]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/arm64/kernel/topology.c
arm64: kaslr: Fix up the kernel image alignment
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / kernel / topology.c
CommitLineData
f6e763b9
MB
1/*
2 * arch/arm64/kernel/topology.c
3 *
4 * Copyright (C) 2011,2013,2014 Linaro Limited.
5 *
6 * Based on the arm32 version written by Vincent Guittot in turn based on
7 * arch/sh/kernel/topology.c
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13
606f4226 14#include <linux/acpi.h>
f6e763b9
MB
15#include <linux/cpu.h>
16#include <linux/cpumask.h>
17#include <linux/init.h>
18#include <linux/percpu.h>
19#include <linux/node.h>
20#include <linux/nodemask.h>
ebdc9447 21#include <linux/of.h>
f6e763b9 22#include <linux/sched.h>
7202bde8 23#include <linux/slab.h>
be8f185d 24#include <linux/string.h>
7202bde8 25#include <linux/cpufreq.h>
f6e763b9 26
be8f185d 27#include <asm/cpu.h>
4e6f7084 28#include <asm/cputype.h>
f6e763b9
MB
29#include <asm/topology.h>
30
7202bde8 31static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
be8f185d 32static DEFINE_MUTEX(cpu_scale_mutex);
7202bde8
JL
33
34unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
35{
36 return per_cpu(cpu_scale, cpu);
37}
38
39static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
40{
41 per_cpu(cpu_scale, cpu) = capacity;
42}
43
be8f185d
JL
44#ifdef CONFIG_PROC_SYSCTL
45static ssize_t cpu_capacity_show(struct device *dev,
46 struct device_attribute *attr,
47 char *buf)
48{
49 struct cpu *cpu = container_of(dev, struct cpu, dev);
50
51 return sprintf(buf, "%lu\n",
52 arch_scale_cpu_capacity(NULL, cpu->dev.id));
53}
54
55static ssize_t cpu_capacity_store(struct device *dev,
56 struct device_attribute *attr,
57 const char *buf,
58 size_t count)
59{
60 struct cpu *cpu = container_of(dev, struct cpu, dev);
61 int this_cpu = cpu->dev.id, i;
62 unsigned long new_capacity;
63 ssize_t ret;
64
65 if (count) {
66 ret = kstrtoul(buf, 0, &new_capacity);
67 if (ret)
68 return ret;
69 if (new_capacity > SCHED_CAPACITY_SCALE)
70 return -EINVAL;
71
72 mutex_lock(&cpu_scale_mutex);
73 for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
74 set_capacity_scale(i, new_capacity);
75 mutex_unlock(&cpu_scale_mutex);
76 }
77
78 return count;
79}
80
81static DEVICE_ATTR_RW(cpu_capacity);
82
83static int register_cpu_capacity_sysctl(void)
84{
85 int i;
86 struct device *cpu;
87
88 for_each_possible_cpu(i) {
89 cpu = get_cpu_device(i);
90 if (!cpu) {
91 pr_err("%s: too early to get CPU%d device!\n",
92 __func__, i);
93 continue;
94 }
95 device_create_file(cpu, &dev_attr_cpu_capacity);
96 }
97
98 return 0;
99}
100subsys_initcall(register_cpu_capacity_sysctl);
101#endif
102
7202bde8
JL
103static u32 capacity_scale;
104static u32 *raw_capacity;
105static bool cap_parsing_failed;
106
107static void __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
108{
109 int ret;
110 u32 cpu_capacity;
111
112 if (cap_parsing_failed)
113 return;
114
115 ret = of_property_read_u32(cpu_node,
116 "capacity-dmips-mhz",
117 &cpu_capacity);
118 if (!ret) {
119 if (!raw_capacity) {
120 raw_capacity = kcalloc(num_possible_cpus(),
121 sizeof(*raw_capacity),
122 GFP_KERNEL);
123 if (!raw_capacity) {
124 pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
125 cap_parsing_failed = true;
126 return;
127 }
128 }
129 capacity_scale = max(cpu_capacity, capacity_scale);
130 raw_capacity[cpu] = cpu_capacity;
131 pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
132 cpu_node->full_name, raw_capacity[cpu]);
133 } else {
134 if (raw_capacity) {
135 pr_err("cpu_capacity: missing %s raw capacity\n",
136 cpu_node->full_name);
137 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
138 }
139 cap_parsing_failed = true;
140 kfree(raw_capacity);
141 }
142}
143
144static void normalize_cpu_capacity(void)
145{
146 u64 capacity;
147 int cpu;
148
149 if (!raw_capacity || cap_parsing_failed)
150 return;
151
152 pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
be8f185d 153 mutex_lock(&cpu_scale_mutex);
7202bde8
JL
154 for_each_possible_cpu(cpu) {
155 pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
156 cpu, raw_capacity[cpu]);
157 capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
158 / capacity_scale;
159 set_capacity_scale(cpu, capacity);
160 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
161 cpu, arch_scale_cpu_capacity(NULL, cpu));
162 }
be8f185d 163 mutex_unlock(&cpu_scale_mutex);
7202bde8
JL
164}
165
166#ifdef CONFIG_CPU_FREQ
167static cpumask_var_t cpus_to_visit;
168static bool cap_parsing_done;
169static void parsing_done_workfn(struct work_struct *work);
170static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
171
172static int
173init_cpu_capacity_callback(struct notifier_block *nb,
174 unsigned long val,
175 void *data)
176{
177 struct cpufreq_policy *policy = data;
178 int cpu;
179
180 if (cap_parsing_failed || cap_parsing_done)
181 return 0;
182
183 switch (val) {
184 case CPUFREQ_NOTIFY:
185 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
186 cpumask_pr_args(policy->related_cpus),
187 cpumask_pr_args(cpus_to_visit));
188 cpumask_andnot(cpus_to_visit,
189 cpus_to_visit,
190 policy->related_cpus);
191 for_each_cpu(cpu, policy->related_cpus) {
192 raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
193 policy->cpuinfo.max_freq / 1000UL;
194 capacity_scale = max(raw_capacity[cpu], capacity_scale);
195 }
196 if (cpumask_empty(cpus_to_visit)) {
197 normalize_cpu_capacity();
198 kfree(raw_capacity);
199 pr_debug("cpu_capacity: parsing done\n");
200 cap_parsing_done = true;
201 schedule_work(&parsing_done_work);
202 }
203 }
204 return 0;
205}
206
207static struct notifier_block init_cpu_capacity_notifier = {
208 .notifier_call = init_cpu_capacity_callback,
209};
210
211static int __init register_cpufreq_notifier(void)
212{
606f4226
PP
213 /*
214 * on ACPI-based systems we need to use the default cpu capacity
215 * until we have the necessary code to parse the cpu capacity, so
216 * skip registering cpufreq notifier.
217 */
218 if (!acpi_disabled || cap_parsing_failed)
7202bde8
JL
219 return -EINVAL;
220
221 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
222 pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
223 return -ENOMEM;
224 }
225 cpumask_copy(cpus_to_visit, cpu_possible_mask);
226
227 return cpufreq_register_notifier(&init_cpu_capacity_notifier,
228 CPUFREQ_POLICY_NOTIFIER);
229}
230core_initcall(register_cpufreq_notifier);
231
232static void parsing_done_workfn(struct work_struct *work)
233{
234 cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
235 CPUFREQ_POLICY_NOTIFIER);
236}
237
238#else
239static int __init free_raw_capacity(void)
240{
241 kfree(raw_capacity);
242
243 return 0;
244}
245core_initcall(free_raw_capacity);
246#endif
247
ebdc9447
MB
248static int __init get_cpu_for_node(struct device_node *node)
249{
250 struct device_node *cpu_node;
251 int cpu;
252
253 cpu_node = of_parse_phandle(node, "cpu", 0);
254 if (!cpu_node)
255 return -1;
256
257 for_each_possible_cpu(cpu) {
258 if (of_get_cpu_node(cpu, NULL) == cpu_node) {
7202bde8 259 parse_cpu_capacity(cpu_node, cpu);
ebdc9447
MB
260 of_node_put(cpu_node);
261 return cpu;
262 }
263 }
264
265 pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
266
267 of_node_put(cpu_node);
268 return -1;
269}
270
271static int __init parse_core(struct device_node *core, int cluster_id,
272 int core_id)
273{
274 char name[10];
275 bool leaf = true;
276 int i = 0;
277 int cpu;
278 struct device_node *t;
279
280 do {
281 snprintf(name, sizeof(name), "thread%d", i);
282 t = of_get_child_by_name(core, name);
283 if (t) {
284 leaf = false;
285 cpu = get_cpu_for_node(t);
286 if (cpu >= 0) {
287 cpu_topology[cpu].cluster_id = cluster_id;
288 cpu_topology[cpu].core_id = core_id;
289 cpu_topology[cpu].thread_id = i;
290 } else {
291 pr_err("%s: Can't get CPU for thread\n",
292 t->full_name);
293 of_node_put(t);
294 return -EINVAL;
295 }
296 of_node_put(t);
297 }
298 i++;
299 } while (t);
300
301 cpu = get_cpu_for_node(core);
302 if (cpu >= 0) {
303 if (!leaf) {
304 pr_err("%s: Core has both threads and CPU\n",
305 core->full_name);
306 return -EINVAL;
307 }
308
309 cpu_topology[cpu].cluster_id = cluster_id;
310 cpu_topology[cpu].core_id = core_id;
311 } else if (leaf) {
312 pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
313 return -EINVAL;
314 }
315
316 return 0;
317}
318
319static int __init parse_cluster(struct device_node *cluster, int depth)
320{
321 char name[10];
322 bool leaf = true;
323 bool has_cores = false;
324 struct device_node *c;
325 static int cluster_id __initdata;
326 int core_id = 0;
327 int i, ret;
328
329 /*
330 * First check for child clusters; we currently ignore any
331 * information about the nesting of clusters and present the
332 * scheduler with a flat list of them.
333 */
334 i = 0;
335 do {
336 snprintf(name, sizeof(name), "cluster%d", i);
337 c = of_get_child_by_name(cluster, name);
338 if (c) {
339 leaf = false;
340 ret = parse_cluster(c, depth + 1);
341 of_node_put(c);
342 if (ret != 0)
343 return ret;
344 }
345 i++;
346 } while (c);
347
348 /* Now check for cores */
349 i = 0;
350 do {
351 snprintf(name, sizeof(name), "core%d", i);
352 c = of_get_child_by_name(cluster, name);
353 if (c) {
354 has_cores = true;
355
356 if (depth == 0) {
357 pr_err("%s: cpu-map children should be clusters\n",
358 c->full_name);
359 of_node_put(c);
360 return -EINVAL;
361 }
362
363 if (leaf) {
364 ret = parse_core(c, cluster_id, core_id++);
365 } else {
366 pr_err("%s: Non-leaf cluster with core %s\n",
367 cluster->full_name, name);
368 ret = -EINVAL;
369 }
370
371 of_node_put(c);
372 if (ret != 0)
373 return ret;
374 }
375 i++;
376 } while (c);
377
378 if (leaf && !has_cores)
379 pr_warn("%s: empty cluster\n", cluster->full_name);
380
381 if (leaf)
382 cluster_id++;
383
384 return 0;
385}
386
387static int __init parse_dt_topology(void)
388{
389 struct device_node *cn, *map;
390 int ret = 0;
391 int cpu;
392
393 cn = of_find_node_by_path("/cpus");
394 if (!cn) {
395 pr_err("No CPU information found in DT\n");
396 return 0;
397 }
398
399 /*
400 * When topology is provided cpu-map is essentially a root
401 * cluster with restricted subnodes.
402 */
403 map = of_get_child_by_name(cn, "cpu-map");
7202bde8
JL
404 if (!map) {
405 cap_parsing_failed = true;
ebdc9447 406 goto out;
7202bde8 407 }
ebdc9447
MB
408
409 ret = parse_cluster(map, 0);
410 if (ret != 0)
411 goto out_map;
412
7202bde8
JL
413 normalize_cpu_capacity();
414
ebdc9447
MB
415 /*
416 * Check that all cores are in the topology; the SMP code will
417 * only mark cores described in the DT as possible.
418 */
4e6f7084
ZSL
419 for_each_possible_cpu(cpu)
420 if (cpu_topology[cpu].cluster_id == -1)
ebdc9447 421 ret = -EINVAL;
ebdc9447
MB
422
423out_map:
424 of_node_put(map);
425out:
426 of_node_put(cn);
427 return ret;
428}
429
f6e763b9
MB
430/*
431 * cpu topology table
432 */
433struct cpu_topology cpu_topology[NR_CPUS];
434EXPORT_SYMBOL_GPL(cpu_topology);
435
436const struct cpumask *cpu_coregroup_mask(int cpu)
437{
438 return &cpu_topology[cpu].core_sibling;
439}
440
441static void update_siblings_masks(unsigned int cpuid)
442{
443 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
444 int cpu;
445
f6e763b9
MB
446 /* update core and thread sibling masks */
447 for_each_possible_cpu(cpu) {
448 cpu_topo = &cpu_topology[cpu];
449
450 if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
451 continue;
452
453 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
454 if (cpu != cpuid)
455 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
456
457 if (cpuid_topo->core_id != cpu_topo->core_id)
458 continue;
459
460 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
461 if (cpu != cpuid)
462 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
463 }
464}
465
466void store_cpu_topology(unsigned int cpuid)
467{
4e6f7084
ZSL
468 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
469 u64 mpidr;
470
471 if (cpuid_topo->cluster_id != -1)
472 goto topology_populated;
473
474 mpidr = read_cpuid_mpidr();
475
476 /* Uniprocessor systems can rely on default topology values */
477 if (mpidr & MPIDR_UP_BITMASK)
478 return;
479
480 /* Create cpu topology mapping based on MPIDR. */
481 if (mpidr & MPIDR_MT_BITMASK) {
482 /* Multiprocessor system : Multi-threads per core */
483 cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
484 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
1cefdaea
MB
485 cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
486 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
4e6f7084
ZSL
487 } else {
488 /* Multiprocessor system : Single-thread per core */
489 cpuid_topo->thread_id = -1;
490 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1cefdaea
MB
491 cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
492 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
493 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
4e6f7084
ZSL
494 }
495
496 pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
497 cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id,
498 cpuid_topo->thread_id, mpidr);
499
500topology_populated:
f6e763b9
MB
501 update_siblings_masks(cpuid);
502}
503
ebdc9447 504static void __init reset_cpu_topology(void)
f6e763b9
MB
505{
506 unsigned int cpu;
507
f6e763b9
MB
508 for_each_possible_cpu(cpu) {
509 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
510
511 cpu_topo->thread_id = -1;
c31bf048 512 cpu_topo->core_id = 0;
f6e763b9 513 cpu_topo->cluster_id = -1;
c31bf048 514
f6e763b9 515 cpumask_clear(&cpu_topo->core_sibling);
c31bf048 516 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
f6e763b9 517 cpumask_clear(&cpu_topo->thread_sibling);
c31bf048 518 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
f6e763b9
MB
519 }
520}
ebdc9447
MB
521
522void __init init_cpu_topology(void)
523{
524 reset_cpu_topology();
525
526 /*
527 * Discard anything that was parsed if we hit an error so we
528 * don't use partial information.
529 */
e094d445 530 if (of_have_populated_dt() && parse_dt_topology())
ebdc9447
MB
531 reset_cpu_topology();
532}