]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/arm64/include/asm/kvm_mmu.h
mm: reorder includes after introduction of linux/pgtable.h
[mirror_ubuntu-jammy-kernel.git] / arch / arm64 / include / asm / kvm_mmu.h
CommitLineData
caab277b 1/* SPDX-License-Identifier: GPL-2.0-only */
37c43753
MZ
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
37c43753
MZ
5 */
6
7#ifndef __ARM64_KVM_MMU_H__
8#define __ARM64_KVM_MMU_H__
9
10#include <asm/page.h>
11#include <asm/memory.h>
20475f78 12#include <asm/cpufeature.h>
37c43753
MZ
13
14/*
cedbb8b7 15 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
37c43753
MZ
16 * "negative" addresses. This makes it impossible to directly share
17 * mappings with the kernel.
18 *
19 * Instead, give the HYP mode its own VA region at a fixed offset from
20 * the kernel by just masking the top bits (which are all ones for a
82a81bff 21 * kernel address). We need to find out how many bits to mask.
cedbb8b7 22 *
82a81bff
MZ
23 * We want to build a set of page tables that cover both parts of the
24 * idmap (the trampoline page used to initialize EL2), and our normal
25 * runtime VA space, at the same time.
26 *
27 * Given that the kernel uses VA_BITS for its entire address space,
28 * and that half of that space (VA_BITS - 1) is used for the linear
29 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
30 *
31 * The main question is "Within the VA_BITS space, does EL2 use the
32 * top or the bottom half of that space to shadow the kernel's linear
33 * mapping?". As we need to idmap the trampoline page, this is
34 * determined by the range in which this page lives.
35 *
36 * If the page is in the bottom half, we have to use the top half. If
37 * the page is in the top half, we have to use the bottom half:
38 *
2077be67 39 * T = __pa_symbol(__hyp_idmap_text_start)
82a81bff
MZ
40 * if (T & BIT(VA_BITS - 1))
41 * HYP_VA_MIN = 0 //idmap in upper half
42 * else
43 * HYP_VA_MIN = 1 << (VA_BITS - 1)
44 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
45 *
46 * This of course assumes that the trampoline page exists within the
47 * VA_BITS range. If it doesn't, then it means we're in the odd case
48 * where the kernel idmap (as well as HYP) uses more levels than the
49 * kernel runtime page tables (as seen when the kernel is configured
50 * for 4k pages, 39bits VA, and yet memory lives just above that
51 * limit, forcing the idmap to use 4 levels of page tables while the
52 * kernel itself only uses 3). In this particular case, it doesn't
53 * matter which side of VA_BITS we use, as we're guaranteed not to
54 * conflict with anything.
55 *
56 * When using VHE, there are no separate hyp mappings and all KVM
57 * functionality is already mapped as part of the main kernel
58 * mappings, and none of this applies in that case.
37c43753 59 */
d53d9bc6 60
37c43753
MZ
61#ifdef __ASSEMBLY__
62
cedbb8b7 63#include <asm/alternative.h>
cedbb8b7 64
37c43753
MZ
65/*
66 * Convert a kernel VA into a HYP VA.
67 * reg: VA to be converted.
fd81e6bf 68 *
2b4d1606
MZ
69 * The actual code generation takes place in kvm_update_va_mask, and
70 * the instructions below are only there to reserve the space and
71 * perform the register allocation (kvm_update_va_mask uses the
72 * specific registers encoded in the instructions).
37c43753
MZ
73 */
74.macro kern_hyp_va reg
2b4d1606 75alternative_cb kvm_update_va_mask
ed57cac8
MZ
76 and \reg, \reg, #1 /* mask with va_mask */
77 ror \reg, \reg, #1 /* rotate to the first tag bit */
78 add \reg, \reg, #0 /* insert the low 12 bits of the tag */
79 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */
80 ror \reg, \reg, #63 /* rotate back */
2b4d1606 81alternative_cb_end
37c43753
MZ
82.endm
83
84#else
85
65fddcfc 86#include <linux/pgtable.h>
38f791a4 87#include <asm/pgalloc.h>
02f7760e 88#include <asm/cache.h>
37c43753 89#include <asm/cacheflush.h>
e4c5a685 90#include <asm/mmu_context.h>
37c43753 91
2b4d1606
MZ
92void kvm_update_va_mask(struct alt_instr *alt,
93 __le32 *origptr, __le32 *updptr, int nr_inst);
0492747c 94void kvm_compute_layout(void);
2b4d1606 95
5c37f1ae 96static __always_inline unsigned long __kern_hyp_va(unsigned long v)
fd81e6bf 97{
ed57cac8
MZ
98 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
99 "ror %0, %0, #1\n"
100 "add %0, %0, #0\n"
101 "add %0, %0, #0, lsl 12\n"
102 "ror %0, %0, #63\n",
2b4d1606
MZ
103 kvm_update_va_mask)
104 : "+r" (v));
fd81e6bf
MZ
105 return v;
106}
107
94d0e598 108#define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
37c43753 109
44a497ab
MZ
110/*
111 * Obtain the PC-relative address of a kernel symbol
112 * s: symbol
113 *
114 * The goal of this macro is to return a symbol's address based on a
115 * PC-relative computation, as opposed to a loading the VA from a
116 * constant pool or something similar. This works well for HYP, as an
117 * absolute VA is guaranteed to be wrong. Only use this if trying to
118 * obtain the address of a symbol (i.e. not something you obtained by
119 * following a pointer).
120 */
121#define hyp_symbol_addr(s) \
122 ({ \
123 typeof(s) *addr; \
124 asm("adrp %0, %1\n" \
125 "add %0, %0, :lo12:%1\n" \
126 : "=r" (addr) : "S" (&s)); \
127 addr; \
128 })
129
37c43753 130/*
1b44471b
ZY
131 * We currently support using a VM-specified IPA size. For backward
132 * compatibility, the default IPA size is fixed to 40bits.
37c43753 133 */
dbff124e 134#define KVM_PHYS_SHIFT (40)
e55cac5b 135
13ac4bbc 136#define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr)
e55cac5b
SP
137#define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm))
138#define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL))
37c43753 139
865b30cd
SP
140static inline bool kvm_page_empty(void *ptr)
141{
142 struct page *ptr_page = virt_to_page(ptr);
143 return page_count(ptr_page) == 1;
144}
37c43753 145
c0ef6326
SP
146#include <asm/stage2_pgtable.h>
147
c8dddecd 148int create_hyp_mappings(void *from, void *to, pgprot_t prot);
807a3784 149int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
1bb32a44
MZ
150 void __iomem **kaddr,
151 void __iomem **haddr);
dc2e4633
MZ
152int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
153 void **haddr);
37c43753
MZ
154void free_hyp_pgds(void);
155
957db105 156void stage2_unmap_vm(struct kvm *kvm);
37c43753
MZ
157int kvm_alloc_stage2_pgd(struct kvm *kvm);
158void kvm_free_stage2_pgd(struct kvm *kvm);
159int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
c40f2f8f 160 phys_addr_t pa, unsigned long size, bool writable);
37c43753
MZ
161
162int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
163
164void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
165
166phys_addr_t kvm_mmu_get_httbr(void);
37c43753
MZ
167phys_addr_t kvm_get_idmap_vector(void);
168int kvm_mmu_init(void);
169void kvm_clear_hyp_idmap(void);
170
0db9dd8a
MZ
171#define kvm_mk_pmd(ptep) \
172 __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
173#define kvm_mk_pud(pmdp) \
174 __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
e9f63768
MR
175#define kvm_mk_p4d(pmdp) \
176 __p4d(__phys_to_p4d_val(__pa(pmdp)) | PUD_TYPE_TABLE)
0db9dd8a 177
b8e0ba7c
PA
178#define kvm_set_pud(pudp, pud) set_pud(pudp, pud)
179
f8df7338
PA
180#define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot)
181#define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot)
b8e0ba7c 182#define kvm_pfn_pud(pfn, prot) pfn_pud(pfn, prot)
f8df7338 183
eb3f0624
PA
184#define kvm_pud_pfn(pud) pud_pfn(pud)
185
f8df7338 186#define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd)
b8e0ba7c 187#define kvm_pud_mkhuge(pud) pud_mkhuge(pud)
f8df7338 188
06485053 189static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
37c43753 190{
06485053
CM
191 pte_val(pte) |= PTE_S2_RDWR;
192 return pte;
37c43753
MZ
193}
194
06485053 195static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
ad361f09 196{
06485053
CM
197 pmd_val(pmd) |= PMD_S2_RDWR;
198 return pmd;
ad361f09
CD
199}
200
b8e0ba7c
PA
201static inline pud_t kvm_s2pud_mkwrite(pud_t pud)
202{
203 pud_val(pud) |= PUD_S2_RDWR;
204 return pud;
205}
206
d0e22b4a
MZ
207static inline pte_t kvm_s2pte_mkexec(pte_t pte)
208{
209 pte_val(pte) &= ~PTE_S2_XN;
210 return pte;
211}
212
213static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
214{
215 pmd_val(pmd) &= ~PMD_S2_XN;
216 return pmd;
217}
218
b8e0ba7c
PA
219static inline pud_t kvm_s2pud_mkexec(pud_t pud)
220{
221 pud_val(pud) &= ~PUD_S2_XN;
222 return pud;
223}
224
20a004e7 225static inline void kvm_set_s2pte_readonly(pte_t *ptep)
8199ed0e 226{
0966253d
CM
227 pteval_t old_pteval, pteval;
228
20a004e7 229 pteval = READ_ONCE(pte_val(*ptep));
0966253d
CM
230 do {
231 old_pteval = pteval;
232 pteval &= ~PTE_S2_RDWR;
233 pteval |= PTE_S2_RDONLY;
20a004e7 234 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
0966253d 235 } while (pteval != old_pteval);
8199ed0e
MS
236}
237
20a004e7 238static inline bool kvm_s2pte_readonly(pte_t *ptep)
8199ed0e 239{
20a004e7 240 return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
8199ed0e
MS
241}
242
20a004e7 243static inline bool kvm_s2pte_exec(pte_t *ptep)
7a3796d2 244{
20a004e7 245 return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
7a3796d2
MZ
246}
247
20a004e7 248static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
8199ed0e 249{
20a004e7 250 kvm_set_s2pte_readonly((pte_t *)pmdp);
8199ed0e
MS
251}
252
20a004e7 253static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
8199ed0e 254{
20a004e7 255 return kvm_s2pte_readonly((pte_t *)pmdp);
38f791a4
CD
256}
257
20a004e7 258static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
7a3796d2 259{
20a004e7 260 return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
7a3796d2
MZ
261}
262
4ea5af53
PA
263static inline void kvm_set_s2pud_readonly(pud_t *pudp)
264{
265 kvm_set_s2pte_readonly((pte_t *)pudp);
266}
267
268static inline bool kvm_s2pud_readonly(pud_t *pudp)
269{
270 return kvm_s2pte_readonly((pte_t *)pudp);
271}
272
86d1c55e
PA
273static inline bool kvm_s2pud_exec(pud_t *pudp)
274{
275 return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN);
276}
277
eb3f0624
PA
278static inline pud_t kvm_s2pud_mkyoung(pud_t pud)
279{
280 return pud_mkyoung(pud);
281}
282
35a63966
PA
283static inline bool kvm_s2pud_young(pud_t pud)
284{
285 return pud_young(pud);
286}
287
66f877fa 288#define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
38f791a4
CD
289
290#ifdef __PAGETABLE_PMD_FOLDED
66f877fa 291#define hyp_pmd_table_empty(pmdp) (0)
38f791a4 292#else
66f877fa 293#define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
38f791a4
CD
294#endif
295
296#ifdef __PAGETABLE_PUD_FOLDED
66f877fa 297#define hyp_pud_table_empty(pudp) (0)
4f853a71 298#else
66f877fa 299#define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
4f853a71 300#endif
4f853a71 301
e9f63768
MR
302#ifdef __PAGETABLE_P4D_FOLDED
303#define hyp_p4d_table_empty(p4dp) (0)
304#else
305#define hyp_p4d_table_empty(p4dp) kvm_page_empty(p4dp)
306#endif
307
37c43753
MZ
308struct kvm;
309
2d58b733
MZ
310#define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
311
312static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
37c43753 313{
8d404c4c 314 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
2d58b733
MZ
315}
316
17ab9d57 317static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
2d58b733 318{
0d3e4d4f
MZ
319 void *va = page_address(pfn_to_page(pfn));
320
e48d53a9
MZ
321 /*
322 * With FWB, we ensure that the guest always accesses memory using
323 * cacheable attributes, and we don't have to clean to PoC when
324 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
325 * PoU is not required either in this case.
326 */
327 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
328 return;
329
8f36ebaf 330 kvm_flush_dcache_to_poc(va, size);
a15f6939 331}
2d58b733 332
17ab9d57 333static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
a15f6939
MZ
334 unsigned long size)
335{
87da236e 336 if (icache_is_aliasing()) {
37c43753
MZ
337 /* any kind of VIPT cache */
338 __flush_icache_all();
87da236e
WD
339 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
340 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
a15f6939
MZ
341 void *va = page_address(pfn_to_page(pfn));
342
4fee9473
MZ
343 invalidate_icache_range((unsigned long)va,
344 (unsigned long)va + size);
37c43753
MZ
345 }
346}
347
363ef89f
MZ
348static inline void __kvm_flush_dcache_pte(pte_t pte)
349{
e48d53a9
MZ
350 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
351 struct page *page = pte_page(pte);
352 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
353 }
363ef89f
MZ
354}
355
356static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
357{
e48d53a9
MZ
358 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
359 struct page *page = pmd_page(pmd);
360 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
361 }
363ef89f
MZ
362}
363
364static inline void __kvm_flush_dcache_pud(pud_t pud)
365{
e48d53a9
MZ
366 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
367 struct page *page = pud_page(pud);
368 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
369 }
363ef89f
MZ
370}
371
3c1e7165
MZ
372void kvm_set_way_flush(struct kvm_vcpu *vcpu);
373void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
9d218a1f 374
e4c5a685
AB
375static inline bool __kvm_cpu_uses_extended_idmap(void)
376{
fa2a8445
KM
377 return __cpu_uses_extended_idmap_level();
378}
379
380static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
381{
382 return idmap_ptrs_per_pgd;
e4c5a685
AB
383}
384
19338304
KM
385/*
386 * Can't use pgd_populate here, because the extended idmap adds an extra level
387 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
388 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
389 */
e4c5a685
AB
390static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
391 pgd_t *hyp_pgd,
392 pgd_t *merged_hyp_pgd,
393 unsigned long hyp_idmap_start)
394{
395 int idmap_idx;
75387b92 396 u64 pgd_addr;
e4c5a685
AB
397
398 /*
399 * Use the first entry to access the HYP mappings. It is
400 * guaranteed to be free, otherwise we wouldn't use an
401 * extended idmap.
402 */
403 VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
75387b92
KM
404 pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
405 merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
e4c5a685
AB
406
407 /*
408 * Create another extended level entry that points to the boot HYP map,
409 * which contains an ID mapping of the HYP init code. We essentially
410 * merge the boot and runtime HYP maps by doing so, but they don't
411 * overlap anyway, so this is fine.
412 */
413 idmap_idx = hyp_idmap_start >> VA_BITS;
414 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
75387b92
KM
415 pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
416 merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
e4c5a685
AB
417}
418
20475f78
VM
419static inline unsigned int kvm_get_vmid_bits(void)
420{
46823dd1 421 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
20475f78 422
c73433fc 423 return get_vmid_bits(reg);
20475f78
VM
424}
425
bf308242
AP
426/*
427 * We are not in the kvm->srcu critical section most of the time, so we take
428 * the SRCU read lock here. Since we copy the data from the user page, we
429 * can immediately drop the lock again.
430 */
431static inline int kvm_read_guest_lock(struct kvm *kvm,
432 gpa_t gpa, void *data, unsigned long len)
433{
434 int srcu_idx = srcu_read_lock(&kvm->srcu);
435 int ret = kvm_read_guest(kvm, gpa, data, len);
436
437 srcu_read_unlock(&kvm->srcu, srcu_idx);
438
439 return ret;
440}
441
a6ecfb11
MZ
442static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
443 const void *data, unsigned long len)
444{
445 int srcu_idx = srcu_read_lock(&kvm->srcu);
446 int ret = kvm_write_guest(kvm, gpa, data, len);
447
448 srcu_read_unlock(&kvm->srcu, srcu_idx);
449
450 return ret;
451}
452
dee39247
MZ
453#ifdef CONFIG_KVM_INDIRECT_VECTORS
454/*
455 * EL2 vectors can be mapped and rerouted in a number of ways,
456 * depending on the kernel configuration and CPU present:
457 *
458 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
459 * hardening sequence is placed in one of the vector slots, which is
460 * executed before jumping to the real vectors.
461 *
462 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
463 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
464 * hardening sequence is mapped next to the idmap page, and executed
465 * before jumping to the real vectors.
466 *
467 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
468 * empty slot is selected, mapped next to the idmap page, and
469 * executed before jumping to the real vectors.
470 *
471 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
472 * VHE, as we don't have hypervisor-specific mappings. If the system
473 * is VHE and yet selects this capability, it will be ignored.
474 */
6840bdd7
MZ
475#include <asm/mmu.h>
476
dee39247
MZ
477extern void *__kvm_bp_vect_base;
478extern int __kvm_harden_el2_vector_slot;
479
438f711c 480/* This is called on both VHE and !VHE systems */
6840bdd7
MZ
481static inline void *kvm_get_hyp_vector(void)
482{
483 struct bp_hardening_data *data = arm64_get_bp_hardening_data();
dee39247
MZ
484 void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
485 int slot = -1;
6840bdd7 486
dee39247 487 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
6e52aab9 488 vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
dee39247
MZ
489 slot = data->hyp_vectors_slot;
490 }
6840bdd7 491
dee39247
MZ
492 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
493 vect = __kvm_bp_vect_base;
494 if (slot == -1)
495 slot = __kvm_harden_el2_vector_slot;
6840bdd7
MZ
496 }
497
dee39247
MZ
498 if (slot != -1)
499 vect += slot * SZ_2K;
500
6840bdd7
MZ
501 return vect;
502}
503
dee39247 504/* This is only called on a !VHE system */
6840bdd7
MZ
505static inline int kvm_map_vectors(void)
506{
dee39247
MZ
507 /*
508 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR
509 * HEL2 = ARM64_HARDEN_EL2_VECTORS
510 *
511 * !HBP + !HEL2 -> use direct vectors
512 * HBP + !HEL2 -> use hardened vectors in place
513 * !HBP + HEL2 -> allocate one vector slot and use exec mapping
514 * HBP + HEL2 -> use hardened vertors and use exec mapping
515 */
516 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
6e52aab9 517 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs);
dee39247
MZ
518 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
519 }
520
521 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
6e52aab9
MB
522 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs);
523 unsigned long size = __BP_HARDEN_HYP_VECS_SZ;
dee39247
MZ
524
525 /*
526 * Always allocate a spare vector slot, as we don't
527 * know yet which CPUs have a BP hardening slot that
528 * we can reuse.
529 */
530 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
531 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
532 return create_hyp_exec_mappings(vect_pa, size,
533 &__kvm_bp_vect_base);
534 }
535
4340ba80 536 return 0;
6840bdd7 537}
6840bdd7
MZ
538#else
539static inline void *kvm_get_hyp_vector(void)
540{
3c5e8123 541 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
6840bdd7
MZ
542}
543
544static inline int kvm_map_vectors(void)
545{
546 return 0;
547}
548#endif
549
55e3748e
MZ
550#ifdef CONFIG_ARM64_SSBD
551DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
552
553static inline int hyp_map_aux_data(void)
554{
555 int cpu, err;
556
557 for_each_possible_cpu(cpu) {
558 u64 *ptr;
559
560 ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
561 err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
562 if (err)
563 return err;
564 }
565 return 0;
566}
567#else
568static inline int hyp_map_aux_data(void)
569{
570 return 0;
571}
572#endif
573
529c4b05
KM
574#define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
575
59558330
SP
576/*
577 * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
578 * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
579 * 52bit IPS.
580 */
581static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
582{
583 int x = ARM64_VTTBR_X(ipa_shift, levels);
584
585 return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
586}
587
588static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
589{
590 unsigned int x = arm64_vttbr_x(ipa_shift, levels);
591
592 return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
593}
594
595static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
596{
597 return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
598}
599
e329fb75 600static __always_inline u64 kvm_get_vttbr(struct kvm *kvm)
ab510027 601{
e329fb75
CD
602 struct kvm_vmid *vmid = &kvm->arch.vmid;
603 u64 vmid_field, baddr;
604 u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
605
606 baddr = kvm->arch.pgd_phys;
607 vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
608 return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
ab510027
VM
609}
610
fe677be9
MZ
611/*
612 * Must be called from hyp code running at EL2 with an updated VTTBR
613 * and interrupts disabled.
614 */
615static __always_inline void __load_guest_stage2(struct kvm *kvm)
616{
617 write_sysreg(kvm->arch.vtcr, vtcr_el2);
618 write_sysreg(kvm_get_vttbr(kvm), vttbr_el2);
619
620 /*
621 * ARM errata 1165522 and 1530923 require the actual execution of the
622 * above before we can switch to the EL1/EL0 translation regime used by
623 * the guest.
624 */
625 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
626}
627
37c43753
MZ
628#endif /* __ASSEMBLY__ */
629#endif /* __ARM64_KVM_MMU_H__ */