]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm64/kvm/sys_regs.c
KVM: ARM/arm64: fix broken __percpu annotation
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kvm / sys_regs.c
CommitLineData
7c8c5e6a
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <linux/mm.h>
24#include <linux/kvm_host.h>
25#include <linux/uaccess.h>
26#include <asm/kvm_arm.h>
27#include <asm/kvm_host.h>
28#include <asm/kvm_emulate.h>
29#include <asm/kvm_coproc.h>
9d218a1f 30#include <asm/kvm_mmu.h>
7c8c5e6a
MZ
31#include <asm/cacheflush.h>
32#include <asm/cputype.h>
0c557ed4 33#include <asm/debug-monitors.h>
7c8c5e6a
MZ
34#include <trace/events/kvm.h>
35
36#include "sys_regs.h"
37
38/*
39 * All of this file is extremly similar to the ARM coproc.c, but the
40 * types are different. My gut feeling is that it should be pretty
41 * easy to merge, but that would be an ABI breakage -- again. VFP
42 * would also need to be abstracted.
62a89c44
MZ
43 *
44 * For AArch32, we only take care of what is being trapped. Anything
45 * that has to do with init and userspace access has to go via the
46 * 64bit interface.
7c8c5e6a
MZ
47 */
48
49/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
50static u32 cache_levels;
51
52/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
53#define CSSELR_MAX 12
54
55/* Which cache CCSIDR represents depends on CSSELR value. */
56static u32 get_ccsidr(u32 csselr)
57{
58 u32 ccsidr;
59
60 /* Make sure noone else changes CSSELR during this! */
61 local_irq_disable();
62 /* Put value into CSSELR */
63 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
64 isb();
65 /* Read result out of CCSIDR */
66 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
67 local_irq_enable();
68
69 return ccsidr;
70}
71
72static void do_dc_cisw(u32 val)
73{
74 asm volatile("dc cisw, %x0" : : "r" (val));
98f7685e 75 dsb(ish);
7c8c5e6a
MZ
76}
77
78static void do_dc_csw(u32 val)
79{
80 asm volatile("dc csw, %x0" : : "r" (val));
98f7685e 81 dsb(ish);
7c8c5e6a
MZ
82}
83
84/* See note at ARM ARM B1.14.4 */
85static bool access_dcsw(struct kvm_vcpu *vcpu,
86 const struct sys_reg_params *p,
87 const struct sys_reg_desc *r)
88{
89 unsigned long val;
90 int cpu;
91
92 if (!p->is_write)
93 return read_from_write_only(vcpu, p);
94
95 cpu = get_cpu();
96
97 cpumask_setall(&vcpu->arch.require_dcache_flush);
98 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
99
100 /* If we were already preempted, take the long way around */
101 if (cpu != vcpu->arch.last_pcpu) {
102 flush_cache_all();
103 goto done;
104 }
105
106 val = *vcpu_reg(vcpu, p->Rt);
107
108 switch (p->CRm) {
109 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
110 case 14: /* DCCISW */
111 do_dc_cisw(val);
112 break;
113
114 case 10: /* DCCSW */
115 do_dc_csw(val);
116 break;
117 }
118
119done:
120 put_cpu();
121
122 return true;
123}
124
4d44923b
MZ
125/*
126 * Generic accessor for VM registers. Only called as long as HCR_TVM
127 * is set.
128 */
129static bool access_vm_reg(struct kvm_vcpu *vcpu,
130 const struct sys_reg_params *p,
131 const struct sys_reg_desc *r)
132{
133 unsigned long val;
134
135 BUG_ON(!p->is_write);
136
137 val = *vcpu_reg(vcpu, p->Rt);
dedf97e8 138 if (!p->is_aarch32) {
4d44923b 139 vcpu_sys_reg(vcpu, r->reg) = val;
dedf97e8
MZ
140 } else {
141 if (!p->is_32bit)
142 vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
f0a3eaff 143 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
dedf97e8 144 }
f0a3eaff 145
4d44923b
MZ
146 return true;
147}
148
149/*
150 * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set. If the
151 * guest enables the MMU, we stop trapping the VM sys_regs and leave
152 * it in complete control of the caches.
153 */
154static bool access_sctlr(struct kvm_vcpu *vcpu,
155 const struct sys_reg_params *p,
156 const struct sys_reg_desc *r)
157{
158 access_vm_reg(vcpu, p, r);
159
9d218a1f 160 if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
4d44923b 161 vcpu->arch.hcr_el2 &= ~HCR_TVM;
9d218a1f
MZ
162 stage2_flush_vm(vcpu->kvm);
163 }
4d44923b
MZ
164
165 return true;
166}
167
7609c125
MZ
168static bool trap_raz_wi(struct kvm_vcpu *vcpu,
169 const struct sys_reg_params *p,
170 const struct sys_reg_desc *r)
7c8c5e6a
MZ
171{
172 if (p->is_write)
173 return ignore_write(vcpu, p);
174 else
175 return read_zero(vcpu, p);
176}
177
0c557ed4
MZ
178static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
179 const struct sys_reg_params *p,
180 const struct sys_reg_desc *r)
181{
182 if (p->is_write) {
183 return ignore_write(vcpu, p);
184 } else {
185 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
186 return true;
187 }
188}
189
190static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
191 const struct sys_reg_params *p,
192 const struct sys_reg_desc *r)
193{
194 if (p->is_write) {
195 return ignore_write(vcpu, p);
196 } else {
197 u32 val;
198 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
199 *vcpu_reg(vcpu, p->Rt) = val;
200 return true;
201 }
202}
203
204/*
205 * We want to avoid world-switching all the DBG registers all the
206 * time:
207 *
208 * - If we've touched any debug register, it is likely that we're
209 * going to touch more of them. It then makes sense to disable the
210 * traps and start doing the save/restore dance
211 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
212 * then mandatory to save/restore the registers, as the guest
213 * depends on them.
214 *
215 * For this, we use a DIRTY bit, indicating the guest has modified the
216 * debug registers, used as follow:
217 *
218 * On guest entry:
219 * - If the dirty bit is set (because we're coming back from trapping),
220 * disable the traps, save host registers, restore guest registers.
221 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
222 * set the dirty bit, disable the traps, save host registers,
223 * restore guest registers.
224 * - Otherwise, enable the traps
225 *
226 * On guest exit:
227 * - If the dirty bit is set, save guest registers, restore host
228 * registers and clear the dirty bit. This ensure that the host can
229 * now use the debug registers.
230 */
231static bool trap_debug_regs(struct kvm_vcpu *vcpu,
232 const struct sys_reg_params *p,
233 const struct sys_reg_desc *r)
234{
235 if (p->is_write) {
236 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
237 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
238 } else {
239 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
240 }
241
242 return true;
243}
244
7c8c5e6a
MZ
245static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
246{
247 u64 amair;
248
249 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
250 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
251}
252
253static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
254{
255 /*
256 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
257 */
258 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
259}
260
0c557ed4
MZ
261/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
262#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
263 /* DBGBVRn_EL1 */ \
264 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
265 trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 }, \
266 /* DBGBCRn_EL1 */ \
267 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
268 trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 }, \
269 /* DBGWVRn_EL1 */ \
270 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
271 trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 }, \
272 /* DBGWCRn_EL1 */ \
273 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
274 trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
275
7c8c5e6a
MZ
276/*
277 * Architected system registers.
278 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
7609c125
MZ
279 *
280 * We could trap ID_DFR0 and tell the guest we don't support performance
281 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
282 * NAKed, so it will read the PMCR anyway.
283 *
284 * Therefore we tell the guest we have 0 counters. Unfortunately, we
285 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
286 * all PM registers, which doesn't crash the guest kernel at least.
287 *
0c557ed4
MZ
288 * Debug handling: We do trap most, if not all debug related system
289 * registers. The implementation is good enough to ensure that a guest
290 * can use these with minimal performance degradation. The drawback is
291 * that we don't implement any of the external debug, none of the
292 * OSlock protocol. This should be revisited if we ever encounter a
293 * more demanding guest...
7c8c5e6a
MZ
294 */
295static const struct sys_reg_desc sys_reg_descs[] = {
296 /* DC ISW */
297 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
298 access_dcsw },
299 /* DC CSW */
300 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
301 access_dcsw },
302 /* DC CISW */
303 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
304 access_dcsw },
305
0c557ed4
MZ
306 DBG_BCR_BVR_WCR_WVR_EL1(0),
307 DBG_BCR_BVR_WCR_WVR_EL1(1),
308 /* MDCCINT_EL1 */
309 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
310 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
311 /* MDSCR_EL1 */
312 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
313 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
314 DBG_BCR_BVR_WCR_WVR_EL1(2),
315 DBG_BCR_BVR_WCR_WVR_EL1(3),
316 DBG_BCR_BVR_WCR_WVR_EL1(4),
317 DBG_BCR_BVR_WCR_WVR_EL1(5),
318 DBG_BCR_BVR_WCR_WVR_EL1(6),
319 DBG_BCR_BVR_WCR_WVR_EL1(7),
320 DBG_BCR_BVR_WCR_WVR_EL1(8),
321 DBG_BCR_BVR_WCR_WVR_EL1(9),
322 DBG_BCR_BVR_WCR_WVR_EL1(10),
323 DBG_BCR_BVR_WCR_WVR_EL1(11),
324 DBG_BCR_BVR_WCR_WVR_EL1(12),
325 DBG_BCR_BVR_WCR_WVR_EL1(13),
326 DBG_BCR_BVR_WCR_WVR_EL1(14),
327 DBG_BCR_BVR_WCR_WVR_EL1(15),
328
329 /* MDRAR_EL1 */
330 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
331 trap_raz_wi },
332 /* OSLAR_EL1 */
333 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
334 trap_raz_wi },
335 /* OSLSR_EL1 */
336 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
337 trap_oslsr_el1 },
338 /* OSDLR_EL1 */
339 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
340 trap_raz_wi },
341 /* DBGPRCR_EL1 */
342 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
343 trap_raz_wi },
344 /* DBGCLAIMSET_EL1 */
345 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
346 trap_raz_wi },
347 /* DBGCLAIMCLR_EL1 */
348 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
349 trap_raz_wi },
350 /* DBGAUTHSTATUS_EL1 */
351 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
352 trap_dbgauthstatus_el1 },
353
62a89c44
MZ
354 /* TEECR32_EL1 */
355 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
356 NULL, reset_val, TEECR32_EL1, 0 },
357 /* TEEHBR32_EL1 */
358 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
359 NULL, reset_val, TEEHBR32_EL1, 0 },
0c557ed4
MZ
360
361 /* MDCCSR_EL1 */
362 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
363 trap_raz_wi },
364 /* DBGDTR_EL0 */
365 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
366 trap_raz_wi },
367 /* DBGDTR[TR]X_EL0 */
368 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
369 trap_raz_wi },
370
62a89c44
MZ
371 /* DBGVCR32_EL2 */
372 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
373 NULL, reset_val, DBGVCR32_EL2, 0 },
374
7c8c5e6a
MZ
375 /* MPIDR_EL1 */
376 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
377 NULL, reset_mpidr, MPIDR_EL1 },
378 /* SCTLR_EL1 */
379 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
4d44923b 380 access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
7c8c5e6a
MZ
381 /* CPACR_EL1 */
382 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
383 NULL, reset_val, CPACR_EL1, 0 },
384 /* TTBR0_EL1 */
385 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
4d44923b 386 access_vm_reg, reset_unknown, TTBR0_EL1 },
7c8c5e6a
MZ
387 /* TTBR1_EL1 */
388 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
4d44923b 389 access_vm_reg, reset_unknown, TTBR1_EL1 },
7c8c5e6a
MZ
390 /* TCR_EL1 */
391 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
4d44923b 392 access_vm_reg, reset_val, TCR_EL1, 0 },
7c8c5e6a
MZ
393
394 /* AFSR0_EL1 */
395 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
4d44923b 396 access_vm_reg, reset_unknown, AFSR0_EL1 },
7c8c5e6a
MZ
397 /* AFSR1_EL1 */
398 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
4d44923b 399 access_vm_reg, reset_unknown, AFSR1_EL1 },
7c8c5e6a
MZ
400 /* ESR_EL1 */
401 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
4d44923b 402 access_vm_reg, reset_unknown, ESR_EL1 },
7c8c5e6a
MZ
403 /* FAR_EL1 */
404 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
4d44923b 405 access_vm_reg, reset_unknown, FAR_EL1 },
1bbd8054
MZ
406 /* PAR_EL1 */
407 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
408 NULL, reset_unknown, PAR_EL1 },
7c8c5e6a
MZ
409
410 /* PMINTENSET_EL1 */
411 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
7609c125 412 trap_raz_wi },
7c8c5e6a
MZ
413 /* PMINTENCLR_EL1 */
414 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
7609c125 415 trap_raz_wi },
7c8c5e6a
MZ
416
417 /* MAIR_EL1 */
418 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
4d44923b 419 access_vm_reg, reset_unknown, MAIR_EL1 },
7c8c5e6a
MZ
420 /* AMAIR_EL1 */
421 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
4d44923b 422 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
7c8c5e6a
MZ
423
424 /* VBAR_EL1 */
425 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
426 NULL, reset_val, VBAR_EL1, 0 },
427 /* CONTEXTIDR_EL1 */
428 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
4d44923b 429 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
7c8c5e6a
MZ
430 /* TPIDR_EL1 */
431 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
432 NULL, reset_unknown, TPIDR_EL1 },
433
434 /* CNTKCTL_EL1 */
435 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
436 NULL, reset_val, CNTKCTL_EL1, 0},
437
438 /* CSSELR_EL1 */
439 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
440 NULL, reset_unknown, CSSELR_EL1 },
441
442 /* PMCR_EL0 */
443 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
7609c125 444 trap_raz_wi },
7c8c5e6a
MZ
445 /* PMCNTENSET_EL0 */
446 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
7609c125 447 trap_raz_wi },
7c8c5e6a
MZ
448 /* PMCNTENCLR_EL0 */
449 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
7609c125 450 trap_raz_wi },
7c8c5e6a
MZ
451 /* PMOVSCLR_EL0 */
452 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
7609c125 453 trap_raz_wi },
7c8c5e6a
MZ
454 /* PMSWINC_EL0 */
455 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
7609c125 456 trap_raz_wi },
7c8c5e6a
MZ
457 /* PMSELR_EL0 */
458 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
7609c125 459 trap_raz_wi },
7c8c5e6a
MZ
460 /* PMCEID0_EL0 */
461 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
7609c125 462 trap_raz_wi },
7c8c5e6a
MZ
463 /* PMCEID1_EL0 */
464 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
7609c125 465 trap_raz_wi },
7c8c5e6a
MZ
466 /* PMCCNTR_EL0 */
467 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
7609c125 468 trap_raz_wi },
7c8c5e6a
MZ
469 /* PMXEVTYPER_EL0 */
470 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
7609c125 471 trap_raz_wi },
7c8c5e6a
MZ
472 /* PMXEVCNTR_EL0 */
473 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
7609c125 474 trap_raz_wi },
7c8c5e6a
MZ
475 /* PMUSERENR_EL0 */
476 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
7609c125 477 trap_raz_wi },
7c8c5e6a
MZ
478 /* PMOVSSET_EL0 */
479 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
7609c125 480 trap_raz_wi },
7c8c5e6a
MZ
481
482 /* TPIDR_EL0 */
483 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
484 NULL, reset_unknown, TPIDR_EL0 },
485 /* TPIDRRO_EL0 */
486 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
487 NULL, reset_unknown, TPIDRRO_EL0 },
62a89c44
MZ
488
489 /* DACR32_EL2 */
490 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
491 NULL, reset_unknown, DACR32_EL2 },
492 /* IFSR32_EL2 */
493 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
494 NULL, reset_unknown, IFSR32_EL2 },
495 /* FPEXC32_EL2 */
496 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
497 NULL, reset_val, FPEXC32_EL2, 0x70 },
498};
499
bdfb4b38
MZ
500static bool trap_dbgidr(struct kvm_vcpu *vcpu,
501 const struct sys_reg_params *p,
502 const struct sys_reg_desc *r)
503{
504 if (p->is_write) {
505 return ignore_write(vcpu, p);
506 } else {
507 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
508 u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
509 u32 el3 = !!((pfr >> 12) & 0xf);
510
511 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
512 (((dfr >> 12) & 0xf) << 24) |
513 (((dfr >> 28) & 0xf) << 20) |
514 (6 << 16) | (el3 << 14) | (el3 << 12));
515 return true;
516 }
517}
518
519static bool trap_debug32(struct kvm_vcpu *vcpu,
520 const struct sys_reg_params *p,
521 const struct sys_reg_desc *r)
522{
523 if (p->is_write) {
524 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
525 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
526 } else {
527 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
528 }
529
530 return true;
531}
532
533#define DBG_BCR_BVR_WCR_WVR(n) \
534 /* DBGBVRn */ \
535 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_debug32, \
536 NULL, (cp14_DBGBVR0 + (n) * 2) }, \
537 /* DBGBCRn */ \
538 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_debug32, \
539 NULL, (cp14_DBGBCR0 + (n) * 2) }, \
540 /* DBGWVRn */ \
541 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_debug32, \
542 NULL, (cp14_DBGWVR0 + (n) * 2) }, \
543 /* DBGWCRn */ \
544 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_debug32, \
545 NULL, (cp14_DBGWCR0 + (n) * 2) }
546
547#define DBGBXVR(n) \
548 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_debug32, \
549 NULL, cp14_DBGBXVR0 + n * 2 }
550
551/*
552 * Trapped cp14 registers. We generally ignore most of the external
553 * debug, on the principle that they don't really make sense to a
554 * guest. Revisit this one day, whould this principle change.
555 */
72564016 556static const struct sys_reg_desc cp14_regs[] = {
bdfb4b38
MZ
557 /* DBGIDR */
558 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
559 /* DBGDTRRXext */
560 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
561
562 DBG_BCR_BVR_WCR_WVR(0),
563 /* DBGDSCRint */
564 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
565 DBG_BCR_BVR_WCR_WVR(1),
566 /* DBGDCCINT */
567 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
568 /* DBGDSCRext */
569 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
570 DBG_BCR_BVR_WCR_WVR(2),
571 /* DBGDTR[RT]Xint */
572 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
573 /* DBGDTR[RT]Xext */
574 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
575 DBG_BCR_BVR_WCR_WVR(3),
576 DBG_BCR_BVR_WCR_WVR(4),
577 DBG_BCR_BVR_WCR_WVR(5),
578 /* DBGWFAR */
579 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
580 /* DBGOSECCR */
581 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
582 DBG_BCR_BVR_WCR_WVR(6),
583 /* DBGVCR */
584 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
585 DBG_BCR_BVR_WCR_WVR(7),
586 DBG_BCR_BVR_WCR_WVR(8),
587 DBG_BCR_BVR_WCR_WVR(9),
588 DBG_BCR_BVR_WCR_WVR(10),
589 DBG_BCR_BVR_WCR_WVR(11),
590 DBG_BCR_BVR_WCR_WVR(12),
591 DBG_BCR_BVR_WCR_WVR(13),
592 DBG_BCR_BVR_WCR_WVR(14),
593 DBG_BCR_BVR_WCR_WVR(15),
594
595 /* DBGDRAR (32bit) */
596 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
597
598 DBGBXVR(0),
599 /* DBGOSLAR */
600 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
601 DBGBXVR(1),
602 /* DBGOSLSR */
603 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
604 DBGBXVR(2),
605 DBGBXVR(3),
606 /* DBGOSDLR */
607 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
608 DBGBXVR(4),
609 /* DBGPRCR */
610 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
611 DBGBXVR(5),
612 DBGBXVR(6),
613 DBGBXVR(7),
614 DBGBXVR(8),
615 DBGBXVR(9),
616 DBGBXVR(10),
617 DBGBXVR(11),
618 DBGBXVR(12),
619 DBGBXVR(13),
620 DBGBXVR(14),
621 DBGBXVR(15),
622
623 /* DBGDSAR (32bit) */
624 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
625
626 /* DBGDEVID2 */
627 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
628 /* DBGDEVID1 */
629 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
630 /* DBGDEVID */
631 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
632 /* DBGCLAIMSET */
633 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
634 /* DBGCLAIMCLR */
635 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
636 /* DBGAUTHSTATUS */
637 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
72564016
MZ
638};
639
a9866ba0
MZ
640/* Trapped cp14 64bit registers */
641static const struct sys_reg_desc cp14_64_regs[] = {
bdfb4b38
MZ
642 /* DBGDRAR (64bit) */
643 { Op1( 0), CRm( 1), .access = trap_raz_wi },
644
645 /* DBGDSAR (64bit) */
646 { Op1( 0), CRm( 2), .access = trap_raz_wi },
a9866ba0
MZ
647};
648
4d44923b
MZ
649/*
650 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
651 * depending on the way they are accessed (as a 32bit or a 64bit
652 * register).
653 */
62a89c44 654static const struct sys_reg_desc cp15_regs[] = {
4d44923b
MZ
655 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
656 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
657 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
658 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
659 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
660 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
661 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
662 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
663 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
664 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
665 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
666
62a89c44
MZ
667 /*
668 * DC{C,I,CI}SW operations:
669 */
670 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
671 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
672 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4d44923b 673
7609c125
MZ
674 /* PMU */
675 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
676 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
677 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
678 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
679 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
680 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
681 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
682 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
683 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
684 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
685 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
686 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
687 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
4d44923b
MZ
688
689 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
690 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
691 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
692 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
693 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
a9866ba0
MZ
694};
695
696static const struct sys_reg_desc cp15_64_regs[] = {
697 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
4d44923b 698 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
7c8c5e6a
MZ
699};
700
701/* Target specific emulation tables */
702static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
703
704void kvm_register_target_sys_reg_table(unsigned int target,
705 struct kvm_sys_reg_target_table *table)
706{
707 target_tables[target] = table;
708}
709
710/* Get specific register table for this target. */
62a89c44
MZ
711static const struct sys_reg_desc *get_target_table(unsigned target,
712 bool mode_is_64,
713 size_t *num)
7c8c5e6a
MZ
714{
715 struct kvm_sys_reg_target_table *table;
716
717 table = target_tables[target];
62a89c44
MZ
718 if (mode_is_64) {
719 *num = table->table64.num;
720 return table->table64.table;
721 } else {
722 *num = table->table32.num;
723 return table->table32.table;
724 }
7c8c5e6a
MZ
725}
726
727static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
728 const struct sys_reg_desc table[],
729 unsigned int num)
730{
731 unsigned int i;
732
733 for (i = 0; i < num; i++) {
734 const struct sys_reg_desc *r = &table[i];
735
736 if (params->Op0 != r->Op0)
737 continue;
738 if (params->Op1 != r->Op1)
739 continue;
740 if (params->CRn != r->CRn)
741 continue;
742 if (params->CRm != r->CRm)
743 continue;
744 if (params->Op2 != r->Op2)
745 continue;
746
747 return r;
748 }
749 return NULL;
750}
751
62a89c44
MZ
752int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
753{
754 kvm_inject_undefined(vcpu);
755 return 1;
756}
757
72564016
MZ
758/*
759 * emulate_cp -- tries to match a sys_reg access in a handling table, and
760 * call the corresponding trap handler.
761 *
762 * @params: pointer to the descriptor of the access
763 * @table: array of trap descriptors
764 * @num: size of the trap descriptor array
765 *
766 * Return 0 if the access has been handled, and -1 if not.
767 */
768static int emulate_cp(struct kvm_vcpu *vcpu,
769 const struct sys_reg_params *params,
770 const struct sys_reg_desc *table,
771 size_t num)
62a89c44 772{
72564016 773 const struct sys_reg_desc *r;
62a89c44 774
72564016
MZ
775 if (!table)
776 return -1; /* Not handled */
62a89c44 777
62a89c44 778 r = find_reg(params, table, num);
62a89c44 779
72564016 780 if (r) {
62a89c44
MZ
781 /*
782 * Not having an accessor means that we have
783 * configured a trap that we don't know how to
784 * handle. This certainly qualifies as a gross bug
785 * that should be fixed right away.
786 */
787 BUG_ON(!r->access);
788
789 if (likely(r->access(vcpu, params, r))) {
790 /* Skip instruction, since it was emulated */
791 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
62a89c44 792 }
72564016
MZ
793
794 /* Handled */
795 return 0;
796 }
797
798 /* Not handled */
799 return -1;
800}
801
802static void unhandled_cp_access(struct kvm_vcpu *vcpu,
803 struct sys_reg_params *params)
804{
805 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
806 int cp;
807
808 switch(hsr_ec) {
809 case ESR_EL2_EC_CP15_32:
810 case ESR_EL2_EC_CP15_64:
811 cp = 15;
812 break;
813 case ESR_EL2_EC_CP14_MR:
814 case ESR_EL2_EC_CP14_64:
815 cp = 14;
816 break;
817 default:
818 WARN_ON((cp = -1));
62a89c44
MZ
819 }
820
72564016
MZ
821 kvm_err("Unsupported guest CP%d access at: %08lx\n",
822 cp, *vcpu_pc(vcpu));
62a89c44
MZ
823 print_sys_reg_instr(params);
824 kvm_inject_undefined(vcpu);
825}
826
827/**
72564016 828 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
62a89c44
MZ
829 * @vcpu: The VCPU pointer
830 * @run: The kvm_run struct
831 */
72564016
MZ
832static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
833 const struct sys_reg_desc *global,
834 size_t nr_global,
835 const struct sys_reg_desc *target_specific,
836 size_t nr_specific)
62a89c44
MZ
837{
838 struct sys_reg_params params;
839 u32 hsr = kvm_vcpu_get_hsr(vcpu);
840 int Rt2 = (hsr >> 10) & 0xf;
841
2072d29c
MZ
842 params.is_aarch32 = true;
843 params.is_32bit = false;
62a89c44
MZ
844 params.CRm = (hsr >> 1) & 0xf;
845 params.Rt = (hsr >> 5) & 0xf;
846 params.is_write = ((hsr & 1) == 0);
847
848 params.Op0 = 0;
849 params.Op1 = (hsr >> 16) & 0xf;
850 params.Op2 = 0;
851 params.CRn = 0;
852
853 /*
854 * Massive hack here. Store Rt2 in the top 32bits so we only
855 * have one register to deal with. As we use the same trap
856 * backends between AArch32 and AArch64, we get away with it.
857 */
858 if (params.is_write) {
859 u64 val = *vcpu_reg(vcpu, params.Rt);
860 val &= 0xffffffff;
861 val |= *vcpu_reg(vcpu, Rt2) << 32;
862 *vcpu_reg(vcpu, params.Rt) = val;
863 }
864
72564016
MZ
865 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
866 goto out;
867 if (!emulate_cp(vcpu, &params, global, nr_global))
868 goto out;
869
870 unhandled_cp_access(vcpu, &params);
62a89c44 871
72564016 872out:
62a89c44
MZ
873 /* Do the opposite hack for the read side */
874 if (!params.is_write) {
875 u64 val = *vcpu_reg(vcpu, params.Rt);
876 val >>= 32;
877 *vcpu_reg(vcpu, Rt2) = val;
878 }
879
880 return 1;
881}
882
883/**
884 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
885 * @vcpu: The VCPU pointer
886 * @run: The kvm_run struct
887 */
72564016
MZ
888static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
889 const struct sys_reg_desc *global,
890 size_t nr_global,
891 const struct sys_reg_desc *target_specific,
892 size_t nr_specific)
62a89c44
MZ
893{
894 struct sys_reg_params params;
895 u32 hsr = kvm_vcpu_get_hsr(vcpu);
896
2072d29c
MZ
897 params.is_aarch32 = true;
898 params.is_32bit = true;
62a89c44
MZ
899 params.CRm = (hsr >> 1) & 0xf;
900 params.Rt = (hsr >> 5) & 0xf;
901 params.is_write = ((hsr & 1) == 0);
902 params.CRn = (hsr >> 10) & 0xf;
903 params.Op0 = 0;
904 params.Op1 = (hsr >> 14) & 0x7;
905 params.Op2 = (hsr >> 17) & 0x7;
906
72564016
MZ
907 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
908 return 1;
909 if (!emulate_cp(vcpu, &params, global, nr_global))
910 return 1;
911
912 unhandled_cp_access(vcpu, &params);
62a89c44
MZ
913 return 1;
914}
915
72564016
MZ
916int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
917{
918 const struct sys_reg_desc *target_specific;
919 size_t num;
920
921 target_specific = get_target_table(vcpu->arch.target, false, &num);
922 return kvm_handle_cp_64(vcpu,
a9866ba0 923 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
72564016
MZ
924 target_specific, num);
925}
926
927int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
928{
929 const struct sys_reg_desc *target_specific;
930 size_t num;
931
932 target_specific = get_target_table(vcpu->arch.target, false, &num);
933 return kvm_handle_cp_32(vcpu,
934 cp15_regs, ARRAY_SIZE(cp15_regs),
935 target_specific, num);
936}
937
938int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
939{
940 return kvm_handle_cp_64(vcpu,
a9866ba0 941 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
72564016
MZ
942 NULL, 0);
943}
944
945int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
946{
947 return kvm_handle_cp_32(vcpu,
948 cp14_regs, ARRAY_SIZE(cp14_regs),
949 NULL, 0);
950}
951
7c8c5e6a
MZ
952static int emulate_sys_reg(struct kvm_vcpu *vcpu,
953 const struct sys_reg_params *params)
954{
955 size_t num;
956 const struct sys_reg_desc *table, *r;
957
62a89c44 958 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
959
960 /* Search target-specific then generic table. */
961 r = find_reg(params, table, num);
962 if (!r)
963 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
964
965 if (likely(r)) {
966 /*
967 * Not having an accessor means that we have
968 * configured a trap that we don't know how to
969 * handle. This certainly qualifies as a gross bug
970 * that should be fixed right away.
971 */
972 BUG_ON(!r->access);
973
974 if (likely(r->access(vcpu, params, r))) {
975 /* Skip instruction, since it was emulated */
976 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
977 return 1;
978 }
979 /* If access function fails, it should complain. */
980 } else {
981 kvm_err("Unsupported guest sys_reg access at: %lx\n",
982 *vcpu_pc(vcpu));
983 print_sys_reg_instr(params);
984 }
985 kvm_inject_undefined(vcpu);
986 return 1;
987}
988
989static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
990 const struct sys_reg_desc *table, size_t num)
991{
992 unsigned long i;
993
994 for (i = 0; i < num; i++)
995 if (table[i].reset)
996 table[i].reset(vcpu, &table[i]);
997}
998
999/**
1000 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1001 * @vcpu: The VCPU pointer
1002 * @run: The kvm_run struct
1003 */
1004int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1005{
1006 struct sys_reg_params params;
1007 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1008
2072d29c
MZ
1009 params.is_aarch32 = false;
1010 params.is_32bit = false;
7c8c5e6a
MZ
1011 params.Op0 = (esr >> 20) & 3;
1012 params.Op1 = (esr >> 14) & 0x7;
1013 params.CRn = (esr >> 10) & 0xf;
1014 params.CRm = (esr >> 1) & 0xf;
1015 params.Op2 = (esr >> 17) & 0x7;
1016 params.Rt = (esr >> 5) & 0x1f;
1017 params.is_write = !(esr & 1);
1018
1019 return emulate_sys_reg(vcpu, &params);
1020}
1021
1022/******************************************************************************
1023 * Userspace API
1024 *****************************************************************************/
1025
1026static bool index_to_params(u64 id, struct sys_reg_params *params)
1027{
1028 switch (id & KVM_REG_SIZE_MASK) {
1029 case KVM_REG_SIZE_U64:
1030 /* Any unused index bits means it's not valid. */
1031 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1032 | KVM_REG_ARM_COPROC_MASK
1033 | KVM_REG_ARM64_SYSREG_OP0_MASK
1034 | KVM_REG_ARM64_SYSREG_OP1_MASK
1035 | KVM_REG_ARM64_SYSREG_CRN_MASK
1036 | KVM_REG_ARM64_SYSREG_CRM_MASK
1037 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1038 return false;
1039 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1040 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1041 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1042 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1043 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1044 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1045 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1046 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1047 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1048 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1049 return true;
1050 default:
1051 return false;
1052 }
1053}
1054
1055/* Decode an index value, and find the sys_reg_desc entry. */
1056static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1057 u64 id)
1058{
1059 size_t num;
1060 const struct sys_reg_desc *table, *r;
1061 struct sys_reg_params params;
1062
1063 /* We only do sys_reg for now. */
1064 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1065 return NULL;
1066
1067 if (!index_to_params(id, &params))
1068 return NULL;
1069
62a89c44 1070 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1071 r = find_reg(&params, table, num);
1072 if (!r)
1073 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1074
1075 /* Not saved in the sys_reg array? */
1076 if (r && !r->reg)
1077 r = NULL;
1078
1079 return r;
1080}
1081
1082/*
1083 * These are the invariant sys_reg registers: we let the guest see the
1084 * host versions of these, so they're part of the guest state.
1085 *
1086 * A future CPU may provide a mechanism to present different values to
1087 * the guest, or a future kvm may trap them.
1088 */
1089
1090#define FUNCTION_INVARIANT(reg) \
1091 static void get_##reg(struct kvm_vcpu *v, \
1092 const struct sys_reg_desc *r) \
1093 { \
1094 u64 val; \
1095 \
1096 asm volatile("mrs %0, " __stringify(reg) "\n" \
1097 : "=r" (val)); \
1098 ((struct sys_reg_desc *)r)->val = val; \
1099 }
1100
1101FUNCTION_INVARIANT(midr_el1)
1102FUNCTION_INVARIANT(ctr_el0)
1103FUNCTION_INVARIANT(revidr_el1)
1104FUNCTION_INVARIANT(id_pfr0_el1)
1105FUNCTION_INVARIANT(id_pfr1_el1)
1106FUNCTION_INVARIANT(id_dfr0_el1)
1107FUNCTION_INVARIANT(id_afr0_el1)
1108FUNCTION_INVARIANT(id_mmfr0_el1)
1109FUNCTION_INVARIANT(id_mmfr1_el1)
1110FUNCTION_INVARIANT(id_mmfr2_el1)
1111FUNCTION_INVARIANT(id_mmfr3_el1)
1112FUNCTION_INVARIANT(id_isar0_el1)
1113FUNCTION_INVARIANT(id_isar1_el1)
1114FUNCTION_INVARIANT(id_isar2_el1)
1115FUNCTION_INVARIANT(id_isar3_el1)
1116FUNCTION_INVARIANT(id_isar4_el1)
1117FUNCTION_INVARIANT(id_isar5_el1)
1118FUNCTION_INVARIANT(clidr_el1)
1119FUNCTION_INVARIANT(aidr_el1)
1120
1121/* ->val is filled in by kvm_sys_reg_table_init() */
1122static struct sys_reg_desc invariant_sys_regs[] = {
1123 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1124 NULL, get_midr_el1 },
1125 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1126 NULL, get_revidr_el1 },
1127 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1128 NULL, get_id_pfr0_el1 },
1129 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1130 NULL, get_id_pfr1_el1 },
1131 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1132 NULL, get_id_dfr0_el1 },
1133 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1134 NULL, get_id_afr0_el1 },
1135 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1136 NULL, get_id_mmfr0_el1 },
1137 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1138 NULL, get_id_mmfr1_el1 },
1139 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1140 NULL, get_id_mmfr2_el1 },
1141 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1142 NULL, get_id_mmfr3_el1 },
1143 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1144 NULL, get_id_isar0_el1 },
1145 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1146 NULL, get_id_isar1_el1 },
1147 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1148 NULL, get_id_isar2_el1 },
1149 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1150 NULL, get_id_isar3_el1 },
1151 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1152 NULL, get_id_isar4_el1 },
1153 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1154 NULL, get_id_isar5_el1 },
1155 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1156 NULL, get_clidr_el1 },
1157 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1158 NULL, get_aidr_el1 },
1159 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1160 NULL, get_ctr_el0 },
1161};
1162
26c99af1 1163static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
7c8c5e6a 1164{
7c8c5e6a
MZ
1165 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1166 return -EFAULT;
1167 return 0;
1168}
1169
26c99af1 1170static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
7c8c5e6a 1171{
7c8c5e6a
MZ
1172 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1173 return -EFAULT;
1174 return 0;
1175}
1176
1177static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1178{
1179 struct sys_reg_params params;
1180 const struct sys_reg_desc *r;
1181
1182 if (!index_to_params(id, &params))
1183 return -ENOENT;
1184
1185 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1186 if (!r)
1187 return -ENOENT;
1188
1189 return reg_to_user(uaddr, &r->val, id);
1190}
1191
1192static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1193{
1194 struct sys_reg_params params;
1195 const struct sys_reg_desc *r;
1196 int err;
1197 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1198
1199 if (!index_to_params(id, &params))
1200 return -ENOENT;
1201 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1202 if (!r)
1203 return -ENOENT;
1204
1205 err = reg_from_user(&val, uaddr, id);
1206 if (err)
1207 return err;
1208
1209 /* This is what we mean by invariant: you can't change it. */
1210 if (r->val != val)
1211 return -EINVAL;
1212
1213 return 0;
1214}
1215
1216static bool is_valid_cache(u32 val)
1217{
1218 u32 level, ctype;
1219
1220 if (val >= CSSELR_MAX)
1221 return -ENOENT;
1222
1223 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1224 level = (val >> 1);
1225 ctype = (cache_levels >> (level * 3)) & 7;
1226
1227 switch (ctype) {
1228 case 0: /* No cache */
1229 return false;
1230 case 1: /* Instruction cache only */
1231 return (val & 1);
1232 case 2: /* Data cache only */
1233 case 4: /* Unified cache */
1234 return !(val & 1);
1235 case 3: /* Separate instruction and data caches */
1236 return true;
1237 default: /* Reserved: we can't know instruction or data. */
1238 return false;
1239 }
1240}
1241
1242static int demux_c15_get(u64 id, void __user *uaddr)
1243{
1244 u32 val;
1245 u32 __user *uval = uaddr;
1246
1247 /* Fail if we have unknown bits set. */
1248 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1249 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1250 return -ENOENT;
1251
1252 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1253 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1254 if (KVM_REG_SIZE(id) != 4)
1255 return -ENOENT;
1256 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1257 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1258 if (!is_valid_cache(val))
1259 return -ENOENT;
1260
1261 return put_user(get_ccsidr(val), uval);
1262 default:
1263 return -ENOENT;
1264 }
1265}
1266
1267static int demux_c15_set(u64 id, void __user *uaddr)
1268{
1269 u32 val, newval;
1270 u32 __user *uval = uaddr;
1271
1272 /* Fail if we have unknown bits set. */
1273 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1274 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1275 return -ENOENT;
1276
1277 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1278 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1279 if (KVM_REG_SIZE(id) != 4)
1280 return -ENOENT;
1281 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1282 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1283 if (!is_valid_cache(val))
1284 return -ENOENT;
1285
1286 if (get_user(newval, uval))
1287 return -EFAULT;
1288
1289 /* This is also invariant: you can't change it. */
1290 if (newval != get_ccsidr(val))
1291 return -EINVAL;
1292 return 0;
1293 default:
1294 return -ENOENT;
1295 }
1296}
1297
1298int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1299{
1300 const struct sys_reg_desc *r;
1301 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1302
1303 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1304 return demux_c15_get(reg->id, uaddr);
1305
1306 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1307 return -ENOENT;
1308
1309 r = index_to_sys_reg_desc(vcpu, reg->id);
1310 if (!r)
1311 return get_invariant_sys_reg(reg->id, uaddr);
1312
1313 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1314}
1315
1316int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1317{
1318 const struct sys_reg_desc *r;
1319 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1320
1321 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1322 return demux_c15_set(reg->id, uaddr);
1323
1324 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1325 return -ENOENT;
1326
1327 r = index_to_sys_reg_desc(vcpu, reg->id);
1328 if (!r)
1329 return set_invariant_sys_reg(reg->id, uaddr);
1330
1331 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1332}
1333
1334static unsigned int num_demux_regs(void)
1335{
1336 unsigned int i, count = 0;
1337
1338 for (i = 0; i < CSSELR_MAX; i++)
1339 if (is_valid_cache(i))
1340 count++;
1341
1342 return count;
1343}
1344
1345static int write_demux_regids(u64 __user *uindices)
1346{
efd48cea 1347 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
7c8c5e6a
MZ
1348 unsigned int i;
1349
1350 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1351 for (i = 0; i < CSSELR_MAX; i++) {
1352 if (!is_valid_cache(i))
1353 continue;
1354 if (put_user(val | i, uindices))
1355 return -EFAULT;
1356 uindices++;
1357 }
1358 return 0;
1359}
1360
1361static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1362{
1363 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1364 KVM_REG_ARM64_SYSREG |
1365 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1366 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1367 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1368 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1369 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1370}
1371
1372static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1373{
1374 if (!*uind)
1375 return true;
1376
1377 if (put_user(sys_reg_to_index(reg), *uind))
1378 return false;
1379
1380 (*uind)++;
1381 return true;
1382}
1383
1384/* Assumed ordered tables, see kvm_sys_reg_table_init. */
1385static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1386{
1387 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1388 unsigned int total = 0;
1389 size_t num;
1390
1391 /* We check for duplicates here, to allow arch-specific overrides. */
62a89c44 1392 i1 = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1393 end1 = i1 + num;
1394 i2 = sys_reg_descs;
1395 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1396
1397 BUG_ON(i1 == end1 || i2 == end2);
1398
1399 /* Walk carefully, as both tables may refer to the same register. */
1400 while (i1 || i2) {
1401 int cmp = cmp_sys_reg(i1, i2);
1402 /* target-specific overrides generic entry. */
1403 if (cmp <= 0) {
1404 /* Ignore registers we trap but don't save. */
1405 if (i1->reg) {
1406 if (!copy_reg_to_user(i1, &uind))
1407 return -EFAULT;
1408 total++;
1409 }
1410 } else {
1411 /* Ignore registers we trap but don't save. */
1412 if (i2->reg) {
1413 if (!copy_reg_to_user(i2, &uind))
1414 return -EFAULT;
1415 total++;
1416 }
1417 }
1418
1419 if (cmp <= 0 && ++i1 == end1)
1420 i1 = NULL;
1421 if (cmp >= 0 && ++i2 == end2)
1422 i2 = NULL;
1423 }
1424 return total;
1425}
1426
1427unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1428{
1429 return ARRAY_SIZE(invariant_sys_regs)
1430 + num_demux_regs()
1431 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1432}
1433
1434int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1435{
1436 unsigned int i;
1437 int err;
1438
1439 /* Then give them all the invariant registers' indices. */
1440 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1441 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1442 return -EFAULT;
1443 uindices++;
1444 }
1445
1446 err = walk_sys_regs(vcpu, uindices);
1447 if (err < 0)
1448 return err;
1449 uindices += err;
1450
1451 return write_demux_regids(uindices);
1452}
1453
e6a95517
MZ
1454static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1455{
1456 unsigned int i;
1457
1458 for (i = 1; i < n; i++) {
1459 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1460 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1461 return 1;
1462 }
1463 }
1464
1465 return 0;
1466}
1467
7c8c5e6a
MZ
1468void kvm_sys_reg_table_init(void)
1469{
1470 unsigned int i;
1471 struct sys_reg_desc clidr;
1472
1473 /* Make sure tables are unique and in order. */
e6a95517
MZ
1474 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1475 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1476 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1477 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1478 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1479 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
7c8c5e6a
MZ
1480
1481 /* We abuse the reset function to overwrite the table itself. */
1482 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1483 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1484
1485 /*
1486 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1487 *
1488 * If software reads the Cache Type fields from Ctype1
1489 * upwards, once it has seen a value of 0b000, no caches
1490 * exist at further-out levels of the hierarchy. So, for
1491 * example, if Ctype3 is the first Cache Type field with a
1492 * value of 0b000, the values of Ctype4 to Ctype7 must be
1493 * ignored.
1494 */
1495 get_clidr_el1(NULL, &clidr); /* Ugly... */
1496 cache_levels = clidr.val;
1497 for (i = 0; i < 7; i++)
1498 if (((cache_levels >> (i*3)) & 7) == 0)
1499 break;
1500 /* Clear all higher bits. */
1501 cache_levels &= (1 << (i*3))-1;
1502}
1503
1504/**
1505 * kvm_reset_sys_regs - sets system registers to reset value
1506 * @vcpu: The VCPU pointer
1507 *
1508 * This function finds the right table above and sets the registers on the
1509 * virtual CPU struct to their architecturally defined reset values.
1510 */
1511void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1512{
1513 size_t num;
1514 const struct sys_reg_desc *table;
1515
1516 /* Catch someone adding a register without putting in reset entry. */
1517 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1518
1519 /* Generic chip reset first (so target could override). */
1520 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1521
62a89c44 1522 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1523 reset_sys_reg_descs(vcpu, table, num);
1524
1525 for (num = 1; num < NR_SYS_REGS; num++)
1526 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1527 panic("Didn't reset vcpu_sys_reg(%zi)", num);
1528}