]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/arm64/kernel/topology.c
arm64: kdump: protect crash dump kernel memory
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / kernel / topology.c
CommitLineData
f6e763b9
MB
1/*
2 * arch/arm64/kernel/topology.c
3 *
4 * Copyright (C) 2011,2013,2014 Linaro Limited.
5 *
6 * Based on the arm32 version written by Vincent Guittot in turn based on
7 * arch/sh/kernel/topology.c
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13
606f4226 14#include <linux/acpi.h>
f6e763b9
MB
15#include <linux/cpu.h>
16#include <linux/cpumask.h>
17#include <linux/init.h>
18#include <linux/percpu.h>
19#include <linux/node.h>
20#include <linux/nodemask.h>
ebdc9447 21#include <linux/of.h>
f6e763b9 22#include <linux/sched.h>
7202bde8 23#include <linux/slab.h>
be8f185d 24#include <linux/string.h>
7202bde8 25#include <linux/cpufreq.h>
f6e763b9 26
be8f185d 27#include <asm/cpu.h>
4e6f7084 28#include <asm/cputype.h>
f6e763b9
MB
29#include <asm/topology.h>
30
7202bde8 31static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
be8f185d 32static DEFINE_MUTEX(cpu_scale_mutex);
7202bde8
JL
33
34unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
35{
36 return per_cpu(cpu_scale, cpu);
37}
38
39static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
40{
41 per_cpu(cpu_scale, cpu) = capacity;
42}
43
be8f185d
JL
44static ssize_t cpu_capacity_show(struct device *dev,
45 struct device_attribute *attr,
46 char *buf)
47{
48 struct cpu *cpu = container_of(dev, struct cpu, dev);
49
50 return sprintf(buf, "%lu\n",
51 arch_scale_cpu_capacity(NULL, cpu->dev.id));
52}
53
54static ssize_t cpu_capacity_store(struct device *dev,
55 struct device_attribute *attr,
56 const char *buf,
57 size_t count)
58{
59 struct cpu *cpu = container_of(dev, struct cpu, dev);
60 int this_cpu = cpu->dev.id, i;
61 unsigned long new_capacity;
62 ssize_t ret;
63
64 if (count) {
65 ret = kstrtoul(buf, 0, &new_capacity);
66 if (ret)
67 return ret;
68 if (new_capacity > SCHED_CAPACITY_SCALE)
69 return -EINVAL;
70
71 mutex_lock(&cpu_scale_mutex);
72 for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
73 set_capacity_scale(i, new_capacity);
74 mutex_unlock(&cpu_scale_mutex);
75 }
76
77 return count;
78}
79
80static DEVICE_ATTR_RW(cpu_capacity);
81
82static int register_cpu_capacity_sysctl(void)
83{
84 int i;
85 struct device *cpu;
86
87 for_each_possible_cpu(i) {
88 cpu = get_cpu_device(i);
89 if (!cpu) {
90 pr_err("%s: too early to get CPU%d device!\n",
91 __func__, i);
92 continue;
93 }
94 device_create_file(cpu, &dev_attr_cpu_capacity);
95 }
96
97 return 0;
98}
99subsys_initcall(register_cpu_capacity_sysctl);
be8f185d 100
7202bde8
JL
101static u32 capacity_scale;
102static u32 *raw_capacity;
103static bool cap_parsing_failed;
104
105static void __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
106{
107 int ret;
108 u32 cpu_capacity;
109
110 if (cap_parsing_failed)
111 return;
112
113 ret = of_property_read_u32(cpu_node,
114 "capacity-dmips-mhz",
115 &cpu_capacity);
116 if (!ret) {
117 if (!raw_capacity) {
118 raw_capacity = kcalloc(num_possible_cpus(),
119 sizeof(*raw_capacity),
120 GFP_KERNEL);
121 if (!raw_capacity) {
122 pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
123 cap_parsing_failed = true;
124 return;
125 }
126 }
127 capacity_scale = max(cpu_capacity, capacity_scale);
128 raw_capacity[cpu] = cpu_capacity;
129 pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
130 cpu_node->full_name, raw_capacity[cpu]);
131 } else {
132 if (raw_capacity) {
133 pr_err("cpu_capacity: missing %s raw capacity\n",
134 cpu_node->full_name);
135 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
136 }
137 cap_parsing_failed = true;
138 kfree(raw_capacity);
139 }
140}
141
142static void normalize_cpu_capacity(void)
143{
144 u64 capacity;
145 int cpu;
146
147 if (!raw_capacity || cap_parsing_failed)
148 return;
149
150 pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
be8f185d 151 mutex_lock(&cpu_scale_mutex);
7202bde8
JL
152 for_each_possible_cpu(cpu) {
153 pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
154 cpu, raw_capacity[cpu]);
155 capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
156 / capacity_scale;
157 set_capacity_scale(cpu, capacity);
158 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
159 cpu, arch_scale_cpu_capacity(NULL, cpu));
160 }
be8f185d 161 mutex_unlock(&cpu_scale_mutex);
7202bde8
JL
162}
163
164#ifdef CONFIG_CPU_FREQ
165static cpumask_var_t cpus_to_visit;
166static bool cap_parsing_done;
167static void parsing_done_workfn(struct work_struct *work);
168static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
169
170static int
171init_cpu_capacity_callback(struct notifier_block *nb,
172 unsigned long val,
173 void *data)
174{
175 struct cpufreq_policy *policy = data;
176 int cpu;
177
178 if (cap_parsing_failed || cap_parsing_done)
179 return 0;
180
181 switch (val) {
182 case CPUFREQ_NOTIFY:
183 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
184 cpumask_pr_args(policy->related_cpus),
185 cpumask_pr_args(cpus_to_visit));
186 cpumask_andnot(cpus_to_visit,
187 cpus_to_visit,
188 policy->related_cpus);
189 for_each_cpu(cpu, policy->related_cpus) {
190 raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
191 policy->cpuinfo.max_freq / 1000UL;
192 capacity_scale = max(raw_capacity[cpu], capacity_scale);
193 }
194 if (cpumask_empty(cpus_to_visit)) {
195 normalize_cpu_capacity();
196 kfree(raw_capacity);
197 pr_debug("cpu_capacity: parsing done\n");
198 cap_parsing_done = true;
199 schedule_work(&parsing_done_work);
200 }
201 }
202 return 0;
203}
204
205static struct notifier_block init_cpu_capacity_notifier = {
206 .notifier_call = init_cpu_capacity_callback,
207};
208
209static int __init register_cpufreq_notifier(void)
210{
606f4226
PP
211 /*
212 * on ACPI-based systems we need to use the default cpu capacity
213 * until we have the necessary code to parse the cpu capacity, so
214 * skip registering cpufreq notifier.
215 */
216 if (!acpi_disabled || cap_parsing_failed)
7202bde8
JL
217 return -EINVAL;
218
219 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
220 pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
221 return -ENOMEM;
222 }
223 cpumask_copy(cpus_to_visit, cpu_possible_mask);
224
225 return cpufreq_register_notifier(&init_cpu_capacity_notifier,
226 CPUFREQ_POLICY_NOTIFIER);
227}
228core_initcall(register_cpufreq_notifier);
229
230static void parsing_done_workfn(struct work_struct *work)
231{
232 cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
233 CPUFREQ_POLICY_NOTIFIER);
234}
235
236#else
237static int __init free_raw_capacity(void)
238{
239 kfree(raw_capacity);
240
241 return 0;
242}
243core_initcall(free_raw_capacity);
244#endif
245
ebdc9447
MB
246static int __init get_cpu_for_node(struct device_node *node)
247{
248 struct device_node *cpu_node;
249 int cpu;
250
251 cpu_node = of_parse_phandle(node, "cpu", 0);
252 if (!cpu_node)
253 return -1;
254
255 for_each_possible_cpu(cpu) {
256 if (of_get_cpu_node(cpu, NULL) == cpu_node) {
7202bde8 257 parse_cpu_capacity(cpu_node, cpu);
ebdc9447
MB
258 of_node_put(cpu_node);
259 return cpu;
260 }
261 }
262
263 pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
264
265 of_node_put(cpu_node);
266 return -1;
267}
268
269static int __init parse_core(struct device_node *core, int cluster_id,
270 int core_id)
271{
272 char name[10];
273 bool leaf = true;
274 int i = 0;
275 int cpu;
276 struct device_node *t;
277
278 do {
279 snprintf(name, sizeof(name), "thread%d", i);
280 t = of_get_child_by_name(core, name);
281 if (t) {
282 leaf = false;
283 cpu = get_cpu_for_node(t);
284 if (cpu >= 0) {
285 cpu_topology[cpu].cluster_id = cluster_id;
286 cpu_topology[cpu].core_id = core_id;
287 cpu_topology[cpu].thread_id = i;
288 } else {
289 pr_err("%s: Can't get CPU for thread\n",
290 t->full_name);
291 of_node_put(t);
292 return -EINVAL;
293 }
294 of_node_put(t);
295 }
296 i++;
297 } while (t);
298
299 cpu = get_cpu_for_node(core);
300 if (cpu >= 0) {
301 if (!leaf) {
302 pr_err("%s: Core has both threads and CPU\n",
303 core->full_name);
304 return -EINVAL;
305 }
306
307 cpu_topology[cpu].cluster_id = cluster_id;
308 cpu_topology[cpu].core_id = core_id;
309 } else if (leaf) {
310 pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
311 return -EINVAL;
312 }
313
314 return 0;
315}
316
317static int __init parse_cluster(struct device_node *cluster, int depth)
318{
319 char name[10];
320 bool leaf = true;
321 bool has_cores = false;
322 struct device_node *c;
323 static int cluster_id __initdata;
324 int core_id = 0;
325 int i, ret;
326
327 /*
328 * First check for child clusters; we currently ignore any
329 * information about the nesting of clusters and present the
330 * scheduler with a flat list of them.
331 */
332 i = 0;
333 do {
334 snprintf(name, sizeof(name), "cluster%d", i);
335 c = of_get_child_by_name(cluster, name);
336 if (c) {
337 leaf = false;
338 ret = parse_cluster(c, depth + 1);
339 of_node_put(c);
340 if (ret != 0)
341 return ret;
342 }
343 i++;
344 } while (c);
345
346 /* Now check for cores */
347 i = 0;
348 do {
349 snprintf(name, sizeof(name), "core%d", i);
350 c = of_get_child_by_name(cluster, name);
351 if (c) {
352 has_cores = true;
353
354 if (depth == 0) {
355 pr_err("%s: cpu-map children should be clusters\n",
356 c->full_name);
357 of_node_put(c);
358 return -EINVAL;
359 }
360
361 if (leaf) {
362 ret = parse_core(c, cluster_id, core_id++);
363 } else {
364 pr_err("%s: Non-leaf cluster with core %s\n",
365 cluster->full_name, name);
366 ret = -EINVAL;
367 }
368
369 of_node_put(c);
370 if (ret != 0)
371 return ret;
372 }
373 i++;
374 } while (c);
375
376 if (leaf && !has_cores)
377 pr_warn("%s: empty cluster\n", cluster->full_name);
378
379 if (leaf)
380 cluster_id++;
381
382 return 0;
383}
384
385static int __init parse_dt_topology(void)
386{
387 struct device_node *cn, *map;
388 int ret = 0;
389 int cpu;
390
391 cn = of_find_node_by_path("/cpus");
392 if (!cn) {
393 pr_err("No CPU information found in DT\n");
394 return 0;
395 }
396
397 /*
398 * When topology is provided cpu-map is essentially a root
399 * cluster with restricted subnodes.
400 */
401 map = of_get_child_by_name(cn, "cpu-map");
7202bde8
JL
402 if (!map) {
403 cap_parsing_failed = true;
ebdc9447 404 goto out;
7202bde8 405 }
ebdc9447
MB
406
407 ret = parse_cluster(map, 0);
408 if (ret != 0)
409 goto out_map;
410
7202bde8
JL
411 normalize_cpu_capacity();
412
ebdc9447
MB
413 /*
414 * Check that all cores are in the topology; the SMP code will
415 * only mark cores described in the DT as possible.
416 */
4e6f7084
ZSL
417 for_each_possible_cpu(cpu)
418 if (cpu_topology[cpu].cluster_id == -1)
ebdc9447 419 ret = -EINVAL;
ebdc9447
MB
420
421out_map:
422 of_node_put(map);
423out:
424 of_node_put(cn);
425 return ret;
426}
427
f6e763b9
MB
428/*
429 * cpu topology table
430 */
431struct cpu_topology cpu_topology[NR_CPUS];
432EXPORT_SYMBOL_GPL(cpu_topology);
433
434const struct cpumask *cpu_coregroup_mask(int cpu)
435{
436 return &cpu_topology[cpu].core_sibling;
437}
438
439static void update_siblings_masks(unsigned int cpuid)
440{
441 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
442 int cpu;
443
f6e763b9
MB
444 /* update core and thread sibling masks */
445 for_each_possible_cpu(cpu) {
446 cpu_topo = &cpu_topology[cpu];
447
448 if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
449 continue;
450
451 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
452 if (cpu != cpuid)
453 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
454
455 if (cpuid_topo->core_id != cpu_topo->core_id)
456 continue;
457
458 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
459 if (cpu != cpuid)
460 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
461 }
462}
463
464void store_cpu_topology(unsigned int cpuid)
465{
4e6f7084
ZSL
466 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
467 u64 mpidr;
468
469 if (cpuid_topo->cluster_id != -1)
470 goto topology_populated;
471
472 mpidr = read_cpuid_mpidr();
473
474 /* Uniprocessor systems can rely on default topology values */
475 if (mpidr & MPIDR_UP_BITMASK)
476 return;
477
478 /* Create cpu topology mapping based on MPIDR. */
479 if (mpidr & MPIDR_MT_BITMASK) {
480 /* Multiprocessor system : Multi-threads per core */
481 cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
482 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
1cefdaea
MB
483 cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
484 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
4e6f7084
ZSL
485 } else {
486 /* Multiprocessor system : Single-thread per core */
487 cpuid_topo->thread_id = -1;
488 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1cefdaea
MB
489 cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
490 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
491 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
4e6f7084
ZSL
492 }
493
494 pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
495 cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id,
496 cpuid_topo->thread_id, mpidr);
497
498topology_populated:
f6e763b9
MB
499 update_siblings_masks(cpuid);
500}
501
ebdc9447 502static void __init reset_cpu_topology(void)
f6e763b9
MB
503{
504 unsigned int cpu;
505
f6e763b9
MB
506 for_each_possible_cpu(cpu) {
507 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
508
509 cpu_topo->thread_id = -1;
c31bf048 510 cpu_topo->core_id = 0;
f6e763b9 511 cpu_topo->cluster_id = -1;
c31bf048 512
f6e763b9 513 cpumask_clear(&cpu_topo->core_sibling);
c31bf048 514 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
f6e763b9 515 cpumask_clear(&cpu_topo->thread_sibling);
c31bf048 516 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
f6e763b9
MB
517 }
518}
ebdc9447
MB
519
520void __init init_cpu_topology(void)
521{
522 reset_cpu_topology();
523
524 /*
525 * Discard anything that was parsed if we hit an error so we
526 * don't use partial information.
527 */
e094d445 528 if (of_have_populated_dt() && parse_dt_topology())
ebdc9447
MB
529 reset_cpu_topology();
530}