]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm64/kvm/sys_regs.c
arm64: KVM: allows discrimination of AArch32 sysreg access
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kvm / sys_regs.c
CommitLineData
7c8c5e6a
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <linux/mm.h>
24#include <linux/kvm_host.h>
25#include <linux/uaccess.h>
26#include <asm/kvm_arm.h>
27#include <asm/kvm_host.h>
28#include <asm/kvm_emulate.h>
29#include <asm/kvm_coproc.h>
30#include <asm/cacheflush.h>
31#include <asm/cputype.h>
32#include <trace/events/kvm.h>
33
34#include "sys_regs.h"
35
36/*
37 * All of this file is extremly similar to the ARM coproc.c, but the
38 * types are different. My gut feeling is that it should be pretty
39 * easy to merge, but that would be an ABI breakage -- again. VFP
40 * would also need to be abstracted.
62a89c44
MZ
41 *
42 * For AArch32, we only take care of what is being trapped. Anything
43 * that has to do with init and userspace access has to go via the
44 * 64bit interface.
7c8c5e6a
MZ
45 */
46
47/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
48static u32 cache_levels;
49
50/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
51#define CSSELR_MAX 12
52
53/* Which cache CCSIDR represents depends on CSSELR value. */
54static u32 get_ccsidr(u32 csselr)
55{
56 u32 ccsidr;
57
58 /* Make sure noone else changes CSSELR during this! */
59 local_irq_disable();
60 /* Put value into CSSELR */
61 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
62 isb();
63 /* Read result out of CCSIDR */
64 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
65 local_irq_enable();
66
67 return ccsidr;
68}
69
70static void do_dc_cisw(u32 val)
71{
72 asm volatile("dc cisw, %x0" : : "r" (val));
73 dsb();
74}
75
76static void do_dc_csw(u32 val)
77{
78 asm volatile("dc csw, %x0" : : "r" (val));
79 dsb();
80}
81
82/* See note at ARM ARM B1.14.4 */
83static bool access_dcsw(struct kvm_vcpu *vcpu,
84 const struct sys_reg_params *p,
85 const struct sys_reg_desc *r)
86{
87 unsigned long val;
88 int cpu;
89
90 if (!p->is_write)
91 return read_from_write_only(vcpu, p);
92
93 cpu = get_cpu();
94
95 cpumask_setall(&vcpu->arch.require_dcache_flush);
96 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
97
98 /* If we were already preempted, take the long way around */
99 if (cpu != vcpu->arch.last_pcpu) {
100 flush_cache_all();
101 goto done;
102 }
103
104 val = *vcpu_reg(vcpu, p->Rt);
105
106 switch (p->CRm) {
107 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
108 case 14: /* DCCISW */
109 do_dc_cisw(val);
110 break;
111
112 case 10: /* DCCSW */
113 do_dc_csw(val);
114 break;
115 }
116
117done:
118 put_cpu();
119
120 return true;
121}
122
123/*
124 * We could trap ID_DFR0 and tell the guest we don't support performance
125 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
126 * NAKed, so it will read the PMCR anyway.
127 *
128 * Therefore we tell the guest we have 0 counters. Unfortunately, we
129 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
130 * all PM registers, which doesn't crash the guest kernel at least.
131 */
132static bool pm_fake(struct kvm_vcpu *vcpu,
133 const struct sys_reg_params *p,
134 const struct sys_reg_desc *r)
135{
136 if (p->is_write)
137 return ignore_write(vcpu, p);
138 else
139 return read_zero(vcpu, p);
140}
141
142static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
143{
144 u64 amair;
145
146 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
147 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
148}
149
150static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
151{
152 /*
153 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
154 */
155 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
156}
157
158/*
159 * Architected system registers.
160 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
161 */
162static const struct sys_reg_desc sys_reg_descs[] = {
163 /* DC ISW */
164 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
165 access_dcsw },
166 /* DC CSW */
167 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
168 access_dcsw },
169 /* DC CISW */
170 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
171 access_dcsw },
172
62a89c44
MZ
173 /* TEECR32_EL1 */
174 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
175 NULL, reset_val, TEECR32_EL1, 0 },
176 /* TEEHBR32_EL1 */
177 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
178 NULL, reset_val, TEEHBR32_EL1, 0 },
179 /* DBGVCR32_EL2 */
180 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
181 NULL, reset_val, DBGVCR32_EL2, 0 },
182
7c8c5e6a
MZ
183 /* MPIDR_EL1 */
184 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
185 NULL, reset_mpidr, MPIDR_EL1 },
186 /* SCTLR_EL1 */
187 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
188 NULL, reset_val, SCTLR_EL1, 0x00C50078 },
189 /* CPACR_EL1 */
190 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
191 NULL, reset_val, CPACR_EL1, 0 },
192 /* TTBR0_EL1 */
193 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
194 NULL, reset_unknown, TTBR0_EL1 },
195 /* TTBR1_EL1 */
196 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
197 NULL, reset_unknown, TTBR1_EL1 },
198 /* TCR_EL1 */
199 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
200 NULL, reset_val, TCR_EL1, 0 },
201
202 /* AFSR0_EL1 */
203 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
204 NULL, reset_unknown, AFSR0_EL1 },
205 /* AFSR1_EL1 */
206 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
207 NULL, reset_unknown, AFSR1_EL1 },
208 /* ESR_EL1 */
209 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
210 NULL, reset_unknown, ESR_EL1 },
211 /* FAR_EL1 */
212 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
213 NULL, reset_unknown, FAR_EL1 },
1bbd8054
MZ
214 /* PAR_EL1 */
215 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
216 NULL, reset_unknown, PAR_EL1 },
7c8c5e6a
MZ
217
218 /* PMINTENSET_EL1 */
219 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
220 pm_fake },
221 /* PMINTENCLR_EL1 */
222 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
223 pm_fake },
224
225 /* MAIR_EL1 */
226 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
227 NULL, reset_unknown, MAIR_EL1 },
228 /* AMAIR_EL1 */
229 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
230 NULL, reset_amair_el1, AMAIR_EL1 },
231
232 /* VBAR_EL1 */
233 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
234 NULL, reset_val, VBAR_EL1, 0 },
235 /* CONTEXTIDR_EL1 */
236 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
237 NULL, reset_val, CONTEXTIDR_EL1, 0 },
238 /* TPIDR_EL1 */
239 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
240 NULL, reset_unknown, TPIDR_EL1 },
241
242 /* CNTKCTL_EL1 */
243 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
244 NULL, reset_val, CNTKCTL_EL1, 0},
245
246 /* CSSELR_EL1 */
247 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
248 NULL, reset_unknown, CSSELR_EL1 },
249
250 /* PMCR_EL0 */
251 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
252 pm_fake },
253 /* PMCNTENSET_EL0 */
254 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
255 pm_fake },
256 /* PMCNTENCLR_EL0 */
257 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
258 pm_fake },
259 /* PMOVSCLR_EL0 */
260 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
261 pm_fake },
262 /* PMSWINC_EL0 */
263 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
264 pm_fake },
265 /* PMSELR_EL0 */
266 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
267 pm_fake },
268 /* PMCEID0_EL0 */
269 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
270 pm_fake },
271 /* PMCEID1_EL0 */
272 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
273 pm_fake },
274 /* PMCCNTR_EL0 */
275 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
276 pm_fake },
277 /* PMXEVTYPER_EL0 */
278 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
279 pm_fake },
280 /* PMXEVCNTR_EL0 */
281 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
282 pm_fake },
283 /* PMUSERENR_EL0 */
284 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
285 pm_fake },
286 /* PMOVSSET_EL0 */
287 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
288 pm_fake },
289
290 /* TPIDR_EL0 */
291 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
292 NULL, reset_unknown, TPIDR_EL0 },
293 /* TPIDRRO_EL0 */
294 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
295 NULL, reset_unknown, TPIDRRO_EL0 },
62a89c44
MZ
296
297 /* DACR32_EL2 */
298 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
299 NULL, reset_unknown, DACR32_EL2 },
300 /* IFSR32_EL2 */
301 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
302 NULL, reset_unknown, IFSR32_EL2 },
303 /* FPEXC32_EL2 */
304 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
305 NULL, reset_val, FPEXC32_EL2, 0x70 },
306};
307
308/* Trapped cp15 registers */
309static const struct sys_reg_desc cp15_regs[] = {
310 /*
311 * DC{C,I,CI}SW operations:
312 */
313 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
314 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
315 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
316 { Op1( 0), CRn( 9), CRm(12), Op2( 0), pm_fake },
317 { Op1( 0), CRn( 9), CRm(12), Op2( 1), pm_fake },
318 { Op1( 0), CRn( 9), CRm(12), Op2( 2), pm_fake },
319 { Op1( 0), CRn( 9), CRm(12), Op2( 3), pm_fake },
320 { Op1( 0), CRn( 9), CRm(12), Op2( 5), pm_fake },
321 { Op1( 0), CRn( 9), CRm(12), Op2( 6), pm_fake },
322 { Op1( 0), CRn( 9), CRm(12), Op2( 7), pm_fake },
323 { Op1( 0), CRn( 9), CRm(13), Op2( 0), pm_fake },
324 { Op1( 0), CRn( 9), CRm(13), Op2( 1), pm_fake },
325 { Op1( 0), CRn( 9), CRm(13), Op2( 2), pm_fake },
326 { Op1( 0), CRn( 9), CRm(14), Op2( 0), pm_fake },
327 { Op1( 0), CRn( 9), CRm(14), Op2( 1), pm_fake },
328 { Op1( 0), CRn( 9), CRm(14), Op2( 2), pm_fake },
7c8c5e6a
MZ
329};
330
331/* Target specific emulation tables */
332static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
333
334void kvm_register_target_sys_reg_table(unsigned int target,
335 struct kvm_sys_reg_target_table *table)
336{
337 target_tables[target] = table;
338}
339
340/* Get specific register table for this target. */
62a89c44
MZ
341static const struct sys_reg_desc *get_target_table(unsigned target,
342 bool mode_is_64,
343 size_t *num)
7c8c5e6a
MZ
344{
345 struct kvm_sys_reg_target_table *table;
346
347 table = target_tables[target];
62a89c44
MZ
348 if (mode_is_64) {
349 *num = table->table64.num;
350 return table->table64.table;
351 } else {
352 *num = table->table32.num;
353 return table->table32.table;
354 }
7c8c5e6a
MZ
355}
356
357static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
358 const struct sys_reg_desc table[],
359 unsigned int num)
360{
361 unsigned int i;
362
363 for (i = 0; i < num; i++) {
364 const struct sys_reg_desc *r = &table[i];
365
366 if (params->Op0 != r->Op0)
367 continue;
368 if (params->Op1 != r->Op1)
369 continue;
370 if (params->CRn != r->CRn)
371 continue;
372 if (params->CRm != r->CRm)
373 continue;
374 if (params->Op2 != r->Op2)
375 continue;
376
377 return r;
378 }
379 return NULL;
380}
381
62a89c44
MZ
382int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
383{
384 kvm_inject_undefined(vcpu);
385 return 1;
386}
387
388int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
389{
390 kvm_inject_undefined(vcpu);
391 return 1;
392}
393
394static void emulate_cp15(struct kvm_vcpu *vcpu,
395 const struct sys_reg_params *params)
396{
397 size_t num;
398 const struct sys_reg_desc *table, *r;
399
400 table = get_target_table(vcpu->arch.target, false, &num);
401
402 /* Search target-specific then generic table. */
403 r = find_reg(params, table, num);
404 if (!r)
405 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
406
407 if (likely(r)) {
408 /*
409 * Not having an accessor means that we have
410 * configured a trap that we don't know how to
411 * handle. This certainly qualifies as a gross bug
412 * that should be fixed right away.
413 */
414 BUG_ON(!r->access);
415
416 if (likely(r->access(vcpu, params, r))) {
417 /* Skip instruction, since it was emulated */
418 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
419 return;
420 }
421 /* If access function fails, it should complain. */
422 }
423
424 kvm_err("Unsupported guest CP15 access at: %08lx\n", *vcpu_pc(vcpu));
425 print_sys_reg_instr(params);
426 kvm_inject_undefined(vcpu);
427}
428
429/**
430 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
431 * @vcpu: The VCPU pointer
432 * @run: The kvm_run struct
433 */
434int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
435{
436 struct sys_reg_params params;
437 u32 hsr = kvm_vcpu_get_hsr(vcpu);
438 int Rt2 = (hsr >> 10) & 0xf;
439
2072d29c
MZ
440 params.is_aarch32 = true;
441 params.is_32bit = false;
62a89c44
MZ
442 params.CRm = (hsr >> 1) & 0xf;
443 params.Rt = (hsr >> 5) & 0xf;
444 params.is_write = ((hsr & 1) == 0);
445
446 params.Op0 = 0;
447 params.Op1 = (hsr >> 16) & 0xf;
448 params.Op2 = 0;
449 params.CRn = 0;
450
451 /*
452 * Massive hack here. Store Rt2 in the top 32bits so we only
453 * have one register to deal with. As we use the same trap
454 * backends between AArch32 and AArch64, we get away with it.
455 */
456 if (params.is_write) {
457 u64 val = *vcpu_reg(vcpu, params.Rt);
458 val &= 0xffffffff;
459 val |= *vcpu_reg(vcpu, Rt2) << 32;
460 *vcpu_reg(vcpu, params.Rt) = val;
461 }
462
463 emulate_cp15(vcpu, &params);
464
465 /* Do the opposite hack for the read side */
466 if (!params.is_write) {
467 u64 val = *vcpu_reg(vcpu, params.Rt);
468 val >>= 32;
469 *vcpu_reg(vcpu, Rt2) = val;
470 }
471
472 return 1;
473}
474
475/**
476 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
477 * @vcpu: The VCPU pointer
478 * @run: The kvm_run struct
479 */
480int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
481{
482 struct sys_reg_params params;
483 u32 hsr = kvm_vcpu_get_hsr(vcpu);
484
2072d29c
MZ
485 params.is_aarch32 = true;
486 params.is_32bit = true;
62a89c44
MZ
487 params.CRm = (hsr >> 1) & 0xf;
488 params.Rt = (hsr >> 5) & 0xf;
489 params.is_write = ((hsr & 1) == 0);
490 params.CRn = (hsr >> 10) & 0xf;
491 params.Op0 = 0;
492 params.Op1 = (hsr >> 14) & 0x7;
493 params.Op2 = (hsr >> 17) & 0x7;
494
495 emulate_cp15(vcpu, &params);
496 return 1;
497}
498
7c8c5e6a
MZ
499static int emulate_sys_reg(struct kvm_vcpu *vcpu,
500 const struct sys_reg_params *params)
501{
502 size_t num;
503 const struct sys_reg_desc *table, *r;
504
62a89c44 505 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
506
507 /* Search target-specific then generic table. */
508 r = find_reg(params, table, num);
509 if (!r)
510 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
511
512 if (likely(r)) {
513 /*
514 * Not having an accessor means that we have
515 * configured a trap that we don't know how to
516 * handle. This certainly qualifies as a gross bug
517 * that should be fixed right away.
518 */
519 BUG_ON(!r->access);
520
521 if (likely(r->access(vcpu, params, r))) {
522 /* Skip instruction, since it was emulated */
523 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
524 return 1;
525 }
526 /* If access function fails, it should complain. */
527 } else {
528 kvm_err("Unsupported guest sys_reg access at: %lx\n",
529 *vcpu_pc(vcpu));
530 print_sys_reg_instr(params);
531 }
532 kvm_inject_undefined(vcpu);
533 return 1;
534}
535
536static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
537 const struct sys_reg_desc *table, size_t num)
538{
539 unsigned long i;
540
541 for (i = 0; i < num; i++)
542 if (table[i].reset)
543 table[i].reset(vcpu, &table[i]);
544}
545
546/**
547 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
548 * @vcpu: The VCPU pointer
549 * @run: The kvm_run struct
550 */
551int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
552{
553 struct sys_reg_params params;
554 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
555
2072d29c
MZ
556 params.is_aarch32 = false;
557 params.is_32bit = false;
7c8c5e6a
MZ
558 params.Op0 = (esr >> 20) & 3;
559 params.Op1 = (esr >> 14) & 0x7;
560 params.CRn = (esr >> 10) & 0xf;
561 params.CRm = (esr >> 1) & 0xf;
562 params.Op2 = (esr >> 17) & 0x7;
563 params.Rt = (esr >> 5) & 0x1f;
564 params.is_write = !(esr & 1);
565
566 return emulate_sys_reg(vcpu, &params);
567}
568
569/******************************************************************************
570 * Userspace API
571 *****************************************************************************/
572
573static bool index_to_params(u64 id, struct sys_reg_params *params)
574{
575 switch (id & KVM_REG_SIZE_MASK) {
576 case KVM_REG_SIZE_U64:
577 /* Any unused index bits means it's not valid. */
578 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
579 | KVM_REG_ARM_COPROC_MASK
580 | KVM_REG_ARM64_SYSREG_OP0_MASK
581 | KVM_REG_ARM64_SYSREG_OP1_MASK
582 | KVM_REG_ARM64_SYSREG_CRN_MASK
583 | KVM_REG_ARM64_SYSREG_CRM_MASK
584 | KVM_REG_ARM64_SYSREG_OP2_MASK))
585 return false;
586 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
587 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
588 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
589 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
590 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
591 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
592 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
593 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
594 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
595 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
596 return true;
597 default:
598 return false;
599 }
600}
601
602/* Decode an index value, and find the sys_reg_desc entry. */
603static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
604 u64 id)
605{
606 size_t num;
607 const struct sys_reg_desc *table, *r;
608 struct sys_reg_params params;
609
610 /* We only do sys_reg for now. */
611 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
612 return NULL;
613
614 if (!index_to_params(id, &params))
615 return NULL;
616
62a89c44 617 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
618 r = find_reg(&params, table, num);
619 if (!r)
620 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
621
622 /* Not saved in the sys_reg array? */
623 if (r && !r->reg)
624 r = NULL;
625
626 return r;
627}
628
629/*
630 * These are the invariant sys_reg registers: we let the guest see the
631 * host versions of these, so they're part of the guest state.
632 *
633 * A future CPU may provide a mechanism to present different values to
634 * the guest, or a future kvm may trap them.
635 */
636
637#define FUNCTION_INVARIANT(reg) \
638 static void get_##reg(struct kvm_vcpu *v, \
639 const struct sys_reg_desc *r) \
640 { \
641 u64 val; \
642 \
643 asm volatile("mrs %0, " __stringify(reg) "\n" \
644 : "=r" (val)); \
645 ((struct sys_reg_desc *)r)->val = val; \
646 }
647
648FUNCTION_INVARIANT(midr_el1)
649FUNCTION_INVARIANT(ctr_el0)
650FUNCTION_INVARIANT(revidr_el1)
651FUNCTION_INVARIANT(id_pfr0_el1)
652FUNCTION_INVARIANT(id_pfr1_el1)
653FUNCTION_INVARIANT(id_dfr0_el1)
654FUNCTION_INVARIANT(id_afr0_el1)
655FUNCTION_INVARIANT(id_mmfr0_el1)
656FUNCTION_INVARIANT(id_mmfr1_el1)
657FUNCTION_INVARIANT(id_mmfr2_el1)
658FUNCTION_INVARIANT(id_mmfr3_el1)
659FUNCTION_INVARIANT(id_isar0_el1)
660FUNCTION_INVARIANT(id_isar1_el1)
661FUNCTION_INVARIANT(id_isar2_el1)
662FUNCTION_INVARIANT(id_isar3_el1)
663FUNCTION_INVARIANT(id_isar4_el1)
664FUNCTION_INVARIANT(id_isar5_el1)
665FUNCTION_INVARIANT(clidr_el1)
666FUNCTION_INVARIANT(aidr_el1)
667
668/* ->val is filled in by kvm_sys_reg_table_init() */
669static struct sys_reg_desc invariant_sys_regs[] = {
670 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
671 NULL, get_midr_el1 },
672 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
673 NULL, get_revidr_el1 },
674 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
675 NULL, get_id_pfr0_el1 },
676 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
677 NULL, get_id_pfr1_el1 },
678 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
679 NULL, get_id_dfr0_el1 },
680 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
681 NULL, get_id_afr0_el1 },
682 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
683 NULL, get_id_mmfr0_el1 },
684 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
685 NULL, get_id_mmfr1_el1 },
686 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
687 NULL, get_id_mmfr2_el1 },
688 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
689 NULL, get_id_mmfr3_el1 },
690 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
691 NULL, get_id_isar0_el1 },
692 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
693 NULL, get_id_isar1_el1 },
694 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
695 NULL, get_id_isar2_el1 },
696 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
697 NULL, get_id_isar3_el1 },
698 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
699 NULL, get_id_isar4_el1 },
700 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
701 NULL, get_id_isar5_el1 },
702 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
703 NULL, get_clidr_el1 },
704 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
705 NULL, get_aidr_el1 },
706 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
707 NULL, get_ctr_el0 },
708};
709
710static int reg_from_user(void *val, const void __user *uaddr, u64 id)
711{
712 /* This Just Works because we are little endian. */
713 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
714 return -EFAULT;
715 return 0;
716}
717
718static int reg_to_user(void __user *uaddr, const void *val, u64 id)
719{
720 /* This Just Works because we are little endian. */
721 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
722 return -EFAULT;
723 return 0;
724}
725
726static int get_invariant_sys_reg(u64 id, void __user *uaddr)
727{
728 struct sys_reg_params params;
729 const struct sys_reg_desc *r;
730
731 if (!index_to_params(id, &params))
732 return -ENOENT;
733
734 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
735 if (!r)
736 return -ENOENT;
737
738 return reg_to_user(uaddr, &r->val, id);
739}
740
741static int set_invariant_sys_reg(u64 id, void __user *uaddr)
742{
743 struct sys_reg_params params;
744 const struct sys_reg_desc *r;
745 int err;
746 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
747
748 if (!index_to_params(id, &params))
749 return -ENOENT;
750 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
751 if (!r)
752 return -ENOENT;
753
754 err = reg_from_user(&val, uaddr, id);
755 if (err)
756 return err;
757
758 /* This is what we mean by invariant: you can't change it. */
759 if (r->val != val)
760 return -EINVAL;
761
762 return 0;
763}
764
765static bool is_valid_cache(u32 val)
766{
767 u32 level, ctype;
768
769 if (val >= CSSELR_MAX)
770 return -ENOENT;
771
772 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
773 level = (val >> 1);
774 ctype = (cache_levels >> (level * 3)) & 7;
775
776 switch (ctype) {
777 case 0: /* No cache */
778 return false;
779 case 1: /* Instruction cache only */
780 return (val & 1);
781 case 2: /* Data cache only */
782 case 4: /* Unified cache */
783 return !(val & 1);
784 case 3: /* Separate instruction and data caches */
785 return true;
786 default: /* Reserved: we can't know instruction or data. */
787 return false;
788 }
789}
790
791static int demux_c15_get(u64 id, void __user *uaddr)
792{
793 u32 val;
794 u32 __user *uval = uaddr;
795
796 /* Fail if we have unknown bits set. */
797 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
798 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
799 return -ENOENT;
800
801 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
802 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
803 if (KVM_REG_SIZE(id) != 4)
804 return -ENOENT;
805 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
806 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
807 if (!is_valid_cache(val))
808 return -ENOENT;
809
810 return put_user(get_ccsidr(val), uval);
811 default:
812 return -ENOENT;
813 }
814}
815
816static int demux_c15_set(u64 id, void __user *uaddr)
817{
818 u32 val, newval;
819 u32 __user *uval = uaddr;
820
821 /* Fail if we have unknown bits set. */
822 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
823 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
824 return -ENOENT;
825
826 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
827 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
828 if (KVM_REG_SIZE(id) != 4)
829 return -ENOENT;
830 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
831 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
832 if (!is_valid_cache(val))
833 return -ENOENT;
834
835 if (get_user(newval, uval))
836 return -EFAULT;
837
838 /* This is also invariant: you can't change it. */
839 if (newval != get_ccsidr(val))
840 return -EINVAL;
841 return 0;
842 default:
843 return -ENOENT;
844 }
845}
846
847int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
848{
849 const struct sys_reg_desc *r;
850 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
851
852 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
853 return demux_c15_get(reg->id, uaddr);
854
855 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
856 return -ENOENT;
857
858 r = index_to_sys_reg_desc(vcpu, reg->id);
859 if (!r)
860 return get_invariant_sys_reg(reg->id, uaddr);
861
862 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
863}
864
865int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
866{
867 const struct sys_reg_desc *r;
868 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
869
870 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
871 return demux_c15_set(reg->id, uaddr);
872
873 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
874 return -ENOENT;
875
876 r = index_to_sys_reg_desc(vcpu, reg->id);
877 if (!r)
878 return set_invariant_sys_reg(reg->id, uaddr);
879
880 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
881}
882
883static unsigned int num_demux_regs(void)
884{
885 unsigned int i, count = 0;
886
887 for (i = 0; i < CSSELR_MAX; i++)
888 if (is_valid_cache(i))
889 count++;
890
891 return count;
892}
893
894static int write_demux_regids(u64 __user *uindices)
895{
896 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
897 unsigned int i;
898
899 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
900 for (i = 0; i < CSSELR_MAX; i++) {
901 if (!is_valid_cache(i))
902 continue;
903 if (put_user(val | i, uindices))
904 return -EFAULT;
905 uindices++;
906 }
907 return 0;
908}
909
910static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
911{
912 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
913 KVM_REG_ARM64_SYSREG |
914 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
915 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
916 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
917 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
918 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
919}
920
921static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
922{
923 if (!*uind)
924 return true;
925
926 if (put_user(sys_reg_to_index(reg), *uind))
927 return false;
928
929 (*uind)++;
930 return true;
931}
932
933/* Assumed ordered tables, see kvm_sys_reg_table_init. */
934static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
935{
936 const struct sys_reg_desc *i1, *i2, *end1, *end2;
937 unsigned int total = 0;
938 size_t num;
939
940 /* We check for duplicates here, to allow arch-specific overrides. */
62a89c44 941 i1 = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
942 end1 = i1 + num;
943 i2 = sys_reg_descs;
944 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
945
946 BUG_ON(i1 == end1 || i2 == end2);
947
948 /* Walk carefully, as both tables may refer to the same register. */
949 while (i1 || i2) {
950 int cmp = cmp_sys_reg(i1, i2);
951 /* target-specific overrides generic entry. */
952 if (cmp <= 0) {
953 /* Ignore registers we trap but don't save. */
954 if (i1->reg) {
955 if (!copy_reg_to_user(i1, &uind))
956 return -EFAULT;
957 total++;
958 }
959 } else {
960 /* Ignore registers we trap but don't save. */
961 if (i2->reg) {
962 if (!copy_reg_to_user(i2, &uind))
963 return -EFAULT;
964 total++;
965 }
966 }
967
968 if (cmp <= 0 && ++i1 == end1)
969 i1 = NULL;
970 if (cmp >= 0 && ++i2 == end2)
971 i2 = NULL;
972 }
973 return total;
974}
975
976unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
977{
978 return ARRAY_SIZE(invariant_sys_regs)
979 + num_demux_regs()
980 + walk_sys_regs(vcpu, (u64 __user *)NULL);
981}
982
983int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
984{
985 unsigned int i;
986 int err;
987
988 /* Then give them all the invariant registers' indices. */
989 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
990 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
991 return -EFAULT;
992 uindices++;
993 }
994
995 err = walk_sys_regs(vcpu, uindices);
996 if (err < 0)
997 return err;
998 uindices += err;
999
1000 return write_demux_regids(uindices);
1001}
1002
1003void kvm_sys_reg_table_init(void)
1004{
1005 unsigned int i;
1006 struct sys_reg_desc clidr;
1007
1008 /* Make sure tables are unique and in order. */
1009 for (i = 1; i < ARRAY_SIZE(sys_reg_descs); i++)
1010 BUG_ON(cmp_sys_reg(&sys_reg_descs[i-1], &sys_reg_descs[i]) >= 0);
1011
1012 /* We abuse the reset function to overwrite the table itself. */
1013 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1014 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1015
1016 /*
1017 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1018 *
1019 * If software reads the Cache Type fields from Ctype1
1020 * upwards, once it has seen a value of 0b000, no caches
1021 * exist at further-out levels of the hierarchy. So, for
1022 * example, if Ctype3 is the first Cache Type field with a
1023 * value of 0b000, the values of Ctype4 to Ctype7 must be
1024 * ignored.
1025 */
1026 get_clidr_el1(NULL, &clidr); /* Ugly... */
1027 cache_levels = clidr.val;
1028 for (i = 0; i < 7; i++)
1029 if (((cache_levels >> (i*3)) & 7) == 0)
1030 break;
1031 /* Clear all higher bits. */
1032 cache_levels &= (1 << (i*3))-1;
1033}
1034
1035/**
1036 * kvm_reset_sys_regs - sets system registers to reset value
1037 * @vcpu: The VCPU pointer
1038 *
1039 * This function finds the right table above and sets the registers on the
1040 * virtual CPU struct to their architecturally defined reset values.
1041 */
1042void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1043{
1044 size_t num;
1045 const struct sys_reg_desc *table;
1046
1047 /* Catch someone adding a register without putting in reset entry. */
1048 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1049
1050 /* Generic chip reset first (so target could override). */
1051 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1052
62a89c44 1053 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1054 reset_sys_reg_descs(vcpu, table, num);
1055
1056 for (num = 1; num < NR_SYS_REGS; num++)
1057 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1058 panic("Didn't reset vcpu_sys_reg(%zi)", num);
1059}