]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm64/kvm/sys_regs.c
KVM: arm/arm64: Enable Dirty Page logging for ARMv8
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kvm / sys_regs.c
CommitLineData
7c8c5e6a
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <linux/mm.h>
24#include <linux/kvm_host.h>
25#include <linux/uaccess.h>
26#include <asm/kvm_arm.h>
27#include <asm/kvm_host.h>
28#include <asm/kvm_emulate.h>
29#include <asm/kvm_coproc.h>
9d218a1f 30#include <asm/kvm_mmu.h>
7c8c5e6a
MZ
31#include <asm/cacheflush.h>
32#include <asm/cputype.h>
0c557ed4 33#include <asm/debug-monitors.h>
7c8c5e6a
MZ
34#include <trace/events/kvm.h>
35
36#include "sys_regs.h"
37
38/*
39 * All of this file is extremly similar to the ARM coproc.c, but the
40 * types are different. My gut feeling is that it should be pretty
41 * easy to merge, but that would be an ABI breakage -- again. VFP
42 * would also need to be abstracted.
62a89c44
MZ
43 *
44 * For AArch32, we only take care of what is being trapped. Anything
45 * that has to do with init and userspace access has to go via the
46 * 64bit interface.
7c8c5e6a
MZ
47 */
48
49/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
50static u32 cache_levels;
51
52/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
53#define CSSELR_MAX 12
54
55/* Which cache CCSIDR represents depends on CSSELR value. */
56static u32 get_ccsidr(u32 csselr)
57{
58 u32 ccsidr;
59
60 /* Make sure noone else changes CSSELR during this! */
61 local_irq_disable();
62 /* Put value into CSSELR */
63 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
64 isb();
65 /* Read result out of CCSIDR */
66 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
67 local_irq_enable();
68
69 return ccsidr;
70}
71
72static void do_dc_cisw(u32 val)
73{
74 asm volatile("dc cisw, %x0" : : "r" (val));
98f7685e 75 dsb(ish);
7c8c5e6a
MZ
76}
77
78static void do_dc_csw(u32 val)
79{
80 asm volatile("dc csw, %x0" : : "r" (val));
98f7685e 81 dsb(ish);
7c8c5e6a
MZ
82}
83
84/* See note at ARM ARM B1.14.4 */
85static bool access_dcsw(struct kvm_vcpu *vcpu,
86 const struct sys_reg_params *p,
87 const struct sys_reg_desc *r)
88{
89 unsigned long val;
90 int cpu;
91
92 if (!p->is_write)
93 return read_from_write_only(vcpu, p);
94
95 cpu = get_cpu();
96
97 cpumask_setall(&vcpu->arch.require_dcache_flush);
98 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
99
100 /* If we were already preempted, take the long way around */
101 if (cpu != vcpu->arch.last_pcpu) {
102 flush_cache_all();
103 goto done;
104 }
105
106 val = *vcpu_reg(vcpu, p->Rt);
107
108 switch (p->CRm) {
109 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
110 case 14: /* DCCISW */
111 do_dc_cisw(val);
112 break;
113
114 case 10: /* DCCSW */
115 do_dc_csw(val);
116 break;
117 }
118
119done:
120 put_cpu();
121
122 return true;
123}
124
4d44923b
MZ
125/*
126 * Generic accessor for VM registers. Only called as long as HCR_TVM
127 * is set.
128 */
129static bool access_vm_reg(struct kvm_vcpu *vcpu,
130 const struct sys_reg_params *p,
131 const struct sys_reg_desc *r)
132{
133 unsigned long val;
134
135 BUG_ON(!p->is_write);
136
137 val = *vcpu_reg(vcpu, p->Rt);
dedf97e8 138 if (!p->is_aarch32) {
4d44923b 139 vcpu_sys_reg(vcpu, r->reg) = val;
dedf97e8
MZ
140 } else {
141 if (!p->is_32bit)
142 vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
f0a3eaff 143 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
dedf97e8 144 }
f0a3eaff 145
4d44923b
MZ
146 return true;
147}
148
149/*
150 * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set. If the
151 * guest enables the MMU, we stop trapping the VM sys_regs and leave
152 * it in complete control of the caches.
153 */
154static bool access_sctlr(struct kvm_vcpu *vcpu,
155 const struct sys_reg_params *p,
156 const struct sys_reg_desc *r)
157{
158 access_vm_reg(vcpu, p, r);
159
9d218a1f 160 if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
4d44923b 161 vcpu->arch.hcr_el2 &= ~HCR_TVM;
9d218a1f
MZ
162 stage2_flush_vm(vcpu->kvm);
163 }
4d44923b
MZ
164
165 return true;
166}
167
7609c125
MZ
168static bool trap_raz_wi(struct kvm_vcpu *vcpu,
169 const struct sys_reg_params *p,
170 const struct sys_reg_desc *r)
7c8c5e6a
MZ
171{
172 if (p->is_write)
173 return ignore_write(vcpu, p);
174 else
175 return read_zero(vcpu, p);
176}
177
0c557ed4
MZ
178static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
179 const struct sys_reg_params *p,
180 const struct sys_reg_desc *r)
181{
182 if (p->is_write) {
183 return ignore_write(vcpu, p);
184 } else {
185 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
186 return true;
187 }
188}
189
190static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
191 const struct sys_reg_params *p,
192 const struct sys_reg_desc *r)
193{
194 if (p->is_write) {
195 return ignore_write(vcpu, p);
196 } else {
197 u32 val;
198 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
199 *vcpu_reg(vcpu, p->Rt) = val;
200 return true;
201 }
202}
203
204/*
205 * We want to avoid world-switching all the DBG registers all the
206 * time:
207 *
208 * - If we've touched any debug register, it is likely that we're
209 * going to touch more of them. It then makes sense to disable the
210 * traps and start doing the save/restore dance
211 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
212 * then mandatory to save/restore the registers, as the guest
213 * depends on them.
214 *
215 * For this, we use a DIRTY bit, indicating the guest has modified the
216 * debug registers, used as follow:
217 *
218 * On guest entry:
219 * - If the dirty bit is set (because we're coming back from trapping),
220 * disable the traps, save host registers, restore guest registers.
221 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
222 * set the dirty bit, disable the traps, save host registers,
223 * restore guest registers.
224 * - Otherwise, enable the traps
225 *
226 * On guest exit:
227 * - If the dirty bit is set, save guest registers, restore host
228 * registers and clear the dirty bit. This ensure that the host can
229 * now use the debug registers.
230 */
231static bool trap_debug_regs(struct kvm_vcpu *vcpu,
232 const struct sys_reg_params *p,
233 const struct sys_reg_desc *r)
234{
235 if (p->is_write) {
236 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
237 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
238 } else {
239 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
240 }
241
242 return true;
243}
244
7c8c5e6a
MZ
245static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
246{
247 u64 amair;
248
249 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
250 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
251}
252
253static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
254{
255 /*
256 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
257 */
258 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
259}
260
0c557ed4
MZ
261/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
262#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
263 /* DBGBVRn_EL1 */ \
264 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
265 trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 }, \
266 /* DBGBCRn_EL1 */ \
267 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
268 trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 }, \
269 /* DBGWVRn_EL1 */ \
270 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
271 trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 }, \
272 /* DBGWCRn_EL1 */ \
273 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
274 trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
275
7c8c5e6a
MZ
276/*
277 * Architected system registers.
278 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
7609c125
MZ
279 *
280 * We could trap ID_DFR0 and tell the guest we don't support performance
281 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
282 * NAKed, so it will read the PMCR anyway.
283 *
284 * Therefore we tell the guest we have 0 counters. Unfortunately, we
285 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
286 * all PM registers, which doesn't crash the guest kernel at least.
287 *
0c557ed4
MZ
288 * Debug handling: We do trap most, if not all debug related system
289 * registers. The implementation is good enough to ensure that a guest
290 * can use these with minimal performance degradation. The drawback is
291 * that we don't implement any of the external debug, none of the
292 * OSlock protocol. This should be revisited if we ever encounter a
293 * more demanding guest...
7c8c5e6a
MZ
294 */
295static const struct sys_reg_desc sys_reg_descs[] = {
296 /* DC ISW */
297 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
298 access_dcsw },
299 /* DC CSW */
300 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
301 access_dcsw },
302 /* DC CISW */
303 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
304 access_dcsw },
305
0c557ed4
MZ
306 DBG_BCR_BVR_WCR_WVR_EL1(0),
307 DBG_BCR_BVR_WCR_WVR_EL1(1),
308 /* MDCCINT_EL1 */
309 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
310 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
311 /* MDSCR_EL1 */
312 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
313 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
314 DBG_BCR_BVR_WCR_WVR_EL1(2),
315 DBG_BCR_BVR_WCR_WVR_EL1(3),
316 DBG_BCR_BVR_WCR_WVR_EL1(4),
317 DBG_BCR_BVR_WCR_WVR_EL1(5),
318 DBG_BCR_BVR_WCR_WVR_EL1(6),
319 DBG_BCR_BVR_WCR_WVR_EL1(7),
320 DBG_BCR_BVR_WCR_WVR_EL1(8),
321 DBG_BCR_BVR_WCR_WVR_EL1(9),
322 DBG_BCR_BVR_WCR_WVR_EL1(10),
323 DBG_BCR_BVR_WCR_WVR_EL1(11),
324 DBG_BCR_BVR_WCR_WVR_EL1(12),
325 DBG_BCR_BVR_WCR_WVR_EL1(13),
326 DBG_BCR_BVR_WCR_WVR_EL1(14),
327 DBG_BCR_BVR_WCR_WVR_EL1(15),
328
329 /* MDRAR_EL1 */
330 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
331 trap_raz_wi },
332 /* OSLAR_EL1 */
333 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
334 trap_raz_wi },
335 /* OSLSR_EL1 */
336 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
337 trap_oslsr_el1 },
338 /* OSDLR_EL1 */
339 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
340 trap_raz_wi },
341 /* DBGPRCR_EL1 */
342 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
343 trap_raz_wi },
344 /* DBGCLAIMSET_EL1 */
345 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
346 trap_raz_wi },
347 /* DBGCLAIMCLR_EL1 */
348 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
349 trap_raz_wi },
350 /* DBGAUTHSTATUS_EL1 */
351 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
352 trap_dbgauthstatus_el1 },
353
62a89c44
MZ
354 /* TEECR32_EL1 */
355 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
356 NULL, reset_val, TEECR32_EL1, 0 },
357 /* TEEHBR32_EL1 */
358 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
359 NULL, reset_val, TEEHBR32_EL1, 0 },
0c557ed4
MZ
360
361 /* MDCCSR_EL1 */
362 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
363 trap_raz_wi },
364 /* DBGDTR_EL0 */
365 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
366 trap_raz_wi },
367 /* DBGDTR[TR]X_EL0 */
368 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
369 trap_raz_wi },
370
62a89c44
MZ
371 /* DBGVCR32_EL2 */
372 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
373 NULL, reset_val, DBGVCR32_EL2, 0 },
374
7c8c5e6a
MZ
375 /* MPIDR_EL1 */
376 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
377 NULL, reset_mpidr, MPIDR_EL1 },
378 /* SCTLR_EL1 */
379 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
4d44923b 380 access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
7c8c5e6a
MZ
381 /* CPACR_EL1 */
382 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
383 NULL, reset_val, CPACR_EL1, 0 },
384 /* TTBR0_EL1 */
385 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
4d44923b 386 access_vm_reg, reset_unknown, TTBR0_EL1 },
7c8c5e6a
MZ
387 /* TTBR1_EL1 */
388 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
4d44923b 389 access_vm_reg, reset_unknown, TTBR1_EL1 },
7c8c5e6a
MZ
390 /* TCR_EL1 */
391 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
4d44923b 392 access_vm_reg, reset_val, TCR_EL1, 0 },
7c8c5e6a
MZ
393
394 /* AFSR0_EL1 */
395 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
4d44923b 396 access_vm_reg, reset_unknown, AFSR0_EL1 },
7c8c5e6a
MZ
397 /* AFSR1_EL1 */
398 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
4d44923b 399 access_vm_reg, reset_unknown, AFSR1_EL1 },
7c8c5e6a
MZ
400 /* ESR_EL1 */
401 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
4d44923b 402 access_vm_reg, reset_unknown, ESR_EL1 },
7c8c5e6a
MZ
403 /* FAR_EL1 */
404 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
4d44923b 405 access_vm_reg, reset_unknown, FAR_EL1 },
1bbd8054
MZ
406 /* PAR_EL1 */
407 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
408 NULL, reset_unknown, PAR_EL1 },
7c8c5e6a
MZ
409
410 /* PMINTENSET_EL1 */
411 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
7609c125 412 trap_raz_wi },
7c8c5e6a
MZ
413 /* PMINTENCLR_EL1 */
414 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
7609c125 415 trap_raz_wi },
7c8c5e6a
MZ
416
417 /* MAIR_EL1 */
418 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
4d44923b 419 access_vm_reg, reset_unknown, MAIR_EL1 },
7c8c5e6a
MZ
420 /* AMAIR_EL1 */
421 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
4d44923b 422 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
7c8c5e6a
MZ
423
424 /* VBAR_EL1 */
425 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
426 NULL, reset_val, VBAR_EL1, 0 },
db7dedd0
CD
427
428 /* ICC_SRE_EL1 */
429 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
430 trap_raz_wi },
431
7c8c5e6a
MZ
432 /* CONTEXTIDR_EL1 */
433 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
4d44923b 434 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
7c8c5e6a
MZ
435 /* TPIDR_EL1 */
436 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
437 NULL, reset_unknown, TPIDR_EL1 },
438
439 /* CNTKCTL_EL1 */
440 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
441 NULL, reset_val, CNTKCTL_EL1, 0},
442
443 /* CSSELR_EL1 */
444 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
445 NULL, reset_unknown, CSSELR_EL1 },
446
447 /* PMCR_EL0 */
448 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
7609c125 449 trap_raz_wi },
7c8c5e6a
MZ
450 /* PMCNTENSET_EL0 */
451 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
7609c125 452 trap_raz_wi },
7c8c5e6a
MZ
453 /* PMCNTENCLR_EL0 */
454 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
7609c125 455 trap_raz_wi },
7c8c5e6a
MZ
456 /* PMOVSCLR_EL0 */
457 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
7609c125 458 trap_raz_wi },
7c8c5e6a
MZ
459 /* PMSWINC_EL0 */
460 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
7609c125 461 trap_raz_wi },
7c8c5e6a
MZ
462 /* PMSELR_EL0 */
463 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
7609c125 464 trap_raz_wi },
7c8c5e6a
MZ
465 /* PMCEID0_EL0 */
466 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
7609c125 467 trap_raz_wi },
7c8c5e6a
MZ
468 /* PMCEID1_EL0 */
469 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
7609c125 470 trap_raz_wi },
7c8c5e6a
MZ
471 /* PMCCNTR_EL0 */
472 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
7609c125 473 trap_raz_wi },
7c8c5e6a
MZ
474 /* PMXEVTYPER_EL0 */
475 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
7609c125 476 trap_raz_wi },
7c8c5e6a
MZ
477 /* PMXEVCNTR_EL0 */
478 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
7609c125 479 trap_raz_wi },
7c8c5e6a
MZ
480 /* PMUSERENR_EL0 */
481 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
7609c125 482 trap_raz_wi },
7c8c5e6a
MZ
483 /* PMOVSSET_EL0 */
484 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
7609c125 485 trap_raz_wi },
7c8c5e6a
MZ
486
487 /* TPIDR_EL0 */
488 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
489 NULL, reset_unknown, TPIDR_EL0 },
490 /* TPIDRRO_EL0 */
491 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
492 NULL, reset_unknown, TPIDRRO_EL0 },
62a89c44
MZ
493
494 /* DACR32_EL2 */
495 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
496 NULL, reset_unknown, DACR32_EL2 },
497 /* IFSR32_EL2 */
498 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
499 NULL, reset_unknown, IFSR32_EL2 },
500 /* FPEXC32_EL2 */
501 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
502 NULL, reset_val, FPEXC32_EL2, 0x70 },
503};
504
bdfb4b38
MZ
505static bool trap_dbgidr(struct kvm_vcpu *vcpu,
506 const struct sys_reg_params *p,
507 const struct sys_reg_desc *r)
508{
509 if (p->is_write) {
510 return ignore_write(vcpu, p);
511 } else {
512 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
513 u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
514 u32 el3 = !!((pfr >> 12) & 0xf);
515
516 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
517 (((dfr >> 12) & 0xf) << 24) |
518 (((dfr >> 28) & 0xf) << 20) |
519 (6 << 16) | (el3 << 14) | (el3 << 12));
520 return true;
521 }
522}
523
524static bool trap_debug32(struct kvm_vcpu *vcpu,
525 const struct sys_reg_params *p,
526 const struct sys_reg_desc *r)
527{
528 if (p->is_write) {
529 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
530 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
531 } else {
532 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
533 }
534
535 return true;
536}
537
538#define DBG_BCR_BVR_WCR_WVR(n) \
539 /* DBGBVRn */ \
540 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_debug32, \
541 NULL, (cp14_DBGBVR0 + (n) * 2) }, \
542 /* DBGBCRn */ \
543 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_debug32, \
544 NULL, (cp14_DBGBCR0 + (n) * 2) }, \
545 /* DBGWVRn */ \
546 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_debug32, \
547 NULL, (cp14_DBGWVR0 + (n) * 2) }, \
548 /* DBGWCRn */ \
549 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_debug32, \
550 NULL, (cp14_DBGWCR0 + (n) * 2) }
551
552#define DBGBXVR(n) \
553 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_debug32, \
554 NULL, cp14_DBGBXVR0 + n * 2 }
555
556/*
557 * Trapped cp14 registers. We generally ignore most of the external
558 * debug, on the principle that they don't really make sense to a
559 * guest. Revisit this one day, whould this principle change.
560 */
72564016 561static const struct sys_reg_desc cp14_regs[] = {
bdfb4b38
MZ
562 /* DBGIDR */
563 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
564 /* DBGDTRRXext */
565 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
566
567 DBG_BCR_BVR_WCR_WVR(0),
568 /* DBGDSCRint */
569 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
570 DBG_BCR_BVR_WCR_WVR(1),
571 /* DBGDCCINT */
572 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
573 /* DBGDSCRext */
574 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
575 DBG_BCR_BVR_WCR_WVR(2),
576 /* DBGDTR[RT]Xint */
577 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
578 /* DBGDTR[RT]Xext */
579 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
580 DBG_BCR_BVR_WCR_WVR(3),
581 DBG_BCR_BVR_WCR_WVR(4),
582 DBG_BCR_BVR_WCR_WVR(5),
583 /* DBGWFAR */
584 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
585 /* DBGOSECCR */
586 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
587 DBG_BCR_BVR_WCR_WVR(6),
588 /* DBGVCR */
589 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
590 DBG_BCR_BVR_WCR_WVR(7),
591 DBG_BCR_BVR_WCR_WVR(8),
592 DBG_BCR_BVR_WCR_WVR(9),
593 DBG_BCR_BVR_WCR_WVR(10),
594 DBG_BCR_BVR_WCR_WVR(11),
595 DBG_BCR_BVR_WCR_WVR(12),
596 DBG_BCR_BVR_WCR_WVR(13),
597 DBG_BCR_BVR_WCR_WVR(14),
598 DBG_BCR_BVR_WCR_WVR(15),
599
600 /* DBGDRAR (32bit) */
601 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
602
603 DBGBXVR(0),
604 /* DBGOSLAR */
605 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
606 DBGBXVR(1),
607 /* DBGOSLSR */
608 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
609 DBGBXVR(2),
610 DBGBXVR(3),
611 /* DBGOSDLR */
612 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
613 DBGBXVR(4),
614 /* DBGPRCR */
615 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
616 DBGBXVR(5),
617 DBGBXVR(6),
618 DBGBXVR(7),
619 DBGBXVR(8),
620 DBGBXVR(9),
621 DBGBXVR(10),
622 DBGBXVR(11),
623 DBGBXVR(12),
624 DBGBXVR(13),
625 DBGBXVR(14),
626 DBGBXVR(15),
627
628 /* DBGDSAR (32bit) */
629 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
630
631 /* DBGDEVID2 */
632 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
633 /* DBGDEVID1 */
634 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
635 /* DBGDEVID */
636 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
637 /* DBGCLAIMSET */
638 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
639 /* DBGCLAIMCLR */
640 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
641 /* DBGAUTHSTATUS */
642 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
72564016
MZ
643};
644
a9866ba0
MZ
645/* Trapped cp14 64bit registers */
646static const struct sys_reg_desc cp14_64_regs[] = {
bdfb4b38
MZ
647 /* DBGDRAR (64bit) */
648 { Op1( 0), CRm( 1), .access = trap_raz_wi },
649
650 /* DBGDSAR (64bit) */
651 { Op1( 0), CRm( 2), .access = trap_raz_wi },
a9866ba0
MZ
652};
653
4d44923b
MZ
654/*
655 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
656 * depending on the way they are accessed (as a 32bit or a 64bit
657 * register).
658 */
62a89c44 659static const struct sys_reg_desc cp15_regs[] = {
4d44923b
MZ
660 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
661 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
662 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
663 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
664 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
665 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
666 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
667 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
668 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
669 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
670 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
671
62a89c44
MZ
672 /*
673 * DC{C,I,CI}SW operations:
674 */
675 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
676 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
677 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4d44923b 678
7609c125
MZ
679 /* PMU */
680 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
681 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
682 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
683 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
684 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
685 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
686 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
687 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
688 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
689 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
690 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
691 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
692 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
4d44923b
MZ
693
694 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
695 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
696 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
697 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
db7dedd0
CD
698
699 /* ICC_SRE */
700 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
701
4d44923b 702 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
a9866ba0
MZ
703};
704
705static const struct sys_reg_desc cp15_64_regs[] = {
706 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
4d44923b 707 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
7c8c5e6a
MZ
708};
709
710/* Target specific emulation tables */
711static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
712
713void kvm_register_target_sys_reg_table(unsigned int target,
714 struct kvm_sys_reg_target_table *table)
715{
716 target_tables[target] = table;
717}
718
719/* Get specific register table for this target. */
62a89c44
MZ
720static const struct sys_reg_desc *get_target_table(unsigned target,
721 bool mode_is_64,
722 size_t *num)
7c8c5e6a
MZ
723{
724 struct kvm_sys_reg_target_table *table;
725
726 table = target_tables[target];
62a89c44
MZ
727 if (mode_is_64) {
728 *num = table->table64.num;
729 return table->table64.table;
730 } else {
731 *num = table->table32.num;
732 return table->table32.table;
733 }
7c8c5e6a
MZ
734}
735
736static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
737 const struct sys_reg_desc table[],
738 unsigned int num)
739{
740 unsigned int i;
741
742 for (i = 0; i < num; i++) {
743 const struct sys_reg_desc *r = &table[i];
744
745 if (params->Op0 != r->Op0)
746 continue;
747 if (params->Op1 != r->Op1)
748 continue;
749 if (params->CRn != r->CRn)
750 continue;
751 if (params->CRm != r->CRm)
752 continue;
753 if (params->Op2 != r->Op2)
754 continue;
755
756 return r;
757 }
758 return NULL;
759}
760
62a89c44
MZ
761int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
762{
763 kvm_inject_undefined(vcpu);
764 return 1;
765}
766
72564016
MZ
767/*
768 * emulate_cp -- tries to match a sys_reg access in a handling table, and
769 * call the corresponding trap handler.
770 *
771 * @params: pointer to the descriptor of the access
772 * @table: array of trap descriptors
773 * @num: size of the trap descriptor array
774 *
775 * Return 0 if the access has been handled, and -1 if not.
776 */
777static int emulate_cp(struct kvm_vcpu *vcpu,
778 const struct sys_reg_params *params,
779 const struct sys_reg_desc *table,
780 size_t num)
62a89c44 781{
72564016 782 const struct sys_reg_desc *r;
62a89c44 783
72564016
MZ
784 if (!table)
785 return -1; /* Not handled */
62a89c44 786
62a89c44 787 r = find_reg(params, table, num);
62a89c44 788
72564016 789 if (r) {
62a89c44
MZ
790 /*
791 * Not having an accessor means that we have
792 * configured a trap that we don't know how to
793 * handle. This certainly qualifies as a gross bug
794 * that should be fixed right away.
795 */
796 BUG_ON(!r->access);
797
798 if (likely(r->access(vcpu, params, r))) {
799 /* Skip instruction, since it was emulated */
800 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
62a89c44 801 }
72564016
MZ
802
803 /* Handled */
804 return 0;
805 }
806
807 /* Not handled */
808 return -1;
809}
810
811static void unhandled_cp_access(struct kvm_vcpu *vcpu,
812 struct sys_reg_params *params)
813{
814 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
815 int cp;
816
817 switch(hsr_ec) {
818 case ESR_EL2_EC_CP15_32:
819 case ESR_EL2_EC_CP15_64:
820 cp = 15;
821 break;
822 case ESR_EL2_EC_CP14_MR:
823 case ESR_EL2_EC_CP14_64:
824 cp = 14;
825 break;
826 default:
827 WARN_ON((cp = -1));
62a89c44
MZ
828 }
829
72564016
MZ
830 kvm_err("Unsupported guest CP%d access at: %08lx\n",
831 cp, *vcpu_pc(vcpu));
62a89c44
MZ
832 print_sys_reg_instr(params);
833 kvm_inject_undefined(vcpu);
834}
835
836/**
72564016 837 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
62a89c44
MZ
838 * @vcpu: The VCPU pointer
839 * @run: The kvm_run struct
840 */
72564016
MZ
841static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
842 const struct sys_reg_desc *global,
843 size_t nr_global,
844 const struct sys_reg_desc *target_specific,
845 size_t nr_specific)
62a89c44
MZ
846{
847 struct sys_reg_params params;
848 u32 hsr = kvm_vcpu_get_hsr(vcpu);
849 int Rt2 = (hsr >> 10) & 0xf;
850
2072d29c
MZ
851 params.is_aarch32 = true;
852 params.is_32bit = false;
62a89c44
MZ
853 params.CRm = (hsr >> 1) & 0xf;
854 params.Rt = (hsr >> 5) & 0xf;
855 params.is_write = ((hsr & 1) == 0);
856
857 params.Op0 = 0;
858 params.Op1 = (hsr >> 16) & 0xf;
859 params.Op2 = 0;
860 params.CRn = 0;
861
862 /*
863 * Massive hack here. Store Rt2 in the top 32bits so we only
864 * have one register to deal with. As we use the same trap
865 * backends between AArch32 and AArch64, we get away with it.
866 */
867 if (params.is_write) {
868 u64 val = *vcpu_reg(vcpu, params.Rt);
869 val &= 0xffffffff;
870 val |= *vcpu_reg(vcpu, Rt2) << 32;
871 *vcpu_reg(vcpu, params.Rt) = val;
872 }
873
72564016
MZ
874 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
875 goto out;
876 if (!emulate_cp(vcpu, &params, global, nr_global))
877 goto out;
878
879 unhandled_cp_access(vcpu, &params);
62a89c44 880
72564016 881out:
62a89c44
MZ
882 /* Do the opposite hack for the read side */
883 if (!params.is_write) {
884 u64 val = *vcpu_reg(vcpu, params.Rt);
885 val >>= 32;
886 *vcpu_reg(vcpu, Rt2) = val;
887 }
888
889 return 1;
890}
891
892/**
893 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
894 * @vcpu: The VCPU pointer
895 * @run: The kvm_run struct
896 */
72564016
MZ
897static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
898 const struct sys_reg_desc *global,
899 size_t nr_global,
900 const struct sys_reg_desc *target_specific,
901 size_t nr_specific)
62a89c44
MZ
902{
903 struct sys_reg_params params;
904 u32 hsr = kvm_vcpu_get_hsr(vcpu);
905
2072d29c
MZ
906 params.is_aarch32 = true;
907 params.is_32bit = true;
62a89c44
MZ
908 params.CRm = (hsr >> 1) & 0xf;
909 params.Rt = (hsr >> 5) & 0xf;
910 params.is_write = ((hsr & 1) == 0);
911 params.CRn = (hsr >> 10) & 0xf;
912 params.Op0 = 0;
913 params.Op1 = (hsr >> 14) & 0x7;
914 params.Op2 = (hsr >> 17) & 0x7;
915
72564016
MZ
916 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
917 return 1;
918 if (!emulate_cp(vcpu, &params, global, nr_global))
919 return 1;
920
921 unhandled_cp_access(vcpu, &params);
62a89c44
MZ
922 return 1;
923}
924
72564016
MZ
925int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
926{
927 const struct sys_reg_desc *target_specific;
928 size_t num;
929
930 target_specific = get_target_table(vcpu->arch.target, false, &num);
931 return kvm_handle_cp_64(vcpu,
a9866ba0 932 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
72564016
MZ
933 target_specific, num);
934}
935
936int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
937{
938 const struct sys_reg_desc *target_specific;
939 size_t num;
940
941 target_specific = get_target_table(vcpu->arch.target, false, &num);
942 return kvm_handle_cp_32(vcpu,
943 cp15_regs, ARRAY_SIZE(cp15_regs),
944 target_specific, num);
945}
946
947int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
948{
949 return kvm_handle_cp_64(vcpu,
a9866ba0 950 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
72564016
MZ
951 NULL, 0);
952}
953
954int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
955{
956 return kvm_handle_cp_32(vcpu,
957 cp14_regs, ARRAY_SIZE(cp14_regs),
958 NULL, 0);
959}
960
7c8c5e6a
MZ
961static int emulate_sys_reg(struct kvm_vcpu *vcpu,
962 const struct sys_reg_params *params)
963{
964 size_t num;
965 const struct sys_reg_desc *table, *r;
966
62a89c44 967 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
968
969 /* Search target-specific then generic table. */
970 r = find_reg(params, table, num);
971 if (!r)
972 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
973
974 if (likely(r)) {
975 /*
976 * Not having an accessor means that we have
977 * configured a trap that we don't know how to
978 * handle. This certainly qualifies as a gross bug
979 * that should be fixed right away.
980 */
981 BUG_ON(!r->access);
982
983 if (likely(r->access(vcpu, params, r))) {
984 /* Skip instruction, since it was emulated */
985 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
986 return 1;
987 }
988 /* If access function fails, it should complain. */
989 } else {
990 kvm_err("Unsupported guest sys_reg access at: %lx\n",
991 *vcpu_pc(vcpu));
992 print_sys_reg_instr(params);
993 }
994 kvm_inject_undefined(vcpu);
995 return 1;
996}
997
998static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
999 const struct sys_reg_desc *table, size_t num)
1000{
1001 unsigned long i;
1002
1003 for (i = 0; i < num; i++)
1004 if (table[i].reset)
1005 table[i].reset(vcpu, &table[i]);
1006}
1007
1008/**
1009 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1010 * @vcpu: The VCPU pointer
1011 * @run: The kvm_run struct
1012 */
1013int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1014{
1015 struct sys_reg_params params;
1016 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1017
2072d29c
MZ
1018 params.is_aarch32 = false;
1019 params.is_32bit = false;
7c8c5e6a
MZ
1020 params.Op0 = (esr >> 20) & 3;
1021 params.Op1 = (esr >> 14) & 0x7;
1022 params.CRn = (esr >> 10) & 0xf;
1023 params.CRm = (esr >> 1) & 0xf;
1024 params.Op2 = (esr >> 17) & 0x7;
1025 params.Rt = (esr >> 5) & 0x1f;
1026 params.is_write = !(esr & 1);
1027
1028 return emulate_sys_reg(vcpu, &params);
1029}
1030
1031/******************************************************************************
1032 * Userspace API
1033 *****************************************************************************/
1034
1035static bool index_to_params(u64 id, struct sys_reg_params *params)
1036{
1037 switch (id & KVM_REG_SIZE_MASK) {
1038 case KVM_REG_SIZE_U64:
1039 /* Any unused index bits means it's not valid. */
1040 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1041 | KVM_REG_ARM_COPROC_MASK
1042 | KVM_REG_ARM64_SYSREG_OP0_MASK
1043 | KVM_REG_ARM64_SYSREG_OP1_MASK
1044 | KVM_REG_ARM64_SYSREG_CRN_MASK
1045 | KVM_REG_ARM64_SYSREG_CRM_MASK
1046 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1047 return false;
1048 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1049 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1050 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1051 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1052 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1053 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1054 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1055 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1056 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1057 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1058 return true;
1059 default:
1060 return false;
1061 }
1062}
1063
1064/* Decode an index value, and find the sys_reg_desc entry. */
1065static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1066 u64 id)
1067{
1068 size_t num;
1069 const struct sys_reg_desc *table, *r;
1070 struct sys_reg_params params;
1071
1072 /* We only do sys_reg for now. */
1073 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1074 return NULL;
1075
1076 if (!index_to_params(id, &params))
1077 return NULL;
1078
62a89c44 1079 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1080 r = find_reg(&params, table, num);
1081 if (!r)
1082 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1083
1084 /* Not saved in the sys_reg array? */
1085 if (r && !r->reg)
1086 r = NULL;
1087
1088 return r;
1089}
1090
1091/*
1092 * These are the invariant sys_reg registers: we let the guest see the
1093 * host versions of these, so they're part of the guest state.
1094 *
1095 * A future CPU may provide a mechanism to present different values to
1096 * the guest, or a future kvm may trap them.
1097 */
1098
1099#define FUNCTION_INVARIANT(reg) \
1100 static void get_##reg(struct kvm_vcpu *v, \
1101 const struct sys_reg_desc *r) \
1102 { \
1103 u64 val; \
1104 \
1105 asm volatile("mrs %0, " __stringify(reg) "\n" \
1106 : "=r" (val)); \
1107 ((struct sys_reg_desc *)r)->val = val; \
1108 }
1109
1110FUNCTION_INVARIANT(midr_el1)
1111FUNCTION_INVARIANT(ctr_el0)
1112FUNCTION_INVARIANT(revidr_el1)
1113FUNCTION_INVARIANT(id_pfr0_el1)
1114FUNCTION_INVARIANT(id_pfr1_el1)
1115FUNCTION_INVARIANT(id_dfr0_el1)
1116FUNCTION_INVARIANT(id_afr0_el1)
1117FUNCTION_INVARIANT(id_mmfr0_el1)
1118FUNCTION_INVARIANT(id_mmfr1_el1)
1119FUNCTION_INVARIANT(id_mmfr2_el1)
1120FUNCTION_INVARIANT(id_mmfr3_el1)
1121FUNCTION_INVARIANT(id_isar0_el1)
1122FUNCTION_INVARIANT(id_isar1_el1)
1123FUNCTION_INVARIANT(id_isar2_el1)
1124FUNCTION_INVARIANT(id_isar3_el1)
1125FUNCTION_INVARIANT(id_isar4_el1)
1126FUNCTION_INVARIANT(id_isar5_el1)
1127FUNCTION_INVARIANT(clidr_el1)
1128FUNCTION_INVARIANT(aidr_el1)
1129
1130/* ->val is filled in by kvm_sys_reg_table_init() */
1131static struct sys_reg_desc invariant_sys_regs[] = {
1132 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1133 NULL, get_midr_el1 },
1134 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1135 NULL, get_revidr_el1 },
1136 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1137 NULL, get_id_pfr0_el1 },
1138 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1139 NULL, get_id_pfr1_el1 },
1140 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1141 NULL, get_id_dfr0_el1 },
1142 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1143 NULL, get_id_afr0_el1 },
1144 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1145 NULL, get_id_mmfr0_el1 },
1146 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1147 NULL, get_id_mmfr1_el1 },
1148 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1149 NULL, get_id_mmfr2_el1 },
1150 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1151 NULL, get_id_mmfr3_el1 },
1152 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1153 NULL, get_id_isar0_el1 },
1154 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1155 NULL, get_id_isar1_el1 },
1156 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1157 NULL, get_id_isar2_el1 },
1158 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1159 NULL, get_id_isar3_el1 },
1160 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1161 NULL, get_id_isar4_el1 },
1162 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1163 NULL, get_id_isar5_el1 },
1164 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1165 NULL, get_clidr_el1 },
1166 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1167 NULL, get_aidr_el1 },
1168 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1169 NULL, get_ctr_el0 },
1170};
1171
26c99af1 1172static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
7c8c5e6a 1173{
7c8c5e6a
MZ
1174 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1175 return -EFAULT;
1176 return 0;
1177}
1178
26c99af1 1179static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
7c8c5e6a 1180{
7c8c5e6a
MZ
1181 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1182 return -EFAULT;
1183 return 0;
1184}
1185
1186static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1187{
1188 struct sys_reg_params params;
1189 const struct sys_reg_desc *r;
1190
1191 if (!index_to_params(id, &params))
1192 return -ENOENT;
1193
1194 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1195 if (!r)
1196 return -ENOENT;
1197
1198 return reg_to_user(uaddr, &r->val, id);
1199}
1200
1201static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1202{
1203 struct sys_reg_params params;
1204 const struct sys_reg_desc *r;
1205 int err;
1206 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1207
1208 if (!index_to_params(id, &params))
1209 return -ENOENT;
1210 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1211 if (!r)
1212 return -ENOENT;
1213
1214 err = reg_from_user(&val, uaddr, id);
1215 if (err)
1216 return err;
1217
1218 /* This is what we mean by invariant: you can't change it. */
1219 if (r->val != val)
1220 return -EINVAL;
1221
1222 return 0;
1223}
1224
1225static bool is_valid_cache(u32 val)
1226{
1227 u32 level, ctype;
1228
1229 if (val >= CSSELR_MAX)
18d45766 1230 return false;
7c8c5e6a
MZ
1231
1232 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1233 level = (val >> 1);
1234 ctype = (cache_levels >> (level * 3)) & 7;
1235
1236 switch (ctype) {
1237 case 0: /* No cache */
1238 return false;
1239 case 1: /* Instruction cache only */
1240 return (val & 1);
1241 case 2: /* Data cache only */
1242 case 4: /* Unified cache */
1243 return !(val & 1);
1244 case 3: /* Separate instruction and data caches */
1245 return true;
1246 default: /* Reserved: we can't know instruction or data. */
1247 return false;
1248 }
1249}
1250
1251static int demux_c15_get(u64 id, void __user *uaddr)
1252{
1253 u32 val;
1254 u32 __user *uval = uaddr;
1255
1256 /* Fail if we have unknown bits set. */
1257 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1258 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1259 return -ENOENT;
1260
1261 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1262 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1263 if (KVM_REG_SIZE(id) != 4)
1264 return -ENOENT;
1265 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1266 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1267 if (!is_valid_cache(val))
1268 return -ENOENT;
1269
1270 return put_user(get_ccsidr(val), uval);
1271 default:
1272 return -ENOENT;
1273 }
1274}
1275
1276static int demux_c15_set(u64 id, void __user *uaddr)
1277{
1278 u32 val, newval;
1279 u32 __user *uval = uaddr;
1280
1281 /* Fail if we have unknown bits set. */
1282 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1283 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1284 return -ENOENT;
1285
1286 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1287 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1288 if (KVM_REG_SIZE(id) != 4)
1289 return -ENOENT;
1290 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1291 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1292 if (!is_valid_cache(val))
1293 return -ENOENT;
1294
1295 if (get_user(newval, uval))
1296 return -EFAULT;
1297
1298 /* This is also invariant: you can't change it. */
1299 if (newval != get_ccsidr(val))
1300 return -EINVAL;
1301 return 0;
1302 default:
1303 return -ENOENT;
1304 }
1305}
1306
1307int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1308{
1309 const struct sys_reg_desc *r;
1310 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1311
1312 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1313 return demux_c15_get(reg->id, uaddr);
1314
1315 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1316 return -ENOENT;
1317
1318 r = index_to_sys_reg_desc(vcpu, reg->id);
1319 if (!r)
1320 return get_invariant_sys_reg(reg->id, uaddr);
1321
1322 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1323}
1324
1325int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1326{
1327 const struct sys_reg_desc *r;
1328 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1329
1330 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1331 return demux_c15_set(reg->id, uaddr);
1332
1333 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1334 return -ENOENT;
1335
1336 r = index_to_sys_reg_desc(vcpu, reg->id);
1337 if (!r)
1338 return set_invariant_sys_reg(reg->id, uaddr);
1339
1340 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1341}
1342
1343static unsigned int num_demux_regs(void)
1344{
1345 unsigned int i, count = 0;
1346
1347 for (i = 0; i < CSSELR_MAX; i++)
1348 if (is_valid_cache(i))
1349 count++;
1350
1351 return count;
1352}
1353
1354static int write_demux_regids(u64 __user *uindices)
1355{
efd48cea 1356 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
7c8c5e6a
MZ
1357 unsigned int i;
1358
1359 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1360 for (i = 0; i < CSSELR_MAX; i++) {
1361 if (!is_valid_cache(i))
1362 continue;
1363 if (put_user(val | i, uindices))
1364 return -EFAULT;
1365 uindices++;
1366 }
1367 return 0;
1368}
1369
1370static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1371{
1372 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1373 KVM_REG_ARM64_SYSREG |
1374 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1375 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1376 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1377 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1378 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1379}
1380
1381static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1382{
1383 if (!*uind)
1384 return true;
1385
1386 if (put_user(sys_reg_to_index(reg), *uind))
1387 return false;
1388
1389 (*uind)++;
1390 return true;
1391}
1392
1393/* Assumed ordered tables, see kvm_sys_reg_table_init. */
1394static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1395{
1396 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1397 unsigned int total = 0;
1398 size_t num;
1399
1400 /* We check for duplicates here, to allow arch-specific overrides. */
62a89c44 1401 i1 = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1402 end1 = i1 + num;
1403 i2 = sys_reg_descs;
1404 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1405
1406 BUG_ON(i1 == end1 || i2 == end2);
1407
1408 /* Walk carefully, as both tables may refer to the same register. */
1409 while (i1 || i2) {
1410 int cmp = cmp_sys_reg(i1, i2);
1411 /* target-specific overrides generic entry. */
1412 if (cmp <= 0) {
1413 /* Ignore registers we trap but don't save. */
1414 if (i1->reg) {
1415 if (!copy_reg_to_user(i1, &uind))
1416 return -EFAULT;
1417 total++;
1418 }
1419 } else {
1420 /* Ignore registers we trap but don't save. */
1421 if (i2->reg) {
1422 if (!copy_reg_to_user(i2, &uind))
1423 return -EFAULT;
1424 total++;
1425 }
1426 }
1427
1428 if (cmp <= 0 && ++i1 == end1)
1429 i1 = NULL;
1430 if (cmp >= 0 && ++i2 == end2)
1431 i2 = NULL;
1432 }
1433 return total;
1434}
1435
1436unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1437{
1438 return ARRAY_SIZE(invariant_sys_regs)
1439 + num_demux_regs()
1440 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1441}
1442
1443int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1444{
1445 unsigned int i;
1446 int err;
1447
1448 /* Then give them all the invariant registers' indices. */
1449 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1450 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1451 return -EFAULT;
1452 uindices++;
1453 }
1454
1455 err = walk_sys_regs(vcpu, uindices);
1456 if (err < 0)
1457 return err;
1458 uindices += err;
1459
1460 return write_demux_regids(uindices);
1461}
1462
e6a95517
MZ
1463static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1464{
1465 unsigned int i;
1466
1467 for (i = 1; i < n; i++) {
1468 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1469 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1470 return 1;
1471 }
1472 }
1473
1474 return 0;
1475}
1476
7c8c5e6a
MZ
1477void kvm_sys_reg_table_init(void)
1478{
1479 unsigned int i;
1480 struct sys_reg_desc clidr;
1481
1482 /* Make sure tables are unique and in order. */
e6a95517
MZ
1483 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1484 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1485 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1486 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1487 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1488 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
7c8c5e6a
MZ
1489
1490 /* We abuse the reset function to overwrite the table itself. */
1491 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1492 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1493
1494 /*
1495 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1496 *
1497 * If software reads the Cache Type fields from Ctype1
1498 * upwards, once it has seen a value of 0b000, no caches
1499 * exist at further-out levels of the hierarchy. So, for
1500 * example, if Ctype3 is the first Cache Type field with a
1501 * value of 0b000, the values of Ctype4 to Ctype7 must be
1502 * ignored.
1503 */
1504 get_clidr_el1(NULL, &clidr); /* Ugly... */
1505 cache_levels = clidr.val;
1506 for (i = 0; i < 7; i++)
1507 if (((cache_levels >> (i*3)) & 7) == 0)
1508 break;
1509 /* Clear all higher bits. */
1510 cache_levels &= (1 << (i*3))-1;
1511}
1512
1513/**
1514 * kvm_reset_sys_regs - sets system registers to reset value
1515 * @vcpu: The VCPU pointer
1516 *
1517 * This function finds the right table above and sets the registers on the
1518 * virtual CPU struct to their architecturally defined reset values.
1519 */
1520void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1521{
1522 size_t num;
1523 const struct sys_reg_desc *table;
1524
1525 /* Catch someone adding a register without putting in reset entry. */
1526 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1527
1528 /* Generic chip reset first (so target could override). */
1529 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1530
62a89c44 1531 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1532 reset_sys_reg_descs(vcpu, table, num);
1533
1534 for (num = 1; num < NR_SYS_REGS; num++)
1535 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1536 panic("Didn't reset vcpu_sys_reg(%zi)", num);
1537}