]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/arm64/kernel/cpufeature.c
arm64: Handle trapped DC CVAP
[mirror_ubuntu-jammy-kernel.git] / arch / arm64 / kernel / cpufeature.c
CommitLineData
359b7064
MZ
1/*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
9cdf8ec4 19#define pr_fmt(fmt) "CPU features: " fmt
359b7064 20
3c739b57 21#include <linux/bsearch.h>
2a6dcb2b 22#include <linux/cpumask.h>
3c739b57 23#include <linux/sort.h>
2a6dcb2b 24#include <linux/stop_machine.h>
359b7064 25#include <linux/types.h>
2077be67 26#include <linux/mm.h>
359b7064
MZ
27#include <asm/cpu.h>
28#include <asm/cpufeature.h>
dbb4e152 29#include <asm/cpu_ops.h>
13f417f3 30#include <asm/mmu_context.h>
338d4f49 31#include <asm/processor.h>
cdcf817b 32#include <asm/sysreg.h>
77c97b4e 33#include <asm/traps.h>
d88701be 34#include <asm/virt.h>
359b7064 35
9cdf8ec4
SP
36unsigned long elf_hwcap __read_mostly;
37EXPORT_SYMBOL_GPL(elf_hwcap);
38
39#ifdef CONFIG_COMPAT
40#define COMPAT_ELF_HWCAP_DEFAULT \
41 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
46 COMPAT_HWCAP_LPAE)
47unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
48unsigned int compat_elf_hwcap2 __read_mostly;
49#endif
50
51DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
4b65a5db 52EXPORT_SYMBOL(cpu_hwcaps);
9cdf8ec4 53
8effeaaf
MR
54static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
55{
56 /* file-wide pr_fmt adds "CPU features: " prefix */
57 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
58 return 0;
59}
60
61static struct notifier_block cpu_hwcaps_notifier = {
62 .notifier_call = dump_cpu_hwcaps
63};
64
65static int __init register_cpu_hwcaps_dumper(void)
66{
67 atomic_notifier_chain_register(&panic_notifier_list,
68 &cpu_hwcaps_notifier);
69 return 0;
70}
71__initcall(register_cpu_hwcaps_dumper);
72
efd9e03f
CM
73DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
74EXPORT_SYMBOL(cpu_hwcap_keys);
75
fe4fbdbc 76#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
3c739b57 77 { \
4f0a606b 78 .sign = SIGNED, \
fe4fbdbc 79 .visible = VISIBLE, \
3c739b57
SP
80 .strict = STRICT, \
81 .type = TYPE, \
82 .shift = SHIFT, \
83 .width = WIDTH, \
84 .safe_val = SAFE_VAL, \
85 }
86
0710cfdb 87/* Define a feature with unsigned values */
fe4fbdbc
SP
88#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
89 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
4f0a606b 90
0710cfdb 91/* Define a feature with a signed value */
fe4fbdbc
SP
92#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
0710cfdb 94
3c739b57
SP
95#define ARM64_FTR_END \
96 { \
97 .width = 0, \
98 }
99
70544196
JM
100/* meta feature for alternatives */
101static bool __maybe_unused
92406f0c
SP
102cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
103
70544196 104
4aa8a472
SP
105/*
106 * NOTE: Any changes to the visibility of features should be kept in
107 * sync with the documentation of the CPU feature register ABI.
108 */
5e49d73c 109static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
fe4fbdbc
SP
110 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
111 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
112 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
113 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
114 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
115 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
3c739b57
SP
116 ARM64_FTR_END,
117};
118
c8c3798d 119static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
c651aae5 120 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
cb567e79 121 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
c8c3798d 122 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
7aac405e 123 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
c8c3798d
SP
124 ARM64_FTR_END,
125};
126
5e49d73c 127static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
fe4fbdbc
SP
128 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
129 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
130 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
3c739b57 131 /* Linux doesn't care about the EL3 */
fe4fbdbc
SP
132 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
133 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
135 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
3c739b57
SP
136 ARM64_FTR_END,
137};
138
5e49d73c 139static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
fe4fbdbc
SP
140 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
141 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
142 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
143 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
3c739b57 144 /* Linux shouldn't care about secure memory */
fe4fbdbc
SP
145 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
146 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
147 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
3c739b57
SP
148 /*
149 * Differing PARange is fine as long as all peripherals and memory are mapped
150 * within the minimum PARange of all CPUs
151 */
fe4fbdbc 152 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
3c739b57
SP
153 ARM64_FTR_END,
154};
155
5e49d73c 156static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
fe4fbdbc
SP
157 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
158 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
159 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
160 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
161 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
162 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
3c739b57
SP
163 ARM64_FTR_END,
164};
165
5e49d73c 166static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
fe4fbdbc
SP
167 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
168 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
169 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
170 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
171 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
406e3087
JM
172 ARM64_FTR_END,
173};
174
5e49d73c 175static const struct arm64_ftr_bits ftr_ctr[] = {
fe4fbdbc
SP
176 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
177 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
178 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
179 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
3c739b57
SP
180 /*
181 * Linux can handle differing I-cache policies. Userspace JITs will
ee7bc638 182 * make use of *minLine.
155433cb 183 * If we have differing I-cache policies, report it as the weakest - VIPT.
3c739b57 184 */
155433cb 185 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
fe4fbdbc 186 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
3c739b57
SP
187 ARM64_FTR_END,
188};
189
675b0563
AB
190struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
191 .name = "SYS_CTR_EL0",
192 .ftr_bits = ftr_ctr
193};
194
5e49d73c 195static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
fe4fbdbc
SP
196 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
197 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
198 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
199 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
200 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
201 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
202 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
203 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
3c739b57
SP
204 ARM64_FTR_END,
205};
206
5e49d73c 207static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
fe4fbdbc
SP
208 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
209 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
210 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
212 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
b20d1ba3
WD
213 /*
214 * We can instantiate multiple PMU instances with different levels
215 * of support.
fe4fbdbc
SP
216 */
217 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
218 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
219 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
3c739b57
SP
220 ARM64_FTR_END,
221};
222
5e49d73c 223static const struct arm64_ftr_bits ftr_mvfr2[] = {
fe4fbdbc
SP
224 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
225 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
3c739b57
SP
226 ARM64_FTR_END,
227};
228
5e49d73c 229static const struct arm64_ftr_bits ftr_dczid[] = {
fe4fbdbc
SP
230 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
231 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
3c739b57
SP
232 ARM64_FTR_END,
233};
234
235
5e49d73c 236static const struct arm64_ftr_bits ftr_id_isar5[] = {
fe4fbdbc
SP
237 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
238 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
239 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
3c739b57
SP
243 ARM64_FTR_END,
244};
245
5e49d73c 246static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
fe4fbdbc 247 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
3c739b57
SP
248 ARM64_FTR_END,
249};
250
5e49d73c 251static const struct arm64_ftr_bits ftr_id_pfr0[] = {
fe4fbdbc
SP
252 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
253 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
254 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
255 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
3c739b57
SP
256 ARM64_FTR_END,
257};
258
5e49d73c 259static const struct arm64_ftr_bits ftr_id_dfr0[] = {
fe4fbdbc
SP
260 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
261 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
262 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
263 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
264 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
265 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
266 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
267 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
e5343503
SP
268 ARM64_FTR_END,
269};
270
3c739b57
SP
271/*
272 * Common ftr bits for a 32bit register with all hidden, strict
273 * attributes, with 4bit feature fields and a default safe value of
274 * 0. Covers the following 32bit registers:
275 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
276 */
5e49d73c 277static const struct arm64_ftr_bits ftr_generic_32bits[] = {
fe4fbdbc
SP
278 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
279 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
280 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
281 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
282 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
283 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
285 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
3c739b57
SP
286 ARM64_FTR_END,
287};
288
eab43e88
SP
289/* Table for a single 32bit feature value */
290static const struct arm64_ftr_bits ftr_single32[] = {
fe4fbdbc 291 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
3c739b57
SP
292 ARM64_FTR_END,
293};
294
eab43e88 295static const struct arm64_ftr_bits ftr_raz[] = {
3c739b57
SP
296 ARM64_FTR_END,
297};
298
6f2b7eef
AB
299#define ARM64_FTR_REG(id, table) { \
300 .sys_id = id, \
301 .reg = &(struct arm64_ftr_reg){ \
3c739b57
SP
302 .name = #id, \
303 .ftr_bits = &((table)[0]), \
6f2b7eef 304 }}
3c739b57 305
6f2b7eef
AB
306static const struct __ftr_reg_entry {
307 u32 sys_id;
308 struct arm64_ftr_reg *reg;
309} arm64_ftr_regs[] = {
3c739b57
SP
310
311 /* Op1 = 0, CRn = 0, CRm = 1 */
312 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
313 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
e5343503 314 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
3c739b57
SP
315 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
316 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
317 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
318 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
319
320 /* Op1 = 0, CRn = 0, CRm = 2 */
321 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
322 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
323 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
324 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
325 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
326 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
327 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
328
329 /* Op1 = 0, CRn = 0, CRm = 3 */
330 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
331 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
332 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
333
334 /* Op1 = 0, CRn = 0, CRm = 4 */
335 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
eab43e88 336 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
3c739b57
SP
337
338 /* Op1 = 0, CRn = 0, CRm = 5 */
339 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
eab43e88 340 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
3c739b57
SP
341
342 /* Op1 = 0, CRn = 0, CRm = 6 */
343 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
c8c3798d 344 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
3c739b57
SP
345
346 /* Op1 = 0, CRn = 0, CRm = 7 */
347 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
348 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
406e3087 349 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
3c739b57
SP
350
351 /* Op1 = 3, CRn = 0, CRm = 0 */
675b0563 352 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
3c739b57
SP
353 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
354
355 /* Op1 = 3, CRn = 14, CRm = 0 */
eab43e88 356 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
3c739b57
SP
357};
358
359static int search_cmp_ftr_reg(const void *id, const void *regp)
360{
6f2b7eef 361 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
3c739b57
SP
362}
363
364/*
365 * get_arm64_ftr_reg - Lookup a feature register entry using its
366 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
367 * ascending order of sys_id , we use binary search to find a matching
368 * entry.
369 *
370 * returns - Upon success, matching ftr_reg entry for id.
371 * - NULL on failure. It is upto the caller to decide
372 * the impact of a failure.
373 */
374static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
375{
6f2b7eef
AB
376 const struct __ftr_reg_entry *ret;
377
378 ret = bsearch((const void *)(unsigned long)sys_id,
3c739b57
SP
379 arm64_ftr_regs,
380 ARRAY_SIZE(arm64_ftr_regs),
381 sizeof(arm64_ftr_regs[0]),
382 search_cmp_ftr_reg);
6f2b7eef
AB
383 if (ret)
384 return ret->reg;
385 return NULL;
3c739b57
SP
386}
387
5e49d73c
AB
388static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
389 s64 ftr_val)
3c739b57
SP
390{
391 u64 mask = arm64_ftr_mask(ftrp);
392
393 reg &= ~mask;
394 reg |= (ftr_val << ftrp->shift) & mask;
395 return reg;
396}
397
5e49d73c
AB
398static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
399 s64 cur)
3c739b57
SP
400{
401 s64 ret = 0;
402
403 switch (ftrp->type) {
404 case FTR_EXACT:
405 ret = ftrp->safe_val;
406 break;
407 case FTR_LOWER_SAFE:
408 ret = new < cur ? new : cur;
409 break;
410 case FTR_HIGHER_SAFE:
411 ret = new > cur ? new : cur;
412 break;
413 default:
414 BUG();
415 }
416
417 return ret;
418}
419
3c739b57
SP
420static void __init sort_ftr_regs(void)
421{
6f2b7eef
AB
422 int i;
423
424 /* Check that the array is sorted so that we can do the binary search */
425 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
426 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
3c739b57
SP
427}
428
429/*
430 * Initialise the CPU feature register from Boot CPU values.
431 * Also initiliases the strict_mask for the register.
b389d799
MR
432 * Any bits that are not covered by an arm64_ftr_bits entry are considered
433 * RES0 for the system-wide value, and must strictly match.
3c739b57
SP
434 */
435static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
436{
437 u64 val = 0;
438 u64 strict_mask = ~0x0ULL;
fe4fbdbc 439 u64 user_mask = 0;
b389d799
MR
440 u64 valid_mask = 0;
441
5e49d73c 442 const struct arm64_ftr_bits *ftrp;
3c739b57
SP
443 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
444
445 BUG_ON(!reg);
446
447 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
b389d799 448 u64 ftr_mask = arm64_ftr_mask(ftrp);
3c739b57
SP
449 s64 ftr_new = arm64_ftr_value(ftrp, new);
450
451 val = arm64_ftr_set_value(ftrp, val, ftr_new);
b389d799
MR
452
453 valid_mask |= ftr_mask;
3c739b57 454 if (!ftrp->strict)
b389d799 455 strict_mask &= ~ftr_mask;
fe4fbdbc
SP
456 if (ftrp->visible)
457 user_mask |= ftr_mask;
458 else
459 reg->user_val = arm64_ftr_set_value(ftrp,
460 reg->user_val,
461 ftrp->safe_val);
3c739b57 462 }
b389d799
MR
463
464 val &= valid_mask;
465
3c739b57
SP
466 reg->sys_val = val;
467 reg->strict_mask = strict_mask;
fe4fbdbc 468 reg->user_mask = user_mask;
3c739b57
SP
469}
470
471void __init init_cpu_features(struct cpuinfo_arm64 *info)
472{
473 /* Before we start using the tables, make sure it is sorted */
474 sort_ftr_regs();
475
476 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
477 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
478 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
479 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
480 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
481 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
482 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
483 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
484 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
406e3087 485 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
3c739b57
SP
486 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
487 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
a6dc3cd7
SP
488
489 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
490 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
491 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
492 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
493 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
494 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
495 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
496 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
497 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
498 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
499 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
500 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
501 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
502 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
503 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
504 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
505 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
506 }
507
3c739b57
SP
508}
509
3086d391 510static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
3c739b57 511{
5e49d73c 512 const struct arm64_ftr_bits *ftrp;
3c739b57
SP
513
514 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
515 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
516 s64 ftr_new = arm64_ftr_value(ftrp, new);
517
518 if (ftr_cur == ftr_new)
519 continue;
520 /* Find a safe value */
521 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
522 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
523 }
524
525}
526
3086d391 527static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
cdcf817b 528{
3086d391
SP
529 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
530
531 BUG_ON(!regp);
532 update_cpu_ftr_reg(regp, val);
533 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
534 return 0;
535 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
536 regp->name, boot, cpu, val);
537 return 1;
538}
539
540/*
541 * Update system wide CPU feature registers with the values from a
542 * non-boot CPU. Also performs SANITY checks to make sure that there
543 * aren't any insane variations from that of the boot CPU.
544 */
545void update_cpu_features(int cpu,
546 struct cpuinfo_arm64 *info,
547 struct cpuinfo_arm64 *boot)
548{
549 int taint = 0;
550
551 /*
552 * The kernel can handle differing I-cache policies, but otherwise
553 * caches should look identical. Userspace JITs will make use of
554 * *minLine.
555 */
556 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
557 info->reg_ctr, boot->reg_ctr);
558
559 /*
560 * Userspace may perform DC ZVA instructions. Mismatched block sizes
561 * could result in too much or too little memory being zeroed if a
562 * process is preempted and migrated between CPUs.
563 */
564 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
565 info->reg_dczid, boot->reg_dczid);
566
567 /* If different, timekeeping will be broken (especially with KVM) */
568 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
569 info->reg_cntfrq, boot->reg_cntfrq);
570
571 /*
572 * The kernel uses self-hosted debug features and expects CPUs to
573 * support identical debug features. We presently need CTX_CMPs, WRPs,
574 * and BRPs to be identical.
575 * ID_AA64DFR1 is currently RES0.
576 */
577 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
578 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
579 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
580 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
581 /*
582 * Even in big.LITTLE, processors should be identical instruction-set
583 * wise.
584 */
585 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
586 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
587 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
588 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
589
590 /*
591 * Differing PARange support is fine as long as all peripherals and
592 * memory are mapped within the minimum PARange of all CPUs.
593 * Linux should not care about secure memory.
594 */
595 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
596 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
597 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
598 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
406e3087
JM
599 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
600 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
3086d391
SP
601
602 /*
603 * EL3 is not our concern.
604 * ID_AA64PFR1 is currently RES0.
605 */
606 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
607 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
608 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
609 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
610
611 /*
a6dc3cd7
SP
612 * If we have AArch32, we care about 32-bit features for compat.
613 * If the system doesn't support AArch32, don't update them.
3086d391 614 */
46823dd1 615 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
a6dc3cd7
SP
616 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
617
618 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
3086d391 619 info->reg_id_dfr0, boot->reg_id_dfr0);
a6dc3cd7 620 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
3086d391 621 info->reg_id_isar0, boot->reg_id_isar0);
a6dc3cd7 622 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
3086d391 623 info->reg_id_isar1, boot->reg_id_isar1);
a6dc3cd7 624 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
3086d391 625 info->reg_id_isar2, boot->reg_id_isar2);
a6dc3cd7 626 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
3086d391 627 info->reg_id_isar3, boot->reg_id_isar3);
a6dc3cd7 628 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
3086d391 629 info->reg_id_isar4, boot->reg_id_isar4);
a6dc3cd7 630 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
3086d391
SP
631 info->reg_id_isar5, boot->reg_id_isar5);
632
a6dc3cd7
SP
633 /*
634 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
635 * ACTLR formats could differ across CPUs and therefore would have to
636 * be trapped for virtualization anyway.
637 */
638 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
3086d391 639 info->reg_id_mmfr0, boot->reg_id_mmfr0);
a6dc3cd7 640 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
3086d391 641 info->reg_id_mmfr1, boot->reg_id_mmfr1);
a6dc3cd7 642 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
3086d391 643 info->reg_id_mmfr2, boot->reg_id_mmfr2);
a6dc3cd7 644 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
3086d391 645 info->reg_id_mmfr3, boot->reg_id_mmfr3);
a6dc3cd7 646 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
3086d391 647 info->reg_id_pfr0, boot->reg_id_pfr0);
a6dc3cd7 648 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
3086d391 649 info->reg_id_pfr1, boot->reg_id_pfr1);
a6dc3cd7 650 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
3086d391 651 info->reg_mvfr0, boot->reg_mvfr0);
a6dc3cd7 652 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
3086d391 653 info->reg_mvfr1, boot->reg_mvfr1);
a6dc3cd7 654 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
3086d391 655 info->reg_mvfr2, boot->reg_mvfr2);
a6dc3cd7 656 }
3086d391
SP
657
658 /*
659 * Mismatched CPU features are a recipe for disaster. Don't even
660 * pretend to support them.
661 */
8dd0ee65
WD
662 if (taint) {
663 pr_warn_once("Unsupported CPU feature variation detected.\n");
664 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
665 }
cdcf817b
SP
666}
667
46823dd1 668u64 read_sanitised_ftr_reg(u32 id)
b3f15378
SP
669{
670 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
671
672 /* We shouldn't get a request for an unsupported register */
673 BUG_ON(!regp);
674 return regp->sys_val;
675}
359b7064 676
965861d6
MR
677#define read_sysreg_case(r) \
678 case r: return read_sysreg_s(r)
679
92406f0c 680/*
46823dd1 681 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
92406f0c
SP
682 * Read the system register on the current CPU
683 */
46823dd1 684static u64 __read_sysreg_by_encoding(u32 sys_id)
92406f0c
SP
685{
686 switch (sys_id) {
965861d6
MR
687 read_sysreg_case(SYS_ID_PFR0_EL1);
688 read_sysreg_case(SYS_ID_PFR1_EL1);
689 read_sysreg_case(SYS_ID_DFR0_EL1);
690 read_sysreg_case(SYS_ID_MMFR0_EL1);
691 read_sysreg_case(SYS_ID_MMFR1_EL1);
692 read_sysreg_case(SYS_ID_MMFR2_EL1);
693 read_sysreg_case(SYS_ID_MMFR3_EL1);
694 read_sysreg_case(SYS_ID_ISAR0_EL1);
695 read_sysreg_case(SYS_ID_ISAR1_EL1);
696 read_sysreg_case(SYS_ID_ISAR2_EL1);
697 read_sysreg_case(SYS_ID_ISAR3_EL1);
698 read_sysreg_case(SYS_ID_ISAR4_EL1);
699 read_sysreg_case(SYS_ID_ISAR5_EL1);
700 read_sysreg_case(SYS_MVFR0_EL1);
701 read_sysreg_case(SYS_MVFR1_EL1);
702 read_sysreg_case(SYS_MVFR2_EL1);
703
704 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
705 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
706 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
707 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
708 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
709 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
710 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
711 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
712 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
713
714 read_sysreg_case(SYS_CNTFRQ_EL0);
715 read_sysreg_case(SYS_CTR_EL0);
716 read_sysreg_case(SYS_DCZID_EL0);
717
92406f0c
SP
718 default:
719 BUG();
720 return 0;
721 }
722}
723
963fcd40
MZ
724#include <linux/irqchip/arm-gic-v3.h>
725
18ffa046
JM
726static bool
727feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
728{
28c5dcb2 729 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
18ffa046
JM
730
731 return val >= entry->min_field_value;
732}
733
da8d02d1 734static bool
92406f0c 735has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
da8d02d1
SP
736{
737 u64 val;
94a9e04a 738
92406f0c
SP
739 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
740 if (scope == SCOPE_SYSTEM)
46823dd1 741 val = read_sanitised_ftr_reg(entry->sys_reg);
92406f0c 742 else
46823dd1 743 val = __read_sysreg_by_encoding(entry->sys_reg);
92406f0c 744
da8d02d1
SP
745 return feature_matches(val, entry);
746}
338d4f49 747
92406f0c 748static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
963fcd40
MZ
749{
750 bool has_sre;
751
92406f0c 752 if (!has_cpuid_feature(entry, scope))
963fcd40
MZ
753 return false;
754
755 has_sre = gic_enable_sre();
756 if (!has_sre)
757 pr_warn_once("%s present but disabled by higher exception level\n",
758 entry->desc);
759
760 return has_sre;
761}
762
92406f0c 763static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
d5370f75
WD
764{
765 u32 midr = read_cpuid_id();
d5370f75
WD
766
767 /* Cavium ThunderX pass 1.x and 2.x */
fa5ce3d1
RR
768 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
769 MIDR_CPU_VAR_REV(0, 0),
770 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
d5370f75
WD
771}
772
92406f0c 773static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
d88701be
MZ
774{
775 return is_kernel_in_hyp_mode();
776}
777
d1745910
MZ
778static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
779 int __unused)
780{
2077be67 781 phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
d1745910
MZ
782
783 /*
784 * Activate the lower HYP offset only if:
785 * - the idmap doesn't clash with it,
786 * - the kernel is not running at EL2.
787 */
788 return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
789}
790
82e0191a
SP
791static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
792{
46823dd1 793 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
82e0191a
SP
794
795 return cpuid_feature_extract_signed_field(pfr0,
796 ID_AA64PFR0_FP_SHIFT) < 0;
797}
798
359b7064 799static const struct arm64_cpu_capabilities arm64_features[] = {
94a9e04a
MZ
800 {
801 .desc = "GIC system register CPU interface",
802 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
92406f0c 803 .def_scope = SCOPE_SYSTEM,
963fcd40 804 .matches = has_useable_gicv3_cpuif,
da8d02d1
SP
805 .sys_reg = SYS_ID_AA64PFR0_EL1,
806 .field_pos = ID_AA64PFR0_GIC_SHIFT,
ff96f7bc 807 .sign = FTR_UNSIGNED,
18ffa046 808 .min_field_value = 1,
94a9e04a 809 },
338d4f49
JM
810#ifdef CONFIG_ARM64_PAN
811 {
812 .desc = "Privileged Access Never",
813 .capability = ARM64_HAS_PAN,
92406f0c 814 .def_scope = SCOPE_SYSTEM,
da8d02d1
SP
815 .matches = has_cpuid_feature,
816 .sys_reg = SYS_ID_AA64MMFR1_EL1,
817 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
ff96f7bc 818 .sign = FTR_UNSIGNED,
338d4f49
JM
819 .min_field_value = 1,
820 .enable = cpu_enable_pan,
821 },
822#endif /* CONFIG_ARM64_PAN */
2e94da13
WD
823#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
824 {
825 .desc = "LSE atomic instructions",
826 .capability = ARM64_HAS_LSE_ATOMICS,
92406f0c 827 .def_scope = SCOPE_SYSTEM,
da8d02d1
SP
828 .matches = has_cpuid_feature,
829 .sys_reg = SYS_ID_AA64ISAR0_EL1,
830 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
ff96f7bc 831 .sign = FTR_UNSIGNED,
2e94da13
WD
832 .min_field_value = 2,
833 },
834#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
d5370f75
WD
835 {
836 .desc = "Software prefetching using PRFM",
837 .capability = ARM64_HAS_NO_HW_PREFETCH,
92406f0c 838 .def_scope = SCOPE_SYSTEM,
d5370f75
WD
839 .matches = has_no_hw_prefetch,
840 },
57f4959b
JM
841#ifdef CONFIG_ARM64_UAO
842 {
843 .desc = "User Access Override",
844 .capability = ARM64_HAS_UAO,
92406f0c 845 .def_scope = SCOPE_SYSTEM,
57f4959b
JM
846 .matches = has_cpuid_feature,
847 .sys_reg = SYS_ID_AA64MMFR2_EL1,
848 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
849 .min_field_value = 1,
c8b06e3f
JM
850 /*
851 * We rely on stop_machine() calling uao_thread_switch() to set
852 * UAO immediately after patching.
853 */
57f4959b
JM
854 },
855#endif /* CONFIG_ARM64_UAO */
70544196
JM
856#ifdef CONFIG_ARM64_PAN
857 {
858 .capability = ARM64_ALT_PAN_NOT_UAO,
92406f0c 859 .def_scope = SCOPE_SYSTEM,
70544196
JM
860 .matches = cpufeature_pan_not_uao,
861 },
862#endif /* CONFIG_ARM64_PAN */
d88701be
MZ
863 {
864 .desc = "Virtualization Host Extensions",
865 .capability = ARM64_HAS_VIRT_HOST_EXTN,
92406f0c 866 .def_scope = SCOPE_SYSTEM,
d88701be
MZ
867 .matches = runs_at_el2,
868 },
042446a3
SP
869 {
870 .desc = "32-bit EL0 Support",
871 .capability = ARM64_HAS_32BIT_EL0,
92406f0c 872 .def_scope = SCOPE_SYSTEM,
042446a3
SP
873 .matches = has_cpuid_feature,
874 .sys_reg = SYS_ID_AA64PFR0_EL1,
875 .sign = FTR_UNSIGNED,
876 .field_pos = ID_AA64PFR0_EL0_SHIFT,
877 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
878 },
d1745910
MZ
879 {
880 .desc = "Reduced HYP mapping offset",
881 .capability = ARM64_HYP_OFFSET_LOW,
882 .def_scope = SCOPE_SYSTEM,
883 .matches = hyp_offset_low,
884 },
82e0191a
SP
885 {
886 /* FP/SIMD is not implemented */
887 .capability = ARM64_HAS_NO_FPSIMD,
888 .def_scope = SCOPE_SYSTEM,
889 .min_field_value = 0,
890 .matches = has_no_fpsimd,
891 },
359b7064
MZ
892 {},
893};
894
ff96f7bc 895#define HWCAP_CAP(reg, field, s, min_value, type, cap) \
37b01d53
SP
896 { \
897 .desc = #cap, \
92406f0c 898 .def_scope = SCOPE_SYSTEM, \
37b01d53
SP
899 .matches = has_cpuid_feature, \
900 .sys_reg = reg, \
901 .field_pos = field, \
ff96f7bc 902 .sign = s, \
37b01d53
SP
903 .min_field_value = min_value, \
904 .hwcap_type = type, \
905 .hwcap = cap, \
906 }
907
f3efb675 908static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
ff96f7bc
SP
909 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
910 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
911 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
912 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
913 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
914 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
f92f5ce0 915 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
ff96f7bc 916 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
bf500618 917 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
ff96f7bc 918 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
bf500618 919 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
7aac405e 920 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
c8c3798d 921 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
cb567e79 922 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
c651aae5 923 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
75283501
SP
924 {},
925};
926
927static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
37b01d53 928#ifdef CONFIG_COMPAT
ff96f7bc
SP
929 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
930 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
931 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
932 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
933 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
37b01d53
SP
934#endif
935 {},
936};
937
f3efb675 938static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
37b01d53
SP
939{
940 switch (cap->hwcap_type) {
941 case CAP_HWCAP:
942 elf_hwcap |= cap->hwcap;
943 break;
944#ifdef CONFIG_COMPAT
945 case CAP_COMPAT_HWCAP:
946 compat_elf_hwcap |= (u32)cap->hwcap;
947 break;
948 case CAP_COMPAT_HWCAP2:
949 compat_elf_hwcap2 |= (u32)cap->hwcap;
950 break;
951#endif
952 default:
953 WARN_ON(1);
954 break;
955 }
956}
957
958/* Check if we have a particular HWCAP enabled */
f3efb675 959static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
37b01d53
SP
960{
961 bool rc;
962
963 switch (cap->hwcap_type) {
964 case CAP_HWCAP:
965 rc = (elf_hwcap & cap->hwcap) != 0;
966 break;
967#ifdef CONFIG_COMPAT
968 case CAP_COMPAT_HWCAP:
969 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
970 break;
971 case CAP_COMPAT_HWCAP2:
972 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
973 break;
974#endif
975 default:
976 WARN_ON(1);
977 rc = false;
978 }
979
980 return rc;
981}
982
75283501 983static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
37b01d53 984{
77c97b4e
SP
985 /* We support emulation of accesses to CPU ID feature registers */
986 elf_hwcap |= HWCAP_CPUID;
75283501 987 for (; hwcaps->matches; hwcaps++)
92406f0c 988 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
75283501 989 cap_set_elf_hwcap(hwcaps);
37b01d53
SP
990}
991
ce8b602c 992void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
359b7064
MZ
993 const char *info)
994{
75283501 995 for (; caps->matches; caps++) {
92406f0c 996 if (!caps->matches(caps, caps->def_scope))
359b7064
MZ
997 continue;
998
75283501
SP
999 if (!cpus_have_cap(caps->capability) && caps->desc)
1000 pr_info("%s %s\n", info, caps->desc);
1001 cpus_set_cap(caps->capability);
359b7064 1002 }
ce8b602c
SP
1003}
1004
1005/*
dbb4e152
SP
1006 * Run through the enabled capabilities and enable() it on all active
1007 * CPUs
ce8b602c 1008 */
8e231852 1009void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
ce8b602c 1010{
63a1e1c9
MR
1011 for (; caps->matches; caps++) {
1012 unsigned int num = caps->capability;
1013
1014 if (!cpus_have_cap(num))
1015 continue;
1016
1017 /* Ensure cpus_have_const_cap(num) works */
1018 static_branch_enable(&cpu_hwcap_keys[num]);
1019
1020 if (caps->enable) {
2a6dcb2b
JM
1021 /*
1022 * Use stop_machine() as it schedules the work allowing
1023 * us to modify PSTATE, instead of on_each_cpu() which
1024 * uses an IPI, giving us a PSTATE that disappears when
1025 * we return.
1026 */
1027 stop_machine(caps->enable, NULL, cpu_online_mask);
63a1e1c9
MR
1028 }
1029 }
dbb4e152
SP
1030}
1031
dbb4e152
SP
1032/*
1033 * Flag to indicate if we have computed the system wide
1034 * capabilities based on the boot time active CPUs. This
1035 * will be used to determine if a new booting CPU should
1036 * go through the verification process to make sure that it
1037 * supports the system capabilities, without using a hotplug
1038 * notifier.
1039 */
1040static bool sys_caps_initialised;
1041
1042static inline void set_sys_caps_initialised(void)
1043{
1044 sys_caps_initialised = true;
1045}
1046
1047/*
13f417f3
SP
1048 * Check for CPU features that are used in early boot
1049 * based on the Boot CPU value.
dbb4e152 1050 */
13f417f3 1051static void check_early_cpu_features(void)
dbb4e152 1052{
ac1ad20f 1053 verify_cpu_run_el();
13f417f3 1054 verify_cpu_asid_bits();
dbb4e152 1055}
1c076303 1056
75283501
SP
1057static void
1058verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1059{
1060
92406f0c
SP
1061 for (; caps->matches; caps++)
1062 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
75283501
SP
1063 pr_crit("CPU%d: missing HWCAP: %s\n",
1064 smp_processor_id(), caps->desc);
1065 cpu_die_early();
1066 }
75283501
SP
1067}
1068
1069static void
1070verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1071{
1072 for (; caps->matches; caps++) {
92406f0c 1073 if (!cpus_have_cap(caps->capability))
75283501
SP
1074 continue;
1075 /*
1076 * If the new CPU misses an advertised feature, we cannot proceed
1077 * further, park the cpu.
1078 */
92406f0c 1079 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
75283501
SP
1080 pr_crit("CPU%d: missing feature: %s\n",
1081 smp_processor_id(), caps->desc);
1082 cpu_die_early();
1083 }
1084 if (caps->enable)
1085 caps->enable(NULL);
1086 }
1087}
1088
dbb4e152
SP
1089/*
1090 * Run through the enabled system capabilities and enable() it on this CPU.
1091 * The capabilities were decided based on the available CPUs at the boot time.
1092 * Any new CPU should match the system wide status of the capability. If the
1093 * new CPU doesn't have a capability which the system now has enabled, we
1094 * cannot do anything to fix it up and could cause unexpected failures. So
1095 * we park the CPU.
1096 */
c47a1900 1097static void verify_local_cpu_capabilities(void)
dbb4e152 1098{
c47a1900
SP
1099 verify_local_cpu_errata_workarounds();
1100 verify_local_cpu_features(arm64_features);
1101 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1102 if (system_supports_32bit_el0())
1103 verify_local_elf_hwcaps(compat_elf_hwcaps);
1104}
dbb4e152 1105
c47a1900
SP
1106void check_local_cpu_capabilities(void)
1107{
1108 /*
1109 * All secondary CPUs should conform to the early CPU features
1110 * in use by the kernel based on boot CPU.
1111 */
13f417f3
SP
1112 check_early_cpu_features();
1113
dbb4e152 1114 /*
c47a1900
SP
1115 * If we haven't finalised the system capabilities, this CPU gets
1116 * a chance to update the errata work arounds.
1117 * Otherwise, this CPU should verify that it has all the system
1118 * advertised capabilities.
dbb4e152
SP
1119 */
1120 if (!sys_caps_initialised)
c47a1900
SP
1121 update_cpu_errata_workarounds();
1122 else
1123 verify_local_cpu_capabilities();
359b7064
MZ
1124}
1125
a7c61a34 1126static void __init setup_feature_capabilities(void)
359b7064 1127{
ce8b602c
SP
1128 update_cpu_capabilities(arm64_features, "detected feature:");
1129 enable_cpu_capabilities(arm64_features);
359b7064
MZ
1130}
1131
63a1e1c9
MR
1132DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1133EXPORT_SYMBOL(arm64_const_caps_ready);
1134
1135static void __init mark_const_caps_ready(void)
1136{
1137 static_branch_enable(&arm64_const_caps_ready);
1138}
1139
e3661b12
MZ
1140/*
1141 * Check if the current CPU has a given feature capability.
1142 * Should be called from non-preemptible context.
1143 */
8f413758
MZ
1144static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1145 unsigned int cap)
e3661b12
MZ
1146{
1147 const struct arm64_cpu_capabilities *caps;
1148
1149 if (WARN_ON(preemptible()))
1150 return false;
1151
8f413758 1152 for (caps = cap_array; caps->desc; caps++)
e3661b12
MZ
1153 if (caps->capability == cap && caps->matches)
1154 return caps->matches(caps, SCOPE_LOCAL_CPU);
1155
1156 return false;
1157}
1158
8f413758
MZ
1159extern const struct arm64_cpu_capabilities arm64_errata[];
1160
1161bool this_cpu_has_cap(unsigned int cap)
1162{
1163 return (__this_cpu_has_cap(arm64_features, cap) ||
1164 __this_cpu_has_cap(arm64_errata, cap));
1165}
1166
9cdf8ec4 1167void __init setup_cpu_features(void)
359b7064 1168{
9cdf8ec4
SP
1169 u32 cwg;
1170 int cls;
1171
dbb4e152
SP
1172 /* Set the CPU feature capabilies */
1173 setup_feature_capabilities();
8e231852 1174 enable_errata_workarounds();
63a1e1c9 1175 mark_const_caps_ready();
75283501 1176 setup_elf_hwcaps(arm64_elf_hwcaps);
643d703d
SP
1177
1178 if (system_supports_32bit_el0())
1179 setup_elf_hwcaps(compat_elf_hwcaps);
dbb4e152
SP
1180
1181 /* Advertise that we have computed the system capabilities */
1182 set_sys_caps_initialised();
1183
9cdf8ec4
SP
1184 /*
1185 * Check for sane CTR_EL0.CWG value.
1186 */
1187 cwg = cache_type_cwg();
1188 cls = cache_line_size();
1189 if (!cwg)
1190 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1191 cls);
1192 if (L1_CACHE_BYTES < cls)
1193 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1194 L1_CACHE_BYTES, cls);
359b7064 1195}
70544196
JM
1196
1197static bool __maybe_unused
92406f0c 1198cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
70544196 1199{
a4023f68 1200 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
70544196 1201}
77c97b4e
SP
1202
1203/*
1204 * We emulate only the following system register space.
1205 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1206 * See Table C5-6 System instruction encodings for System register accesses,
1207 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1208 */
1209static inline bool __attribute_const__ is_emulated(u32 id)
1210{
1211 return (sys_reg_Op0(id) == 0x3 &&
1212 sys_reg_CRn(id) == 0x0 &&
1213 sys_reg_Op1(id) == 0x0 &&
1214 (sys_reg_CRm(id) == 0 ||
1215 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1216}
1217
1218/*
1219 * With CRm == 0, reg should be one of :
1220 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1221 */
1222static inline int emulate_id_reg(u32 id, u64 *valp)
1223{
1224 switch (id) {
1225 case SYS_MIDR_EL1:
1226 *valp = read_cpuid_id();
1227 break;
1228 case SYS_MPIDR_EL1:
1229 *valp = SYS_MPIDR_SAFE_VAL;
1230 break;
1231 case SYS_REVIDR_EL1:
1232 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1233 *valp = 0;
1234 break;
1235 default:
1236 return -EINVAL;
1237 }
1238
1239 return 0;
1240}
1241
1242static int emulate_sys_reg(u32 id, u64 *valp)
1243{
1244 struct arm64_ftr_reg *regp;
1245
1246 if (!is_emulated(id))
1247 return -EINVAL;
1248
1249 if (sys_reg_CRm(id) == 0)
1250 return emulate_id_reg(id, valp);
1251
1252 regp = get_arm64_ftr_reg(id);
1253 if (regp)
1254 *valp = arm64_ftr_reg_user_value(regp);
1255 else
1256 /*
1257 * The untracked registers are either IMPLEMENTATION DEFINED
1258 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1259 */
1260 *valp = 0;
1261 return 0;
1262}
1263
1264static int emulate_mrs(struct pt_regs *regs, u32 insn)
1265{
1266 int rc;
1267 u32 sys_reg, dst;
1268 u64 val;
1269
1270 /*
1271 * sys_reg values are defined as used in mrs/msr instruction.
1272 * shift the imm value to get the encoding.
1273 */
1274 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1275 rc = emulate_sys_reg(sys_reg, &val);
1276 if (!rc) {
1277 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
521c6461 1278 pt_regs_write_reg(regs, dst, val);
77c97b4e
SP
1279 regs->pc += 4;
1280 }
1281
1282 return rc;
1283}
1284
1285static struct undef_hook mrs_hook = {
1286 .instr_mask = 0xfff00000,
1287 .instr_val = 0xd5300000,
1288 .pstate_mask = COMPAT_PSR_MODE_MASK,
1289 .pstate_val = PSR_MODE_EL0t,
1290 .fn = emulate_mrs,
1291};
1292
1293static int __init enable_mrs_emulation(void)
1294{
1295 register_undef_hook(&mrs_hook);
1296 return 0;
1297}
1298
1299late_initcall(enable_mrs_emulation);