]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/arm64/kernel/cpufeature.c
treewide: Use fallthrough pseudo-keyword
[mirror_ubuntu-jammy-kernel.git] / arch / arm64 / kernel / cpufeature.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
359b7064
MZ
2/*
3 * Contains CPU feature definitions
4 *
5 * Copyright (C) 2015 ARM Ltd.
a2a69963
WD
6 *
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
11 *
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
21 *
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
28 *
29 * Some implementation details worth remembering:
30 *
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
33 *
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
37 *
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
42 *
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
45 *
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49 *
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
55 * details.
433022b5
WD
56 *
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
60 * KVM guests.
359b7064
MZ
61 */
62
9cdf8ec4 63#define pr_fmt(fmt) "CPU features: " fmt
359b7064 64
3c739b57 65#include <linux/bsearch.h>
2a6dcb2b 66#include <linux/cpumask.h>
5ffdfaed 67#include <linux/crash_dump.h>
3c739b57 68#include <linux/sort.h>
2a6dcb2b 69#include <linux/stop_machine.h>
359b7064 70#include <linux/types.h>
2077be67 71#include <linux/mm.h>
a111b7c0 72#include <linux/cpu.h>
359b7064
MZ
73#include <asm/cpu.h>
74#include <asm/cpufeature.h>
dbb4e152 75#include <asm/cpu_ops.h>
2e0f2478 76#include <asm/fpsimd.h>
13f417f3 77#include <asm/mmu_context.h>
338d4f49 78#include <asm/processor.h>
cdcf817b 79#include <asm/sysreg.h>
77c97b4e 80#include <asm/traps.h>
d88701be 81#include <asm/virt.h>
359b7064 82
aec0bff7
AM
83/* Kernel representation of AT_HWCAP and AT_HWCAP2 */
84static unsigned long elf_hwcap __read_mostly;
9cdf8ec4
SP
85
86#ifdef CONFIG_COMPAT
87#define COMPAT_ELF_HWCAP_DEFAULT \
88 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
89 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
7559950a 90 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
9cdf8ec4
SP
91 COMPAT_HWCAP_LPAE)
92unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
93unsigned int compat_elf_hwcap2 __read_mostly;
94#endif
95
96DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
4b65a5db 97EXPORT_SYMBOL(cpu_hwcaps);
82a3a21b 98static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
9cdf8ec4 99
0ceb0d56
DT
100/* Need also bit for ARM64_CB_PATCH */
101DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
102
09e3c22a
MB
103bool arm64_use_ng_mappings = false;
104EXPORT_SYMBOL(arm64_use_ng_mappings);
105
8f1eec57
DM
106/*
107 * Flag to indicate if we have computed the system wide
108 * capabilities based on the boot time active CPUs. This
109 * will be used to determine if a new booting CPU should
110 * go through the verification process to make sure that it
111 * supports the system capabilities, without using a hotplug
b51c6ac2
SP
112 * notifier. This is also used to decide if we could use
113 * the fast path for checking constant CPU caps.
8f1eec57 114 */
b51c6ac2
SP
115DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
116EXPORT_SYMBOL(arm64_const_caps_ready);
117static inline void finalize_system_capabilities(void)
8f1eec57 118{
b51c6ac2 119 static_branch_enable(&arm64_const_caps_ready);
8f1eec57
DM
120}
121
638d5031 122void dump_cpu_features(void)
8effeaaf
MR
123{
124 /* file-wide pr_fmt adds "CPU features: " prefix */
125 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
8effeaaf 126}
8effeaaf 127
efd9e03f
CM
128DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
129EXPORT_SYMBOL(cpu_hwcap_keys);
130
fe4fbdbc 131#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
3c739b57 132 { \
4f0a606b 133 .sign = SIGNED, \
fe4fbdbc 134 .visible = VISIBLE, \
3c739b57
SP
135 .strict = STRICT, \
136 .type = TYPE, \
137 .shift = SHIFT, \
138 .width = WIDTH, \
139 .safe_val = SAFE_VAL, \
140 }
141
0710cfdb 142/* Define a feature with unsigned values */
fe4fbdbc
SP
143#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
144 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
4f0a606b 145
0710cfdb 146/* Define a feature with a signed value */
fe4fbdbc
SP
147#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
148 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
0710cfdb 149
3c739b57
SP
150#define ARM64_FTR_END \
151 { \
152 .width = 0, \
153 }
154
70544196
JM
155/* meta feature for alternatives */
156static bool __maybe_unused
92406f0c
SP
157cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
158
5ffdfaed 159static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
70544196 160
3ff047f6
ADK
161static bool __system_matches_cap(unsigned int n);
162
4aa8a472
SP
163/*
164 * NOTE: Any changes to the visibility of features should be kept in
165 * sync with the documentation of the CPU feature register ABI.
166 */
5e49d73c 167static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
1a50ec0b 168 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
7cd51a5a 169 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
7206dc93 170 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
3b3b6810 171 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
5bdecb79
SP
172 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
173 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
174 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
175 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
176 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
fe4fbdbc
SP
177 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
178 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
179 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
180 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
181 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
3c739b57
SP
182 ARM64_FTR_END,
183};
184
c8c3798d 185static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
d4209d8b
SP
186 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
187 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
188 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
189 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
bd4fb6d2 190 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
7230f7e9 191 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
6984eb47
MR
192 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
193 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
194 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
195 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
5bdecb79
SP
196 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
197 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
198 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
6984eb47
MR
199 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
200 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
201 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
202 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
5bdecb79 203 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
c8c3798d
SP
204 ARM64_FTR_END,
205};
206
5e49d73c 207static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
179a56f6 208 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
0f15adbb 209 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
7206dc93 210 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
2c9d45b4 211 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
011e5f5b
AK
212 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
213 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
3fab3999
DM
214 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
215 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
64c02720 216 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
5bdecb79 217 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
fe4fbdbc
SP
218 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
219 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
5bdecb79 220 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
98448cdf
WD
221 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
222 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
223 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
3c739b57
SP
224 ARM64_FTR_END,
225};
226
d71be2b6 227static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
14e270fa
AK
228 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
229 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
d71be2b6 230 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
8ef8f360
DM
231 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
232 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
d71be2b6
WD
233 ARM64_FTR_END,
234};
235
06a916fe 236static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
d4209d8b
SP
237 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
238 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
239 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
240 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
242 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
ec52c713
JG
243 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
244 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
245 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
246 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
d4209d8b
SP
247 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
248 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
ec52c713
JG
249 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
250 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
251 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
252 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
253 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
254 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
06a916fe
DM
255 ARM64_FTR_END,
256};
257
5e49d73c 258static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
bc67f10a
AK
259 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
260 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
261 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
b130a8f7
MZ
262 /*
263 * Page size not being supported at Stage-2 is not fatal. You
264 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
265 * your favourite nesting hypervisor.
266 *
267 * There is a small corner case where the hypervisor explicitly
268 * advertises a given granule size at Stage-2 (value 2) on some
269 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
270 * vCPUs. Although this is not forbidden by the architecture, it
271 * indicates that the hypervisor is being silly (or buggy).
272 *
273 * We make no effort to cope with this and pretend that if these
274 * fields are inconsistent across vCPUs, then it isn't worth
275 * trying to bring KVM up.
276 */
277 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
278 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
279 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
5717fe5a
WD
280 /*
281 * We already refuse to boot CPUs that don't support our configured
282 * page size, so we can only detect mismatches for a page size other
283 * than the one we're currently using. Unfortunately, SoCs like this
284 * exist in the wild so, even though we don't like it, we'll have to go
285 * along with it and treat them as non-strict.
286 */
287 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
288 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
289 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
290
5bdecb79 291 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
3c739b57 292 /* Linux shouldn't care about secure memory */
5bdecb79
SP
293 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
294 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
295 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
3c739b57
SP
296 /*
297 * Differing PARange is fine as long as all peripherals and memory are mapped
298 * within the minimum PARange of all CPUs
299 */
fe4fbdbc 300 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
3c739b57
SP
301 ARM64_FTR_END,
302};
303
5e49d73c 304static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
853772ba
AK
305 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
306 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
307 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
308 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
fe4fbdbc 309 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
5bdecb79
SP
310 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
311 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
312 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
313 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
314 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
3c739b57
SP
315 ARM64_FTR_END,
316};
317
5e49d73c 318static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
3e6c69a0 319 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
356fdfbe
AK
320 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
321 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
322 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
e48d53a9 323 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
356fdfbe 324 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
7206dc93 325 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
356fdfbe
AK
326 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
327 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
328 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
5bdecb79 329 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
9d3f8881 330 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
5bdecb79
SP
331 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
332 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
333 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
406e3087
JM
334 ARM64_FTR_END,
335};
336
5e49d73c 337static const struct arm64_ftr_bits ftr_ctr[] = {
6ae4b6e0
SD
338 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
339 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
340 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
147b9635
WD
341 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
342 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
6ae4b6e0 343 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
3c739b57
SP
344 /*
345 * Linux can handle differing I-cache policies. Userspace JITs will
ee7bc638 346 * make use of *minLine.
155433cb 347 * If we have differing I-cache policies, report it as the weakest - VIPT.
3c739b57 348 */
8d3154af 349 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT), /* L1Ip */
4c4a39dd 350 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
3c739b57
SP
351 ARM64_FTR_END,
352};
353
675b0563
AB
354struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
355 .name = "SYS_CTR_EL0",
356 .ftr_bits = ftr_ctr
357};
358
5e49d73c 359static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
8d3154af
AK
360 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
361 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
362 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
363 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
364 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
365 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
366 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
367 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
3c739b57
SP
368 ARM64_FTR_END,
369};
370
5e49d73c 371static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
8d3154af 372 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
fe4fbdbc
SP
373 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
374 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
375 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
376 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
b20d1ba3
WD
377 /*
378 * We can instantiate multiple PMU instances with different levels
379 * of support.
fe4fbdbc
SP
380 */
381 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
382 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
383 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
3c739b57
SP
384 ARM64_FTR_END,
385};
386
5e49d73c 387static const struct arm64_ftr_bits ftr_mvfr2[] = {
8d3154af
AK
388 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
389 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
3c739b57
SP
390 ARM64_FTR_END,
391};
392
5e49d73c 393static const struct arm64_ftr_bits ftr_dczid[] = {
8d3154af
AK
394 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
395 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
3c739b57
SP
396 ARM64_FTR_END,
397};
398
2a5bc6c4
AK
399static const struct arm64_ftr_bits ftr_id_isar0[] = {
400 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
401 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
402 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
403 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
404 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
405 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
406 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
407 ARM64_FTR_END,
408};
3c739b57 409
5e49d73c 410static const struct arm64_ftr_bits ftr_id_isar5[] = {
5bdecb79
SP
411 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
412 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
413 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
414 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
415 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
416 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
3c739b57
SP
417 ARM64_FTR_END,
418};
419
5e49d73c 420static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
fcd65353
AK
421 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
422 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
423 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
424 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
425 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
426 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
8d3154af
AK
427 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
428
fcd65353
AK
429 /*
430 * SpecSEI = 1 indicates that the PE might generate an SError on an
431 * external abort on speculative read. It is safe to assume that an
432 * SError might be generated than it will not be. Hence it has been
433 * classified as FTR_HIGHER_SAFE.
434 */
435 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
3c739b57
SP
436 ARM64_FTR_END,
437};
438
0113340e
WD
439static const struct arm64_ftr_bits ftr_id_isar4[] = {
440 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
441 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
442 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
443 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
444 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
445 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
446 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
447 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
448 ARM64_FTR_END,
449};
450
152accf8
AK
451static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
452 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
453 ARM64_FTR_END,
454};
455
8e3747be
AK
456static const struct arm64_ftr_bits ftr_id_isar6[] = {
457 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
458 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
459 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
460 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
461 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
462 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
463 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
464 ARM64_FTR_END,
465};
466
5e49d73c 467static const struct arm64_ftr_bits ftr_id_pfr0[] = {
0ae43a99
AK
468 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
469 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
8d3154af
AK
470 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
471 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
472 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
473 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
3c739b57
SP
474 ARM64_FTR_END,
475};
476
0113340e
WD
477static const struct arm64_ftr_bits ftr_id_pfr1[] = {
478 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
479 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
480 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
481 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
482 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
483 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
484 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
485 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
486 ARM64_FTR_END,
487};
488
16824085
AK
489static const struct arm64_ftr_bits ftr_id_pfr2[] = {
490 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
491 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
492 ARM64_FTR_END,
493};
494
5e49d73c 495static const struct arm64_ftr_bits ftr_id_dfr0[] = {
1ed1b90a 496 /* [31:28] TraceFilt */
8d3154af
AK
497 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
498 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
499 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
500 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
501 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
502 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
503 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
e5343503
SP
504 ARM64_FTR_END,
505};
506
dd35ec07
AK
507static const struct arm64_ftr_bits ftr_id_dfr1[] = {
508 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
509 ARM64_FTR_END,
510};
511
2e0f2478
DM
512static const struct arm64_ftr_bits ftr_zcr[] = {
513 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
514 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
515 ARM64_FTR_END,
516};
517
3c739b57
SP
518/*
519 * Common ftr bits for a 32bit register with all hidden, strict
520 * attributes, with 4bit feature fields and a default safe value of
521 * 0. Covers the following 32bit registers:
2a5bc6c4 522 * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
3c739b57 523 */
5e49d73c 524static const struct arm64_ftr_bits ftr_generic_32bits[] = {
fe4fbdbc
SP
525 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
526 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
527 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
528 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
529 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
530 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
531 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
532 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
3c739b57
SP
533 ARM64_FTR_END,
534};
535
eab43e88
SP
536/* Table for a single 32bit feature value */
537static const struct arm64_ftr_bits ftr_single32[] = {
fe4fbdbc 538 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
3c739b57
SP
539 ARM64_FTR_END,
540};
541
eab43e88 542static const struct arm64_ftr_bits ftr_raz[] = {
3c739b57
SP
543 ARM64_FTR_END,
544};
545
6f2b7eef
AB
546#define ARM64_FTR_REG(id, table) { \
547 .sys_id = id, \
548 .reg = &(struct arm64_ftr_reg){ \
3c739b57
SP
549 .name = #id, \
550 .ftr_bits = &((table)[0]), \
6f2b7eef 551 }}
3c739b57 552
6f2b7eef
AB
553static const struct __ftr_reg_entry {
554 u32 sys_id;
555 struct arm64_ftr_reg *reg;
556} arm64_ftr_regs[] = {
3c739b57
SP
557
558 /* Op1 = 0, CRn = 0, CRm = 1 */
559 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
0113340e 560 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
e5343503 561 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
3c739b57
SP
562 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
563 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
564 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
565 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
566
567 /* Op1 = 0, CRn = 0, CRm = 2 */
2a5bc6c4 568 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
3c739b57
SP
569 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
570 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
571 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
0113340e 572 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
3c739b57
SP
573 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
574 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
8e3747be 575 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
3c739b57
SP
576
577 /* Op1 = 0, CRn = 0, CRm = 3 */
578 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
579 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
580 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
16824085 581 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
dd35ec07 582 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
152accf8 583 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
3c739b57
SP
584
585 /* Op1 = 0, CRn = 0, CRm = 4 */
586 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
d71be2b6 587 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
06a916fe 588 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
3c739b57
SP
589
590 /* Op1 = 0, CRn = 0, CRm = 5 */
591 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
eab43e88 592 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
3c739b57
SP
593
594 /* Op1 = 0, CRn = 0, CRm = 6 */
595 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
c8c3798d 596 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
3c739b57
SP
597
598 /* Op1 = 0, CRn = 0, CRm = 7 */
599 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
600 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
406e3087 601 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
3c739b57 602
2e0f2478
DM
603 /* Op1 = 0, CRn = 1, CRm = 2 */
604 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
605
3c739b57 606 /* Op1 = 3, CRn = 0, CRm = 0 */
675b0563 607 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
3c739b57
SP
608 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
609
610 /* Op1 = 3, CRn = 14, CRm = 0 */
eab43e88 611 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
3c739b57
SP
612};
613
614static int search_cmp_ftr_reg(const void *id, const void *regp)
615{
6f2b7eef 616 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
3c739b57
SP
617}
618
619/*
3577dd37
AK
620 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
621 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
622 * ascending order of sys_id, we use binary search to find a matching
3c739b57
SP
623 * entry.
624 *
625 * returns - Upon success, matching ftr_reg entry for id.
626 * - NULL on failure. It is upto the caller to decide
627 * the impact of a failure.
628 */
3577dd37 629static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
3c739b57 630{
6f2b7eef
AB
631 const struct __ftr_reg_entry *ret;
632
633 ret = bsearch((const void *)(unsigned long)sys_id,
3c739b57
SP
634 arm64_ftr_regs,
635 ARRAY_SIZE(arm64_ftr_regs),
636 sizeof(arm64_ftr_regs[0]),
637 search_cmp_ftr_reg);
6f2b7eef
AB
638 if (ret)
639 return ret->reg;
640 return NULL;
3c739b57
SP
641}
642
3577dd37
AK
643/*
644 * get_arm64_ftr_reg - Looks up a feature register entry using
645 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
646 *
647 * returns - Upon success, matching ftr_reg entry for id.
648 * - NULL on failure but with an WARN_ON().
649 */
650static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
651{
652 struct arm64_ftr_reg *reg;
653
654 reg = get_arm64_ftr_reg_nowarn(sys_id);
655
656 /*
657 * Requesting a non-existent register search is an error. Warn
658 * and let the caller handle it.
659 */
660 WARN_ON(!reg);
661 return reg;
662}
663
5e49d73c
AB
664static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
665 s64 ftr_val)
3c739b57
SP
666{
667 u64 mask = arm64_ftr_mask(ftrp);
668
669 reg &= ~mask;
670 reg |= (ftr_val << ftrp->shift) & mask;
671 return reg;
672}
673
5e49d73c
AB
674static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
675 s64 cur)
3c739b57
SP
676{
677 s64 ret = 0;
678
679 switch (ftrp->type) {
680 case FTR_EXACT:
681 ret = ftrp->safe_val;
682 break;
683 case FTR_LOWER_SAFE:
684 ret = new < cur ? new : cur;
685 break;
147b9635
WD
686 case FTR_HIGHER_OR_ZERO_SAFE:
687 if (!cur || !new)
688 break;
df561f66 689 fallthrough;
3c739b57
SP
690 case FTR_HIGHER_SAFE:
691 ret = new > cur ? new : cur;
692 break;
693 default:
694 BUG();
695 }
696
697 return ret;
698}
699
3c739b57
SP
700static void __init sort_ftr_regs(void)
701{
c6c83d75
AK
702 unsigned int i;
703
704 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
705 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
706 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
707 unsigned int j = 0;
708
709 /*
710 * Features here must be sorted in descending order with respect
711 * to their shift values and should not overlap with each other.
712 */
713 for (; ftr_bits->width != 0; ftr_bits++, j++) {
714 unsigned int width = ftr_reg->ftr_bits[j].width;
715 unsigned int shift = ftr_reg->ftr_bits[j].shift;
716 unsigned int prev_shift;
717
718 WARN((shift + width) > 64,
719 "%s has invalid feature at shift %d\n",
720 ftr_reg->name, shift);
721
722 /*
723 * Skip the first feature. There is nothing to
724 * compare against for now.
725 */
726 if (j == 0)
727 continue;
728
729 prev_shift = ftr_reg->ftr_bits[j - 1].shift;
730 WARN((shift + width) > prev_shift,
731 "%s has feature overlap at shift %d\n",
732 ftr_reg->name, shift);
733 }
6f2b7eef 734
c6c83d75
AK
735 /*
736 * Skip the first register. There is nothing to
737 * compare against for now.
738 */
739 if (i == 0)
740 continue;
741 /*
742 * Registers here must be sorted in ascending order with respect
743 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
744 * to work correctly.
745 */
6f2b7eef 746 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
c6c83d75 747 }
3c739b57
SP
748}
749
750/*
751 * Initialise the CPU feature register from Boot CPU values.
752 * Also initiliases the strict_mask for the register.
b389d799
MR
753 * Any bits that are not covered by an arm64_ftr_bits entry are considered
754 * RES0 for the system-wide value, and must strictly match.
3c739b57
SP
755 */
756static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
757{
758 u64 val = 0;
759 u64 strict_mask = ~0x0ULL;
fe4fbdbc 760 u64 user_mask = 0;
b389d799
MR
761 u64 valid_mask = 0;
762
5e49d73c 763 const struct arm64_ftr_bits *ftrp;
3c739b57
SP
764 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
765
3577dd37
AK
766 if (!reg)
767 return;
3c739b57 768
24b2cce9 769 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
b389d799 770 u64 ftr_mask = arm64_ftr_mask(ftrp);
3c739b57
SP
771 s64 ftr_new = arm64_ftr_value(ftrp, new);
772
773 val = arm64_ftr_set_value(ftrp, val, ftr_new);
b389d799
MR
774
775 valid_mask |= ftr_mask;
3c739b57 776 if (!ftrp->strict)
b389d799 777 strict_mask &= ~ftr_mask;
fe4fbdbc
SP
778 if (ftrp->visible)
779 user_mask |= ftr_mask;
780 else
781 reg->user_val = arm64_ftr_set_value(ftrp,
782 reg->user_val,
783 ftrp->safe_val);
3c739b57 784 }
b389d799
MR
785
786 val &= valid_mask;
787
3c739b57
SP
788 reg->sys_val = val;
789 reg->strict_mask = strict_mask;
fe4fbdbc 790 reg->user_mask = user_mask;
3c739b57
SP
791}
792
1e89baed 793extern const struct arm64_cpu_capabilities arm64_errata[];
82a3a21b
SP
794static const struct arm64_cpu_capabilities arm64_features[];
795
796static void __init
797init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
798{
799 for (; caps->matches; caps++) {
800 if (WARN(caps->capability >= ARM64_NCAPS,
801 "Invalid capability %d\n", caps->capability))
802 continue;
803 if (WARN(cpu_hwcaps_ptrs[caps->capability],
804 "Duplicate entry for capability %d\n",
805 caps->capability))
806 continue;
807 cpu_hwcaps_ptrs[caps->capability] = caps;
808 }
809}
810
811static void __init init_cpu_hwcaps_indirect_list(void)
812{
813 init_cpu_hwcaps_indirect_list_from_array(arm64_features);
814 init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
815}
816
fd9d63da 817static void __init setup_boot_cpu_capabilities(void);
1e89baed 818
3c739b57
SP
819void __init init_cpu_features(struct cpuinfo_arm64 *info)
820{
821 /* Before we start using the tables, make sure it is sorted */
822 sort_ftr_regs();
823
824 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
825 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
826 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
827 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
828 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
829 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
830 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
831 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
832 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
406e3087 833 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
3c739b57
SP
834 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
835 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
2e0f2478 836 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
a6dc3cd7
SP
837
838 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
839 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
dd35ec07 840 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
a6dc3cd7
SP
841 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
842 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
843 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
844 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
845 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
846 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
8e3747be 847 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
a6dc3cd7
SP
848 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
849 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
850 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
851 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
858b8a80 852 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
152accf8 853 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
a6dc3cd7
SP
854 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
855 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
16824085 856 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
a6dc3cd7
SP
857 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
858 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
859 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
860 }
861
2e0f2478
DM
862 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
863 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
864 sve_init_vq_map();
865 }
5e91107b 866
82a3a21b
SP
867 /*
868 * Initialize the indirect array of CPU hwcaps capabilities pointers
869 * before we handle the boot CPU below.
870 */
871 init_cpu_hwcaps_indirect_list();
872
5e91107b 873 /*
fd9d63da
SP
874 * Detect and enable early CPU capabilities based on the boot CPU,
875 * after we have initialised the CPU feature infrastructure.
5e91107b 876 */
fd9d63da 877 setup_boot_cpu_capabilities();
3c739b57
SP
878}
879
3086d391 880static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
3c739b57 881{
5e49d73c 882 const struct arm64_ftr_bits *ftrp;
3c739b57
SP
883
884 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
885 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
886 s64 ftr_new = arm64_ftr_value(ftrp, new);
887
888 if (ftr_cur == ftr_new)
889 continue;
890 /* Find a safe value */
891 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
892 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
893 }
894
895}
896
3086d391 897static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
cdcf817b 898{
3086d391
SP
899 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
900
3577dd37
AK
901 if (!regp)
902 return 0;
903
3086d391
SP
904 update_cpu_ftr_reg(regp, val);
905 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
906 return 0;
907 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
908 regp->name, boot, cpu, val);
909 return 1;
910}
911
eab2f926
WD
912static void relax_cpu_ftr_reg(u32 sys_id, int field)
913{
914 const struct arm64_ftr_bits *ftrp;
915 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
916
3577dd37 917 if (!regp)
eab2f926
WD
918 return;
919
920 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
921 if (ftrp->shift == field) {
922 regp->strict_mask &= ~arm64_ftr_mask(ftrp);
923 break;
924 }
925 }
926
927 /* Bogus field? */
928 WARN_ON(!ftrp->width);
929}
930
1efcfe79
WD
931static int update_32bit_cpu_features(int cpu, struct cpuinfo_arm64 *info,
932 struct cpuinfo_arm64 *boot)
933{
934 int taint = 0;
935 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
936
937 /*
938 * If we don't have AArch32 at all then skip the checks entirely
939 * as the register values may be UNKNOWN and we're not going to be
940 * using them for anything.
941 */
942 if (!id_aa64pfr0_32bit_el0(pfr0))
943 return taint;
944
eab2f926
WD
945 /*
946 * If we don't have AArch32 at EL1, then relax the strictness of
947 * EL1-dependent register fields to avoid spurious sanity check fails.
948 */
949 if (!id_aa64pfr0_32bit_el1(pfr0)) {
950 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
951 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
952 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
953 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
954 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
955 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
956 }
957
1efcfe79
WD
958 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
959 info->reg_id_dfr0, boot->reg_id_dfr0);
dd35ec07
AK
960 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
961 info->reg_id_dfr1, boot->reg_id_dfr1);
1efcfe79
WD
962 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
963 info->reg_id_isar0, boot->reg_id_isar0);
964 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
965 info->reg_id_isar1, boot->reg_id_isar1);
966 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
967 info->reg_id_isar2, boot->reg_id_isar2);
968 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
969 info->reg_id_isar3, boot->reg_id_isar3);
970 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
971 info->reg_id_isar4, boot->reg_id_isar4);
972 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
973 info->reg_id_isar5, boot->reg_id_isar5);
974 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
975 info->reg_id_isar6, boot->reg_id_isar6);
976
977 /*
978 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
979 * ACTLR formats could differ across CPUs and therefore would have to
980 * be trapped for virtualization anyway.
981 */
982 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
983 info->reg_id_mmfr0, boot->reg_id_mmfr0);
984 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
985 info->reg_id_mmfr1, boot->reg_id_mmfr1);
986 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
987 info->reg_id_mmfr2, boot->reg_id_mmfr2);
988 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
989 info->reg_id_mmfr3, boot->reg_id_mmfr3);
858b8a80
AK
990 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
991 info->reg_id_mmfr4, boot->reg_id_mmfr4);
152accf8
AK
992 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
993 info->reg_id_mmfr5, boot->reg_id_mmfr5);
1efcfe79
WD
994 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
995 info->reg_id_pfr0, boot->reg_id_pfr0);
996 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
997 info->reg_id_pfr1, boot->reg_id_pfr1);
16824085
AK
998 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
999 info->reg_id_pfr2, boot->reg_id_pfr2);
1efcfe79
WD
1000 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1001 info->reg_mvfr0, boot->reg_mvfr0);
1002 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1003 info->reg_mvfr1, boot->reg_mvfr1);
1004 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1005 info->reg_mvfr2, boot->reg_mvfr2);
1006
1007 return taint;
1008}
1009
3086d391
SP
1010/*
1011 * Update system wide CPU feature registers with the values from a
1012 * non-boot CPU. Also performs SANITY checks to make sure that there
1013 * aren't any insane variations from that of the boot CPU.
1014 */
1015void update_cpu_features(int cpu,
1016 struct cpuinfo_arm64 *info,
1017 struct cpuinfo_arm64 *boot)
1018{
1019 int taint = 0;
1020
1021 /*
1022 * The kernel can handle differing I-cache policies, but otherwise
1023 * caches should look identical. Userspace JITs will make use of
1024 * *minLine.
1025 */
1026 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1027 info->reg_ctr, boot->reg_ctr);
1028
1029 /*
1030 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1031 * could result in too much or too little memory being zeroed if a
1032 * process is preempted and migrated between CPUs.
1033 */
1034 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1035 info->reg_dczid, boot->reg_dczid);
1036
1037 /* If different, timekeeping will be broken (especially with KVM) */
1038 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1039 info->reg_cntfrq, boot->reg_cntfrq);
1040
1041 /*
1042 * The kernel uses self-hosted debug features and expects CPUs to
1043 * support identical debug features. We presently need CTX_CMPs, WRPs,
1044 * and BRPs to be identical.
1045 * ID_AA64DFR1 is currently RES0.
1046 */
1047 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1048 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1049 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1050 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1051 /*
1052 * Even in big.LITTLE, processors should be identical instruction-set
1053 * wise.
1054 */
1055 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1056 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1057 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1058 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1059
1060 /*
1061 * Differing PARange support is fine as long as all peripherals and
1062 * memory are mapped within the minimum PARange of all CPUs.
1063 * Linux should not care about secure memory.
1064 */
1065 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1066 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1067 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1068 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
406e3087
JM
1069 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1070 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
3086d391 1071
3086d391
SP
1072 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1073 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1074 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1075 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1076
2e0f2478
DM
1077 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1078 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1079
2e0f2478
DM
1080 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1081 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1082 info->reg_zcr, boot->reg_zcr);
1083
1084 /* Probe vector lengths, unless we already gave up on SVE */
1085 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
b51c6ac2 1086 !system_capabilities_finalized())
2e0f2478
DM
1087 sve_update_vq_map();
1088 }
1089
1efcfe79
WD
1090 /*
1091 * This relies on a sanitised view of the AArch64 ID registers
1092 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1093 */
1094 taint |= update_32bit_cpu_features(cpu, info, boot);
1095
3086d391
SP
1096 /*
1097 * Mismatched CPU features are a recipe for disaster. Don't even
1098 * pretend to support them.
1099 */
8dd0ee65
WD
1100 if (taint) {
1101 pr_warn_once("Unsupported CPU feature variation detected.\n");
1102 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1103 }
cdcf817b
SP
1104}
1105
46823dd1 1106u64 read_sanitised_ftr_reg(u32 id)
b3f15378
SP
1107{
1108 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1109
3577dd37
AK
1110 if (!regp)
1111 return 0;
b3f15378
SP
1112 return regp->sys_val;
1113}
359b7064 1114
965861d6
MR
1115#define read_sysreg_case(r) \
1116 case r: return read_sysreg_s(r)
1117
92406f0c 1118/*
46823dd1 1119 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
92406f0c
SP
1120 * Read the system register on the current CPU
1121 */
46823dd1 1122static u64 __read_sysreg_by_encoding(u32 sys_id)
92406f0c
SP
1123{
1124 switch (sys_id) {
965861d6
MR
1125 read_sysreg_case(SYS_ID_PFR0_EL1);
1126 read_sysreg_case(SYS_ID_PFR1_EL1);
16824085 1127 read_sysreg_case(SYS_ID_PFR2_EL1);
965861d6 1128 read_sysreg_case(SYS_ID_DFR0_EL1);
dd35ec07 1129 read_sysreg_case(SYS_ID_DFR1_EL1);
965861d6
MR
1130 read_sysreg_case(SYS_ID_MMFR0_EL1);
1131 read_sysreg_case(SYS_ID_MMFR1_EL1);
1132 read_sysreg_case(SYS_ID_MMFR2_EL1);
1133 read_sysreg_case(SYS_ID_MMFR3_EL1);
858b8a80 1134 read_sysreg_case(SYS_ID_MMFR4_EL1);
152accf8 1135 read_sysreg_case(SYS_ID_MMFR5_EL1);
965861d6
MR
1136 read_sysreg_case(SYS_ID_ISAR0_EL1);
1137 read_sysreg_case(SYS_ID_ISAR1_EL1);
1138 read_sysreg_case(SYS_ID_ISAR2_EL1);
1139 read_sysreg_case(SYS_ID_ISAR3_EL1);
1140 read_sysreg_case(SYS_ID_ISAR4_EL1);
1141 read_sysreg_case(SYS_ID_ISAR5_EL1);
8e3747be 1142 read_sysreg_case(SYS_ID_ISAR6_EL1);
965861d6
MR
1143 read_sysreg_case(SYS_MVFR0_EL1);
1144 read_sysreg_case(SYS_MVFR1_EL1);
1145 read_sysreg_case(SYS_MVFR2_EL1);
1146
1147 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1148 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
78ed70bf 1149 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
965861d6
MR
1150 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1151 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1152 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1153 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1154 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1155 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1156 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1157
1158 read_sysreg_case(SYS_CNTFRQ_EL0);
1159 read_sysreg_case(SYS_CTR_EL0);
1160 read_sysreg_case(SYS_DCZID_EL0);
1161
92406f0c
SP
1162 default:
1163 BUG();
1164 return 0;
1165 }
1166}
1167
963fcd40
MZ
1168#include <linux/irqchip/arm-gic-v3.h>
1169
18ffa046
JM
1170static bool
1171feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1172{
28c5dcb2 1173 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
18ffa046
JM
1174
1175 return val >= entry->min_field_value;
1176}
1177
da8d02d1 1178static bool
92406f0c 1179has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
da8d02d1
SP
1180{
1181 u64 val;
94a9e04a 1182
92406f0c
SP
1183 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1184 if (scope == SCOPE_SYSTEM)
46823dd1 1185 val = read_sanitised_ftr_reg(entry->sys_reg);
92406f0c 1186 else
46823dd1 1187 val = __read_sysreg_by_encoding(entry->sys_reg);
92406f0c 1188
da8d02d1
SP
1189 return feature_matches(val, entry);
1190}
338d4f49 1191
92406f0c 1192static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
963fcd40
MZ
1193{
1194 bool has_sre;
1195
92406f0c 1196 if (!has_cpuid_feature(entry, scope))
963fcd40
MZ
1197 return false;
1198
1199 has_sre = gic_enable_sre();
1200 if (!has_sre)
1201 pr_warn_once("%s present but disabled by higher exception level\n",
1202 entry->desc);
1203
1204 return has_sre;
1205}
1206
92406f0c 1207static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
d5370f75
WD
1208{
1209 u32 midr = read_cpuid_id();
d5370f75
WD
1210
1211 /* Cavium ThunderX pass 1.x and 2.x */
b99286b0 1212 return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
fa5ce3d1
RR
1213 MIDR_CPU_VAR_REV(0, 0),
1214 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
d5370f75
WD
1215}
1216
82e0191a
SP
1217static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1218{
46823dd1 1219 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
82e0191a
SP
1220
1221 return cpuid_feature_extract_signed_field(pfr0,
1222 ID_AA64PFR0_FP_SHIFT) < 0;
1223}
1224
6ae4b6e0 1225static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
8ab66cbe 1226 int scope)
6ae4b6e0 1227{
8ab66cbe
SP
1228 u64 ctr;
1229
1230 if (scope == SCOPE_SYSTEM)
1231 ctr = arm64_ftr_reg_ctrel0.sys_val;
1232 else
1602df02 1233 ctr = read_cpuid_effective_cachetype();
8ab66cbe
SP
1234
1235 return ctr & BIT(CTR_IDC_SHIFT);
6ae4b6e0
SD
1236}
1237
1602df02
SP
1238static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1239{
1240 /*
1241 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1242 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1243 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1244 * value.
1245 */
1246 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1247 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1248}
1249
6ae4b6e0 1250static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
8ab66cbe 1251 int scope)
6ae4b6e0 1252{
8ab66cbe
SP
1253 u64 ctr;
1254
1255 if (scope == SCOPE_SYSTEM)
1256 ctr = arm64_ftr_reg_ctrel0.sys_val;
1257 else
1258 ctr = read_cpuid_cachetype();
1259
1260 return ctr & BIT(CTR_DIC_SHIFT);
6ae4b6e0
SD
1261}
1262
5ffdfaed
VM
1263static bool __maybe_unused
1264has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1265{
1266 /*
1267 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1268 * may share TLB entries with a CPU stuck in the crashed
1269 * kernel.
1270 */
1271 if (is_kdump_kernel())
1272 return false;
1273
1274 return has_cpuid_feature(entry, scope);
1275}
1276
09e3c22a
MB
1277/*
1278 * This check is triggered during the early boot before the cpufeature
1279 * is initialised. Checking the status on the local CPU allows the boot
1280 * CPU to detect the need for non-global mappings and thus avoiding a
1281 * pagetable re-write after all the CPUs are booted. This check will be
1282 * anyway run on individual CPUs, allowing us to get the consistent
1283 * state once the SMP CPUs are up and thus make the switch to non-global
1284 * mappings if required.
1285 */
1286bool kaslr_requires_kpti(void)
1287{
09e3c22a
MB
1288 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1289 return false;
1290
1291 /*
1292 * E0PD does a similar job to KPTI so can be used instead
1293 * where available.
1294 */
1295 if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
a569f5f3
WD
1296 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1297 if (cpuid_feature_extract_unsigned_field(mmfr2,
1298 ID_AA64MMFR2_E0PD_SHIFT))
09e3c22a
MB
1299 return false;
1300 }
1301
1302 /*
1303 * Systems affected by Cavium erratum 24756 are incompatible
1304 * with KPTI.
1305 */
ebac96ed 1306 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
09e3c22a
MB
1307 extern const struct midr_range cavium_erratum_27456_cpus[];
1308
ebac96ed
WD
1309 if (is_midr_in_range_list(read_cpuid_id(),
1310 cavium_erratum_27456_cpus))
1311 return false;
09e3c22a 1312 }
09e3c22a
MB
1313
1314 return kaslr_offset() > 0;
1315}
1316
1b3ccf4b 1317static bool __meltdown_safe = true;
ea1e3de8
WD
1318static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1319
1320static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
d3aec8a2 1321 int scope)
ea1e3de8 1322{
be5b2998
SP
1323 /* List of CPUs that are not vulnerable and don't need KPTI */
1324 static const struct midr_range kpti_safe_list[] = {
1325 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1326 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
31d868c4 1327 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
2a355ec2
WD
1328 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1329 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1330 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1331 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1332 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1333 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
0ecc471a 1334 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
918e1946 1335 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
f4617be3
SPR
1336 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1337 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
71c751f2 1338 { /* sentinel */ }
be5b2998 1339 };
a111b7c0 1340 char const *str = "kpti command line option";
1b3ccf4b
JL
1341 bool meltdown_safe;
1342
1343 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1344
1345 /* Defer to CPU feature registers */
1346 if (has_cpuid_feature(entry, scope))
1347 meltdown_safe = true;
1348
1349 if (!meltdown_safe)
1350 __meltdown_safe = false;
179a56f6 1351
6dc52b15
MZ
1352 /*
1353 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1354 * ThunderX leads to apparent I-cache corruption of kernel text, which
1355 * ends as well as you might imagine. Don't even try.
1356 */
1357 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1358 str = "ARM64_WORKAROUND_CAVIUM_27456";
1359 __kpti_forced = -1;
1360 }
1361
1b3ccf4b 1362 /* Useful for KASLR robustness */
c2d92353 1363 if (kaslr_requires_kpti()) {
1b3ccf4b
JL
1364 if (!__kpti_forced) {
1365 str = "KASLR";
1366 __kpti_forced = 1;
1367 }
1368 }
1369
a111b7c0
JP
1370 if (cpu_mitigations_off() && !__kpti_forced) {
1371 str = "mitigations=off";
1372 __kpti_forced = -1;
1373 }
1374
1b3ccf4b
JL
1375 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1376 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1377 return false;
1378 }
1379
6dc52b15 1380 /* Forced? */
ea1e3de8 1381 if (__kpti_forced) {
6dc52b15
MZ
1382 pr_info_once("kernel page table isolation forced %s by %s\n",
1383 __kpti_forced > 0 ? "ON" : "OFF", str);
ea1e3de8
WD
1384 return __kpti_forced > 0;
1385 }
1386
1b3ccf4b 1387 return !meltdown_safe;
ea1e3de8
WD
1388}
1389
1b3ccf4b 1390#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
c0cda3b8
DM
1391static void
1392kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
f992b4df
WD
1393{
1394 typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1395 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1396 kpti_remap_fn *remap_fn;
1397
f992b4df
WD
1398 int cpu = smp_processor_id();
1399
b89d82ef
WD
1400 /*
1401 * We don't need to rewrite the page-tables if either we've done
1402 * it already or we have KASLR enabled and therefore have not
1403 * created any global mappings at all.
1404 */
09e3c22a 1405 if (arm64_use_ng_mappings)
c0cda3b8 1406 return;
f992b4df
WD
1407
1408 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1409
1410 cpu_install_idmap();
1411 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1412 cpu_uninstall_idmap();
1413
1414 if (!cpu)
09e3c22a 1415 arm64_use_ng_mappings = true;
f992b4df 1416
c0cda3b8 1417 return;
f992b4df 1418}
1b3ccf4b
JL
1419#else
1420static void
1421kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1422{
1423}
1424#endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
f992b4df 1425
ea1e3de8
WD
1426static int __init parse_kpti(char *str)
1427{
1428 bool enabled;
1429 int ret = strtobool(str, &enabled);
1430
1431 if (ret)
1432 return ret;
1433
1434 __kpti_forced = enabled ? 1 : -1;
1435 return 0;
1436}
b5b7dd64 1437early_param("kpti", parse_kpti);
ea1e3de8 1438
05abb595
SP
1439#ifdef CONFIG_ARM64_HW_AFDBM
1440static inline void __cpu_enable_hw_dbm(void)
1441{
1442 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1443
1444 write_sysreg(tcr, tcr_el1);
1445 isb();
1446}
1447
ece1397c
SP
1448static bool cpu_has_broken_dbm(void)
1449{
1450 /* List of CPUs which have broken DBM support. */
1451 static const struct midr_range cpus[] = {
1452#ifdef CONFIG_ARM64_ERRATUM_1024718
1453 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0
9b23d95c
SPR
1454 /* Kryo4xx Silver (rdpe => r1p0) */
1455 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
ece1397c
SP
1456#endif
1457 {},
1458 };
1459
1460 return is_midr_in_range_list(read_cpuid_id(), cpus);
1461}
1462
05abb595
SP
1463static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1464{
ece1397c
SP
1465 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1466 !cpu_has_broken_dbm();
05abb595
SP
1467}
1468
1469static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1470{
1471 if (cpu_can_use_dbm(cap))
1472 __cpu_enable_hw_dbm();
1473}
1474
1475static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1476 int __unused)
1477{
1478 static bool detected = false;
1479 /*
1480 * DBM is a non-conflicting feature. i.e, the kernel can safely
1481 * run a mix of CPUs with and without the feature. So, we
1482 * unconditionally enable the capability to allow any late CPU
1483 * to use the feature. We only enable the control bits on the
1484 * CPU, if it actually supports.
1485 *
1486 * We have to make sure we print the "feature" detection only
1487 * when at least one CPU actually uses it. So check if this CPU
1488 * can actually use it and print the message exactly once.
1489 *
1490 * This is safe as all CPUs (including secondary CPUs - due to the
1491 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1492 * goes through the "matches" check exactly once. Also if a CPU
1493 * matches the criteria, it is guaranteed that the CPU will turn
1494 * the DBM on, as the capability is unconditionally enabled.
1495 */
1496 if (!detected && cpu_can_use_dbm(cap)) {
1497 detected = true;
1498 pr_info("detected: Hardware dirty bit management\n");
1499 }
1500
1501 return true;
1502}
1503
1504#endif
1505
2c9d45b4
IV
1506#ifdef CONFIG_ARM64_AMU_EXTN
1507
1508/*
1509 * The "amu_cpus" cpumask only signals that the CPU implementation for the
1510 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1511 * information regarding all the events that it supports. When a CPU bit is
1512 * set in the cpumask, the user of this feature can only rely on the presence
1513 * of the 4 fixed counters for that CPU. But this does not guarantee that the
1514 * counters are enabled or access to these counters is enabled by code
1515 * executed at higher exception levels (firmware).
1516 */
1517static struct cpumask amu_cpus __read_mostly;
1518
1519bool cpu_has_amu_feat(int cpu)
1520{
1521 return cpumask_test_cpu(cpu, &amu_cpus);
1522}
1523
cd0ed03a
IV
1524/* Initialize the use of AMU counters for frequency invariance */
1525extern void init_cpu_freq_invariance_counters(void);
1526
2c9d45b4
IV
1527static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1528{
1529 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1530 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1531 smp_processor_id());
1532 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
cd0ed03a 1533 init_cpu_freq_invariance_counters();
2c9d45b4
IV
1534 }
1535}
1536
1537static bool has_amu(const struct arm64_cpu_capabilities *cap,
1538 int __unused)
1539{
1540 /*
1541 * The AMU extension is a non-conflicting feature: the kernel can
1542 * safely run a mix of CPUs with and without support for the
1543 * activity monitors extension. Therefore, unconditionally enable
1544 * the capability to allow any late CPU to use the feature.
1545 *
1546 * With this feature unconditionally enabled, the cpu_enable
1547 * function will be called for all CPUs that match the criteria,
1548 * including secondary and hotplugged, marking this feature as
1549 * present on that respective CPU. The enable function will also
1550 * print a detection message.
1551 */
1552
1553 return true;
1554}
1555#endif
1556
12eb3691
WD
1557#ifdef CONFIG_ARM64_VHE
1558static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1559{
1560 return is_kernel_in_hyp_mode();
1561}
1562
c0cda3b8 1563static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
6d99b689
JM
1564{
1565 /*
1566 * Copy register values that aren't redirected by hardware.
1567 *
1568 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1569 * this value to tpidr_el2 before we patch the code. Once we've done
1570 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1571 * do anything here.
1572 */
e9ab7a2e 1573 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
6d99b689 1574 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
6d99b689 1575}
12eb3691 1576#endif
6d99b689 1577
e48d53a9
MZ
1578static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1579{
1580 u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1581
1582 /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1583 WARN_ON(val & (7 << 27 | 7 << 21));
1584}
1585
8f04e8e6
WD
1586#ifdef CONFIG_ARM64_SSBD
1587static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1588{
1589 if (user_mode(regs))
1590 return 1;
1591
74e24828 1592 if (instr & BIT(PSTATE_Imm_shift))
8f04e8e6
WD
1593 regs->pstate |= PSR_SSBS_BIT;
1594 else
1595 regs->pstate &= ~PSR_SSBS_BIT;
1596
1597 arm64_skip_faulting_instruction(regs, 4);
1598 return 0;
1599}
1600
1601static struct undef_hook ssbs_emulation_hook = {
74e24828
SP
1602 .instr_mask = ~(1U << PSTATE_Imm_shift),
1603 .instr_val = 0xd500401f | PSTATE_SSBS,
8f04e8e6
WD
1604 .fn = ssbs_emulation_handler,
1605};
1606
1607static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1608{
1609 static bool undef_hook_registered = false;
27e6e7d6 1610 static DEFINE_RAW_SPINLOCK(hook_lock);
8f04e8e6 1611
27e6e7d6 1612 raw_spin_lock(&hook_lock);
8f04e8e6
WD
1613 if (!undef_hook_registered) {
1614 register_undef_hook(&ssbs_emulation_hook);
1615 undef_hook_registered = true;
1616 }
27e6e7d6 1617 raw_spin_unlock(&hook_lock);
8f04e8e6
WD
1618
1619 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1620 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1621 arm64_set_ssbd_mitigation(false);
1622 } else {
1623 arm64_set_ssbd_mitigation(true);
1624 }
1625}
1626#endif /* CONFIG_ARM64_SSBD */
1627
b8925ee2
WD
1628#ifdef CONFIG_ARM64_PAN
1629static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1630{
1631 /*
1632 * We modify PSTATE. This won't work from irq context as the PSTATE
1633 * is discarded once we return from the exception.
1634 */
1635 WARN_ON_ONCE(in_interrupt());
1636
1637 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1638 asm(SET_PSTATE_PAN(1));
1639}
1640#endif /* CONFIG_ARM64_PAN */
1641
1642#ifdef CONFIG_ARM64_RAS_EXTN
1643static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1644{
1645 /* Firmware may have left a deferred SError in this register. */
1646 write_sysreg_s(0, SYS_DISR_EL1);
1647}
1648#endif /* CONFIG_ARM64_RAS_EXTN */
1649
6984eb47 1650#ifdef CONFIG_ARM64_PTR_AUTH
cfef06bd
KM
1651static bool has_address_auth(const struct arm64_cpu_capabilities *entry,
1652 int __unused)
1653{
1654 return __system_matches_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) ||
1655 __system_matches_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF);
1656}
1657
1658static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1659 int __unused)
75031975 1660{
cfef06bd
KM
1661 return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
1662 __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
75031975 1663}
6984eb47
MR
1664#endif /* CONFIG_ARM64_PTR_AUTH */
1665
3e6c69a0
MB
1666#ifdef CONFIG_ARM64_E0PD
1667static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1668{
1669 if (this_cpu_has_cap(ARM64_HAS_E0PD))
1670 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1671}
1672#endif /* CONFIG_ARM64_E0PD */
1673
b90d2b22 1674#ifdef CONFIG_ARM64_PSEUDO_NMI
bc3c03cc
JT
1675static bool enable_pseudo_nmi;
1676
1677static int __init early_enable_pseudo_nmi(char *p)
1678{
1679 return strtobool(p, &enable_pseudo_nmi);
1680}
1681early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1682
b90d2b22
JT
1683static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1684 int scope)
1685{
bc3c03cc 1686 return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
b90d2b22
JT
1687}
1688#endif
1689
8ef8f360
DM
1690#ifdef CONFIG_ARM64_BTI
1691static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1692{
1693 /*
1694 * Use of X16/X17 for tail-calls and trampolines that jump to
1695 * function entry points using BR is a requirement for
1696 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1697 * So, be strict and forbid other BRs using other registers to
1698 * jump onto a PACIxSP instruction:
1699 */
1700 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1701 isb();
1702}
1703#endif /* CONFIG_ARM64_BTI */
1704
8c176e16
ADK
1705/* Internal helper functions to match cpu capability type */
1706static bool
1707cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1708{
1709 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1710}
1711
1712static bool
1713cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1714{
1715 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1716}
1717
deeaac51
KM
1718static bool
1719cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1720{
1721 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1722}
1723
359b7064 1724static const struct arm64_cpu_capabilities arm64_features[] = {
94a9e04a
MZ
1725 {
1726 .desc = "GIC system register CPU interface",
1727 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
c9bfdf73 1728 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
963fcd40 1729 .matches = has_useable_gicv3_cpuif,
da8d02d1
SP
1730 .sys_reg = SYS_ID_AA64PFR0_EL1,
1731 .field_pos = ID_AA64PFR0_GIC_SHIFT,
ff96f7bc 1732 .sign = FTR_UNSIGNED,
18ffa046 1733 .min_field_value = 1,
94a9e04a 1734 },
338d4f49
JM
1735#ifdef CONFIG_ARM64_PAN
1736 {
1737 .desc = "Privileged Access Never",
1738 .capability = ARM64_HAS_PAN,
5b4747c5 1739 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
da8d02d1
SP
1740 .matches = has_cpuid_feature,
1741 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1742 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
ff96f7bc 1743 .sign = FTR_UNSIGNED,
338d4f49 1744 .min_field_value = 1,
c0cda3b8 1745 .cpu_enable = cpu_enable_pan,
338d4f49
JM
1746 },
1747#endif /* CONFIG_ARM64_PAN */
395af861 1748#ifdef CONFIG_ARM64_LSE_ATOMICS
2e94da13
WD
1749 {
1750 .desc = "LSE atomic instructions",
1751 .capability = ARM64_HAS_LSE_ATOMICS,
5b4747c5 1752 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
da8d02d1
SP
1753 .matches = has_cpuid_feature,
1754 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1755 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
ff96f7bc 1756 .sign = FTR_UNSIGNED,
2e94da13
WD
1757 .min_field_value = 2,
1758 },
395af861 1759#endif /* CONFIG_ARM64_LSE_ATOMICS */
d5370f75
WD
1760 {
1761 .desc = "Software prefetching using PRFM",
1762 .capability = ARM64_HAS_NO_HW_PREFETCH,
5c137714 1763 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
d5370f75
WD
1764 .matches = has_no_hw_prefetch,
1765 },
57f4959b
JM
1766#ifdef CONFIG_ARM64_UAO
1767 {
1768 .desc = "User Access Override",
1769 .capability = ARM64_HAS_UAO,
5b4747c5 1770 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
57f4959b
JM
1771 .matches = has_cpuid_feature,
1772 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1773 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1774 .min_field_value = 1,
c8b06e3f
JM
1775 /*
1776 * We rely on stop_machine() calling uao_thread_switch() to set
1777 * UAO immediately after patching.
1778 */
57f4959b
JM
1779 },
1780#endif /* CONFIG_ARM64_UAO */
70544196
JM
1781#ifdef CONFIG_ARM64_PAN
1782 {
1783 .capability = ARM64_ALT_PAN_NOT_UAO,
5b4747c5 1784 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
70544196
JM
1785 .matches = cpufeature_pan_not_uao,
1786 },
1787#endif /* CONFIG_ARM64_PAN */
830dcc9f 1788#ifdef CONFIG_ARM64_VHE
d88701be
MZ
1789 {
1790 .desc = "Virtualization Host Extensions",
1791 .capability = ARM64_HAS_VIRT_HOST_EXTN,
830dcc9f 1792 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
d88701be 1793 .matches = runs_at_el2,
c0cda3b8 1794 .cpu_enable = cpu_copy_el2regs,
d88701be 1795 },
830dcc9f 1796#endif /* CONFIG_ARM64_VHE */
042446a3
SP
1797 {
1798 .desc = "32-bit EL0 Support",
1799 .capability = ARM64_HAS_32BIT_EL0,
5b4747c5 1800 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
042446a3
SP
1801 .matches = has_cpuid_feature,
1802 .sys_reg = SYS_ID_AA64PFR0_EL1,
1803 .sign = FTR_UNSIGNED,
1804 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1805 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1806 },
540f76d1
WD
1807#ifdef CONFIG_KVM
1808 {
1809 .desc = "32-bit EL1 Support",
1810 .capability = ARM64_HAS_32BIT_EL1,
1811 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1812 .matches = has_cpuid_feature,
1813 .sys_reg = SYS_ID_AA64PFR0_EL1,
1814 .sign = FTR_UNSIGNED,
1815 .field_pos = ID_AA64PFR0_EL1_SHIFT,
1816 .min_field_value = ID_AA64PFR0_EL1_32BIT_64BIT,
1817 },
1818#endif
ea1e3de8 1819 {
179a56f6 1820 .desc = "Kernel page table isolation (KPTI)",
ea1e3de8 1821 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
d3aec8a2
SP
1822 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1823 /*
1824 * The ID feature fields below are used to indicate that
1825 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1826 * more details.
1827 */
1828 .sys_reg = SYS_ID_AA64PFR0_EL1,
1829 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1830 .min_field_value = 1,
ea1e3de8 1831 .matches = unmap_kernel_at_el0,
c0cda3b8 1832 .cpu_enable = kpti_install_ng_mappings,
ea1e3de8 1833 },
82e0191a
SP
1834 {
1835 /* FP/SIMD is not implemented */
1836 .capability = ARM64_HAS_NO_FPSIMD,
449443c0 1837 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
82e0191a
SP
1838 .min_field_value = 0,
1839 .matches = has_no_fpsimd,
1840 },
d50e071f
RM
1841#ifdef CONFIG_ARM64_PMEM
1842 {
1843 .desc = "Data cache clean to Point of Persistence",
1844 .capability = ARM64_HAS_DCPOP,
5b4747c5 1845 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
d50e071f
RM
1846 .matches = has_cpuid_feature,
1847 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1848 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1849 .min_field_value = 1,
1850 },
b9585f53
AM
1851 {
1852 .desc = "Data cache clean to Point of Deep Persistence",
1853 .capability = ARM64_HAS_DCPODP,
1854 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1855 .matches = has_cpuid_feature,
1856 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1857 .sign = FTR_UNSIGNED,
1858 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1859 .min_field_value = 2,
1860 },
d50e071f 1861#endif
43994d82
DM
1862#ifdef CONFIG_ARM64_SVE
1863 {
1864 .desc = "Scalable Vector Extension",
5b4747c5 1865 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
43994d82 1866 .capability = ARM64_SVE,
43994d82
DM
1867 .sys_reg = SYS_ID_AA64PFR0_EL1,
1868 .sign = FTR_UNSIGNED,
1869 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1870 .min_field_value = ID_AA64PFR0_SVE,
1871 .matches = has_cpuid_feature,
c0cda3b8 1872 .cpu_enable = sve_kernel_enable,
43994d82
DM
1873 },
1874#endif /* CONFIG_ARM64_SVE */
64c02720
XX
1875#ifdef CONFIG_ARM64_RAS_EXTN
1876 {
1877 .desc = "RAS Extension Support",
1878 .capability = ARM64_HAS_RAS_EXTN,
5b4747c5 1879 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
64c02720
XX
1880 .matches = has_cpuid_feature,
1881 .sys_reg = SYS_ID_AA64PFR0_EL1,
1882 .sign = FTR_UNSIGNED,
1883 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1884 .min_field_value = ID_AA64PFR0_RAS_V1,
c0cda3b8 1885 .cpu_enable = cpu_clear_disr,
64c02720
XX
1886 },
1887#endif /* CONFIG_ARM64_RAS_EXTN */
2c9d45b4
IV
1888#ifdef CONFIG_ARM64_AMU_EXTN
1889 {
1890 /*
1891 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
1892 * Therefore, don't provide .desc as we don't want the detection
1893 * message to be shown until at least one CPU is detected to
1894 * support the feature.
1895 */
1896 .capability = ARM64_HAS_AMU_EXTN,
1897 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1898 .matches = has_amu,
1899 .sys_reg = SYS_ID_AA64PFR0_EL1,
1900 .sign = FTR_UNSIGNED,
1901 .field_pos = ID_AA64PFR0_AMU_SHIFT,
1902 .min_field_value = ID_AA64PFR0_AMU,
1903 .cpu_enable = cpu_amu_enable,
1904 },
1905#endif /* CONFIG_ARM64_AMU_EXTN */
6ae4b6e0
SD
1906 {
1907 .desc = "Data cache clean to the PoU not required for I/D coherence",
1908 .capability = ARM64_HAS_CACHE_IDC,
5b4747c5 1909 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
6ae4b6e0 1910 .matches = has_cache_idc,
1602df02 1911 .cpu_enable = cpu_emulate_effective_ctr,
6ae4b6e0
SD
1912 },
1913 {
1914 .desc = "Instruction cache invalidation not required for I/D coherence",
1915 .capability = ARM64_HAS_CACHE_DIC,
5b4747c5 1916 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
6ae4b6e0
SD
1917 .matches = has_cache_dic,
1918 },
e48d53a9
MZ
1919 {
1920 .desc = "Stage-2 Force Write-Back",
1921 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1922 .capability = ARM64_HAS_STAGE2_FWB,
1923 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1924 .sign = FTR_UNSIGNED,
1925 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1926 .min_field_value = 1,
1927 .matches = has_cpuid_feature,
1928 .cpu_enable = cpu_has_fwb,
1929 },
552ae76f
MZ
1930 {
1931 .desc = "ARMv8.4 Translation Table Level",
1932 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1933 .capability = ARM64_HAS_ARMv8_4_TTL,
1934 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1935 .sign = FTR_UNSIGNED,
1936 .field_pos = ID_AA64MMFR2_TTL_SHIFT,
1937 .min_field_value = 1,
1938 .matches = has_cpuid_feature,
1939 },
b620ba54
ZY
1940 {
1941 .desc = "TLB range maintenance instructions",
1942 .capability = ARM64_HAS_TLB_RANGE,
1943 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1944 .matches = has_cpuid_feature,
1945 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1946 .field_pos = ID_AA64ISAR0_TLB_SHIFT,
1947 .sign = FTR_UNSIGNED,
1948 .min_field_value = ID_AA64ISAR0_TLB_RANGE,
1949 },
05abb595
SP
1950#ifdef CONFIG_ARM64_HW_AFDBM
1951 {
1952 /*
1953 * Since we turn this on always, we don't want the user to
1954 * think that the feature is available when it may not be.
1955 * So hide the description.
1956 *
1957 * .desc = "Hardware pagetable Dirty Bit Management",
1958 *
1959 */
1960 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1961 .capability = ARM64_HW_DBM,
1962 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1963 .sign = FTR_UNSIGNED,
1964 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1965 .min_field_value = 2,
1966 .matches = has_hw_dbm,
1967 .cpu_enable = cpu_enable_hw_dbm,
1968 },
1969#endif
86d0dd34
AB
1970 {
1971 .desc = "CRC32 instructions",
1972 .capability = ARM64_HAS_CRC32,
1973 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1974 .matches = has_cpuid_feature,
1975 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1976 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1977 .min_field_value = 1,
1978 },
4f9f4964 1979#ifdef CONFIG_ARM64_SSBD
d71be2b6
WD
1980 {
1981 .desc = "Speculative Store Bypassing Safe (SSBS)",
1982 .capability = ARM64_SSBS,
1983 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1984 .matches = has_cpuid_feature,
1985 .sys_reg = SYS_ID_AA64PFR1_EL1,
1986 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1987 .sign = FTR_UNSIGNED,
1988 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
8f04e8e6 1989 .cpu_enable = cpu_enable_ssbs,
d71be2b6 1990 },
5ffdfaed
VM
1991#endif
1992#ifdef CONFIG_ARM64_CNP
1993 {
1994 .desc = "Common not Private translations",
1995 .capability = ARM64_HAS_CNP,
1996 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1997 .matches = has_useable_cnp,
1998 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1999 .sign = FTR_UNSIGNED,
2000 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
2001 .min_field_value = 1,
2002 .cpu_enable = cpu_enable_cnp,
2003 },
8f04e8e6 2004#endif
bd4fb6d2
WD
2005 {
2006 .desc = "Speculation barrier (SB)",
2007 .capability = ARM64_HAS_SB,
2008 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2009 .matches = has_cpuid_feature,
2010 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2011 .field_pos = ID_AA64ISAR1_SB_SHIFT,
2012 .sign = FTR_UNSIGNED,
2013 .min_field_value = 1,
2014 },
6984eb47
MR
2015#ifdef CONFIG_ARM64_PTR_AUTH
2016 {
2017 .desc = "Address authentication (architected algorithm)",
2018 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
6982934e 2019 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
6984eb47
MR
2020 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2021 .sign = FTR_UNSIGNED,
2022 .field_pos = ID_AA64ISAR1_APA_SHIFT,
2023 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2024 .matches = has_cpuid_feature,
2025 },
2026 {
2027 .desc = "Address authentication (IMP DEF algorithm)",
2028 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
6982934e 2029 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
6984eb47
MR
2030 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2031 .sign = FTR_UNSIGNED,
2032 .field_pos = ID_AA64ISAR1_API_SHIFT,
2033 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2034 .matches = has_cpuid_feature,
cfef06bd
KM
2035 },
2036 {
2037 .capability = ARM64_HAS_ADDRESS_AUTH,
6982934e 2038 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
cfef06bd 2039 .matches = has_address_auth,
6984eb47
MR
2040 },
2041 {
2042 .desc = "Generic authentication (architected algorithm)",
2043 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
2044 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2045 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2046 .sign = FTR_UNSIGNED,
2047 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
2048 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2049 .matches = has_cpuid_feature,
2050 },
2051 {
2052 .desc = "Generic authentication (IMP DEF algorithm)",
2053 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2054 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2055 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2056 .sign = FTR_UNSIGNED,
2057 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
2058 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2059 .matches = has_cpuid_feature,
2060 },
cfef06bd
KM
2061 {
2062 .capability = ARM64_HAS_GENERIC_AUTH,
2063 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2064 .matches = has_generic_auth,
2065 },
6984eb47 2066#endif /* CONFIG_ARM64_PTR_AUTH */
b90d2b22
JT
2067#ifdef CONFIG_ARM64_PSEUDO_NMI
2068 {
2069 /*
2070 * Depends on having GICv3
2071 */
2072 .desc = "IRQ priority masking",
2073 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2074 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2075 .matches = can_use_gic_priorities,
2076 .sys_reg = SYS_ID_AA64PFR0_EL1,
2077 .field_pos = ID_AA64PFR0_GIC_SHIFT,
2078 .sign = FTR_UNSIGNED,
2079 .min_field_value = 1,
2080 },
3e6c69a0
MB
2081#endif
2082#ifdef CONFIG_ARM64_E0PD
2083 {
2084 .desc = "E0PD",
2085 .capability = ARM64_HAS_E0PD,
2086 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2087 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2088 .sign = FTR_UNSIGNED,
2089 .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2090 .matches = has_cpuid_feature,
2091 .min_field_value = 1,
2092 .cpu_enable = cpu_enable_e0pd,
2093 },
bc206065 2094#endif
1a50ec0b
RH
2095#ifdef CONFIG_ARCH_RANDOM
2096 {
2097 .desc = "Random Number Generator",
2098 .capability = ARM64_HAS_RNG,
2099 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2100 .matches = has_cpuid_feature,
2101 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2102 .field_pos = ID_AA64ISAR0_RNDR_SHIFT,
2103 .sign = FTR_UNSIGNED,
2104 .min_field_value = 1,
2105 },
8ef8f360
DM
2106#endif
2107#ifdef CONFIG_ARM64_BTI
2108 {
2109 .desc = "Branch Target Identification",
2110 .capability = ARM64_BTI,
c8027285
MB
2111#ifdef CONFIG_ARM64_BTI_KERNEL
2112 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2113#else
8ef8f360 2114 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
c8027285 2115#endif
8ef8f360
DM
2116 .matches = has_cpuid_feature,
2117 .cpu_enable = bti_enable,
2118 .sys_reg = SYS_ID_AA64PFR1_EL1,
2119 .field_pos = ID_AA64PFR1_BT_SHIFT,
2120 .min_field_value = ID_AA64PFR1_BT_BTI,
2121 .sign = FTR_UNSIGNED,
2122 },
b90d2b22 2123#endif
359b7064
MZ
2124 {},
2125};
2126
1e013d06
WD
2127#define HWCAP_CPUID_MATCH(reg, field, s, min_value) \
2128 .matches = has_cpuid_feature, \
2129 .sys_reg = reg, \
2130 .field_pos = field, \
2131 .sign = s, \
2132 .min_field_value = min_value,
2133
2134#define __HWCAP_CAP(name, cap_type, cap) \
2135 .desc = name, \
2136 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
2137 .hwcap_type = cap_type, \
2138 .hwcap = cap, \
2139
2140#define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
2141 { \
2142 __HWCAP_CAP(#cap, cap_type, cap) \
2143 HWCAP_CPUID_MATCH(reg, field, s, min_value) \
37b01d53
SP
2144 }
2145
1e013d06
WD
2146#define HWCAP_MULTI_CAP(list, cap_type, cap) \
2147 { \
2148 __HWCAP_CAP(#cap, cap_type, cap) \
2149 .matches = cpucap_multi_entry_cap_matches, \
2150 .match_list = list, \
2151 }
2152
7559950a
SP
2153#define HWCAP_CAP_MATCH(match, cap_type, cap) \
2154 { \
2155 __HWCAP_CAP(#cap, cap_type, cap) \
2156 .matches = match, \
2157 }
2158
1e013d06
WD
2159#ifdef CONFIG_ARM64_PTR_AUTH
2160static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2161 {
2162 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2163 FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
2164 },
2165 {
2166 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2167 FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2168 },
2169 {},
2170};
2171
2172static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2173 {
2174 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2175 FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2176 },
2177 {
2178 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2179 FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2180 },
2181 {},
2182};
2183#endif
2184
f3efb675 2185static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
aaba098f
AM
2186 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2187 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2188 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2189 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2190 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2191 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2192 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2193 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2194 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2195 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2196 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2197 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2198 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2199 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
12019374 2200 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
1a50ec0b 2201 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
aaba098f
AM
2202 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2203 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2204 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2205 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2206 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2207 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
671db581 2208 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
aaba098f
AM
2209 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2210 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2211 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2212 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
ca9503fc 2213 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
aaba098f 2214 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
d4209d8b
SP
2215 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2216 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2217 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
aaba098f 2218 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
43994d82 2219#ifdef CONFIG_ARM64_SVE
aaba098f 2220 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
06a916fe
DM
2221 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2222 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2223 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2224 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
d4209d8b 2225 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
06a916fe
DM
2226 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2227 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
d4209d8b
SP
2228 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2229 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2230 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
43994d82 2231#endif
aaba098f 2232 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
8ef8f360
DM
2233#ifdef CONFIG_ARM64_BTI
2234 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2235#endif
75031975 2236#ifdef CONFIG_ARM64_PTR_AUTH
aaba098f
AM
2237 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2238 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
75031975 2239#endif
75283501
SP
2240 {},
2241};
2242
7559950a
SP
2243#ifdef CONFIG_COMPAT
2244static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2245{
2246 /*
2247 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2248 * in line with that of arm32 as in vfp_init(). We make sure that the
2249 * check is future proof, by making sure value is non-zero.
2250 */
2251 u32 mvfr1;
2252
2253 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2254 if (scope == SCOPE_SYSTEM)
2255 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2256 else
2257 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2258
2259 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2260 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2261 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2262}
2263#endif
2264
75283501 2265static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
37b01d53 2266#ifdef CONFIG_COMPAT
7559950a
SP
2267 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2268 HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2269 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2270 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2271 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
ff96f7bc
SP
2272 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2273 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2274 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2275 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2276 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
37b01d53
SP
2277#endif
2278 {},
2279};
2280
f3efb675 2281static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
37b01d53
SP
2282{
2283 switch (cap->hwcap_type) {
2284 case CAP_HWCAP:
aaba098f 2285 cpu_set_feature(cap->hwcap);
37b01d53
SP
2286 break;
2287#ifdef CONFIG_COMPAT
2288 case CAP_COMPAT_HWCAP:
2289 compat_elf_hwcap |= (u32)cap->hwcap;
2290 break;
2291 case CAP_COMPAT_HWCAP2:
2292 compat_elf_hwcap2 |= (u32)cap->hwcap;
2293 break;
2294#endif
2295 default:
2296 WARN_ON(1);
2297 break;
2298 }
2299}
2300
2301/* Check if we have a particular HWCAP enabled */
f3efb675 2302static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
37b01d53
SP
2303{
2304 bool rc;
2305
2306 switch (cap->hwcap_type) {
2307 case CAP_HWCAP:
aaba098f 2308 rc = cpu_have_feature(cap->hwcap);
37b01d53
SP
2309 break;
2310#ifdef CONFIG_COMPAT
2311 case CAP_COMPAT_HWCAP:
2312 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2313 break;
2314 case CAP_COMPAT_HWCAP2:
2315 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2316 break;
2317#endif
2318 default:
2319 WARN_ON(1);
2320 rc = false;
2321 }
2322
2323 return rc;
2324}
2325
75283501 2326static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
37b01d53 2327{
77c97b4e 2328 /* We support emulation of accesses to CPU ID feature registers */
aaba098f 2329 cpu_set_named_feature(CPUID);
75283501 2330 for (; hwcaps->matches; hwcaps++)
143ba05d 2331 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
75283501 2332 cap_set_elf_hwcap(hwcaps);
37b01d53
SP
2333}
2334
606f8e7b 2335static void update_cpu_capabilities(u16 scope_mask)
67948af4 2336{
606f8e7b 2337 int i;
67948af4
SP
2338 const struct arm64_cpu_capabilities *caps;
2339
cce360b5 2340 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
606f8e7b
SP
2341 for (i = 0; i < ARM64_NCAPS; i++) {
2342 caps = cpu_hwcaps_ptrs[i];
2343 if (!caps || !(caps->type & scope_mask) ||
2344 cpus_have_cap(caps->capability) ||
cce360b5 2345 !caps->matches(caps, cpucap_default_scope(caps)))
359b7064
MZ
2346 continue;
2347
606f8e7b
SP
2348 if (caps->desc)
2349 pr_info("detected: %s\n", caps->desc);
75283501 2350 cpus_set_cap(caps->capability);
0ceb0d56
DT
2351
2352 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2353 set_bit(caps->capability, boot_capabilities);
359b7064 2354 }
ce8b602c
SP
2355}
2356
0b587c84
SP
2357/*
2358 * Enable all the available capabilities on this CPU. The capabilities
2359 * with BOOT_CPU scope are handled separately and hence skipped here.
2360 */
2361static int cpu_enable_non_boot_scope_capabilities(void *__unused)
ed478b3f 2362{
0b587c84
SP
2363 int i;
2364 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
ed478b3f 2365
0b587c84
SP
2366 for_each_available_cap(i) {
2367 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2368
2369 if (WARN_ON(!cap))
2370 continue;
c0cda3b8 2371
0b587c84
SP
2372 if (!(cap->type & non_boot_scope))
2373 continue;
2374
2375 if (cap->cpu_enable)
2376 cap->cpu_enable(cap);
2377 }
c0cda3b8
DM
2378 return 0;
2379}
2380
ce8b602c 2381/*
dbb4e152
SP
2382 * Run through the enabled capabilities and enable() it on all active
2383 * CPUs
ce8b602c 2384 */
0b587c84 2385static void __init enable_cpu_capabilities(u16 scope_mask)
ce8b602c 2386{
0b587c84
SP
2387 int i;
2388 const struct arm64_cpu_capabilities *caps;
2389 bool boot_scope;
2390
cce360b5 2391 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
0b587c84 2392 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
63a1e1c9 2393
0b587c84
SP
2394 for (i = 0; i < ARM64_NCAPS; i++) {
2395 unsigned int num;
2396
2397 caps = cpu_hwcaps_ptrs[i];
2398 if (!caps || !(caps->type & scope_mask))
2399 continue;
2400 num = caps->capability;
2401 if (!cpus_have_cap(num))
63a1e1c9
MR
2402 continue;
2403
2404 /* Ensure cpus_have_const_cap(num) works */
2405 static_branch_enable(&cpu_hwcap_keys[num]);
2406
0b587c84 2407 if (boot_scope && caps->cpu_enable)
2a6dcb2b 2408 /*
fd9d63da
SP
2409 * Capabilities with SCOPE_BOOT_CPU scope are finalised
2410 * before any secondary CPU boots. Thus, each secondary
2411 * will enable the capability as appropriate via
2412 * check_local_cpu_capabilities(). The only exception is
2413 * the boot CPU, for which the capability must be
2414 * enabled here. This approach avoids costly
2415 * stop_machine() calls for this case.
2a6dcb2b 2416 */
0b587c84 2417 caps->cpu_enable(caps);
63a1e1c9 2418 }
dbb4e152 2419
0b587c84
SP
2420 /*
2421 * For all non-boot scope capabilities, use stop_machine()
2422 * as it schedules the work allowing us to modify PSTATE,
2423 * instead of on_each_cpu() which uses an IPI, giving us a
2424 * PSTATE that disappears when we return.
2425 */
2426 if (!boot_scope)
2427 stop_machine(cpu_enable_non_boot_scope_capabilities,
2428 NULL, cpu_online_mask);
ed478b3f
SP
2429}
2430
eaac4d83
SP
2431/*
2432 * Run through the list of capabilities to check for conflicts.
2433 * If the system has already detected a capability, take necessary
2434 * action on this CPU.
eaac4d83 2435 */
deeaac51 2436static void verify_local_cpu_caps(u16 scope_mask)
eaac4d83 2437{
606f8e7b 2438 int i;
eaac4d83 2439 bool cpu_has_cap, system_has_cap;
606f8e7b 2440 const struct arm64_cpu_capabilities *caps;
eaac4d83 2441
cce360b5
SP
2442 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2443
606f8e7b
SP
2444 for (i = 0; i < ARM64_NCAPS; i++) {
2445 caps = cpu_hwcaps_ptrs[i];
2446 if (!caps || !(caps->type & scope_mask))
cce360b5
SP
2447 continue;
2448
ba7d9233 2449 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
eaac4d83
SP
2450 system_has_cap = cpus_have_cap(caps->capability);
2451
2452 if (system_has_cap) {
2453 /*
2454 * Check if the new CPU misses an advertised feature,
2455 * which is not safe to miss.
2456 */
2457 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2458 break;
2459 /*
2460 * We have to issue cpu_enable() irrespective of
2461 * whether the CPU has it or not, as it is enabeld
2462 * system wide. It is upto the call back to take
2463 * appropriate action on this CPU.
2464 */
2465 if (caps->cpu_enable)
2466 caps->cpu_enable(caps);
2467 } else {
2468 /*
2469 * Check if the CPU has this capability if it isn't
2470 * safe to have when the system doesn't.
2471 */
2472 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2473 break;
2474 }
2475 }
2476
606f8e7b 2477 if (i < ARM64_NCAPS) {
eaac4d83
SP
2478 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2479 smp_processor_id(), caps->capability,
2480 caps->desc, system_has_cap, cpu_has_cap);
eaac4d83 2481
deeaac51
KM
2482 if (cpucap_panic_on_conflict(caps))
2483 cpu_panic_kernel();
2484 else
2485 cpu_die_early();
2486 }
eaac4d83
SP
2487}
2488
dbb4e152 2489/*
13f417f3
SP
2490 * Check for CPU features that are used in early boot
2491 * based on the Boot CPU value.
dbb4e152 2492 */
13f417f3 2493static void check_early_cpu_features(void)
dbb4e152 2494{
13f417f3 2495 verify_cpu_asid_bits();
deeaac51
KM
2496
2497 verify_local_cpu_caps(SCOPE_BOOT_CPU);
dbb4e152 2498}
1c076303 2499
75283501
SP
2500static void
2501verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2502{
2503
92406f0c
SP
2504 for (; caps->matches; caps++)
2505 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
75283501
SP
2506 pr_crit("CPU%d: missing HWCAP: %s\n",
2507 smp_processor_id(), caps->desc);
2508 cpu_die_early();
2509 }
75283501
SP
2510}
2511
2e0f2478
DM
2512static void verify_sve_features(void)
2513{
2514 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2515 u64 zcr = read_zcr_features();
2516
2517 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2518 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2519
2520 if (len < safe_len || sve_verify_vq_map()) {
d06b76be 2521 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2e0f2478
DM
2522 smp_processor_id());
2523 cpu_die_early();
2524 }
2525
2526 /* Add checks on other ZCR bits here if necessary */
2527}
2528
c73433fc
AK
2529static void verify_hyp_capabilities(void)
2530{
2531 u64 safe_mmfr1, mmfr0, mmfr1;
2532 int parange, ipa_max;
2533 unsigned int safe_vmid_bits, vmid_bits;
2534
2535 if (!IS_ENABLED(CONFIG_KVM) || !IS_ENABLED(CONFIG_KVM_ARM_HOST))
2536 return;
2537
2538 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2539 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2540 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2541
2542 /* Verify VMID bits */
2543 safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2544 vmid_bits = get_vmid_bits(mmfr1);
2545 if (vmid_bits < safe_vmid_bits) {
2546 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
2547 cpu_die_early();
2548 }
2549
2550 /* Verify IPA range */
f73531f0
AK
2551 parange = cpuid_feature_extract_unsigned_field(mmfr0,
2552 ID_AA64MMFR0_PARANGE_SHIFT);
c73433fc
AK
2553 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
2554 if (ipa_max < get_kvm_ipa_limit()) {
2555 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
2556 cpu_die_early();
2557 }
2558}
1e89baed 2559
dbb4e152
SP
2560/*
2561 * Run through the enabled system capabilities and enable() it on this CPU.
2562 * The capabilities were decided based on the available CPUs at the boot time.
2563 * Any new CPU should match the system wide status of the capability. If the
2564 * new CPU doesn't have a capability which the system now has enabled, we
2565 * cannot do anything to fix it up and could cause unexpected failures. So
2566 * we park the CPU.
2567 */
c47a1900 2568static void verify_local_cpu_capabilities(void)
dbb4e152 2569{
fd9d63da
SP
2570 /*
2571 * The capabilities with SCOPE_BOOT_CPU are checked from
2572 * check_early_cpu_features(), as they need to be verified
2573 * on all secondary CPUs.
2574 */
deeaac51 2575 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
ed478b3f 2576
c47a1900 2577 verify_local_elf_hwcaps(arm64_elf_hwcaps);
2e0f2478 2578
c47a1900
SP
2579 if (system_supports_32bit_el0())
2580 verify_local_elf_hwcaps(compat_elf_hwcaps);
2e0f2478
DM
2581
2582 if (system_supports_sve())
2583 verify_sve_features();
c73433fc
AK
2584
2585 if (is_hyp_mode_available())
2586 verify_hyp_capabilities();
c47a1900 2587}
dbb4e152 2588
c47a1900
SP
2589void check_local_cpu_capabilities(void)
2590{
2591 /*
2592 * All secondary CPUs should conform to the early CPU features
2593 * in use by the kernel based on boot CPU.
2594 */
13f417f3
SP
2595 check_early_cpu_features();
2596
dbb4e152 2597 /*
c47a1900 2598 * If we haven't finalised the system capabilities, this CPU gets
fbd890b9 2599 * a chance to update the errata work arounds and local features.
c47a1900
SP
2600 * Otherwise, this CPU should verify that it has all the system
2601 * advertised capabilities.
dbb4e152 2602 */
b51c6ac2 2603 if (!system_capabilities_finalized())
ed478b3f
SP
2604 update_cpu_capabilities(SCOPE_LOCAL_CPU);
2605 else
c47a1900 2606 verify_local_cpu_capabilities();
359b7064
MZ
2607}
2608
fd9d63da
SP
2609static void __init setup_boot_cpu_capabilities(void)
2610{
2611 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2612 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2613 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2614 enable_cpu_capabilities(SCOPE_BOOT_CPU);
2615}
2616
f7bfc14a 2617bool this_cpu_has_cap(unsigned int n)
8f413758 2618{
f7bfc14a
SP
2619 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2620 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2621
2622 if (cap)
2623 return cap->matches(cap, SCOPE_LOCAL_CPU);
2624 }
2625
2626 return false;
8f413758
MZ
2627}
2628
3ff047f6
ADK
2629/*
2630 * This helper function is used in a narrow window when,
2631 * - The system wide safe registers are set with all the SMP CPUs and,
2632 * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2633 * In all other cases cpus_have_{const_}cap() should be used.
2634 */
2635static bool __system_matches_cap(unsigned int n)
2636{
2637 if (n < ARM64_NCAPS) {
2638 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2639
2640 if (cap)
2641 return cap->matches(cap, SCOPE_SYSTEM);
2642 }
2643 return false;
2644}
2645
aec0bff7
AM
2646void cpu_set_feature(unsigned int num)
2647{
2648 WARN_ON(num >= MAX_CPU_FEATURES);
2649 elf_hwcap |= BIT(num);
2650}
2651EXPORT_SYMBOL_GPL(cpu_set_feature);
2652
2653bool cpu_have_feature(unsigned int num)
2654{
2655 WARN_ON(num >= MAX_CPU_FEATURES);
2656 return elf_hwcap & BIT(num);
2657}
2658EXPORT_SYMBOL_GPL(cpu_have_feature);
2659
2660unsigned long cpu_get_elf_hwcap(void)
2661{
2662 /*
2663 * We currently only populate the first 32 bits of AT_HWCAP. Please
2664 * note that for userspace compatibility we guarantee that bits 62
2665 * and 63 will always be returned as 0.
2666 */
2667 return lower_32_bits(elf_hwcap);
2668}
2669
2670unsigned long cpu_get_elf_hwcap2(void)
2671{
2672 return upper_32_bits(elf_hwcap);
2673}
2674
ed478b3f
SP
2675static void __init setup_system_capabilities(void)
2676{
2677 /*
2678 * We have finalised the system-wide safe feature
2679 * registers, finalise the capabilities that depend
fd9d63da
SP
2680 * on it. Also enable all the available capabilities,
2681 * that are not enabled already.
ed478b3f
SP
2682 */
2683 update_cpu_capabilities(SCOPE_SYSTEM);
fd9d63da 2684 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
ed478b3f
SP
2685}
2686
9cdf8ec4 2687void __init setup_cpu_features(void)
359b7064 2688{
9cdf8ec4 2689 u32 cwg;
9cdf8ec4 2690
ed478b3f 2691 setup_system_capabilities();
75283501 2692 setup_elf_hwcaps(arm64_elf_hwcaps);
643d703d
SP
2693
2694 if (system_supports_32bit_el0())
2695 setup_elf_hwcaps(compat_elf_hwcaps);
dbb4e152 2696
2e6f549f
KC
2697 if (system_uses_ttbr0_pan())
2698 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2699
2e0f2478 2700 sve_setup();
94b07c1f 2701 minsigstksz_setup();
2e0f2478 2702
dbb4e152 2703 /* Advertise that we have computed the system capabilities */
b51c6ac2 2704 finalize_system_capabilities();
dbb4e152 2705
9cdf8ec4
SP
2706 /*
2707 * Check for sane CTR_EL0.CWG value.
2708 */
2709 cwg = cache_type_cwg();
9cdf8ec4 2710 if (!cwg)
ebc7e21e
CM
2711 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2712 ARCH_DMA_MINALIGN);
359b7064 2713}
70544196
JM
2714
2715static bool __maybe_unused
92406f0c 2716cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
70544196 2717{
3ff047f6 2718 return (__system_matches_cap(ARM64_HAS_PAN) && !__system_matches_cap(ARM64_HAS_UAO));
70544196 2719}
77c97b4e 2720
5ffdfaed
VM
2721static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2722{
2723 cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2724}
2725
77c97b4e
SP
2726/*
2727 * We emulate only the following system register space.
2728 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2729 * See Table C5-6 System instruction encodings for System register accesses,
2730 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2731 */
2732static inline bool __attribute_const__ is_emulated(u32 id)
2733{
2734 return (sys_reg_Op0(id) == 0x3 &&
2735 sys_reg_CRn(id) == 0x0 &&
2736 sys_reg_Op1(id) == 0x0 &&
2737 (sys_reg_CRm(id) == 0 ||
2738 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2739}
2740
2741/*
2742 * With CRm == 0, reg should be one of :
2743 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2744 */
2745static inline int emulate_id_reg(u32 id, u64 *valp)
2746{
2747 switch (id) {
2748 case SYS_MIDR_EL1:
2749 *valp = read_cpuid_id();
2750 break;
2751 case SYS_MPIDR_EL1:
2752 *valp = SYS_MPIDR_SAFE_VAL;
2753 break;
2754 case SYS_REVIDR_EL1:
2755 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2756 *valp = 0;
2757 break;
2758 default:
2759 return -EINVAL;
2760 }
2761
2762 return 0;
2763}
2764
2765static int emulate_sys_reg(u32 id, u64 *valp)
2766{
2767 struct arm64_ftr_reg *regp;
2768
2769 if (!is_emulated(id))
2770 return -EINVAL;
2771
2772 if (sys_reg_CRm(id) == 0)
2773 return emulate_id_reg(id, valp);
2774
3577dd37 2775 regp = get_arm64_ftr_reg_nowarn(id);
77c97b4e
SP
2776 if (regp)
2777 *valp = arm64_ftr_reg_user_value(regp);
2778 else
2779 /*
2780 * The untracked registers are either IMPLEMENTATION DEFINED
2781 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2782 */
2783 *valp = 0;
2784 return 0;
2785}
2786
520ad988 2787int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
77c97b4e
SP
2788{
2789 int rc;
77c97b4e
SP
2790 u64 val;
2791
77c97b4e
SP
2792 rc = emulate_sys_reg(sys_reg, &val);
2793 if (!rc) {
520ad988 2794 pt_regs_write_reg(regs, rt, val);
6436beee 2795 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
77c97b4e 2796 }
77c97b4e
SP
2797 return rc;
2798}
2799
520ad988
AK
2800static int emulate_mrs(struct pt_regs *regs, u32 insn)
2801{
2802 u32 sys_reg, rt;
2803
2804 /*
2805 * sys_reg values are defined as used in mrs/msr instruction.
2806 * shift the imm value to get the encoding.
2807 */
2808 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2809 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2810 return do_emulate_mrs(regs, sys_reg, rt);
2811}
2812
77c97b4e
SP
2813static struct undef_hook mrs_hook = {
2814 .instr_mask = 0xfff00000,
2815 .instr_val = 0xd5300000,
d64567f6 2816 .pstate_mask = PSR_AA32_MODE_MASK,
77c97b4e
SP
2817 .pstate_val = PSR_MODE_EL0t,
2818 .fn = emulate_mrs,
2819};
2820
2821static int __init enable_mrs_emulation(void)
2822{
2823 register_undef_hook(&mrs_hook);
2824 return 0;
2825}
2826
c0d8832e 2827core_initcall(enable_mrs_emulation);
1b3ccf4b
JL
2828
2829ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2830 char *buf)
2831{
2832 if (__meltdown_safe)
2833 return sprintf(buf, "Not affected\n");
2834
2835 if (arm64_kernel_unmapped_at_el0())
2836 return sprintf(buf, "Mitigation: PTI\n");
2837
2838 return sprintf(buf, "Vulnerable\n");
2839}