]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/arm/net/bpf_jit_32.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / arch / arm / net / bpf_jit_32.c
CommitLineData
ddecdfce 1/*
39c13c20 2 * Just-In-Time compiler for eBPF filters on 32bit ARM
ddecdfce 3 *
39c13c20 4 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
ddecdfce
MG
5 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; version 2 of the License.
10 */
11
39c13c20 12#include <linux/bpf.h>
ddecdfce
MG
13#include <linux/bitops.h>
14#include <linux/compiler.h>
15#include <linux/errno.h>
16#include <linux/filter.h>
ddecdfce
MG
17#include <linux/netdevice.h>
18#include <linux/string.h>
19#include <linux/slab.h>
bf0098f2 20#include <linux/if_vlan.h>
e8b56d55 21
ddecdfce
MG
22#include <asm/cacheflush.h>
23#include <asm/hwcap.h>
3460743e 24#include <asm/opcodes.h>
ddecdfce
MG
25
26#include "bpf_jit_32.h"
27
70ec3a6c 28/*
0005e55a 29 * eBPF prog stack layout:
70ec3a6c
RK
30 *
31 * high
0005e55a
RK
32 * original ARM_SP => +-----+
33 * | | callee saved registers
34 * +-----+ <= (BPF_FP + SCRATCH_SIZE)
70ec3a6c 35 * | ... | eBPF JIT scratch space
0005e55a
RK
36 * eBPF fp register => +-----+
37 * (BPF_FP) | ... | eBPF prog stack
70ec3a6c
RK
38 * +-----+
39 * |RSVD | JIT scratchpad
0005e55a 40 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
70ec3a6c
RK
41 * | |
42 * | ... | Function call stack
43 * | |
44 * +-----+
45 * low
0005e55a
RK
46 *
47 * The callee saved registers depends on whether frame pointers are enabled.
48 * With frame pointers (to be compliant with the ABI):
49 *
50 * high
51 * original ARM_SP => +------------------+ \
52 * | pc | |
53 * current ARM_FP => +------------------+ } callee saved registers
54 * |r4-r8,r10,fp,ip,lr| |
55 * +------------------+ /
56 * low
57 *
58 * Without frame pointers:
59 *
60 * high
61 * original ARM_SP => +------------------+
02088d9b
RK
62 * | r4-r8,r10,fp,lr | callee saved registers
63 * current ARM_FP => +------------------+
0005e55a 64 * low
02088d9b
RK
65 *
66 * When popping registers off the stack at the end of a BPF function, we
67 * reference them via the current ARM_FP register.
70ec3a6c 68 */
02088d9b
RK
69#define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
70 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R10 | \
71 1 << ARM_FP)
72#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
73#define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
70ec3a6c 74
39c13c20
SB
75#define STACK_OFFSET(k) (k)
76#define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
77#define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
78#define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
79
39c13c20
SB
80#define FLAG_IMM_OVERFLOW (1 << 0)
81
ddecdfce 82/*
39c13c20
SB
83 * Map eBPF registers to ARM 32bit registers or stack scratch space.
84 *
85 * 1. First argument is passed using the arm 32bit registers and rest of the
86 * arguments are passed on stack scratch space.
87 * 2. First callee-saved arugument is mapped to arm 32 bit registers and rest
88 * arguments are mapped to scratch space on stack.
89 * 3. We need two 64 bit temp registers to do complex operations on eBPF
90 * registers.
91 *
92 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
93 * registers, we have to map each eBPF registers with two arm 32 bit regs or
94 * scratch memory space and we have to build eBPF 64 bit register from those.
ddecdfce 95 *
ddecdfce 96 */
39c13c20
SB
97static const u8 bpf2a32[][2] = {
98 /* return value from in-kernel function, and exit value from eBPF */
99 [BPF_REG_0] = {ARM_R1, ARM_R0},
100 /* arguments from eBPF program to in-kernel function */
101 [BPF_REG_1] = {ARM_R3, ARM_R2},
102 /* Stored on stack scratch space */
103 [BPF_REG_2] = {STACK_OFFSET(0), STACK_OFFSET(4)},
104 [BPF_REG_3] = {STACK_OFFSET(8), STACK_OFFSET(12)},
105 [BPF_REG_4] = {STACK_OFFSET(16), STACK_OFFSET(20)},
106 [BPF_REG_5] = {STACK_OFFSET(24), STACK_OFFSET(28)},
107 /* callee saved registers that in-kernel function will preserve */
108 [BPF_REG_6] = {ARM_R5, ARM_R4},
109 /* Stored on stack scratch space */
110 [BPF_REG_7] = {STACK_OFFSET(32), STACK_OFFSET(36)},
111 [BPF_REG_8] = {STACK_OFFSET(40), STACK_OFFSET(44)},
112 [BPF_REG_9] = {STACK_OFFSET(48), STACK_OFFSET(52)},
113 /* Read only Frame Pointer to access Stack */
114 [BPF_REG_FP] = {STACK_OFFSET(56), STACK_OFFSET(60)},
115 /* Temporary Register for internal BPF JIT, can be used
116 * for constant blindings and others.
117 */
118 [TMP_REG_1] = {ARM_R7, ARM_R6},
119 [TMP_REG_2] = {ARM_R10, ARM_R8},
120 /* Tail call count. Stored on stack scratch space. */
121 [TCALL_CNT] = {STACK_OFFSET(64), STACK_OFFSET(68)},
122 /* temporary register for blinding constants.
123 * Stored on stack scratch space.
124 */
125 [BPF_REG_AX] = {STACK_OFFSET(72), STACK_OFFSET(76)},
126};
ddecdfce 127
39c13c20
SB
128#define dst_lo dst[1]
129#define dst_hi dst[0]
130#define src_lo src[1]
131#define src_hi src[0]
ddecdfce 132
39c13c20
SB
133/*
134 * JIT Context:
135 *
136 * prog : bpf_prog
137 * idx : index of current last JITed instruction.
138 * prologue_bytes : bytes used in prologue.
139 * epilogue_offset : offset of epilogue starting.
39c13c20
SB
140 * offsets : array of eBPF instruction offsets in
141 * JITed code.
142 * target : final JITed code.
143 * epilogue_bytes : no of bytes used in epilogue.
144 * imm_count : no of immediate counts used for global
145 * variables.
146 * imms : array of global variable addresses.
147 */
ddecdfce
MG
148
149struct jit_ctx {
39c13c20
SB
150 const struct bpf_prog *prog;
151 unsigned int idx;
152 unsigned int prologue_bytes;
153 unsigned int epilogue_offset;
ddecdfce
MG
154 u32 flags;
155 u32 *offsets;
156 u32 *target;
39c13c20 157 u32 stack_size;
ddecdfce
MG
158#if __LINUX_ARM_ARCH__ < 7
159 u16 epilogue_bytes;
160 u16 imm_count;
161 u32 *imms;
162#endif
163};
164
ddecdfce 165/*
4560cdff 166 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
ddecdfce
MG
167 * (where the assembly routines like __aeabi_uidiv could cause problems).
168 */
39c13c20 169static u32 jit_udiv32(u32 dividend, u32 divisor)
ddecdfce
MG
170{
171 return dividend / divisor;
172}
173
39c13c20 174static u32 jit_mod32(u32 dividend, u32 divisor)
4560cdff
NS
175{
176 return dividend % divisor;
177}
178
ddecdfce
MG
179static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
180{
3460743e
BD
181 inst |= (cond << 28);
182 inst = __opcode_to_mem_arm(inst);
183
ddecdfce 184 if (ctx->target != NULL)
3460743e 185 ctx->target[ctx->idx] = inst;
ddecdfce
MG
186
187 ctx->idx++;
188}
189
190/*
191 * Emit an instruction that will be executed unconditionally.
192 */
193static inline void emit(u32 inst, struct jit_ctx *ctx)
194{
195 _emit(ARM_COND_AL, inst, ctx);
196}
197
39c13c20
SB
198/*
199 * Checks if immediate value can be converted to imm12(12 bits) value.
200 */
201static int16_t imm8m(u32 x)
ddecdfce 202{
39c13c20 203 u32 rot;
ddecdfce 204
39c13c20
SB
205 for (rot = 0; rot < 16; rot++)
206 if ((x & ~ror32(0xff, 2 * rot)) == 0)
207 return rol32(x, 2 * rot) | (rot << 8);
208 return -1;
ddecdfce
MG
209}
210
39c13c20
SB
211/*
212 * Initializes the JIT space with undefined instructions.
213 */
55309dd3
DB
214static void jit_fill_hole(void *area, unsigned int size)
215{
e8b56d55 216 u32 *ptr;
55309dd3
DB
217 /* We are guaranteed to have aligned memory. */
218 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
e8b56d55 219 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
55309dd3
DB
220}
221
d1220efd
RK
222#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
223/* EABI requires the stack to be aligned to 64-bit boundaries */
224#define STACK_ALIGNMENT 8
225#else
226/* Stack must be aligned to 32-bit boundaries */
227#define STACK_ALIGNMENT 4
228#endif
ddecdfce 229
39c13c20
SB
230/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
231 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
232 * BPF_REG_FP and Tail call counts.
233 */
234#define SCRATCH_SIZE 80
ddecdfce 235
39c13c20
SB
236/* total stack size used in JITed code */
237#define _STACK_SIZE \
238 (ctx->prog->aux->stack_depth + \
239 + SCRATCH_SIZE + \
240 + 4 /* extra for skb_copy_bits buffer */)
ddecdfce 241
d1220efd 242#define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
ddecdfce 243
39c13c20
SB
244/* Get the offset of eBPF REGISTERs stored on scratch space. */
245#define STACK_VAR(off) (STACK_SIZE-off-4)
ddecdfce 246
39c13c20
SB
247/* Offset of skb_copy_bits buffer */
248#define SKB_BUFFER STACK_VAR(SCRATCH_SIZE)
ddecdfce
MG
249
250#if __LINUX_ARM_ARCH__ < 7
251
252static u16 imm_offset(u32 k, struct jit_ctx *ctx)
253{
39c13c20 254 unsigned int i = 0, offset;
ddecdfce
MG
255 u16 imm;
256
257 /* on the "fake" run we just count them (duplicates included) */
258 if (ctx->target == NULL) {
259 ctx->imm_count++;
260 return 0;
261 }
262
263 while ((i < ctx->imm_count) && ctx->imms[i]) {
264 if (ctx->imms[i] == k)
265 break;
266 i++;
267 }
268
269 if (ctx->imms[i] == 0)
270 ctx->imms[i] = k;
271
272 /* constants go just after the epilogue */
39c13c20 273 offset = ctx->offsets[ctx->prog->len - 1] * 4;
ddecdfce
MG
274 offset += ctx->prologue_bytes;
275 offset += ctx->epilogue_bytes;
276 offset += i * 4;
277
278 ctx->target[offset / 4] = k;
279
280 /* PC in ARM mode == address of the instruction + 8 */
281 imm = offset - (8 + ctx->idx * 4);
282
0b59d880
NS
283 if (imm & ~0xfff) {
284 /*
285 * literal pool is too far, signal it into flags. we
286 * can only detect it on the second pass unfortunately.
287 */
288 ctx->flags |= FLAG_IMM_OVERFLOW;
289 return 0;
290 }
291
ddecdfce
MG
292 return imm;
293}
294
295#endif /* __LINUX_ARM_ARCH__ */
296
39c13c20
SB
297static inline int bpf2a32_offset(int bpf_to, int bpf_from,
298 const struct jit_ctx *ctx) {
299 int to, from;
300
301 if (ctx->target == NULL)
302 return 0;
303 to = ctx->offsets[bpf_to];
304 from = ctx->offsets[bpf_from];
305
306 return to - from - 1;
307}
308
ddecdfce
MG
309/*
310 * Move an immediate that's not an imm8m to a core register.
311 */
39c13c20 312static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
ddecdfce
MG
313{
314#if __LINUX_ARM_ARCH__ < 7
315 emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
316#else
317 emit(ARM_MOVW(rd, val & 0xffff), ctx);
318 if (val > 0xffff)
319 emit(ARM_MOVT(rd, val >> 16), ctx);
320#endif
321}
322
39c13c20 323static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
ddecdfce
MG
324{
325 int imm12 = imm8m(val);
326
327 if (imm12 >= 0)
328 emit(ARM_MOV_I(rd, imm12), ctx);
329 else
330 emit_mov_i_no8m(rd, val, ctx);
331}
332
e9062481 333static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
ddecdfce 334{
39c13c20
SB
335 if (elf_hwcap & HWCAP_THUMB)
336 emit(ARM_BX(tgt_reg), ctx);
337 else
338 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
e9062481
RK
339}
340
341static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
342{
e9062481
RK
343#if __LINUX_ARM_ARCH__ < 5
344 emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
345 emit_bx_r(tgt_reg, ctx);
39c13c20
SB
346#else
347 emit(ARM_BLX_R(tgt_reg), ctx);
348#endif
ddecdfce
MG
349}
350
39c13c20 351static inline int epilogue_offset(const struct jit_ctx *ctx)
ddecdfce 352{
39c13c20
SB
353 int to, from;
354 /* No need for 1st dummy run */
355 if (ctx->target == NULL)
356 return 0;
357 to = ctx->epilogue_offset;
358 from = ctx->idx;
359
360 return to - from - 2;
ddecdfce
MG
361}
362
39c13c20 363static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
ddecdfce 364{
39c13c20
SB
365 const u8 *tmp = bpf2a32[TMP_REG_1];
366 s32 jmp_offset;
367
368 /* checks if divisor is zero or not. If it is, then
369 * exit directly.
370 */
371 emit(ARM_CMP_I(rn, 0), ctx);
372 _emit(ARM_COND_EQ, ARM_MOV_I(ARM_R0, 0), ctx);
373 jmp_offset = epilogue_offset(ctx);
374 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
375#if __LINUX_ARM_ARCH__ == 7
376 if (elf_hwcap & HWCAP_IDIVA) {
377 if (op == BPF_DIV)
378 emit(ARM_UDIV(rd, rm, rn), ctx);
379 else {
380 emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
381 emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
382 }
383 return;
384 }
385#endif
462738f4
NS
386
387 /*
39c13c20
SB
388 * For BPF_ALU | BPF_DIV | BPF_K instructions
389 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
390 * function, we need to save it on caller side to save
391 * it from getting destroyed within callee.
392 * After the return from the callee, we restore ARM_R0
393 * ARM_R1.
462738f4 394 */
39c13c20
SB
395 if (rn != ARM_R1) {
396 emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
397 emit(ARM_MOV_R(ARM_R1, rn), ctx);
398 }
399 if (rm != ARM_R0) {
400 emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
401 emit(ARM_MOV_R(ARM_R0, rm), ctx);
402 }
ddecdfce 403
39c13c20 404 /* Call appropriate function */
39c13c20
SB
405 emit_mov_i(ARM_IP, op == BPF_DIV ?
406 (u32)jit_udiv32 : (u32)jit_mod32, ctx);
407 emit_blx_r(ARM_IP, ctx);
ddecdfce 408
39c13c20
SB
409 /* Save return value */
410 if (rd != ARM_R0)
411 emit(ARM_MOV_R(rd, ARM_R0), ctx);
412
413 /* Restore ARM_R0 and ARM_R1 */
414 if (rn != ARM_R1)
415 emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
416 if (rm != ARM_R0)
417 emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
ddecdfce
MG
418}
419
39c13c20
SB
420/* Checks whether BPF register is on scratch stack space or not. */
421static inline bool is_on_stack(u8 bpf_reg)
ddecdfce 422{
39c13c20
SB
423 static u8 stack_regs[] = {BPF_REG_AX, BPF_REG_3, BPF_REG_4, BPF_REG_5,
424 BPF_REG_7, BPF_REG_8, BPF_REG_9, TCALL_CNT,
425 BPF_REG_2, BPF_REG_FP};
426 int i, reg_len = sizeof(stack_regs);
427
428 for (i = 0 ; i < reg_len ; i++) {
429 if (bpf_reg == stack_regs[i])
430 return true;
431 }
432 return false;
ddecdfce
MG
433}
434
39c13c20
SB
435static inline void emit_a32_mov_i(const u8 dst, const u32 val,
436 bool dstk, struct jit_ctx *ctx)
ddecdfce 437{
39c13c20
SB
438 const u8 *tmp = bpf2a32[TMP_REG_1];
439
440 if (dstk) {
441 emit_mov_i(tmp[1], val, ctx);
442 emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(dst)), ctx);
443 } else {
444 emit_mov_i(dst, val, ctx);
445 }
ddecdfce
MG
446}
447
39c13c20
SB
448/* Sign extended move */
449static inline void emit_a32_mov_i64(const bool is64, const u8 dst[],
450 const u32 val, bool dstk,
451 struct jit_ctx *ctx) {
452 u32 hi = 0;
ddecdfce 453
39c13c20
SB
454 if (is64 && (val & (1<<31)))
455 hi = (u32)~0;
456 emit_a32_mov_i(dst_lo, val, dstk, ctx);
457 emit_a32_mov_i(dst_hi, hi, dstk, ctx);
458}
ddecdfce 459
39c13c20
SB
460static inline void emit_a32_add_r(const u8 dst, const u8 src,
461 const bool is64, const bool hi,
462 struct jit_ctx *ctx) {
463 /* 64 bit :
464 * adds dst_lo, dst_lo, src_lo
465 * adc dst_hi, dst_hi, src_hi
466 * 32 bit :
467 * add dst_lo, dst_lo, src_lo
468 */
469 if (!hi && is64)
470 emit(ARM_ADDS_R(dst, dst, src), ctx);
471 else if (hi && is64)
472 emit(ARM_ADC_R(dst, dst, src), ctx);
473 else
474 emit(ARM_ADD_R(dst, dst, src), ctx);
475}
ddecdfce 476
39c13c20
SB
477static inline void emit_a32_sub_r(const u8 dst, const u8 src,
478 const bool is64, const bool hi,
479 struct jit_ctx *ctx) {
480 /* 64 bit :
481 * subs dst_lo, dst_lo, src_lo
482 * sbc dst_hi, dst_hi, src_hi
483 * 32 bit :
484 * sub dst_lo, dst_lo, src_lo
ddecdfce 485 */
39c13c20
SB
486 if (!hi && is64)
487 emit(ARM_SUBS_R(dst, dst, src), ctx);
488 else if (hi && is64)
489 emit(ARM_SBC_R(dst, dst, src), ctx);
490 else
491 emit(ARM_SUB_R(dst, dst, src), ctx);
492}
ddecdfce 493
39c13c20
SB
494static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
495 const bool hi, const u8 op, struct jit_ctx *ctx){
496 switch (BPF_OP(op)) {
497 /* dst = dst + src */
498 case BPF_ADD:
499 emit_a32_add_r(dst, src, is64, hi, ctx);
500 break;
501 /* dst = dst - src */
502 case BPF_SUB:
503 emit_a32_sub_r(dst, src, is64, hi, ctx);
504 break;
505 /* dst = dst | src */
506 case BPF_OR:
507 emit(ARM_ORR_R(dst, dst, src), ctx);
508 break;
509 /* dst = dst & src */
510 case BPF_AND:
511 emit(ARM_AND_R(dst, dst, src), ctx);
512 break;
513 /* dst = dst ^ src */
514 case BPF_XOR:
515 emit(ARM_EOR_R(dst, dst, src), ctx);
516 break;
517 /* dst = dst * src */
518 case BPF_MUL:
519 emit(ARM_MUL(dst, dst, src), ctx);
520 break;
521 /* dst = dst << src */
522 case BPF_LSH:
523 emit(ARM_LSL_R(dst, dst, src), ctx);
524 break;
525 /* dst = dst >> src */
526 case BPF_RSH:
527 emit(ARM_LSR_R(dst, dst, src), ctx);
528 break;
529 /* dst = dst >> src (signed)*/
530 case BPF_ARSH:
531 emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
532 break;
533 }
ddecdfce
MG
534}
535
39c13c20
SB
536/* ALU operation (32 bit)
537 * dst = dst (op) src
538 */
539static inline void emit_a32_alu_r(const u8 dst, const u8 src,
540 bool dstk, bool sstk,
541 struct jit_ctx *ctx, const bool is64,
542 const bool hi, const u8 op) {
543 const u8 *tmp = bpf2a32[TMP_REG_1];
544 u8 rn = sstk ? tmp[1] : src;
545
546 if (sstk)
547 emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src)), ctx);
548
549 /* ALU operation */
550 if (dstk) {
551 emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
552 emit_alu_r(tmp[0], rn, is64, hi, op, ctx);
553 emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
ddecdfce 554 } else {
39c13c20 555 emit_alu_r(dst, rn, is64, hi, op, ctx);
ddecdfce
MG
556 }
557}
558
39c13c20
SB
559/* ALU operation (64 bit) */
560static inline void emit_a32_alu_r64(const bool is64, const u8 dst[],
561 const u8 src[], bool dstk,
562 bool sstk, struct jit_ctx *ctx,
563 const u8 op) {
564 emit_a32_alu_r(dst_lo, src_lo, dstk, sstk, ctx, is64, false, op);
565 if (is64)
566 emit_a32_alu_r(dst_hi, src_hi, dstk, sstk, ctx, is64, true, op);
567 else
568 emit_a32_mov_i(dst_hi, 0, dstk, ctx);
569}
ddecdfce 570
39c13c20
SB
571/* dst = imm (4 bytes)*/
572static inline void emit_a32_mov_r(const u8 dst, const u8 src,
573 bool dstk, bool sstk,
574 struct jit_ctx *ctx) {
575 const u8 *tmp = bpf2a32[TMP_REG_1];
576 u8 rt = sstk ? tmp[0] : src;
577
578 if (sstk)
579 emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(src)), ctx);
580 if (dstk)
581 emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst)), ctx);
ddecdfce 582 else
39c13c20 583 emit(ARM_MOV_R(dst, rt), ctx);
ddecdfce
MG
584}
585
39c13c20
SB
586/* dst = src */
587static inline void emit_a32_mov_r64(const bool is64, const u8 dst[],
588 const u8 src[], bool dstk,
589 bool sstk, struct jit_ctx *ctx) {
590 emit_a32_mov_r(dst_lo, src_lo, dstk, sstk, ctx);
591 if (is64) {
592 /* complete 8 byte move */
593 emit_a32_mov_r(dst_hi, src_hi, dstk, sstk, ctx);
594 } else {
595 /* Zero out high 4 bytes */
596 emit_a32_mov_i(dst_hi, 0, dstk, ctx);
ddecdfce 597 }
39c13c20 598}
19fc99d0 599
39c13c20
SB
600/* Shift operations */
601static inline void emit_a32_alu_i(const u8 dst, const u32 val, bool dstk,
602 struct jit_ctx *ctx, const u8 op) {
603 const u8 *tmp = bpf2a32[TMP_REG_1];
604 u8 rd = dstk ? tmp[0] : dst;
605
606 if (dstk)
607 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
608
609 /* Do shift operation */
610 switch (op) {
611 case BPF_LSH:
612 emit(ARM_LSL_I(rd, rd, val), ctx);
613 break;
614 case BPF_RSH:
615 emit(ARM_LSR_I(rd, rd, val), ctx);
616 break;
617 case BPF_NEG:
618 emit(ARM_RSB_I(rd, rd, val), ctx);
619 break;
620 }
ddecdfce 621
39c13c20
SB
622 if (dstk)
623 emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
624}
625
626/* dst = ~dst (64 bit) */
627static inline void emit_a32_neg64(const u8 dst[], bool dstk,
628 struct jit_ctx *ctx){
629 const u8 *tmp = bpf2a32[TMP_REG_1];
630 u8 rd = dstk ? tmp[1] : dst[1];
631 u8 rm = dstk ? tmp[0] : dst[0];
632
633 /* Setup Operand */
634 if (dstk) {
635 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
636 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
637 }
638
639 /* Do Negate Operation */
640 emit(ARM_RSBS_I(rd, rd, 0), ctx);
641 emit(ARM_RSC_I(rm, rm, 0), ctx);
642
643 if (dstk) {
644 emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
645 emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
646 }
647}
648
649/* dst = dst << src */
650static inline void emit_a32_lsh_r64(const u8 dst[], const u8 src[], bool dstk,
651 bool sstk, struct jit_ctx *ctx) {
652 const u8 *tmp = bpf2a32[TMP_REG_1];
653 const u8 *tmp2 = bpf2a32[TMP_REG_2];
654
655 /* Setup Operands */
656 u8 rt = sstk ? tmp2[1] : src_lo;
657 u8 rd = dstk ? tmp[1] : dst_lo;
658 u8 rm = dstk ? tmp[0] : dst_hi;
659
660 if (sstk)
661 emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
662 if (dstk) {
663 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
664 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
665 }
666
667 /* Do LSH operation */
668 emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
669 emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
39c13c20
SB
670 emit(ARM_MOV_SR(ARM_LR, rm, SRTYPE_ASL, rt), ctx);
671 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd, SRTYPE_ASL, ARM_IP), ctx);
672 emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd, SRTYPE_LSR, tmp2[0]), ctx);
673 emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_ASL, rt), ctx);
674
675 if (dstk) {
676 emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
677 emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
678 } else {
679 emit(ARM_MOV_R(rd, ARM_LR), ctx);
680 emit(ARM_MOV_R(rm, ARM_IP), ctx);
681 }
682}
ddecdfce 683
39c13c20
SB
684/* dst = dst >> src (signed)*/
685static inline void emit_a32_arsh_r64(const u8 dst[], const u8 src[], bool dstk,
686 bool sstk, struct jit_ctx *ctx) {
687 const u8 *tmp = bpf2a32[TMP_REG_1];
688 const u8 *tmp2 = bpf2a32[TMP_REG_2];
689 /* Setup Operands */
690 u8 rt = sstk ? tmp2[1] : src_lo;
691 u8 rd = dstk ? tmp[1] : dst_lo;
692 u8 rm = dstk ? tmp[0] : dst_hi;
693
694 if (sstk)
695 emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
696 if (dstk) {
697 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
698 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
699 }
700
701 /* Do the ARSH operation */
702 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
703 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
39c13c20
SB
704 emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx);
705 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx);
706 _emit(ARM_COND_MI, ARM_B(0), ctx);
707 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASR, tmp2[0]), ctx);
708 emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_ASR, rt), ctx);
709 if (dstk) {
710 emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
711 emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
712 } else {
713 emit(ARM_MOV_R(rd, ARM_LR), ctx);
714 emit(ARM_MOV_R(rm, ARM_IP), ctx);
715 }
716}
717
718/* dst = dst >> src */
d1ab73c4 719static inline void emit_a32_rsh_r64(const u8 dst[], const u8 src[], bool dstk,
39c13c20
SB
720 bool sstk, struct jit_ctx *ctx) {
721 const u8 *tmp = bpf2a32[TMP_REG_1];
722 const u8 *tmp2 = bpf2a32[TMP_REG_2];
723 /* Setup Operands */
724 u8 rt = sstk ? tmp2[1] : src_lo;
725 u8 rd = dstk ? tmp[1] : dst_lo;
726 u8 rm = dstk ? tmp[0] : dst_hi;
727
728 if (sstk)
729 emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
730 if (dstk) {
731 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
732 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
733 }
734
d1ab73c4 735 /* Do RSH operation */
39c13c20
SB
736 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
737 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
39c13c20
SB
738 emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx);
739 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx);
740 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_LSR, tmp2[0]), ctx);
741 emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_LSR, rt), ctx);
742 if (dstk) {
743 emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
744 emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
745 } else {
746 emit(ARM_MOV_R(rd, ARM_LR), ctx);
747 emit(ARM_MOV_R(rm, ARM_IP), ctx);
748 }
ddecdfce
MG
749}
750
39c13c20
SB
751/* dst = dst << val */
752static inline void emit_a32_lsh_i64(const u8 dst[], bool dstk,
753 const u32 val, struct jit_ctx *ctx){
754 const u8 *tmp = bpf2a32[TMP_REG_1];
755 const u8 *tmp2 = bpf2a32[TMP_REG_2];
756 /* Setup operands */
757 u8 rd = dstk ? tmp[1] : dst_lo;
758 u8 rm = dstk ? tmp[0] : dst_hi;
759
760 if (dstk) {
761 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
762 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
763 }
764
765 /* Do LSH operation */
766 if (val < 32) {
767 emit(ARM_MOV_SI(tmp2[0], rm, SRTYPE_ASL, val), ctx);
768 emit(ARM_ORR_SI(rm, tmp2[0], rd, SRTYPE_LSR, 32 - val), ctx);
769 emit(ARM_MOV_SI(rd, rd, SRTYPE_ASL, val), ctx);
770 } else {
771 if (val == 32)
772 emit(ARM_MOV_R(rm, rd), ctx);
773 else
774 emit(ARM_MOV_SI(rm, rd, SRTYPE_ASL, val - 32), ctx);
775 emit(ARM_EOR_R(rd, rd, rd), ctx);
776 }
777
778 if (dstk) {
779 emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
780 emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
781 }
782}
783
784/* dst = dst >> val */
d1ab73c4 785static inline void emit_a32_rsh_i64(const u8 dst[], bool dstk,
39c13c20
SB
786 const u32 val, struct jit_ctx *ctx) {
787 const u8 *tmp = bpf2a32[TMP_REG_1];
788 const u8 *tmp2 = bpf2a32[TMP_REG_2];
789 /* Setup operands */
790 u8 rd = dstk ? tmp[1] : dst_lo;
791 u8 rm = dstk ? tmp[0] : dst_hi;
792
793 if (dstk) {
794 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
795 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
796 }
797
798 /* Do LSR operation */
799 if (val < 32) {
800 emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx);
801 emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx);
802 emit(ARM_MOV_SI(rm, rm, SRTYPE_LSR, val), ctx);
803 } else if (val == 32) {
804 emit(ARM_MOV_R(rd, rm), ctx);
805 emit(ARM_MOV_I(rm, 0), ctx);
806 } else {
807 emit(ARM_MOV_SI(rd, rm, SRTYPE_LSR, val - 32), ctx);
808 emit(ARM_MOV_I(rm, 0), ctx);
809 }
810
811 if (dstk) {
812 emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
813 emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
814 }
815}
816
817/* dst = dst >> val (signed) */
818static inline void emit_a32_arsh_i64(const u8 dst[], bool dstk,
819 const u32 val, struct jit_ctx *ctx){
820 const u8 *tmp = bpf2a32[TMP_REG_1];
821 const u8 *tmp2 = bpf2a32[TMP_REG_2];
822 /* Setup operands */
823 u8 rd = dstk ? tmp[1] : dst_lo;
824 u8 rm = dstk ? tmp[0] : dst_hi;
825
826 if (dstk) {
827 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
828 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
829 }
830
831 /* Do ARSH operation */
832 if (val < 32) {
833 emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx);
834 emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx);
835 emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, val), ctx);
836 } else if (val == 32) {
837 emit(ARM_MOV_R(rd, rm), ctx);
838 emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx);
839 } else {
840 emit(ARM_MOV_SI(rd, rm, SRTYPE_ASR, val - 32), ctx);
841 emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx);
842 }
843
844 if (dstk) {
845 emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
846 emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
847 }
848}
849
850static inline void emit_a32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
851 bool sstk, struct jit_ctx *ctx) {
852 const u8 *tmp = bpf2a32[TMP_REG_1];
853 const u8 *tmp2 = bpf2a32[TMP_REG_2];
854 /* Setup operands for multiplication */
855 u8 rd = dstk ? tmp[1] : dst_lo;
856 u8 rm = dstk ? tmp[0] : dst_hi;
857 u8 rt = sstk ? tmp2[1] : src_lo;
858 u8 rn = sstk ? tmp2[0] : src_hi;
859
860 if (dstk) {
861 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
862 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
863 }
864 if (sstk) {
865 emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
866 emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_hi)), ctx);
867 }
868
869 /* Do Multiplication */
870 emit(ARM_MUL(ARM_IP, rd, rn), ctx);
871 emit(ARM_MUL(ARM_LR, rm, rt), ctx);
39c13c20
SB
872 emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
873
874 emit(ARM_UMULL(ARM_IP, rm, rd, rt), ctx);
875 emit(ARM_ADD_R(rm, ARM_LR, rm), ctx);
876 if (dstk) {
877 emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_lo)), ctx);
878 emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
879 } else {
880 emit(ARM_MOV_R(rd, ARM_IP), ctx);
881 }
882}
883
884/* *(size *)(dst + off) = src */
885static inline void emit_str_r(const u8 dst, const u8 src, bool dstk,
886 const s32 off, struct jit_ctx *ctx, const u8 sz){
887 const u8 *tmp = bpf2a32[TMP_REG_1];
888 u8 rd = dstk ? tmp[1] : dst;
889
890 if (dstk)
891 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
892 if (off) {
893 emit_a32_mov_i(tmp[0], off, false, ctx);
894 emit(ARM_ADD_R(tmp[0], rd, tmp[0]), ctx);
895 rd = tmp[0];
896 }
897 switch (sz) {
898 case BPF_W:
899 /* Store a Word */
900 emit(ARM_STR_I(src, rd, 0), ctx);
901 break;
902 case BPF_H:
903 /* Store a HalfWord */
904 emit(ARM_STRH_I(src, rd, 0), ctx);
905 break;
906 case BPF_B:
907 /* Store a Byte */
908 emit(ARM_STRB_I(src, rd, 0), ctx);
909 break;
910 }
911}
912
913/* dst = *(size*)(src + off) */
ec19e02b
RK
914static inline void emit_ldx_r(const u8 dst[], const u8 src, bool dstk,
915 s32 off, struct jit_ctx *ctx, const u8 sz){
46a3323d 916 const u8 *tmp = bpf2a32[TMP_REG_2];
ec19e02b 917 const u8 *rd = dstk ? tmp : dst;
39c13c20 918 u8 rm = src;
ec19e02b 919 s32 off_max;
39c13c20 920
ec19e02b
RK
921 if (sz == BPF_H)
922 off_max = 0xff;
923 else
924 off_max = 0xfff;
925
926 if (off < 0 || off > off_max) {
39c13c20
SB
927 emit_a32_mov_i(tmp[0], off, false, ctx);
928 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
929 rm = tmp[0];
ec19e02b
RK
930 off = 0;
931 } else if (rd[1] == rm) {
932 emit(ARM_MOV_R(tmp[0], rm), ctx);
933 rm = tmp[0];
39c13c20
SB
934 }
935 switch (sz) {
ec19e02b
RK
936 case BPF_B:
937 /* Load a Byte */
938 emit(ARM_LDRB_I(rd[1], rm, off), ctx);
939 emit_a32_mov_i(dst[0], 0, dstk, ctx);
39c13c20
SB
940 break;
941 case BPF_H:
942 /* Load a HalfWord */
ec19e02b
RK
943 emit(ARM_LDRH_I(rd[1], rm, off), ctx);
944 emit_a32_mov_i(dst[0], 0, dstk, ctx);
39c13c20 945 break;
ec19e02b
RK
946 case BPF_W:
947 /* Load a Word */
948 emit(ARM_LDR_I(rd[1], rm, off), ctx);
949 emit_a32_mov_i(dst[0], 0, dstk, ctx);
950 break;
951 case BPF_DW:
952 /* Load a Double Word */
953 emit(ARM_LDR_I(rd[1], rm, off), ctx);
954 emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
39c13c20
SB
955 break;
956 }
957 if (dstk)
ec19e02b
RK
958 emit(ARM_STR_I(rd[1], ARM_SP, STACK_VAR(dst[1])), ctx);
959 if (dstk && sz == BPF_DW)
960 emit(ARM_STR_I(rd[0], ARM_SP, STACK_VAR(dst[0])), ctx);
39c13c20
SB
961}
962
963/* Arithmatic Operation */
964static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
965 const u8 rn, struct jit_ctx *ctx, u8 op) {
966 switch (op) {
967 case BPF_JSET:
39c13c20
SB
968 emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
969 emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
970 emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
971 break;
972 case BPF_JEQ:
973 case BPF_JNE:
974 case BPF_JGT:
975 case BPF_JGE:
976 case BPF_JLE:
977 case BPF_JLT:
978 emit(ARM_CMP_R(rd, rm), ctx);
979 _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
980 break;
981 case BPF_JSLE:
982 case BPF_JSGT:
983 emit(ARM_CMP_R(rn, rt), ctx);
984 emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
985 break;
986 case BPF_JSLT:
987 case BPF_JSGE:
988 emit(ARM_CMP_R(rt, rn), ctx);
989 emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
990 break;
991 }
992}
993
994static int out_offset = -1; /* initialized on the first pass of build_body() */
995static int emit_bpf_tail_call(struct jit_ctx *ctx)
ddecdfce 996{
ddecdfce 997
39c13c20
SB
998 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
999 const u8 *r2 = bpf2a32[BPF_REG_2];
1000 const u8 *r3 = bpf2a32[BPF_REG_3];
1001 const u8 *tmp = bpf2a32[TMP_REG_1];
1002 const u8 *tmp2 = bpf2a32[TMP_REG_2];
1003 const u8 *tcc = bpf2a32[TCALL_CNT];
1004 const int idx0 = ctx->idx;
1005#define cur_offset (ctx->idx - idx0)
f4483f2c 1006#define jmp_offset (out_offset - (cur_offset) - 2)
39c13c20
SB
1007 u32 off, lo, hi;
1008
1009 /* if (index >= array->map.max_entries)
1010 * goto out;
1011 */
1012 off = offsetof(struct bpf_array, map.max_entries);
1013 /* array->map.max_entries */
1014 emit_a32_mov_i(tmp[1], off, false, ctx);
1015 emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
1016 emit(ARM_LDR_R(tmp[1], tmp2[1], tmp[1]), ctx);
091f0248 1017 /* index is 32-bit for arrays */
39c13c20
SB
1018 emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
1019 /* index >= array->map.max_entries */
1020 emit(ARM_CMP_R(tmp2[1], tmp[1]), ctx);
1021 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1022
1023 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1024 * goto out;
1025 * tail_call_cnt++;
1026 */
1027 lo = (u32)MAX_TAIL_CALL_CNT;
1028 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1029 emit(ARM_LDR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx);
1030 emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
1031 emit(ARM_CMP_I(tmp[0], hi), ctx);
1032 _emit(ARM_COND_EQ, ARM_CMP_I(tmp[1], lo), ctx);
1033 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1034 emit(ARM_ADDS_I(tmp[1], tmp[1], 1), ctx);
1035 emit(ARM_ADC_I(tmp[0], tmp[0], 0), ctx);
1036 emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx);
1037 emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
1038
1039 /* prog = array->ptrs[index]
1040 * if (prog == NULL)
1041 * goto out;
1042 */
1043 off = offsetof(struct bpf_array, ptrs);
1044 emit_a32_mov_i(tmp[1], off, false, ctx);
1045 emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
1046 emit(ARM_ADD_R(tmp[1], tmp2[1], tmp[1]), ctx);
1047 emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
1048 emit(ARM_MOV_SI(tmp[0], tmp2[1], SRTYPE_ASL, 2), ctx);
1049 emit(ARM_LDR_R(tmp[1], tmp[1], tmp[0]), ctx);
1050 emit(ARM_CMP_I(tmp[1], 0), ctx);
1051 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1052
1053 /* goto *(prog->bpf_func + prologue_size); */
1054 off = offsetof(struct bpf_prog, bpf_func);
1055 emit_a32_mov_i(tmp2[1], off, false, ctx);
1056 emit(ARM_LDR_R(tmp[1], tmp[1], tmp2[1]), ctx);
1057 emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
e9062481 1058 emit_bx_r(tmp[1], ctx);
39c13c20
SB
1059
1060 /* out: */
1061 if (out_offset == -1)
1062 out_offset = cur_offset;
1063 if (cur_offset != out_offset) {
1064 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1065 cur_offset, out_offset);
1066 return -1;
1067 }
1068 return 0;
1069#undef cur_offset
1070#undef jmp_offset
ddecdfce
MG
1071}
1072
39c13c20
SB
1073/* 0xabcd => 0xcdab */
1074static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
ddecdfce 1075{
39c13c20
SB
1076#if __LINUX_ARM_ARCH__ < 6
1077 const u8 *tmp2 = bpf2a32[TMP_REG_2];
1078
1079 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1080 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1081 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1082 emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1083#else /* ARMv6+ */
1084 emit(ARM_REV16(rd, rn), ctx);
1085#endif
1086}
ddecdfce 1087
39c13c20
SB
1088/* 0xabcdefgh => 0xghefcdab */
1089static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1090{
1091#if __LINUX_ARM_ARCH__ < 6
1092 const u8 *tmp2 = bpf2a32[TMP_REG_2];
1093
1094 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1095 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1096 emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1097
1098 emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1099 emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1100 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1101 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1102 emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1103 emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1104 emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1105
1106#else /* ARMv6+ */
1107 emit(ARM_REV(rd, rn), ctx);
1108#endif
1109}
34805931 1110
39c13c20
SB
1111// push the scratch stack register on top of the stack
1112static inline void emit_push_r64(const u8 src[], const u8 shift,
1113 struct jit_ctx *ctx)
1114{
1115 const u8 *tmp2 = bpf2a32[TMP_REG_2];
1116 u16 reg_set = 0;
ddecdfce 1117
39c13c20
SB
1118 emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(src[1]+shift)), ctx);
1119 emit(ARM_LDR_I(tmp2[0], ARM_SP, STACK_VAR(src[0]+shift)), ctx);
1120
1121 reg_set = (1 << tmp2[1]) | (1 << tmp2[0]);
1122 emit(ARM_PUSH(reg_set), ctx);
1123}
1124
1125static void build_prologue(struct jit_ctx *ctx)
1126{
1127 const u8 r0 = bpf2a32[BPF_REG_0][1];
1128 const u8 r2 = bpf2a32[BPF_REG_1][1];
1129 const u8 r3 = bpf2a32[BPF_REG_1][0];
1130 const u8 r4 = bpf2a32[BPF_REG_6][1];
39c13c20
SB
1131 const u8 fplo = bpf2a32[BPF_REG_FP][1];
1132 const u8 fphi = bpf2a32[BPF_REG_FP][0];
39c13c20
SB
1133 const u8 *tcc = bpf2a32[TCALL_CNT];
1134
39c13c20 1135 /* Save callee saved registers. */
39c13c20 1136#ifdef CONFIG_FRAME_POINTER
02088d9b
RK
1137 u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1138 emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
39c13c20
SB
1139 emit(ARM_PUSH(reg_set), ctx);
1140 emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1141#else
02088d9b
RK
1142 emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1143 emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
39c13c20
SB
1144#endif
1145 /* Save frame pointer for later */
02088d9b 1146 emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx);
39c13c20
SB
1147
1148 ctx->stack_size = imm8m(STACK_SIZE);
1149
1150 /* Set up function call stack */
1151 emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
ddecdfce 1152
39c13c20
SB
1153 /* Set up BPF prog stack base register */
1154 emit_a32_mov_r(fplo, ARM_IP, true, false, ctx);
1155 emit_a32_mov_i(fphi, 0, true, ctx);
1156
1157 /* mov r4, 0 */
1158 emit(ARM_MOV_I(r4, 0), ctx);
1159
1160 /* Move BPF_CTX to BPF_R1 */
1161 emit(ARM_MOV_R(r3, r4), ctx);
1162 emit(ARM_MOV_R(r2, r0), ctx);
1163 /* Initialize Tail Count */
1164 emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[0])), ctx);
1165 emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[1])), ctx);
1166 /* end of prologue */
1167}
1168
02088d9b 1169/* restore callee saved registers. */
39c13c20
SB
1170static void build_epilogue(struct jit_ctx *ctx)
1171{
39c13c20 1172#ifdef CONFIG_FRAME_POINTER
02088d9b
RK
1173 /* When using frame pointers, some additional registers need to
1174 * be loaded. */
1175 u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1176 emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
39c13c20
SB
1177 emit(ARM_LDM(ARM_SP, reg_set), ctx);
1178#else
39c13c20 1179 /* Restore callee saved registers. */
02088d9b
RK
1180 emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1181 emit(ARM_POP(CALLEE_POP_MASK), ctx);
39c13c20
SB
1182#endif
1183}
1184
1185/*
1186 * Convert an eBPF instruction to native instruction, i.e
1187 * JITs an eBPF instruction.
1188 * Returns :
1189 * 0 - Successfully JITed an 8-byte eBPF instruction
1190 * >0 - Successfully JITed a 16-byte eBPF instruction
1191 * <0 - Failed to JIT.
1192 */
1193static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1194{
1195 const u8 code = insn->code;
1196 const u8 *dst = bpf2a32[insn->dst_reg];
1197 const u8 *src = bpf2a32[insn->src_reg];
1198 const u8 *tmp = bpf2a32[TMP_REG_1];
1199 const u8 *tmp2 = bpf2a32[TMP_REG_2];
1200 const s16 off = insn->off;
1201 const s32 imm = insn->imm;
1202 const int i = insn - ctx->prog->insnsi;
1203 const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1204 const bool dstk = is_on_stack(insn->dst_reg);
1205 const bool sstk = is_on_stack(insn->src_reg);
1206 u8 rd, rt, rm, rn;
1207 s32 jmp_offset;
1208
1209#define check_imm(bits, imm) do { \
1210 if ((((imm) > 0) && ((imm) >> (bits))) || \
1211 (((imm) < 0) && (~(imm) >> (bits)))) { \
1212 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
1213 i, imm, imm); \
1214 return -EINVAL; \
1215 } \
1216} while (0)
1217#define check_imm24(imm) check_imm(24, imm)
1218
1219 switch (code) {
1220 /* ALU operations */
1221
1222 /* dst = src */
1223 case BPF_ALU | BPF_MOV | BPF_K:
1224 case BPF_ALU | BPF_MOV | BPF_X:
1225 case BPF_ALU64 | BPF_MOV | BPF_K:
1226 case BPF_ALU64 | BPF_MOV | BPF_X:
1227 switch (BPF_SRC(code)) {
1228 case BPF_X:
1229 emit_a32_mov_r64(is64, dst, src, dstk, sstk, ctx);
ddecdfce 1230 break;
39c13c20
SB
1231 case BPF_K:
1232 /* Sign-extend immediate value to destination reg */
1233 emit_a32_mov_i64(is64, dst, imm, dstk, ctx);
ddecdfce 1234 break;
39c13c20
SB
1235 }
1236 break;
1237 /* dst = dst + src/imm */
1238 /* dst = dst - src/imm */
1239 /* dst = dst | src/imm */
1240 /* dst = dst & src/imm */
1241 /* dst = dst ^ src/imm */
1242 /* dst = dst * src/imm */
1243 /* dst = dst << src */
1244 /* dst = dst >> src */
1245 case BPF_ALU | BPF_ADD | BPF_K:
1246 case BPF_ALU | BPF_ADD | BPF_X:
1247 case BPF_ALU | BPF_SUB | BPF_K:
1248 case BPF_ALU | BPF_SUB | BPF_X:
1249 case BPF_ALU | BPF_OR | BPF_K:
1250 case BPF_ALU | BPF_OR | BPF_X:
1251 case BPF_ALU | BPF_AND | BPF_K:
1252 case BPF_ALU | BPF_AND | BPF_X:
1253 case BPF_ALU | BPF_XOR | BPF_K:
1254 case BPF_ALU | BPF_XOR | BPF_X:
1255 case BPF_ALU | BPF_MUL | BPF_K:
1256 case BPF_ALU | BPF_MUL | BPF_X:
1257 case BPF_ALU | BPF_LSH | BPF_X:
1258 case BPF_ALU | BPF_RSH | BPF_X:
1259 case BPF_ALU | BPF_ARSH | BPF_K:
1260 case BPF_ALU | BPF_ARSH | BPF_X:
1261 case BPF_ALU64 | BPF_ADD | BPF_K:
1262 case BPF_ALU64 | BPF_ADD | BPF_X:
1263 case BPF_ALU64 | BPF_SUB | BPF_K:
1264 case BPF_ALU64 | BPF_SUB | BPF_X:
1265 case BPF_ALU64 | BPF_OR | BPF_K:
1266 case BPF_ALU64 | BPF_OR | BPF_X:
1267 case BPF_ALU64 | BPF_AND | BPF_K:
1268 case BPF_ALU64 | BPF_AND | BPF_X:
1269 case BPF_ALU64 | BPF_XOR | BPF_K:
1270 case BPF_ALU64 | BPF_XOR | BPF_X:
1271 switch (BPF_SRC(code)) {
1272 case BPF_X:
1273 emit_a32_alu_r64(is64, dst, src, dstk, sstk,
1274 ctx, BPF_OP(code));
ddecdfce 1275 break;
39c13c20
SB
1276 case BPF_K:
1277 /* Move immediate value to the temporary register
1278 * and then do the ALU operation on the temporary
1279 * register as this will sign-extend the immediate
1280 * value into temporary reg and then it would be
1281 * safe to do the operation on it.
6d715e30 1282 */
39c13c20
SB
1283 emit_a32_mov_i64(is64, tmp2, imm, false, ctx);
1284 emit_a32_alu_r64(is64, dst, tmp2, dstk, false,
1285 ctx, BPF_OP(code));
ddecdfce 1286 break;
39c13c20
SB
1287 }
1288 break;
1289 /* dst = dst / src(imm) */
1290 /* dst = dst % src(imm) */
1291 case BPF_ALU | BPF_DIV | BPF_K:
1292 case BPF_ALU | BPF_DIV | BPF_X:
1293 case BPF_ALU | BPF_MOD | BPF_K:
1294 case BPF_ALU | BPF_MOD | BPF_X:
1295 rt = src_lo;
1296 rd = dstk ? tmp2[1] : dst_lo;
1297 if (dstk)
1298 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
1299 switch (BPF_SRC(code)) {
1300 case BPF_X:
1301 rt = sstk ? tmp2[0] : rt;
1302 if (sstk)
1303 emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)),
1304 ctx);
ddecdfce 1305 break;
39c13c20
SB
1306 case BPF_K:
1307 rt = tmp2[0];
1308 emit_a32_mov_i(rt, imm, false, ctx);
ddecdfce 1309 break;
39c13c20
SB
1310 }
1311 emit_udivmod(rd, rd, rt, ctx, BPF_OP(code));
1312 if (dstk)
1313 emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
1314 emit_a32_mov_i(dst_hi, 0, dstk, ctx);
1315 break;
1316 case BPF_ALU64 | BPF_DIV | BPF_K:
1317 case BPF_ALU64 | BPF_DIV | BPF_X:
1318 case BPF_ALU64 | BPF_MOD | BPF_K:
1319 case BPF_ALU64 | BPF_MOD | BPF_X:
1320 goto notyet;
1321 /* dst = dst >> imm */
1322 /* dst = dst << imm */
1323 case BPF_ALU | BPF_RSH | BPF_K:
1324 case BPF_ALU | BPF_LSH | BPF_K:
1325 if (unlikely(imm > 31))
1326 return -EINVAL;
1327 if (imm)
1328 emit_a32_alu_i(dst_lo, imm, dstk, ctx, BPF_OP(code));
1329 emit_a32_mov_i(dst_hi, 0, dstk, ctx);
1330 break;
1331 /* dst = dst << imm */
1332 case BPF_ALU64 | BPF_LSH | BPF_K:
1333 if (unlikely(imm > 63))
1334 return -EINVAL;
1335 emit_a32_lsh_i64(dst, dstk, imm, ctx);
1336 break;
1337 /* dst = dst >> imm */
1338 case BPF_ALU64 | BPF_RSH | BPF_K:
1339 if (unlikely(imm > 63))
1340 return -EINVAL;
d1ab73c4 1341 emit_a32_rsh_i64(dst, dstk, imm, ctx);
39c13c20
SB
1342 break;
1343 /* dst = dst << src */
1344 case BPF_ALU64 | BPF_LSH | BPF_X:
1345 emit_a32_lsh_r64(dst, src, dstk, sstk, ctx);
1346 break;
1347 /* dst = dst >> src */
1348 case BPF_ALU64 | BPF_RSH | BPF_X:
d1ab73c4 1349 emit_a32_rsh_r64(dst, src, dstk, sstk, ctx);
39c13c20
SB
1350 break;
1351 /* dst = dst >> src (signed) */
1352 case BPF_ALU64 | BPF_ARSH | BPF_X:
1353 emit_a32_arsh_r64(dst, src, dstk, sstk, ctx);
1354 break;
1355 /* dst = dst >> imm (signed) */
1356 case BPF_ALU64 | BPF_ARSH | BPF_K:
1357 if (unlikely(imm > 63))
1358 return -EINVAL;
1359 emit_a32_arsh_i64(dst, dstk, imm, ctx);
1360 break;
1361 /* dst = ~dst */
1362 case BPF_ALU | BPF_NEG:
1363 emit_a32_alu_i(dst_lo, 0, dstk, ctx, BPF_OP(code));
1364 emit_a32_mov_i(dst_hi, 0, dstk, ctx);
1365 break;
1366 /* dst = ~dst (64 bit) */
1367 case BPF_ALU64 | BPF_NEG:
1368 emit_a32_neg64(dst, dstk, ctx);
1369 break;
1370 /* dst = dst * src/imm */
1371 case BPF_ALU64 | BPF_MUL | BPF_X:
1372 case BPF_ALU64 | BPF_MUL | BPF_K:
1373 switch (BPF_SRC(code)) {
1374 case BPF_X:
1375 emit_a32_mul_r64(dst, src, dstk, sstk, ctx);
ddecdfce 1376 break;
39c13c20
SB
1377 case BPF_K:
1378 /* Move immediate value to the temporary register
1379 * and then do the multiplication on it as this
1380 * will sign-extend the immediate value into temp
1381 * reg then it would be safe to do the operation
1382 * on it.
ddecdfce 1383 */
39c13c20
SB
1384 emit_a32_mov_i64(is64, tmp2, imm, false, ctx);
1385 emit_a32_mul_r64(dst, tmp2, dstk, false, ctx);
ddecdfce 1386 break;
39c13c20
SB
1387 }
1388 break;
1389 /* dst = htole(dst) */
1390 /* dst = htobe(dst) */
1391 case BPF_ALU | BPF_END | BPF_FROM_LE:
1392 case BPF_ALU | BPF_END | BPF_FROM_BE:
1393 rd = dstk ? tmp[0] : dst_hi;
1394 rt = dstk ? tmp[1] : dst_lo;
1395 if (dstk) {
1396 emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
1397 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
1398 }
1399 if (BPF_SRC(code) == BPF_FROM_LE)
1400 goto emit_bswap_uxt;
1401 switch (imm) {
1402 case 16:
1403 emit_rev16(rt, rt, ctx);
1404 goto emit_bswap_uxt;
1405 case 32:
1406 emit_rev32(rt, rt, ctx);
1407 goto emit_bswap_uxt;
1408 case 64:
39c13c20
SB
1409 emit_rev32(ARM_LR, rt, ctx);
1410 emit_rev32(rt, rd, ctx);
1411 emit(ARM_MOV_R(rd, ARM_LR), ctx);
4560cdff 1412 break;
39c13c20
SB
1413 }
1414 goto exit;
1415emit_bswap_uxt:
1416 switch (imm) {
1417 case 16:
1418 /* zero-extend 16 bits into 64 bits */
1419#if __LINUX_ARM_ARCH__ < 6
1420 emit_a32_mov_i(tmp2[1], 0xffff, false, ctx);
1421 emit(ARM_AND_R(rt, rt, tmp2[1]), ctx);
1422#else /* ARMv6+ */
1423 emit(ARM_UXTH(rt, rt), ctx);
1424#endif
1425 emit(ARM_EOR_R(rd, rd, rd), ctx);
4560cdff 1426 break;
39c13c20
SB
1427 case 32:
1428 /* zero-extend 32 bits into 64 bits */
1429 emit(ARM_EOR_R(rd, rd, rd), ctx);
ddecdfce 1430 break;
39c13c20
SB
1431 case 64:
1432 /* nop */
ddecdfce 1433 break;
39c13c20
SB
1434 }
1435exit:
1436 if (dstk) {
1437 emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
1438 emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
1439 }
1440 break;
1441 /* dst = imm64 */
1442 case BPF_LD | BPF_IMM | BPF_DW:
1443 {
1444 const struct bpf_insn insn1 = insn[1];
1445 u32 hi, lo = imm;
1446
1447 hi = insn1.imm;
1448 emit_a32_mov_i(dst_lo, lo, dstk, ctx);
1449 emit_a32_mov_i(dst_hi, hi, dstk, ctx);
1450
1451 return 1;
1452 }
1453 /* LDX: dst = *(size *)(src + off) */
1454 case BPF_LDX | BPF_MEM | BPF_W:
1455 case BPF_LDX | BPF_MEM | BPF_H:
1456 case BPF_LDX | BPF_MEM | BPF_B:
1457 case BPF_LDX | BPF_MEM | BPF_DW:
1458 rn = sstk ? tmp2[1] : src_lo;
1459 if (sstk)
1460 emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
ec19e02b 1461 emit_ldx_r(dst, rn, dstk, off, ctx, BPF_SIZE(code));
39c13c20
SB
1462 break;
1463 /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
1464 case BPF_LD | BPF_ABS | BPF_W:
1465 case BPF_LD | BPF_ABS | BPF_H:
1466 case BPF_LD | BPF_ABS | BPF_B:
1467 /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
1468 case BPF_LD | BPF_IND | BPF_W:
1469 case BPF_LD | BPF_IND | BPF_H:
1470 case BPF_LD | BPF_IND | BPF_B:
1471 {
1472 const u8 r4 = bpf2a32[BPF_REG_6][1]; /* r4 = ptr to sk_buff */
1473 const u8 r0 = bpf2a32[BPF_REG_0][1]; /*r0: struct sk_buff *skb*/
1474 /* rtn value */
1475 const u8 r1 = bpf2a32[BPF_REG_0][0]; /* r1: int k */
1476 const u8 r2 = bpf2a32[BPF_REG_1][1]; /* r2: unsigned int size */
1477 const u8 r3 = bpf2a32[BPF_REG_1][0]; /* r3: void *buffer */
1478 const u8 r6 = bpf2a32[TMP_REG_1][1]; /* r6: void *(*func)(..) */
1479 int size;
1480
1481 /* Setting up first argument */
1482 emit(ARM_MOV_R(r0, r4), ctx);
1483
1484 /* Setting up second argument */
1485 emit_a32_mov_i(r1, imm, false, ctx);
1486 if (BPF_MODE(code) == BPF_IND)
1487 emit_a32_alu_r(r1, src_lo, false, sstk, ctx,
1488 false, false, BPF_ADD);
1489
1490 /* Setting up third argument */
1491 switch (BPF_SIZE(code)) {
1492 case BPF_W:
1493 size = 4;
3cbe2041 1494 break;
39c13c20
SB
1495 case BPF_H:
1496 size = 2;
ddecdfce 1497 break;
39c13c20
SB
1498 case BPF_B:
1499 size = 1;
ddecdfce 1500 break;
39c13c20
SB
1501 default:
1502 return -EINVAL;
1503 }
1504 emit_a32_mov_i(r2, size, false, ctx);
1505
1506 /* Setting up fourth argument */
1507 emit(ARM_ADD_I(r3, ARM_SP, imm8m(SKB_BUFFER)), ctx);
1508
1509 /* Setting up function pointer to call */
1510 emit_a32_mov_i(r6, (unsigned int)bpf_load_pointer, false, ctx);
1511 emit_blx_r(r6, ctx);
1512
1513 emit(ARM_EOR_R(r1, r1, r1), ctx);
1514 /* Check if return address is NULL or not.
1515 * if NULL then jump to epilogue
1516 * else continue to load the value from retn address
1517 */
1518 emit(ARM_CMP_I(r0, 0), ctx);
1519 jmp_offset = epilogue_offset(ctx);
1520 check_imm24(jmp_offset);
1521 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1522
1523 /* Load value from the address */
1524 switch (BPF_SIZE(code)) {
1525 case BPF_W:
1526 emit(ARM_LDR_I(r0, r0, 0), ctx);
1527 emit_rev32(r0, r0, ctx);
ddecdfce 1528 break;
39c13c20
SB
1529 case BPF_H:
1530 emit(ARM_LDRH_I(r0, r0, 0), ctx);
1531 emit_rev16(r0, r0, ctx);
ddecdfce 1532 break;
39c13c20
SB
1533 case BPF_B:
1534 emit(ARM_LDRB_I(r0, r0, 0), ctx);
1535 /* No need to reverse */
ddecdfce 1536 break;
39c13c20
SB
1537 }
1538 break;
1539 }
1540 /* ST: *(size *)(dst + off) = imm */
1541 case BPF_ST | BPF_MEM | BPF_W:
1542 case BPF_ST | BPF_MEM | BPF_H:
1543 case BPF_ST | BPF_MEM | BPF_B:
1544 case BPF_ST | BPF_MEM | BPF_DW:
1545 switch (BPF_SIZE(code)) {
1546 case BPF_DW:
1547 /* Sign-extend immediate value into temp reg */
1548 emit_a32_mov_i64(true, tmp2, imm, false, ctx);
1549 emit_str_r(dst_lo, tmp2[1], dstk, off, ctx, BPF_W);
1550 emit_str_r(dst_lo, tmp2[0], dstk, off+4, ctx, BPF_W);
ddecdfce 1551 break;
39c13c20
SB
1552 case BPF_W:
1553 case BPF_H:
1554 case BPF_B:
1555 emit_a32_mov_i(tmp2[1], imm, false, ctx);
1556 emit_str_r(dst_lo, tmp2[1], dstk, off, ctx,
1557 BPF_SIZE(code));
ddecdfce 1558 break;
39c13c20
SB
1559 }
1560 break;
1561 /* STX XADD: lock *(u32 *)(dst + off) += src */
1562 case BPF_STX | BPF_XADD | BPF_W:
1563 /* STX XADD: lock *(u64 *)(dst + off) += src */
1564 case BPF_STX | BPF_XADD | BPF_DW:
1565 goto notyet;
1566 /* STX: *(size *)(dst + off) = src */
1567 case BPF_STX | BPF_MEM | BPF_W:
1568 case BPF_STX | BPF_MEM | BPF_H:
1569 case BPF_STX | BPF_MEM | BPF_B:
1570 case BPF_STX | BPF_MEM | BPF_DW:
1571 {
1572 u8 sz = BPF_SIZE(code);
1573
1574 rn = sstk ? tmp2[1] : src_lo;
1575 rm = sstk ? tmp2[0] : src_hi;
1576 if (sstk) {
1577 emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
1578 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
1579 }
1580
1581 /* Store the value */
1582 if (BPF_SIZE(code) == BPF_DW) {
1583 emit_str_r(dst_lo, rn, dstk, off, ctx, BPF_W);
1584 emit_str_r(dst_lo, rm, dstk, off+4, ctx, BPF_W);
1585 } else {
1586 emit_str_r(dst_lo, rn, dstk, off, ctx, sz);
1587 }
1588 break;
1589 }
1590 /* PC += off if dst == src */
1591 /* PC += off if dst > src */
1592 /* PC += off if dst >= src */
1593 /* PC += off if dst < src */
1594 /* PC += off if dst <= src */
1595 /* PC += off if dst != src */
1596 /* PC += off if dst > src (signed) */
1597 /* PC += off if dst >= src (signed) */
1598 /* PC += off if dst < src (signed) */
1599 /* PC += off if dst <= src (signed) */
1600 /* PC += off if dst & src */
1601 case BPF_JMP | BPF_JEQ | BPF_X:
1602 case BPF_JMP | BPF_JGT | BPF_X:
1603 case BPF_JMP | BPF_JGE | BPF_X:
1604 case BPF_JMP | BPF_JNE | BPF_X:
1605 case BPF_JMP | BPF_JSGT | BPF_X:
1606 case BPF_JMP | BPF_JSGE | BPF_X:
1607 case BPF_JMP | BPF_JSET | BPF_X:
1608 case BPF_JMP | BPF_JLE | BPF_X:
1609 case BPF_JMP | BPF_JLT | BPF_X:
1610 case BPF_JMP | BPF_JSLT | BPF_X:
1611 case BPF_JMP | BPF_JSLE | BPF_X:
1612 /* Setup source registers */
1613 rm = sstk ? tmp2[0] : src_hi;
1614 rn = sstk ? tmp2[1] : src_lo;
1615 if (sstk) {
1616 emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
1617 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
1618 }
1619 goto go_jmp;
1620 /* PC += off if dst == imm */
1621 /* PC += off if dst > imm */
1622 /* PC += off if dst >= imm */
1623 /* PC += off if dst < imm */
1624 /* PC += off if dst <= imm */
1625 /* PC += off if dst != imm */
1626 /* PC += off if dst > imm (signed) */
1627 /* PC += off if dst >= imm (signed) */
1628 /* PC += off if dst < imm (signed) */
1629 /* PC += off if dst <= imm (signed) */
1630 /* PC += off if dst & imm */
1631 case BPF_JMP | BPF_JEQ | BPF_K:
1632 case BPF_JMP | BPF_JGT | BPF_K:
1633 case BPF_JMP | BPF_JGE | BPF_K:
1634 case BPF_JMP | BPF_JNE | BPF_K:
1635 case BPF_JMP | BPF_JSGT | BPF_K:
1636 case BPF_JMP | BPF_JSGE | BPF_K:
1637 case BPF_JMP | BPF_JSET | BPF_K:
1638 case BPF_JMP | BPF_JLT | BPF_K:
1639 case BPF_JMP | BPF_JLE | BPF_K:
1640 case BPF_JMP | BPF_JSLT | BPF_K:
1641 case BPF_JMP | BPF_JSLE | BPF_K:
1642 if (off == 0)
ddecdfce 1643 break;
39c13c20
SB
1644 rm = tmp2[0];
1645 rn = tmp2[1];
1646 /* Sign-extend immediate value */
1647 emit_a32_mov_i64(true, tmp2, imm, false, ctx);
1648go_jmp:
1649 /* Setup destination register */
1650 rd = dstk ? tmp[0] : dst_hi;
1651 rt = dstk ? tmp[1] : dst_lo;
1652 if (dstk) {
1653 emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
1654 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
1655 }
1656
1657 /* Check for the condition */
1658 emit_ar_r(rd, rt, rm, rn, ctx, BPF_OP(code));
1659
1660 /* Setup JUMP instruction */
1661 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1662 switch (BPF_OP(code)) {
1663 case BPF_JNE:
1664 case BPF_JSET:
1665 _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
ddecdfce 1666 break;
39c13c20
SB
1667 case BPF_JEQ:
1668 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
ddecdfce 1669 break;
39c13c20
SB
1670 case BPF_JGT:
1671 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
ddecdfce 1672 break;
39c13c20
SB
1673 case BPF_JGE:
1674 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
ddecdfce 1675 break;
39c13c20
SB
1676 case BPF_JSGT:
1677 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
ddecdfce 1678 break;
39c13c20
SB
1679 case BPF_JSGE:
1680 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
ddecdfce 1681 break;
39c13c20
SB
1682 case BPF_JLE:
1683 _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
ddecdfce 1684 break;
39c13c20
SB
1685 case BPF_JLT:
1686 _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
ddecdfce 1687 break;
39c13c20
SB
1688 case BPF_JSLT:
1689 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
ddecdfce 1690 break;
39c13c20
SB
1691 case BPF_JSLE:
1692 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
bf0098f2 1693 break;
39c13c20
SB
1694 }
1695 break;
1696 /* JMP OFF */
1697 case BPF_JMP | BPF_JA:
1698 {
1699 if (off == 0)
1447f93f 1700 break;
39c13c20
SB
1701 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1702 check_imm24(jmp_offset);
1703 emit(ARM_B(jmp_offset), ctx);
1704 break;
1705 }
1706 /* tail call */
1707 case BPF_JMP | BPF_TAIL_CALL:
1708 if (emit_bpf_tail_call(ctx))
1709 return -EFAULT;
1710 break;
1711 /* function call */
1712 case BPF_JMP | BPF_CALL:
1713 {
1714 const u8 *r0 = bpf2a32[BPF_REG_0];
1715 const u8 *r1 = bpf2a32[BPF_REG_1];
1716 const u8 *r2 = bpf2a32[BPF_REG_2];
1717 const u8 *r3 = bpf2a32[BPF_REG_3];
1718 const u8 *r4 = bpf2a32[BPF_REG_4];
1719 const u8 *r5 = bpf2a32[BPF_REG_5];
1720 const u32 func = (u32)__bpf_call_base + (u32)imm;
1721
1722 emit_a32_mov_r64(true, r0, r1, false, false, ctx);
1723 emit_a32_mov_r64(true, r1, r2, false, true, ctx);
1724 emit_push_r64(r5, 0, ctx);
1725 emit_push_r64(r4, 8, ctx);
1726 emit_push_r64(r3, 16, ctx);
1727
1728 emit_a32_mov_i(tmp[1], func, false, ctx);
1729 emit_blx_r(tmp[1], ctx);
1730
1731 emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1732 break;
1733 }
1734 /* function return */
1735 case BPF_JMP | BPF_EXIT:
1736 /* Optimization: when last instruction is EXIT
1737 * simply fallthrough to epilogue.
1738 */
1739 if (i == ctx->prog->len - 1)
ddecdfce 1740 break;
39c13c20
SB
1741 jmp_offset = epilogue_offset(ctx);
1742 check_imm24(jmp_offset);
1743 emit(ARM_B(jmp_offset), ctx);
1744 break;
1745notyet:
1746 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1747 return -EFAULT;
1748 default:
1749 pr_err_once("unknown opcode %02x\n", code);
1750 return -EINVAL;
1751 }
303249ab 1752
39c13c20
SB
1753 if (ctx->flags & FLAG_IMM_OVERFLOW)
1754 /*
1755 * this instruction generated an overflow when
1756 * trying to access the literal pool, so
1757 * delegate this filter to the kernel interpreter.
1758 */
1759 return -1;
1760 return 0;
1761}
1762
1763static int build_body(struct jit_ctx *ctx)
1764{
1765 const struct bpf_prog *prog = ctx->prog;
1766 unsigned int i;
1767
1768 for (i = 0; i < prog->len; i++) {
1769 const struct bpf_insn *insn = &(prog->insnsi[i]);
1770 int ret;
1771
1772 ret = build_insn(insn, ctx);
1773
1774 /* It's used with loading the 64 bit immediate value. */
1775 if (ret > 0) {
1776 i++;
1777 if (ctx->target == NULL)
1778 ctx->offsets[i] = ctx->idx;
1779 continue;
ddecdfce 1780 }
0b59d880 1781
39c13c20
SB
1782 if (ctx->target == NULL)
1783 ctx->offsets[i] = ctx->idx;
1784
1785 /* If unsuccesfull, return with error code */
1786 if (ret)
1787 return ret;
ddecdfce 1788 }
39c13c20
SB
1789 return 0;
1790}
ddecdfce 1791
39c13c20
SB
1792static int validate_code(struct jit_ctx *ctx)
1793{
1794 int i;
1795
1796 for (i = 0; i < ctx->idx; i++) {
1797 if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1798 return -1;
1799 }
ddecdfce
MG
1800
1801 return 0;
1802}
1803
39c13c20
SB
1804void bpf_jit_compile(struct bpf_prog *prog)
1805{
1806 /* Nothing to do here. We support Internal BPF. */
1807}
ddecdfce 1808
39c13c20 1809struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
ddecdfce 1810{
39c13c20 1811 struct bpf_prog *tmp, *orig_prog = prog;
55309dd3 1812 struct bpf_binary_header *header;
39c13c20 1813 bool tmp_blinded = false;
ddecdfce 1814 struct jit_ctx ctx;
39c13c20
SB
1815 unsigned int tmp_idx;
1816 unsigned int image_size;
1817 u8 *image_ptr;
ddecdfce 1818
39c13c20
SB
1819 /* If BPF JIT was not enabled then we must fall back to
1820 * the interpreter.
1821 */
ddecdfce 1822 if (!bpf_jit_enable)
39c13c20 1823 return orig_prog;
ddecdfce 1824
39c13c20
SB
1825 /* If constant blinding was enabled and we failed during blinding
1826 * then we must fall back to the interpreter. Otherwise, we save
1827 * the new JITed code.
1828 */
1829 tmp = bpf_jit_blind_constants(prog);
ddecdfce 1830
39c13c20
SB
1831 if (IS_ERR(tmp))
1832 return orig_prog;
1833 if (tmp != prog) {
1834 tmp_blinded = true;
1835 prog = tmp;
1836 }
ddecdfce 1837
39c13c20
SB
1838 memset(&ctx, 0, sizeof(ctx));
1839 ctx.prog = prog;
1840
1841 /* Not able to allocate memory for offsets[] , then
1842 * we must fall back to the interpreter
1843 */
1844 ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1845 if (ctx.offsets == NULL) {
1846 prog = orig_prog;
ddecdfce 1847 goto out;
39c13c20
SB
1848 }
1849
1850 /* 1) fake pass to find in the length of the JITed code,
1851 * to compute ctx->offsets and other context variables
1852 * needed to compute final JITed code.
1853 * Also, calculate random starting pointer/start of JITed code
1854 * which is prefixed by random number of fault instructions.
1855 *
1856 * If the first pass fails then there is no chance of it
1857 * being successful in the second pass, so just fall back
1858 * to the interpreter.
1859 */
1860 if (build_body(&ctx)) {
1861 prog = orig_prog;
1862 goto out_off;
1863 }
ddecdfce
MG
1864
1865 tmp_idx = ctx.idx;
1866 build_prologue(&ctx);
1867 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1868
39c13c20
SB
1869 ctx.epilogue_offset = ctx.idx;
1870
ddecdfce
MG
1871#if __LINUX_ARM_ARCH__ < 7
1872 tmp_idx = ctx.idx;
1873 build_epilogue(&ctx);
1874 ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1875
1876 ctx.idx += ctx.imm_count;
1877 if (ctx.imm_count) {
39c13c20
SB
1878 ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1879 if (ctx.imms == NULL) {
1880 prog = orig_prog;
1881 goto out_off;
1882 }
ddecdfce
MG
1883 }
1884#else
39c13c20 1885 /* there's nothing about the epilogue on ARMv7 */
ddecdfce
MG
1886 build_epilogue(&ctx);
1887#endif
39c13c20
SB
1888 /* Now we can get the actual image size of the JITed arm code.
1889 * Currently, we are not considering the THUMB-2 instructions
1890 * for jit, although it can decrease the size of the image.
1891 *
1892 * As each arm instruction is of length 32bit, we are translating
1893 * number of JITed intructions into the size required to store these
1894 * JITed code.
1895 */
1896 image_size = sizeof(u32) * ctx.idx;
ddecdfce 1897
39c13c20
SB
1898 /* Now we know the size of the structure to make */
1899 header = bpf_jit_binary_alloc(image_size, &image_ptr,
1900 sizeof(u32), jit_fill_hole);
1901 /* Not able to allocate memory for the structure then
1902 * we must fall back to the interpretation
1903 */
1904 if (header == NULL) {
1905 prog = orig_prog;
1906 goto out_imms;
1907 }
1908
1909 /* 2.) Actual pass to generate final JIT code */
1910 ctx.target = (u32 *) image_ptr;
ddecdfce 1911 ctx.idx = 0;
55309dd3 1912
ddecdfce 1913 build_prologue(&ctx);
39c13c20
SB
1914
1915 /* If building the body of the JITed code fails somehow,
1916 * we fall back to the interpretation.
1917 */
0b59d880 1918 if (build_body(&ctx) < 0) {
39c13c20 1919 image_ptr = NULL;
0b59d880 1920 bpf_jit_binary_free(header);
39c13c20
SB
1921 prog = orig_prog;
1922 goto out_imms;
0b59d880 1923 }
ddecdfce
MG
1924 build_epilogue(&ctx);
1925
39c13c20
SB
1926 /* 3.) Extra pass to validate JITed Code */
1927 if (validate_code(&ctx)) {
1928 image_ptr = NULL;
1929 bpf_jit_binary_free(header);
1930 prog = orig_prog;
1931 goto out_imms;
1932 }
ebaef649 1933 flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
ddecdfce 1934
ddecdfce 1935 if (bpf_jit_enable > 1)
79617801 1936 /* there are 2 passes here */
39c13c20 1937 bpf_jit_dump(prog->len, image_size, 2, ctx.target);
ddecdfce 1938
1158556f 1939 bpf_jit_binary_lock_ro(header);
39c13c20
SB
1940 prog->bpf_func = (void *)ctx.target;
1941 prog->jited = 1;
1942 prog->jited_len = image_size;
1943
1944out_imms:
1945#if __LINUX_ARM_ARCH__ < 7
1946 if (ctx.imm_count)
1947 kfree(ctx.imms);
1948#endif
1949out_off:
ddecdfce 1950 kfree(ctx.offsets);
39c13c20
SB
1951out:
1952 if (tmp_blinded)
1953 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1954 tmp : orig_prog);
1955 return prog;
ddecdfce
MG
1956}
1957