]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/arm64/include/asm/kvm_mmu.h
KVM: arm/arm64: vgic-its: Take the srcu lock when writing to guest memory
[mirror_ubuntu-bionic-kernel.git] / arch / arm64 / include / asm / kvm_mmu.h
CommitLineData
37c43753
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18#ifndef __ARM64_KVM_MMU_H__
19#define __ARM64_KVM_MMU_H__
20
21#include <asm/page.h>
22#include <asm/memory.h>
20475f78 23#include <asm/cpufeature.h>
37c43753
MZ
24
25/*
cedbb8b7 26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
37c43753
MZ
27 * "negative" addresses. This makes it impossible to directly share
28 * mappings with the kernel.
29 *
30 * Instead, give the HYP mode its own VA region at a fixed offset from
31 * the kernel by just masking the top bits (which are all ones for a
82a81bff 32 * kernel address). We need to find out how many bits to mask.
cedbb8b7 33 *
82a81bff
MZ
34 * We want to build a set of page tables that cover both parts of the
35 * idmap (the trampoline page used to initialize EL2), and our normal
36 * runtime VA space, at the same time.
37 *
38 * Given that the kernel uses VA_BITS for its entire address space,
39 * and that half of that space (VA_BITS - 1) is used for the linear
40 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41 *
42 * The main question is "Within the VA_BITS space, does EL2 use the
43 * top or the bottom half of that space to shadow the kernel's linear
44 * mapping?". As we need to idmap the trampoline page, this is
45 * determined by the range in which this page lives.
46 *
47 * If the page is in the bottom half, we have to use the top half. If
48 * the page is in the top half, we have to use the bottom half:
49 *
2077be67 50 * T = __pa_symbol(__hyp_idmap_text_start)
82a81bff
MZ
51 * if (T & BIT(VA_BITS - 1))
52 * HYP_VA_MIN = 0 //idmap in upper half
53 * else
54 * HYP_VA_MIN = 1 << (VA_BITS - 1)
55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56 *
57 * This of course assumes that the trampoline page exists within the
58 * VA_BITS range. If it doesn't, then it means we're in the odd case
59 * where the kernel idmap (as well as HYP) uses more levels than the
60 * kernel runtime page tables (as seen when the kernel is configured
61 * for 4k pages, 39bits VA, and yet memory lives just above that
62 * limit, forcing the idmap to use 4 levels of page tables while the
63 * kernel itself only uses 3). In this particular case, it doesn't
64 * matter which side of VA_BITS we use, as we're guaranteed not to
65 * conflict with anything.
66 *
67 * When using VHE, there are no separate hyp mappings and all KVM
68 * functionality is already mapped as part of the main kernel
69 * mappings, and none of this applies in that case.
37c43753 70 */
d53d9bc6
MZ
71
72#define HYP_PAGE_OFFSET_HIGH_MASK ((UL(1) << VA_BITS) - 1)
73#define HYP_PAGE_OFFSET_LOW_MASK ((UL(1) << (VA_BITS - 1)) - 1)
74
37c43753
MZ
75#ifdef __ASSEMBLY__
76
cedbb8b7
MZ
77#include <asm/alternative.h>
78#include <asm/cpufeature.h>
79
37c43753
MZ
80/*
81 * Convert a kernel VA into a HYP VA.
82 * reg: VA to be converted.
fd81e6bf
MZ
83 *
84 * This generates the following sequences:
85 * - High mask:
86 * and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
87 * nop
88 * - Low mask:
89 * and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
90 * and x0, x0, #HYP_PAGE_OFFSET_LOW_MASK
91 * - VHE:
92 * nop
93 * nop
94 *
95 * The "low mask" version works because the mask is a strict subset of
96 * the "high mask", hence performing the first mask for nothing.
97 * Should be completely invisible on any viable CPU.
37c43753
MZ
98 */
99.macro kern_hyp_va reg
fd81e6bf
MZ
100alternative_if_not ARM64_HAS_VIRT_HOST_EXTN
101 and \reg, \reg, #HYP_PAGE_OFFSET_HIGH_MASK
e506236a
MR
102alternative_else_nop_endif
103alternative_if ARM64_HYP_OFFSET_LOW
fd81e6bf 104 and \reg, \reg, #HYP_PAGE_OFFSET_LOW_MASK
e506236a 105alternative_else_nop_endif
37c43753
MZ
106.endm
107
108#else
109
38f791a4 110#include <asm/pgalloc.h>
02f7760e 111#include <asm/cache.h>
37c43753 112#include <asm/cacheflush.h>
e4c5a685
AB
113#include <asm/mmu_context.h>
114#include <asm/pgtable.h>
37c43753 115
fd81e6bf
MZ
116static inline unsigned long __kern_hyp_va(unsigned long v)
117{
118 asm volatile(ALTERNATIVE("and %0, %0, %1",
119 "nop",
120 ARM64_HAS_VIRT_HOST_EXTN)
121 : "+r" (v)
122 : "i" (HYP_PAGE_OFFSET_HIGH_MASK));
123 asm volatile(ALTERNATIVE("nop",
124 "and %0, %0, %1",
125 ARM64_HYP_OFFSET_LOW)
126 : "+r" (v)
127 : "i" (HYP_PAGE_OFFSET_LOW_MASK));
128 return v;
129}
130
94d0e598 131#define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
37c43753 132
c7588eb4
MZ
133/*
134 * Obtain the PC-relative address of a kernel symbol
135 * s: symbol
136 *
137 * The goal of this macro is to return a symbol's address based on a
138 * PC-relative computation, as opposed to a loading the VA from a
139 * constant pool or something similar. This works well for HYP, as an
140 * absolute VA is guaranteed to be wrong. Only use this if trying to
141 * obtain the address of a symbol (i.e. not something you obtained by
142 * following a pointer).
143 */
144#define hyp_symbol_addr(s) \
145 ({ \
146 typeof(s) *addr; \
147 asm("adrp %0, %1\n" \
148 "add %0, %0, :lo12:%1\n" \
149 : "=r" (addr) : "S" (&s)); \
150 addr; \
151 })
152
37c43753 153/*
dbff124e 154 * We currently only support a 40bit IPA.
37c43753 155 */
dbff124e 156#define KVM_PHYS_SHIFT (40)
37c43753
MZ
157#define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT)
158#define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL)
159
c0ef6326
SP
160#include <asm/stage2_pgtable.h>
161
c8dddecd 162int create_hyp_mappings(void *from, void *to, pgprot_t prot);
37c43753 163int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
37c43753
MZ
164void free_hyp_pgds(void);
165
957db105 166void stage2_unmap_vm(struct kvm *kvm);
37c43753
MZ
167int kvm_alloc_stage2_pgd(struct kvm *kvm);
168void kvm_free_stage2_pgd(struct kvm *kvm);
169int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
c40f2f8f 170 phys_addr_t pa, unsigned long size, bool writable);
37c43753
MZ
171
172int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
173
174void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
175
176phys_addr_t kvm_mmu_get_httbr(void);
37c43753
MZ
177phys_addr_t kvm_get_idmap_vector(void);
178int kvm_mmu_init(void);
179void kvm_clear_hyp_idmap(void);
180
181#define kvm_set_pte(ptep, pte) set_pte(ptep, pte)
ad361f09 182#define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd)
37c43753 183
06485053 184static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
37c43753 185{
06485053
CM
186 pte_val(pte) |= PTE_S2_RDWR;
187 return pte;
37c43753
MZ
188}
189
06485053 190static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
ad361f09 191{
06485053
CM
192 pmd_val(pmd) |= PMD_S2_RDWR;
193 return pmd;
ad361f09
CD
194}
195
8199ed0e
MS
196static inline void kvm_set_s2pte_readonly(pte_t *pte)
197{
0966253d
CM
198 pteval_t old_pteval, pteval;
199
200 pteval = READ_ONCE(pte_val(*pte));
201 do {
202 old_pteval = pteval;
203 pteval &= ~PTE_S2_RDWR;
204 pteval |= PTE_S2_RDONLY;
205 pteval = cmpxchg_relaxed(&pte_val(*pte), old_pteval, pteval);
206 } while (pteval != old_pteval);
8199ed0e
MS
207}
208
209static inline bool kvm_s2pte_readonly(pte_t *pte)
210{
211 return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY;
212}
213
214static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
215{
06485053 216 kvm_set_s2pte_readonly((pte_t *)pmd);
8199ed0e
MS
217}
218
219static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
220{
06485053 221 return kvm_s2pte_readonly((pte_t *)pmd);
38f791a4
CD
222}
223
4f853a71
CD
224static inline bool kvm_page_empty(void *ptr)
225{
226 struct page *ptr_page = virt_to_page(ptr);
227 return page_count(ptr_page) == 1;
228}
229
66f877fa 230#define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
38f791a4
CD
231
232#ifdef __PAGETABLE_PMD_FOLDED
66f877fa 233#define hyp_pmd_table_empty(pmdp) (0)
38f791a4 234#else
66f877fa 235#define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
38f791a4
CD
236#endif
237
238#ifdef __PAGETABLE_PUD_FOLDED
66f877fa 239#define hyp_pud_table_empty(pudp) (0)
4f853a71 240#else
66f877fa 241#define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
4f853a71 242#endif
4f853a71 243
37c43753
MZ
244struct kvm;
245
2d58b733
MZ
246#define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
247
248static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
37c43753 249{
2d58b733
MZ
250 return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
251}
252
ba049e93
DW
253static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
254 kvm_pfn_t pfn,
13b7756c 255 unsigned long size)
2d58b733 256{
0d3e4d4f
MZ
257 void *va = page_address(pfn_to_page(pfn));
258
8f36ebaf 259 kvm_flush_dcache_to_poc(va, size);
2d58b733 260
87da236e 261 if (icache_is_aliasing()) {
37c43753
MZ
262 /* any kind of VIPT cache */
263 __flush_icache_all();
87da236e
WD
264 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
265 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
266 flush_icache_range((unsigned long)va,
267 (unsigned long)va + size);
37c43753
MZ
268 }
269}
270
363ef89f
MZ
271static inline void __kvm_flush_dcache_pte(pte_t pte)
272{
273 struct page *page = pte_page(pte);
274 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
275}
276
277static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
278{
279 struct page *page = pmd_page(pmd);
280 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
281}
282
283static inline void __kvm_flush_dcache_pud(pud_t pud)
284{
285 struct page *page = pud_page(pud);
286 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
287}
288
2077be67 289#define kvm_virt_to_phys(x) __pa_symbol(x)
37c43753 290
3c1e7165
MZ
291void kvm_set_way_flush(struct kvm_vcpu *vcpu);
292void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
9d218a1f 293
e4c5a685
AB
294static inline bool __kvm_cpu_uses_extended_idmap(void)
295{
296 return __cpu_uses_extended_idmap();
297}
298
299static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
300 pgd_t *hyp_pgd,
301 pgd_t *merged_hyp_pgd,
302 unsigned long hyp_idmap_start)
303{
304 int idmap_idx;
305
306 /*
307 * Use the first entry to access the HYP mappings. It is
308 * guaranteed to be free, otherwise we wouldn't use an
309 * extended idmap.
310 */
311 VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
312 merged_hyp_pgd[0] = __pgd(__pa(hyp_pgd) | PMD_TYPE_TABLE);
313
314 /*
315 * Create another extended level entry that points to the boot HYP map,
316 * which contains an ID mapping of the HYP init code. We essentially
317 * merge the boot and runtime HYP maps by doing so, but they don't
318 * overlap anyway, so this is fine.
319 */
320 idmap_idx = hyp_idmap_start >> VA_BITS;
321 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
322 merged_hyp_pgd[idmap_idx] = __pgd(__pa(boot_hyp_pgd) | PMD_TYPE_TABLE);
323}
324
20475f78
VM
325static inline unsigned int kvm_get_vmid_bits(void)
326{
46823dd1 327 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
20475f78 328
28c5dcb2 329 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
20475f78
VM
330}
331
b9c628f6
AP
332/*
333 * We are not in the kvm->srcu critical section most of the time, so we take
334 * the SRCU read lock here. Since we copy the data from the user page, we
335 * can immediately drop the lock again.
336 */
337static inline int kvm_read_guest_lock(struct kvm *kvm,
338 gpa_t gpa, void *data, unsigned long len)
339{
340 int srcu_idx = srcu_read_lock(&kvm->srcu);
341 int ret = kvm_read_guest(kvm, gpa, data, len);
342
343 srcu_read_unlock(&kvm->srcu, srcu_idx);
344
345 return ret;
346}
347
3f401957
MZ
348static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
349 const void *data, unsigned long len)
350{
351 int srcu_idx = srcu_read_lock(&kvm->srcu);
352 int ret = kvm_write_guest(kvm, gpa, data, len);
353
354 srcu_read_unlock(&kvm->srcu, srcu_idx);
355
356 return ret;
357}
358
bc3eb3e9
MZ
359#ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
360#include <asm/mmu.h>
361
362static inline void *kvm_get_hyp_vector(void)
363{
364 struct bp_hardening_data *data = arm64_get_bp_hardening_data();
365 void *vect = kvm_ksym_ref(__kvm_hyp_vector);
366
367 if (data->fn) {
368 vect = __bp_harden_hyp_vecs_start +
369 data->hyp_vectors_slot * SZ_2K;
370
371 if (!has_vhe())
372 vect = lm_alias(vect);
373 }
374
375 return vect;
376}
377
378static inline int kvm_map_vectors(void)
379{
380 return create_hyp_mappings(kvm_ksym_ref(__bp_harden_hyp_vecs_start),
381 kvm_ksym_ref(__bp_harden_hyp_vecs_end),
382 PAGE_HYP_EXEC);
383}
384
385#else
386static inline void *kvm_get_hyp_vector(void)
387{
388 return kvm_ksym_ref(__kvm_hyp_vector);
389}
390
391static inline int kvm_map_vectors(void)
392{
393 return 0;
394}
395#endif
396
9ae6a587
MZ
397#ifdef CONFIG_ARM64_SSBD
398DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
399
400static inline int hyp_map_aux_data(void)
401{
402 int cpu, err;
403
404 for_each_possible_cpu(cpu) {
405 u64 *ptr;
406
407 ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
408 err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
409 if (err)
410 return err;
411 }
412 return 0;
413}
414#else
415static inline int hyp_map_aux_data(void)
416{
417 return 0;
418}
419#endif
420
37c43753
MZ
421#endif /* __ASSEMBLY__ */
422#endif /* __ARM64_KVM_MMU_H__ */