddecdfce
MG
411/*
412 * Move an immediate that's not an imm8m to a core register.
413 */
39c13c20 414static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
ddecdfce
MG
415{
416#if __LINUX_ARM_ARCH__ < 7
417 emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
418#else
419 emit(ARM_MOVW(rd, val & 0xffff), ctx);
420 if (val > 0xffff)
421 emit(ARM_MOVT(rd, val >> 16), ctx);
422#endif
423}
424
39c13c20 425static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
ddecdfce
MG
426{
427 int imm12 = imm8m(val);
428
429 if (imm12 >= 0)
430 emit(ARM_MOV_I(rd, imm12), ctx);
431 else
432 emit_mov_i_no8m(rd, val, ctx);
433}
434
e9062481 435static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
ddecdfce 436{
39c13c20
SB
437 if (elf_hwcap & HWCAP_THUMB)
438 emit(ARM_BX(tgt_reg), ctx);
439 else
440 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
e9062481
RK
441}
442
443static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
444{
e9062481
RK
445#if __LINUX_ARM_ARCH__ < 5
446 emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
447 emit_bx_r(tgt_reg, ctx);
39c13c20
SB
448#else
449 emit(ARM_BLX_R(tgt_reg), ctx);
450#endif
ddecdfce
MG
451}
452
39c13c20 453static inline int epilogue_offset(const struct jit_ctx *ctx)
ddecdfce 454{
39c13c20
SB
455 int to, from;
456 /* No need for 1st dummy run */
457 if (ctx->target == NULL)
458 return 0;
459 to = ctx->epilogue_offset;
460 from = ctx->idx;
461
462 return to - from - 2;
ddecdfce
MG
463}
464
39c13c20 465static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
ddecdfce 466{
1c35ba12 467 const s8 *tmp = bpf2a32[TMP_REG_1];
39c13c20 468
39c13c20
SB
469#if __LINUX_ARM_ARCH__ == 7
470 if (elf_hwcap & HWCAP_IDIVA) {
471 if (op == BPF_DIV)
472 emit(ARM_UDIV(rd, rm, rn), ctx);
473 else {
474 emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
475 emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
476 }
477 return;
478 }
479#endif
462738f4
NS
480
481 /*
39c13c20
SB
482 * For BPF_ALU | BPF_DIV | BPF_K instructions
483 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
484 * function, we need to save it on caller side to save
485 * it from getting destroyed within callee.
486 * After the return from the callee, we restore ARM_R0
487 * ARM_R1.
462738f4 488 */
39c13c20
SB
489 if (rn != ARM_R1) {
490 emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
491 emit(ARM_MOV_R(ARM_R1, rn), ctx);
492 }
493 if (rm != ARM_R0) {
494 emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
495 emit(ARM_MOV_R(ARM_R0, rm), ctx);
496 }
ddecdfce 497
39c13c20 498 /* Call appropriate function */
39c13c20
SB
499 emit_mov_i(ARM_IP, op == BPF_DIV ?
500 (u32)jit_udiv32 : (u32)jit_mod32, ctx);
501 emit_blx_r(ARM_IP, ctx);
ddecdfce 502
39c13c20
SB
503 /* Save return value */
504 if (rd != ARM_R0)
505 emit(ARM_MOV_R(rd, ARM_R0), ctx);
506
507 /* Restore ARM_R0 and ARM_R1 */
508 if (rn != ARM_R1)
509 emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
510 if (rm != ARM_R0)
511 emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
ddecdfce
MG
512}
513
47b9c3bf
RK
514/* Is the translated BPF register on stack? */
515static bool is_stacked(s8 reg)
ddecdfce 516{
47b9c3bf 517 return reg < 0;
ddecdfce
MG
518}
519
7a987025
RK
520/* If a BPF register is on the stack (stk is true), load it to the
521 * supplied temporary register and return the temporary register
522 * for subsequent operations, otherwise just use the CPU register.
523 */
524static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
525{
526 if (is_stacked(reg)) {
96cced4e 527 emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
7a987025
RK
528 reg = tmp;
529 }
530 return reg;
531}
532
a6eccac5
RK
533static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
534 struct jit_ctx *ctx)
535{
536 if (is_stacked(reg[1])) {
8c9602d3
RK
537 if (__LINUX_ARM_ARCH__ >= 6 ||
538 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
539 emit(ARM_LDRD_I(tmp[1], ARM_FP,
540 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
541 } else {
542 emit(ARM_LDR_I(tmp[1], ARM_FP,
543 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
544 emit(ARM_LDR_I(tmp[0], ARM_FP,
545 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
546 }
a6eccac5
RK
547 reg = tmp;
548 }
549 return reg;
550}
551
7a987025
RK
552/* If a BPF register is on the stack (stk is true), save the register
553 * back to the stack. If the source register is not the same, then
554 * move it into the correct register.
555 */
556static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
557{
558 if (is_stacked(reg))
96cced4e 559 emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
7a987025
RK
560 else if (reg != src)
561 emit(ARM_MOV_R(reg, src), ctx);
562}
563
a6eccac5
RK
564static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
565 struct jit_ctx *ctx)
566{
567 if (is_stacked(reg[1])) {
8c9602d3
RK
568 if (__LINUX_ARM_ARCH__ >= 6 ||
569 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
570 emit(ARM_STRD_I(src[1], ARM_FP,
571 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
572 } else {
573 emit(ARM_STR_I(src[1], ARM_FP,
574 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
575 emit(ARM_STR_I(src[0], ARM_FP,
576 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
577 }
a6eccac5
RK
578 } else {
579 if (reg[1] != src[1])
580 emit(ARM_MOV_R(reg[1], src[1]), ctx);
581 if (reg[0] != src[0])
582 emit(ARM_MOV_R(reg[0], src[0]), ctx);
583 }
584}
585
1c35ba12 586static inline void emit_a32_mov_i(const s8 dst, const u32 val,
47b9c3bf 587 struct jit_ctx *ctx)
ddecdfce 588{
1c35ba12 589 const s8 *tmp = bpf2a32[TMP_REG_1];
39c13c20 590
47b9c3bf 591 if (is_stacked(dst)) {
39c13c20 592 emit_mov_i(tmp[1], val, ctx);
7a987025 593 arm_bpf_put_reg32(dst, tmp[1], ctx);
39c13c20
SB
594 } else {
595 emit_mov_i(dst, val, ctx);
596 }
ddecdfce
MG
597}
598
f9ff5018
RK
599static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
600{
601 const s8 *tmp = bpf2a32[TMP_REG_1];
602 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
603
604 emit_mov_i(rd[1], (u32)val, ctx);
605 emit_mov_i(rd[0], val >> 32, ctx);
606
607 arm_bpf_put_reg64(dst, rd, ctx);
608}
609
39c13c20 610/* Sign extended move */
f9ff5018
RK
611static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
612 const u32 val, struct jit_ctx *ctx) {
077513b8 613 u64 val64 = val;
ddecdfce 614
39c13c20 615 if (is64 && (val & (1<<31)))
077513b8
RK
616 val64 |= 0xffffffff00000000ULL;
617 emit_a32_mov_i64(dst, val64, ctx);
39c13c20 618}
ddecdfce 619
39c13c20
SB
620static inline void emit_a32_add_r(const u8 dst, const u8 src,
621 const bool is64, const bool hi,
622 struct jit_ctx *ctx) {
623 /* 64 bit :
624 * adds dst_lo, dst_lo, src_lo
625 * adc dst_hi, dst_hi, src_hi
626 * 32 bit :
627 * add dst_lo, dst_lo, src_lo
628 */
629 if (!hi && is64)
630 emit(ARM_ADDS_R(dst, dst, src), ctx);
631 else if (hi && is64)
632 emit(ARM_ADC_R(dst, dst, src), ctx);
633 else
634 emit(ARM_ADD_R(dst, dst, src), ctx);
635}
ddecdfce 636
39c13c20
SB
637static inline void emit_a32_sub_r(const u8 dst, const u8 src,
638 const bool is64, const bool hi,
639 struct jit_ctx *ctx) {
640 /* 64 bit :
641 * subs dst_lo, dst_lo, src_lo
642 * sbc dst_hi, dst_hi, src_hi
643 * 32 bit :
644 * sub dst_lo, dst_lo, src_lo
ddecdfce 645 */
39c13c20
SB
646 if (!hi && is64)
647 emit(ARM_SUBS_R(dst, dst, src), ctx);
648 else if (hi && is64)
649 emit(ARM_SBC_R(dst, dst, src), ctx);
650 else
651 emit(ARM_SUB_R(dst, dst, src), ctx);
652}
ddecdfce 653
39c13c20
SB
654static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
655 const bool hi, const u8 op, struct jit_ctx *ctx){
656 switch (BPF_OP(op)) {
657 /* dst = dst + src */
658 case BPF_ADD:
659 emit_a32_add_r(dst, src, is64, hi, ctx);
660 break;
661 /* dst = dst - src */
662 case BPF_SUB:
663 emit_a32_sub_r(dst, src, is64, hi, ctx);
664 break;
665 /* dst = dst | src */
666 case BPF_OR:
667 emit(ARM_ORR_R(dst, dst, src), ctx);
668 break;
669 /* dst = dst & src */
670 case BPF_AND:
671 emit(ARM_AND_R(dst, dst, src), ctx);
672 break;
673 /* dst = dst ^ src */
674 case BPF_XOR:
675 emit(ARM_EOR_R(dst, dst, src), ctx);
676 break;
677 /* dst = dst * src */
678 case BPF_MUL:
679 emit(ARM_MUL(dst, dst, src), ctx);
680 break;
681 /* dst = dst << src */
682 case BPF_LSH:
683 emit(ARM_LSL_R(dst, dst, src), ctx);
684 break;
685 /* dst = dst >> src */
686 case BPF_RSH:
687 emit(ARM_LSR_R(dst, dst, src), ctx);
688 break;
689 /* dst = dst >> src (signed)*/
690 case BPF_ARSH:
691 emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
692 break;
693 }
ddecdfce
MG
694}
695
39c13c20
SB
696/* ALU operation (32 bit)
697 * dst = dst (op) src
698 */
1c35ba12 699static inline void emit_a32_alu_r(const s8 dst, const s8 src,
39c13c20
SB
700 struct jit_ctx *ctx, const bool is64,
701 const bool hi, const u8 op) {
1c35ba12 702 const s8 *tmp = bpf2a32[TMP_REG_1];
7a987025 703 s8 rn, rd;
39c13c20 704
7a987025
RK
705 rn = arm_bpf_get_reg32(src, tmp[1], ctx);
706 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
39c13c20 707 /* ALU operation */
7a987025
RK
708 emit_alu_r(rd, rn, is64, hi, op, ctx);
709 arm_bpf_put_reg32(dst, rd, ctx);
ddecdfce
MG
710}
711
39c13c20 712/* ALU operation (64 bit) */
1c35ba12 713static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
47b9c3bf 714 const s8 src[], struct jit_ctx *ctx,
39c13c20 715 const u8 op) {
b18bea2a
RK
716 const s8 *tmp = bpf2a32[TMP_REG_1];
717 const s8 *tmp2 = bpf2a32[TMP_REG_2];
718 const s8 *rd;
719
720 rd = arm_bpf_get_reg64(dst, tmp, ctx);
721 if (is64) {
722 const s8 *rs;
723
724 rs = arm_bpf_get_reg64(src, tmp2, ctx);
725
726 /* ALU operation */
727 emit_alu_r(rd[1], rs[1], true, false, op, ctx);
728 emit_alu_r(rd[0], rs[0], true, true, op, ctx);
729 } else {
730 s8 rs;
731
732 rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
733
734 /* ALU operation */
735 emit_alu_r(rd[1], rs, true, false, op, ctx);
736 emit_a32_mov_i(rd[0], 0, ctx);
737 }
738
739 arm_bpf_put_reg64(dst, rd, ctx);
39c13c20 740}
ddecdfce 741
7a987025 742/* dst = src (4 bytes)*/
1c35ba12 743static inline void emit_a32_mov_r(const s8 dst, const s8 src,
39c13c20 744 struct jit_ctx *ctx) {
1c35ba12 745 const s8 *tmp = bpf2a32[TMP_REG_1];
7a987025 746 s8 rt;
39c13c20 747
7a987025
RK
748 rt = arm_bpf_get_reg32(src, tmp[0], ctx);
749 arm_bpf_put_reg32(dst, rt, ctx);
ddecdfce
MG
750}
751
39c13c20 752/* dst = src */
1c35ba12 753static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
47b9c3bf
RK
754 const s8 src[],
755 struct jit_ctx *ctx) {
8c9602d3
RK
756 if (!is64) {
757 emit_a32_mov_r(dst_lo, src_lo, ctx);
758 /* Zero out high 4 bytes */
759 emit_a32_mov_i(dst_hi, 0, ctx);
760 } else if (__LINUX_ARM_ARCH__ < 6 &&
761 ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
39c13c20 762 /* complete 8 byte move */
8c9602d3 763 emit_a32_mov_r(dst_lo, src_lo, ctx);
47b9c3bf 764 emit_a32_mov_r(dst_hi, src_hi, ctx);
8c9602d3
RK
765 } else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
766 const u8 *tmp = bpf2a32[TMP_REG_1];
767
768 emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
769 emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
770 } else if (is_stacked(src_lo)) {
771 emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
772 } else if (is_stacked(dst_lo)) {
773 emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
39c13c20 774 } else {
8c9602d3
RK
775 emit(ARM_MOV_R(dst[0], src[0]), ctx);
776 emit(ARM_MOV_R(dst[1], src[1]), ctx);
ddecdfce 777 }
39c13c20 778}
19fc99d0 779
39c13c20 780/* Shift operations */
47b9c3bf 781static inline void emit_a32_alu_i(const s8 dst, const u32 val,
39c13c20 782 struct jit_ctx *ctx, const u8 op) {
1c35ba12 783 const s8 *tmp = bpf2a32[TMP_REG_1];
7a987025 784 s8 rd;
39c13c20 785
7a987025 786 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
39c13c20
SB
787
788 /* Do shift operation */
789 switch (op) {
790 case BPF_LSH:
791 emit(ARM_LSL_I(rd, rd, val), ctx);
792 break;
793 case BPF_RSH:
794 emit(ARM_LSR_I(rd, rd, val), ctx);
795 break;
796 case BPF_NEG:
797 emit(ARM_RSB_I(rd, rd, val), ctx);
798 break;
799 }
ddecdfce 800
7a987025 801 arm_bpf_put_reg32(dst, rd, ctx);
39c13c20
SB
802}
803
804/* dst = ~dst (64 bit) */
47b9c3bf 805static inline void emit_a32_neg64(const s8 dst[],
39c13c20 806 struct jit_ctx *ctx){
1c35ba12 807 const s8 *tmp = bpf2a32[TMP_REG_1];
a6eccac5 808 const s8 *rd;
39c13c20
SB
809
810 /* Setup Operand */
a6eccac5 811 rd = arm_bpf_get_reg64(dst, tmp, ctx);
39c13c20
SB
812
813 /* Do Negate Operation */
a6eccac5
RK
814 emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
815 emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
39c13c20 816
a6eccac5 817 arm_bpf_put_reg64(dst, rd, ctx);
39c13c20
SB
818}
819
820/* dst = dst << src */
47b9c3bf
RK
821static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
822 struct jit_ctx *ctx) {
1c35ba12
RK
823 const s8 *tmp = bpf2a32[TMP_REG_1];
824 const s8 *tmp2 = bpf2a32[TMP_REG_2];
a6eccac5
RK
825 const s8 *rd;
826 s8 rt;
39c13c20
SB
827
828 /* Setup Operands */
7a987025 829 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
a6eccac5 830 rd = arm_bpf_get_reg64(dst, tmp, ctx);
39c13c20
SB
831
832 /* Do LSH operation */
833 emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
834 emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
a6eccac5
RK
835 emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
836 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
837 emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
838 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
39c13c20 839
7a987025
RK
840 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
841 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
39c13c20 842}
ddecdfce 843
39c13c20 844/* dst = dst >> src (signed)*/
47b9c3bf
RK
845static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
846 struct jit_ctx *ctx) {
1c35ba12
RK
847 const s8 *tmp = bpf2a32[TMP_REG_1];
848 const s8 *tmp2 = bpf2a32[TMP_REG_2];
a6eccac5
RK
849 const s8 *rd;
850 s8 rt;
7a987025 851
39c13c20 852 /* Setup Operands */
7a987025 853 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
a6eccac5 854 rd = arm_bpf_get_reg64(dst, tmp, ctx);
39c13c20
SB
855
856 /* Do the ARSH operation */
857 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
858 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
a6eccac5
RK
859 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
860 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
39c13c20 861 _emit(ARM_COND_MI, ARM_B(0), ctx);
a6eccac5
RK
862 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
863 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
7a987025
RK
864
865 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
866 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
39c13c20
SB
867}
868
869/* dst = dst >> src */
47b9c3bf
RK
870static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
871 struct jit_ctx *ctx) {
1c35ba12
RK
872 const s8 *tmp = bpf2a32[TMP_REG_1];
873 const s8 *tmp2 = bpf2a32[TMP_REG_2];
a6eccac5
RK
874 const s8 *rd;
875 s8 rt;
7a987025 876
39c13c20 877 /* Setup Operands */
7a987025 878 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
a6eccac5 879 rd = arm_bpf_get_reg64(dst, tmp, ctx);
39c13c20 880
68565a1a 881 /* Do RSH operation */
39c13c20
SB
882 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
883 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
a6eccac5
RK
884 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
885 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
886 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
887 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
7a987025
RK
888
889 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
890 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
ddecdfce
MG
891}
892
39c13c20 893/* dst = dst << val */
47b9c3bf
RK
894static inline void emit_a32_lsh_i64(const s8 dst[],
895 const u32 val, struct jit_ctx *ctx){
1c35ba12
RK
896 const s8 *tmp = bpf2a32[TMP_REG_1];
897 const s8 *tmp2 = bpf2a32[TMP_REG_2];
a6eccac5 898 const s8 *rd;
39c13c20 899
7a987025 900 /* Setup operands */
a6eccac5 901 rd = arm_bpf_get_reg64(dst, tmp, ctx);
39c13c20
SB
902
903 /* Do LSH operation */
904 if (val < 32) {
a6eccac5
RK
905 emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
906 emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
907 emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
39c13c20
SB
908 } else {
909 if (val == 32)
a6eccac5 910 emit(ARM_MOV_R(rd[0], rd[1]), ctx);
39c13c20 911 else
a6eccac5
RK
912 emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
913 emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
39c13c20
SB
914 }
915
a6eccac5 916 arm_bpf_put_reg64(dst, rd, ctx);
39c13c20
SB
917}
918
919/* dst = dst >> val */
47b9c3bf 920static inline void emit_a32_rsh_i64(const s8 dst[],
39c13c20 921 const u32 val, struct jit_ctx *ctx) {
1c35ba12
RK
922 const s8 *tmp = bpf2a32[TMP_REG_1];
923 const s8 *tmp2 = bpf2a32[TMP_REG_2];
a6eccac5 924 const s8 *rd;
39c13c20 925
7a987025 926 /* Setup operands */
a6eccac5 927 rd = arm_bpf_get_reg64(dst, tmp, ctx);
39c13c20
SB
928
929 /* Do LSR operation */
930 if (val < 32) {
a6eccac5
RK
931 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
932 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
933 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
39c13c20 934 } else if (val == 32) {
a6eccac5
RK
935 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
936 emit(ARM_MOV_I(rd[0], 0), ctx);
39c13c20 937 } else {
a6eccac5
RK
938 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
939 emit(ARM_MOV_I(rd[0], 0), ctx);
39c13c20
SB
940 }
941
a6eccac5 942 arm_bpf_put_reg64(dst, rd, ctx);
39c13c20
SB
943}
944
945/* dst = dst >> val (signed) */
47b9c3bf 946static inline void emit_a32_arsh_i64(const s8 dst[],
39c13c20 947 const u32 val, struct jit_ctx *ctx){
1c35ba12
RK
948 const s8 *tmp = bpf2a32[TMP_REG_1];
949 const s8 *tmp2 = bpf2a32[TMP_REG_2];
a6eccac5 950 const s8 *rd;
39c13c20 951
7a987025 952 /* Setup operands */
a6eccac5 953 rd = arm_bpf_get_reg64(dst, tmp, ctx);
39c13c20
SB
954
955 /* Do ARSH operation */
956 if (val < 32) {
a6eccac5
RK
957 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
958 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
959 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
39c13c20 960 } else if (val == 32) {
a6eccac5
RK
961 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
962 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
39c13c20 963 } else {
a6eccac5
RK
964 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
965 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
39c13c20
SB
966 }
967
a6eccac5 968 arm_bpf_put_reg64(dst, rd, ctx);
39c13c20
SB
969}
970
47b9c3bf
RK
971static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
972 struct jit_ctx *ctx) {
1c35ba12
RK
973 const s8 *tmp = bpf2a32[TMP_REG_1];
974 const s8 *tmp2 = bpf2a32[TMP_REG_2];
a6eccac5 975 const s8 *rd, *rt;
7a987025 976
39c13c20 977 /* Setup operands for multiplication */
a6eccac5
RK
978 rd = arm_bpf_get_reg64(dst, tmp, ctx);
979 rt = arm_bpf_get_reg64(src, tmp2, ctx);
39c13c20
SB
980
981 /* Do Multiplication */
a6eccac5
RK
982 emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
983 emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
39c13c20
SB
984 emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
985
a6eccac5
RK
986 emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
987 emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
7a987025
RK
988
989 arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
a6eccac5 990 arm_bpf_put_reg32(dst_hi, rd[0], ctx);
39c13c20
SB
991}
992
993/* *(size *)(dst + off) = src */
c5eae692
RK
994static inline void emit_str_r(const s8 dst, const s8 src[],
995 s32 off, struct jit_ctx *ctx, const u8 sz){
1c35ba12 996 const s8 *tmp = bpf2a32[TMP_REG_1];
c5eae692 997 s32 off_max;
7a987025 998 s8 rd;
39c13c20 999
7a987025 1000 rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
c5eae692
RK
1001
1002 if (sz == BPF_H)
1003 off_max = 0xff;
1004 else
1005 off_max = 0xfff;
1006
1007 if (off < 0 || off > off_max) {
47b9c3bf 1008 emit_a32_mov_i(tmp[0], off, ctx);
c5eae692 1009 emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
39c13c20 1010 rd = tmp[0];
c5eae692 1011 off = 0;
39c13c20
SB
1012 }
1013 switch (sz) {
c5eae692
RK
1014 case BPF_B:
1015 /* Store a Byte */
1016 emit(ARM_STRB_I(src_lo, rd, off), ctx);
39c13c20
SB
1017 break;
1018 case BPF_H:
1019 /* Store a HalfWord */
c5eae692 1020 emit(ARM_STRH_I(src_lo, rd, off), ctx);
39c13c20 1021 break;
c5eae692
RK
1022 case BPF_W:
1023 /* Store a Word */
1024 emit(ARM_STR_I(src_lo, rd, off), ctx);
1025 break;
1026 case BPF_DW:
1027 /* Store a Double Word */
1028 emit(ARM_STR_I(src_lo, rd, off), ctx);
1029 emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
39c13c20
SB
1030 break;
1031 }
1032}
1033
1034/* dst = *(size*)(src + off) */
47b9c3bf 1035static inline void emit_ldx_r(const s8 dst[], const s8 src,
ec19e02b 1036 s32 off, struct jit_ctx *ctx, const u8 sz){
1c35ba12 1037 const s8 *tmp = bpf2a32[TMP_REG_1];
47b9c3bf 1038 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1c35ba12 1039 s8 rm = src;
ec19e02b 1040 s32 off_max;
39c13c20 1041
ec19e02b
RK
1042 if (sz == BPF_H)
1043 off_max = 0xff;
1044 else
1045 off_max = 0xfff;
1046
1047 if (off < 0 || off > off_max) {
47b9c3bf 1048 emit_a32_mov_i(tmp[0], off, ctx);
39c13c20
SB
1049 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1050 rm = tmp[0];
ec19e02b
RK
1051 off = 0;
1052 } else if (rd[1] == rm) {
1053 emit(ARM_MOV_R(tmp[0], rm), ctx);
1054 rm = tmp[0];
39c13c20
SB
1055 }
1056 switch (sz) {
ec19e02b
RK
1057 case BPF_B:
1058 /* Load a Byte */
1059 emit(ARM_LDRB_I(rd[1], rm, off), ctx);
a6eccac5 1060 emit_a32_mov_i(rd[0], 0, ctx);
39c13c20
SB
1061 break;
1062 case BPF_H:
1063 /* Load a HalfWord */
ec19e02b 1064 emit(ARM_LDRH_I(rd[1], rm, off), ctx);
a6eccac5 1065 emit_a32_mov_i(rd[0], 0, ctx);
39c13c20 1066 break;
ec19e02b
RK
1067 case BPF_W:
1068 /* Load a Word */
1069 emit(ARM_LDR_I(rd[1], rm, off), ctx);
a6eccac5 1070 emit_a32_mov_i(rd[0], 0, ctx);
ec19e02b
RK
1071 break;
1072 case BPF_DW:
1073 /* Load a Double Word */
1074 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1075 emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
39c13c20
SB
1076 break;
1077 }
a6eccac5 1078 arm_bpf_put_reg64(dst, rd, ctx);
39c13c20
SB
1079}
1080
1081/* Arithmatic Operation */
1082static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
b85062ac
JW
1083 const u8 rn, struct jit_ctx *ctx, u8 op,
1084 bool is_jmp64) {
39c13c20
SB
1085 switch (op) {
1086 case BPF_JSET:
b85062ac
JW
1087 if (is_jmp64) {
1088 emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1089 emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1090 emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1091 } else {
1092 emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1093 }
39c13c20
SB
1094 break;
1095 case BPF_JEQ:
1096 case BPF_JNE:
1097 case BPF_JGT:
1098 case BPF_JGE:
1099 case BPF_JLE:
1100 case BPF_JLT:
b85062ac
JW
1101 if (is_jmp64) {
1102 emit(ARM_CMP_R(rd, rm), ctx);
1103 /* Only compare low halve if high halve are equal. */
1104 _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1105 } else {
1106 emit(ARM_CMP_R(rt, rn), ctx);
1107 }
39c13c20
SB
1108 break;
1109 case BPF_JSLE:
1110 case BPF_JSGT:
1111 emit(ARM_CMP_R(rn, rt), ctx);
b85062ac
JW
1112 if (is_jmp64)
1113 emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
39c13c20
SB
1114 break;
1115 case BPF_JSLT:
1116 case BPF_JSGE:
1117 emit(ARM_CMP_R(rt, rn), ctx);
b85062ac
JW
1118 if (is_jmp64)
1119 emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
39c13c20
SB
1120 break;
1121 }
1122}
1123
1124static int out_offset = -1; /* initialized on the first pass of build_body() */
1125static int emit_bpf_tail_call(struct jit_ctx *ctx)
ddecdfce 1126{
ddecdfce 1127
39c13c20 1128 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1c35ba12
RK
1129 const s8 *r2 = bpf2a32[BPF_REG_2];
1130 const s8 *r3 = bpf2a32[BPF_REG_3];
1131 const s8 *tmp = bpf2a32[TMP_REG_1];
1132 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1133 const s8 *tcc = bpf2a32[TCALL_CNT];
a6eccac5 1134 const s8 *tc;
39c13c20
SB
1135 const int idx0 = ctx->idx;
1136#define cur_offset (ctx->idx - idx0)
f4483f2c 1137#define jmp_offset (out_offset - (cur_offset) - 2)
828e2b90 1138 u32 lo, hi;
a6eccac5 1139 s8 r_array, r_index;
828e2b90 1140 int off;
39c13c20
SB
1141
1142 /* if (index >= array->map.max_entries)
1143 * goto out;
1144 */
828e2b90
RK
1145 BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1146 ARM_INST_LDST__IMM12);
39c13c20 1147 off = offsetof(struct bpf_array, map.max_entries);
b5045229 1148 r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
091f0248 1149 /* index is 32-bit for arrays */
7a987025 1150 r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
b5045229
RK
1151 /* array->map.max_entries */
1152 emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
39c13c20 1153 /* index >= array->map.max_entries */
7a987025 1154 emit(ARM_CMP_R(r_index, tmp[1]), ctx);
39c13c20
SB
1155 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1156
b5045229 1157 /* tmp2[0] = array, tmp2[1] = index */
aaffd2f5 1158
39c13c20
SB
1159 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1160 * goto out;
1161 * tail_call_cnt++;
1162 */
1163 lo = (u32)MAX_TAIL_CALL_CNT;
1164 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
a6eccac5
RK
1165 tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1166 emit(ARM_CMP_I(tc[0], hi), ctx);
1167 _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
39c13c20 1168 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
a6eccac5
RK
1169 emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1170 emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1171 arm_bpf_put_reg64(tcc, tmp, ctx);
39c13c20
SB
1172
1173 /* prog = array->ptrs[index]
1174 * if (prog == NULL)
1175 * goto out;
1176 */
828e2b90
RK
1177 BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1178 off = imm8m(offsetof(struct bpf_array, ptrs));
828e2b90 1179 emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
2b6958ef 1180 emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
39c13c20
SB
1181 emit(ARM_CMP_I(tmp[1], 0), ctx);
1182 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1183
1184 /* goto *(prog->bpf_func + prologue_size); */
828e2b90
RK
1185 BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1186 ARM_INST_LDST__IMM12);
39c13c20 1187 off = offsetof(struct bpf_prog, bpf_func);
828e2b90 1188 emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
39c13c20 1189 emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
e9062481 1190 emit_bx_r(tmp[1], ctx);
39c13c20
SB
1191
1192 /* out: */
1193 if (out_offset == -1)
1194 out_offset = cur_offset;
1195 if (cur_offset != out_offset) {
1196 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1197 cur_offset, out_offset);
1198 return -1;
1199 }
1200 return 0;
1201#undef cur_offset
1202#undef jmp_offset
ddecdfce
MG
1203}
1204
39c13c20
SB
1205/* 0xabcd => 0xcdab */
1206static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
ddecdfce 1207{
39c13c20 1208#if __LINUX_ARM_ARCH__ < 6
1c35ba12 1209 const s8 *tmp2 = bpf2a32[TMP_REG_2];
39c13c20
SB
1210
1211 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1212 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1213 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1214 emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1215#else /* ARMv6+ */
1216 emit(ARM_REV16(rd, rn), ctx);
1217#endif
1218}
ddecdfce 1219
39c13c20
SB
1220/* 0xabcdefgh => 0xghefcdab */
1221static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1222{
1223#if __LINUX_ARM_ARCH__ < 6
1c35ba12 1224 const s8 *tmp2 = bpf2a32[TMP_REG_2];
39c13c20
SB
1225
1226 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1227 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1228 emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1229
1230 emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1231 emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1232 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1233 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1234 emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1235 emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1236 emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1237
1238#else /* ARMv6+ */
1239 emit(ARM_REV(rd, rn), ctx);
1240#endif
1241}
34805931 1242
39c13c20 1243// push the scratch stack register on top of the stack
96cced4e 1244static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
39c13c20 1245{
1c35ba12 1246 const s8 *tmp2 = bpf2a32[TMP_REG_2];
96cced4e 1247 const s8 *rt;
39c13c20 1248 u16 reg_set = 0;
ddecdfce 1249
96cced4e 1250 rt = arm_bpf_get_reg64(src, tmp2, ctx);
39c13c20 1251
96cced4e 1252 reg_set = (1 << rt[1]) | (1 << rt[0]);
39c13c20
SB
1253 emit(ARM_PUSH(reg_set), ctx);
1254}
1255
1256static void build_prologue(struct jit_ctx *ctx)
1257{
1c35ba12
RK
1258 const s8 r0 = bpf2a32[BPF_REG_0][1];
1259 const s8 r2 = bpf2a32[BPF_REG_1][1];
1260 const s8 r3 = bpf2a32[BPF_REG_1][0];
1261 const s8 r4 = bpf2a32[BPF_REG_6][1];
1262 const s8 fplo = bpf2a32[BPF_REG_FP][1];
1263 const s8 fphi = bpf2a32[BPF_REG_FP][0];
1264 const s8 *tcc = bpf2a32[TCALL_CNT];
39c13c20 1265
39c13c20 1266 /* Save callee saved registers. */
39c13c20 1267#ifdef CONFIG_FRAME_POINTER
02088d9b
RK
1268 u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1269 emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
39c13c20
SB
1270 emit(ARM_PUSH(reg_set), ctx);
1271 emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1272#else
02088d9b
RK
1273 emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1274 emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
39c13c20
SB
1275#endif
1276 /* Save frame pointer for later */
02088d9b 1277 emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx);
39c13c20
SB
1278
1279 ctx->stack_size = imm8m(STACK_SIZE);
1280
1281 /* Set up function call stack */
1282 emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
ddecdfce 1283
39c13c20 1284 /* Set up BPF prog stack base register */
47b9c3bf
RK
1285 emit_a32_mov_r(fplo, ARM_IP, ctx);
1286 emit_a32_mov_i(fphi, 0, ctx);
39c13c20
SB
1287
1288 /* mov r4, 0 */
1289 emit(ARM_MOV_I(r4, 0), ctx);
1290
1291 /* Move BPF_CTX to BPF_R1 */
1292 emit(ARM_MOV_R(r3, r4), ctx);
1293 emit(ARM_MOV_R(r2, r0), ctx);
1294 /* Initialize Tail Count */
96cced4e
RK
1295 emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[0])), ctx);
1296 emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[1])), ctx);
39c13c20
SB
1297 /* end of prologue */
1298}
1299
02088d9b 1300/* restore callee saved registers. */
39c13c20
SB
1301static void build_epilogue(struct jit_ctx *ctx)
1302{
39c13c20 1303#ifdef CONFIG_FRAME_POINTER
02088d9b
RK
1304 /* When using frame pointers, some additional registers need to
1305 * be loaded. */
1306 u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1307 emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
39c13c20
SB
1308 emit(ARM_LDM(ARM_SP, reg_set), ctx);
1309#else
39c13c20 1310 /* Restore callee saved registers. */
02088d9b
RK
1311 emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1312 emit(ARM_POP(CALLEE_POP_MASK), ctx);
39c13c20
SB
1313#endif
1314}
1315
1316/*
1317 * Convert an eBPF instruction to native instruction, i.e
1318 * JITs an eBPF instruction.
1319 * Returns :
1320 * 0 - Successfully JITed an 8-byte eBPF instruction
1321 * >0 - Successfully JITed a 16-byte eBPF instruction
1322 * <0 - Failed to JIT.
1323 */
1324static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1325{
1326 const u8 code = insn->code;
1c35ba12
RK
1327 const s8 *dst = bpf2a32[insn->dst_reg];
1328 const s8 *src = bpf2a32[insn->src_reg];
1329 const s8 *tmp = bpf2a32[TMP_REG_1];
1330 const s8 *tmp2 = bpf2a32[TMP_REG_2];
39c13c20
SB
1331 const s16 off = insn->off;
1332 const s32 imm = insn->imm;
1333 const int i = insn - ctx->prog->insnsi;
1334 const bool is64 = BPF_CLASS(code) == BPF_ALU64;
a6eccac5
RK
1335 const s8 *rd, *rs;
1336 s8 rd_lo, rt, rm, rn;
39c13c20
SB
1337 s32 jmp_offset;
1338
1339#define check_imm(bits, imm) do { \
2b589a7e
WY
1340 if ((imm) >= (1 << ((bits) - 1)) || \
1341 (imm) < -(1 << ((bits) - 1))) { \
39c13c20
SB
1342 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
1343 i, imm, imm); \
1344 return -EINVAL; \
1345 } \
1346} while (0)
1347#define check_imm24(imm) check_imm(24, imm)
1348
1349 switch (code) {
1350 /* ALU operations */
1351
1352 /* dst = src */
1353 case BPF_ALU | BPF_MOV | BPF_K:
1354 case BPF_ALU | BPF_MOV | BPF_X:
1355 case BPF_ALU64 | BPF_MOV | BPF_K:
1356 case BPF_ALU64 | BPF_MOV | BPF_X:
1357 switch (BPF_SRC(code)) {
1358 case BPF_X:
47b9c3bf 1359 emit_a32_mov_r64(is64, dst, src, ctx);
ddecdfce 1360 break;
39c13c20
SB
1361 case BPF_K:
1362 /* Sign-extend immediate value to destination reg */
f9ff5018 1363 emit_a32_mov_se_i64(is64, dst, imm, ctx);
ddecdfce 1364 break;
39c13c20
SB
1365 }
1366 break;
1367 /* dst = dst + src/imm */
1368 /* dst = dst - src/imm */
1369 /* dst = dst | src/imm */
1370 /* dst = dst & src/imm */
1371 /* dst = dst ^ src/imm */
1372 /* dst = dst * src/imm */
1373 /* dst = dst << src */
1374 /* dst = dst >> src */
1375 case BPF_ALU | BPF_ADD | BPF_K:
1376 case BPF_ALU | BPF_ADD | BPF_X:
1377 case BPF_ALU | BPF_SUB | BPF_K:
1378 case BPF_ALU | BPF_SUB | BPF_X:
1379 case BPF_ALU | BPF_OR | BPF_K:
1380 case BPF_ALU | BPF_OR | BPF_X:
1381 case BPF_ALU | BPF_AND | BPF_K:
1382 case BPF_ALU | BPF_AND | BPF_X:
1383 case BPF_ALU | BPF_XOR | BPF_K:
1384 case BPF_ALU | BPF_XOR | BPF_X:
1385 case BPF_ALU | BPF_MUL | BPF_K:
1386 case BPF_ALU | BPF_MUL | BPF_X:
1387 case BPF_ALU | BPF_LSH | BPF_X:
1388 case BPF_ALU | BPF_RSH | BPF_X:
1389 case BPF_ALU | BPF_ARSH | BPF_K:
1390 case BPF_ALU | BPF_ARSH | BPF_X:
1391 case BPF_ALU64 | BPF_ADD | BPF_K:
1392 case BPF_ALU64 | BPF_ADD | BPF_X:
1393 case BPF_ALU64 | BPF_SUB | BPF_K:
1394 case BPF_ALU64 | BPF_SUB | BPF_X:
1395 case BPF_ALU64 | BPF_OR | BPF_K:
1396 case BPF_ALU64 | BPF_OR | BPF_X:
1397 case BPF_ALU64 | BPF_AND | BPF_K:
1398 case BPF_ALU64 | BPF_AND | BPF_X:
1399 case BPF_ALU64 | BPF_XOR | BPF_K:
1400 case BPF_ALU64 | BPF_XOR | BPF_X:
1401 switch (BPF_SRC(code)) {
1402 case BPF_X:
47b9c3bf 1403 emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
ddecdfce 1404 break;
39c13c20
SB
1405 case BPF_K:
1406 /* Move immediate value to the temporary register
1407 * and then do the ALU operation on the temporary
1408 * register as this will sign-extend the immediate
1409 * value into temporary reg and then it would be
1410 * safe to do the operation on it.
6d715e30 1411 */
f9ff5018 1412 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
47b9c3bf 1413 emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
ddecdfce 1414 break;
39c13c20
SB
1415 }
1416 break;
1417 /* dst = dst / src(imm) */
1418 /* dst = dst % src(imm) */
1419 case BPF_ALU | BPF_DIV | BPF_K:
1420 case BPF_ALU | BPF_DIV | BPF_X:
1421 case BPF_ALU | BPF_MOD | BPF_K:
1422 case BPF_ALU | BPF_MOD | BPF_X:
a6eccac5 1423 rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
39c13c20
SB
1424 switch (BPF_SRC(code)) {
1425 case BPF_X:
7a987025 1426 rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
ddecdfce 1427 break;
39c13c20
SB
1428 case BPF_K:
1429 rt = tmp2[0];
47b9c3bf
RK
1430 emit_a32_mov_i(rt, imm, ctx);
1431 break;
1432 default:
1433 rt = src_lo;
ddecdfce 1434 break;
39c13c20 1435 }
a6eccac5
RK
1436 emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1437 arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
47b9c3bf 1438 emit_a32_mov_i(dst_hi, 0, ctx);
39c13c20
SB
1439 break;
1440 case BPF_ALU64 | BPF_DIV | BPF_K:
1441 case BPF_ALU64 | BPF_DIV | BPF_X:
1442 case BPF_ALU64 | BPF_MOD | BPF_K:
1443 case BPF_ALU64 | BPF_MOD | BPF_X:
1444 goto notyet;
1445 /* dst = dst >> imm */
1446 /* dst = dst << imm */
1447 case BPF_ALU | BPF_RSH | BPF_K:
1448 case BPF_ALU | BPF_LSH | BPF_K:
1449 if (unlikely(imm > 31))
1450 return -EINVAL;
1451 if (imm)
47b9c3bf
RK
1452 emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1453 emit_a32_mov_i(dst_hi, 0, ctx);
39c13c20
SB
1454 break;
1455 /* dst = dst << imm */
1456 case BPF_ALU64 | BPF_LSH | BPF_K:
1457 if (unlikely(imm > 63))
1458 return -EINVAL;
47b9c3bf 1459 emit_a32_lsh_i64(dst, imm, ctx);
39c13c20
SB
1460 break;
1461 /* dst = dst >> imm */
1462 case BPF_ALU64 | BPF_RSH | BPF_K:
1463 if (unlikely(imm > 63))
1464 return -EINVAL;
47b9c3bf 1465 emit_a32_rsh_i64(dst, imm, ctx);
39c13c20
SB
1466 break;
1467 /* dst = dst << src */
1468 case BPF_ALU64 | BPF_LSH | BPF_X:
47b9c3bf 1469 emit_a32_lsh_r64(dst, src, ctx);
39c13c20
SB
1470 break;
1471 /* dst = dst >> src */
1472 case BPF_ALU64 | BPF_RSH | BPF_X:
47b9c3bf 1473 emit_a32_rsh_r64(dst, src, ctx);
39c13c20
SB
1474 break;
1475 /* dst = dst >> src (signed) */
1476 case BPF_ALU64 | BPF_ARSH | BPF_X:
47b9c3bf 1477 emit_a32_arsh_r64(dst, src, ctx);
39c13c20
SB
1478 break;
1479 /* dst = dst >> imm (signed) */
1480 case BPF_ALU64 | BPF_ARSH | BPF_K:
1481 if (unlikely(imm > 63))
1482 return -EINVAL;
47b9c3bf 1483 emit_a32_arsh_i64(dst, imm, ctx);
39c13c20
SB
1484 break;
1485 /* dst = ~dst */
1486 case BPF_ALU | BPF_NEG:
47b9c3bf
RK
1487 emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1488 emit_a32_mov_i(dst_hi, 0, ctx);
39c13c20
SB
1489 break;
1490 /* dst = ~dst (64 bit) */
1491 case BPF_ALU64 | BPF_NEG:
47b9c3bf 1492 emit_a32_neg64(dst, ctx);
39c13c20
SB
1493 break;
1494 /* dst = dst * src/imm */
1495 case BPF_ALU64 | BPF_MUL | BPF_X:
1496 case BPF_ALU64 | BPF_MUL | BPF_K:
1497 switch (BPF_SRC(code)) {
1498 case BPF_X:
47b9c3bf 1499 emit_a32_mul_r64(dst, src, ctx);
ddecdfce 1500 break;
39c13c20
SB
1501 case BPF_K:
1502 /* Move immediate value to the temporary register
1503 * and then do the multiplication on it as this
1504 * will sign-extend the immediate value into temp
1505 * reg then it would be safe to do the operation
1506 * on it.
ddecdfce 1507 */
f9ff5018 1508 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
47b9c3bf 1509 emit_a32_mul_r64(dst, tmp2, ctx);
ddecdfce 1510 break;
39c13c20
SB
1511 }
1512 break;
1513 /* dst = htole(dst) */
1514 /* dst = htobe(dst) */
1515 case BPF_ALU | BPF_END | BPF_FROM_LE:
1516 case BPF_ALU | BPF_END | BPF_FROM_BE:
a6eccac5 1517 rd = arm_bpf_get_reg64(dst, tmp, ctx);
39c13c20
SB
1518 if (BPF_SRC(code) == BPF_FROM_LE)
1519 goto emit_bswap_uxt;
1520 switch (imm) {
1521 case 16:
a6eccac5 1522 emit_rev16(rd[1], rd[1], ctx);
39c13c20
SB
1523 goto emit_bswap_uxt;
1524 case 32:
a6eccac5 1525 emit_rev32(rd[1], rd[1], ctx);
39c13c20
SB
1526 goto emit_bswap_uxt;
1527 case 64:
a6eccac5
RK
1528 emit_rev32(ARM_LR, rd[1], ctx);
1529 emit_rev32(rd[1], rd[0], ctx);
1530 emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
4560cdff 1531 break;
39c13c20
SB
1532 }
1533 goto exit;
1534emit_bswap_uxt:
1535 switch (imm) {
1536 case 16:
1537 /* zero-extend 16 bits into 64 bits */
1538#if __LINUX_ARM_ARCH__ < 6
47b9c3bf 1539 emit_a32_mov_i(tmp2[1], 0xffff, ctx);
a6eccac5 1540 emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
39c13c20 1541#else /* ARMv6+ */
a6eccac5 1542 emit(ARM_UXTH(rd[1], rd[1]), ctx);
39c13c20 1543#endif
a6eccac5 1544 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
4560cdff 1545 break;
39c13c20
SB
1546 case 32:
1547 /* zero-extend 32 bits into 64 bits */
a6eccac5 1548 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
ddecdfce 1549 break;
39c13c20
SB
1550 case 64:
1551 /* nop */
ddecdfce 1552 break;
39c13c20
SB
1553 }
1554exit:
a6eccac5 1555 arm_bpf_put_reg64(dst, rd, ctx);
39c13c20
SB
1556 break;
1557 /* dst = imm64 */
1558 case BPF_LD | BPF_IMM | BPF_DW:
1559 {
f9ff5018 1560 u64 val = (u32)imm | (u64)insn[1].imm << 32;
39c13c20 1561
f9ff5018 1562 emit_a32_mov_i64(dst, val, ctx);
39c13c20
SB
1563
1564 return 1;
1565 }
1566 /* LDX: dst = *(size *)(src + off) */
1567 case BPF_LDX | BPF_MEM | BPF_W:
1568 case BPF_LDX | BPF_MEM | BPF_H:
1569 case BPF_LDX | BPF_MEM | BPF_B:
1570 case BPF_LDX | BPF_MEM | BPF_DW:
7a987025 1571 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
47b9c3bf 1572 emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
39c13c20 1573 break;
39c13c20
SB
1574 /* ST: *(size *)(dst + off) = imm */
1575 case BPF_ST | BPF_MEM | BPF_W:
1576 case BPF_ST | BPF_MEM | BPF_H:
1577 case BPF_ST | BPF_MEM | BPF_B:
1578 case BPF_ST | BPF_MEM | BPF_DW:
1579 switch (BPF_SIZE(code)) {
1580 case BPF_DW:
1581 /* Sign-extend immediate value into temp reg */
f9ff5018 1582 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
ddecdfce 1583 break;
39c13c20
SB
1584 case BPF_W:
1585 case BPF_H:
1586 case BPF_B:
47b9c3bf 1587 emit_a32_mov_i(tmp2[1], imm, ctx);
ddecdfce 1588 break;
39c13c20 1589 }
c5eae692 1590 emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
39c13c20
SB
1591 break;
1592 /* STX XADD: lock *(u32 *)(dst + off) += src */
1593 case BPF_STX | BPF_XADD | BPF_W:
1594 /* STX XADD: lock *(u64 *)(dst + off) += src */
1595 case BPF_STX | BPF_XADD | BPF_DW:
1596 goto notyet;
1597 /* STX: *(size *)(dst + off) = src */
1598 case BPF_STX | BPF_MEM | BPF_W:
1599 case BPF_STX | BPF_MEM | BPF_H:
1600 case BPF_STX | BPF_MEM | BPF_B:
1601 case BPF_STX | BPF_MEM | BPF_DW:
a6eccac5 1602 rs = arm_bpf_get_reg64(src, tmp2, ctx);
c5eae692 1603 emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
39c13c20 1604 break;
39c13c20
SB
1605 /* PC += off if dst == src */
1606 /* PC += off if dst > src */
1607 /* PC += off if dst >= src */
1608 /* PC += off if dst < src */
1609 /* PC += off if dst <= src */
1610 /* PC += off if dst != src */
1611 /* PC += off if dst > src (signed) */
1612 /* PC += off if dst >= src (signed) */
1613 /* PC += off if dst < src (signed) */
1614 /* PC += off if dst <= src (signed) */
1615 /* PC += off if dst & src */
1616 case BPF_JMP | BPF_JEQ | BPF_X:
1617 case BPF_JMP | BPF_JGT | BPF_X:
1618 case BPF_JMP | BPF_JGE | BPF_X:
1619 case BPF_JMP | BPF_JNE | BPF_X:
1620 case BPF_JMP | BPF_JSGT | BPF_X:
1621 case BPF_JMP | BPF_JSGE | BPF_X:
1622 case BPF_JMP | BPF_JSET | BPF_X:
1623 case BPF_JMP | BPF_JLE | BPF_X:
1624 case BPF_JMP | BPF_JLT | BPF_X:
1625 case BPF_JMP | BPF_JSLT | BPF_X:
1626 case BPF_JMP | BPF_JSLE | BPF_X:
b85062ac
JW
1627 case BPF_JMP32 | BPF_JEQ | BPF_X:
1628 case BPF_JMP32 | BPF_JGT | BPF_X:
1629 case BPF_JMP32 | BPF_JGE | BPF_X:
1630 case BPF_JMP32 | BPF_JNE | BPF_X:
1631 case BPF_JMP32 | BPF_JSGT | BPF_X:
1632 case BPF_JMP32 | BPF_JSGE | BPF_X:
1633 case BPF_JMP32 | BPF_JSET | BPF_X:
1634 case BPF_JMP32 | BPF_JLE | BPF_X:
1635 case BPF_JMP32 | BPF_JLT | BPF_X:
1636 case BPF_JMP32 | BPF_JSLT | BPF_X:
1637 case BPF_JMP32 | BPF_JSLE | BPF_X:
39c13c20 1638 /* Setup source registers */
7a987025
RK
1639 rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1640 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
39c13c20
SB
1641 goto go_jmp;
1642 /* PC += off if dst == imm */
1643 /* PC += off if dst > imm */
1644 /* PC += off if dst >= imm */
1645 /* PC += off if dst < imm */
1646 /* PC += off if dst <= imm */
1647 /* PC += off if dst != imm */
1648 /* PC += off if dst > imm (signed) */
1649 /* PC += off if dst >= imm (signed) */
1650 /* PC += off if dst < imm (signed) */
1651 /* PC += off if dst <= imm (signed) */
1652 /* PC += off if dst & imm */
1653 case BPF_JMP | BPF_JEQ | BPF_K:
1654 case BPF_JMP | BPF_JGT | BPF_K:
1655 case BPF_JMP | BPF_JGE | BPF_K:
1656 case BPF_JMP | BPF_JNE | BPF_K:
1657 case BPF_JMP | BPF_JSGT | BPF_K:
1658 case BPF_JMP | BPF_JSGE | BPF_K:
1659 case BPF_JMP | BPF_JSET | BPF_K:
1660 case BPF_JMP | BPF_JLT | BPF_K:
1661 case BPF_JMP | BPF_JLE | BPF_K:
1662 case BPF_JMP | BPF_JSLT | BPF_K:
1663 case BPF_JMP | BPF_JSLE | BPF_K:
b85062ac
JW
1664 case BPF_JMP32 | BPF_JEQ | BPF_K:
1665 case BPF_JMP32 | BPF_JGT | BPF_K:
1666 case BPF_JMP32 | BPF_JGE | BPF_K:
1667 case BPF_JMP32 | BPF_JNE | BPF_K:
1668 case BPF_JMP32 | BPF_JSGT | BPF_K:
1669 case BPF_JMP32 | BPF_JSGE | BPF_K:
1670 case BPF_JMP32 | BPF_JSET | BPF_K:
1671 case BPF_JMP32 | BPF_JLT | BPF_K:
1672 case BPF_JMP32 | BPF_JLE | BPF_K:
1673 case BPF_JMP32 | BPF_JSLT | BPF_K:
1674 case BPF_JMP32 | BPF_JSLE | BPF_K:
39c13c20 1675 if (off == 0)
ddecdfce 1676 break;
39c13c20
SB
1677 rm = tmp2[0];
1678 rn = tmp2[1];
1679 /* Sign-extend immediate value */
f9ff5018 1680 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
39c13c20
SB
1681go_jmp:
1682 /* Setup destination register */
a6eccac5 1683 rd = arm_bpf_get_reg64(dst, tmp, ctx);
39c13c20
SB
1684
1685 /* Check for the condition */
b85062ac
JW
1686 emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1687 BPF_CLASS(code) == BPF_JMP);
39c13c20
SB
1688
1689 /* Setup JUMP instruction */
1690 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1691 switch (BPF_OP(code)) {
1692 case BPF_JNE:
1693 case BPF_JSET:
1694 _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
ddecdfce 1695 break;
39c13c20
SB
1696 case BPF_JEQ:
1697 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
ddecdfce 1698 break;
39c13c20
SB
1699 case BPF_JGT:
1700 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
ddecdfce 1701 break;
39c13c20
SB
1702 case BPF_JGE:
1703 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
ddecdfce 1704 break;
39c13c20
SB
1705 case BPF_JSGT:
1706 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
ddecdfce 1707 break;
39c13c20
SB
1708 case BPF_JSGE:
1709 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
ddecdfce 1710 break;
39c13c20
SB
1711 case BPF_JLE:
1712 _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
ddecdfce 1713 break;
39c13c20
SB
1714 case BPF_JLT:
1715 _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
ddecdfce 1716 break;
39c13c20
SB
1717 case BPF_JSLT:
1718 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
ddecdfce 1719 break;
39c13c20
SB
1720 case BPF_JSLE:
1721 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
bf0098f2 1722 break;
39c13c20
SB
1723 }
1724 break;
1725 /* JMP OFF */
1726 case BPF_JMP | BPF_JA:
1727 {
1728 if (off == 0)
1447f93f 1729 break;
39c13c20
SB
1730 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1731 check_imm24(jmp_offset);
1732 emit(ARM_B(jmp_offset), ctx);
1733 break;
1734 }
1735 /* tail call */
1736 case BPF_JMP | BPF_TAIL_CALL:
1737 if (emit_bpf_tail_call(ctx))
1738 return -EFAULT;
1739 break;
1740 /* function call */
1741 case BPF_JMP | BPF_CALL:
1742 {
1c35ba12
RK
1743 const s8 *r0 = bpf2a32[BPF_REG_0];
1744 const s8 *r1 = bpf2a32[BPF_REG_1];
1745 const s8 *r2 = bpf2a32[BPF_REG_2];
1746 const s8 *r3 = bpf2a32[BPF_REG_3];
1747 const s8 *r4 = bpf2a32[BPF_REG_4];
1748 const s8 *r5 = bpf2a32[BPF_REG_5];
39c13c20
SB
1749 const u32 func = (u32)__bpf_call_base + (u32)imm;
1750
47b9c3bf
RK
1751 emit_a32_mov_r64(true, r0, r1, ctx);
1752 emit_a32_mov_r64(true, r1, r2, ctx);
96cced4e
RK
1753 emit_push_r64(r5, ctx);
1754 emit_push_r64(r4, ctx);
1755 emit_push_r64(r3, ctx);
39c13c20 1756
47b9c3bf 1757 emit_a32_mov_i(tmp[1], func, ctx);
39c13c20
SB
1758 emit_blx_r(tmp[1], ctx);
1759
1760 emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1761 break;
1762 }
1763 /* function return */
1764 case BPF_JMP | BPF_EXIT:
1765 /* Optimization: when last instruction is EXIT
1766 * simply fallthrough to epilogue.
1767 */
1768 if (i == ctx->prog->len - 1)
ddecdfce 1769 break;
39c13c20
SB
1770 jmp_offset = epilogue_offset(ctx);
1771 check_imm24(jmp_offset);
1772 emit(ARM_B(jmp_offset), ctx);
1773 break;
1774notyet:
1775 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1776 return -EFAULT;
1777 default:
1778 pr_err_once("unknown opcode %02x\n", code);
1779 return -EINVAL;
1780 }
303249ab 1781
39c13c20
SB
1782 if (ctx->flags & FLAG_IMM_OVERFLOW)
1783 /*
1784 * this instruction generated an overflow when
1785 * trying to access the literal pool, so
1786 * delegate this filter to the kernel interpreter.
1787 */
1788 return -1;
1789 return 0;
1790}
1791
1792static int build_body(struct jit_ctx *ctx)
1793{
1794 const struct bpf_prog *prog = ctx->prog;
1795 unsigned int i;
1796
1797 for (i = 0; i < prog->len; i++) {
1798 const struct bpf_insn *insn = &(prog->insnsi[i]);
1799 int ret;
1800
1801 ret = build_insn(insn, ctx);
1802
1803 /* It's used with loading the 64 bit immediate value. */
1804 if (ret > 0) {
1805 i++;
1806 if (ctx->target == NULL)
1807 ctx->offsets[i] = ctx->idx;
1808 continue;
ddecdfce 1809 }
0b59d880 1810
39c13c20
SB
1811 if (ctx->target == NULL)
1812 ctx->offsets[i] = ctx->idx;
1813
1814 /* If unsuccesfull, return with error code */
1815 if (ret)
1816 return ret;
ddecdfce 1817 }
39c13c20
SB
1818 return 0;
1819}
ddecdfce 1820
39c13c20
SB
1821static int validate_code(struct jit_ctx *ctx)
1822{
1823 int i;
1824
1825 for (i = 0; i < ctx->idx; i++) {
1826 if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1827 return -1;
1828 }
ddecdfce
MG
1829
1830 return 0;
1831}
1832
39c13c20
SB
1833void bpf_jit_compile(struct bpf_prog *prog)
1834{
1835 /* Nothing to do here. We support Internal BPF. */
1836}
ddecdfce 1837
39c13c20 1838struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
ddecdfce 1839{
39c13c20 1840 struct bpf_prog *tmp, *orig_prog = prog;
55309dd3 1841 struct bpf_binary_header *header;
39c13c20 1842 bool tmp_blinded = false;
ddecdfce 1843 struct jit_ctx ctx;
39c13c20
SB
1844 unsigned int tmp_idx;
1845 unsigned int image_size;
1846 u8 *image_ptr;
ddecdfce 1847
39c13c20
SB
1848 /* If BPF JIT was not enabled then we must fall back to
1849 * the interpreter.
1850 */
60b58afc 1851 if (!prog->jit_requested)
39c13c20 1852 return orig_prog;
ddecdfce 1853
39c13c20
SB
1854 /* If constant blinding was enabled and we failed during blinding
1855 * then we must fall back to the interpreter. Otherwise, we save
1856 * the new JITed code.
1857 */
1858 tmp = bpf_jit_blind_constants(prog);
ddecdfce 1859
39c13c20
SB
1860 if (IS_ERR(tmp))
1861 return orig_prog;
1862 if (tmp != prog) {
1863 tmp_blinded = true;
1864 prog = tmp;
1865 }
ddecdfce 1866
39c13c20
SB
1867 memset(&ctx, 0, sizeof(ctx));
1868 ctx.prog = prog;
8c9602d3 1869 ctx.cpu_architecture = cpu_architecture();
39c13c20
SB
1870
1871 /* Not able to allocate memory for offsets[] , then
1872 * we must fall back to the interpreter
1873 */
1874 ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1875 if (ctx.offsets == NULL) {
1876 prog = orig_prog;
ddecdfce 1877 goto out;
39c13c20
SB
1878 }
1879
1880 /* 1) fake pass to find in the length of the JITed code,
1881 * to compute ctx->offsets and other context variables
1882 * needed to compute final JITed code.
1883 * Also, calculate random starting pointer/start of JITed code
1884 * which is prefixed by random number of fault instructions.
1885 *
1886 * If the first pass fails then there is no chance of it
1887 * being successful in the second pass, so just fall back
1888 * to the interpreter.
1889 */
1890 if (build_body(&ctx)) {
1891 prog = orig_prog;
1892 goto out_off;
1893 }
ddecdfce
MG
1894
1895 tmp_idx = ctx.idx;
1896 build_prologue(&ctx);
1897 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1898
39c13c20
SB
1899 ctx.epilogue_offset = ctx.idx;
1900
ddecdfce
MG
1901#if __LINUX_ARM_ARCH__ < 7
1902 tmp_idx = ctx.idx;
1903 build_epilogue(&ctx);
1904 ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1905
1906 ctx.idx += ctx.imm_count;
1907 if (ctx.imm_count) {
39c13c20
SB
1908 ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1909 if (ctx.imms == NULL) {
1910 prog = orig_prog;
1911 goto out_off;
1912 }
ddecdfce
MG
1913 }
1914#else
39c13c20 1915 /* there's nothing about the epilogue on ARMv7 */
ddecdfce
MG
1916 build_epilogue(&ctx);
1917#endif
39c13c20
SB
1918 /* Now we can get the actual image size of the JITed arm code.
1919 * Currently, we are not considering the THUMB-2 instructions
1920 * for jit, although it can decrease the size of the image.
1921 *
1922 * As each arm instruction is of length 32bit, we are translating
1923 * number of JITed intructions into the size required to store these
1924 * JITed code.
1925 */
1926 image_size = sizeof(u32) * ctx.idx;
ddecdfce 1927
39c13c20
SB
1928 /* Now we know the size of the structure to make */
1929 header = bpf_jit_binary_alloc(image_size, &image_ptr,
1930 sizeof(u32), jit_fill_hole);
1931 /* Not able to allocate memory for the structure then
1932 * we must fall back to the interpretation
1933 */
1934 if (header == NULL) {
1935 prog = orig_prog;
1936 goto out_imms;
1937 }
1938
1939 /* 2.) Actual pass to generate final JIT code */
1940 ctx.target = (u32 *) image_ptr;
ddecdfce 1941 ctx.idx = 0;
55309dd3 1942
ddecdfce 1943 build_prologue(&ctx);
39c13c20
SB
1944
1945 /* If building the body of the JITed code fails somehow,
1946 * we fall back to the interpretation.
1947 */
0b59d880 1948 if (build_body(&ctx) < 0) {
39c13c20 1949 image_ptr = NULL;
0b59d880 1950 bpf_jit_binary_free(header);
39c13c20
SB
1951 prog = orig_prog;
1952 goto out_imms;
0b59d880 1953 }
ddecdfce
MG
1954 build_epilogue(&ctx);
1955
39c13c20
SB
1956 /* 3.) Extra pass to validate JITed Code */
1957 if (validate_code(&ctx)) {
1958 image_ptr = NULL;
1959 bpf_jit_binary_free(header);
1960 prog = orig_prog;
1961 goto out_imms;
1962 }
ebaef649 1963 flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
ddecdfce 1964
ddecdfce 1965 if (bpf_jit_enable > 1)
79617801 1966 /* there are 2 passes here */
39c13c20 1967 bpf_jit_dump(prog->len, image_size, 2, ctx.target);
ddecdfce 1968
18d405af 1969 bpf_jit_binary_lock_ro(header);
39c13c20
SB
1970 prog->bpf_func = (void *)ctx.target;
1971 prog->jited = 1;
1972 prog->jited_len = image_size;
1973
1974out_imms:
1975#if __LINUX_ARM_ARCH__ < 7
1976 if (ctx.imm_count)
1977 kfree(ctx.imms);
1978#endif
1979out_off:
ddecdfce 1980 kfree(ctx.offsets);
39c13c20
SB
1981out:
1982 if (tmp_blinded)
1983 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1984 tmp : orig_prog);
1985 return prog;
ddecdfce
MG
1986}
1987